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Abstract
Case studies  in  geography are strongly dependent  on the size  of  the spatial  units  used  for  the 
analysis. This has been expressed as the Modifiable Areal Unit Problem: whatever the phenomenon 
under  consideration,  it  is  impossible  to  identify  a  single  spatial  partition  that  would  be  most 
appropriate  to  analyze  it.  In  this  respect,  multifractal  analysis  may  be  an  interesting  tool  for 
geographers. It integrates not just a series of nested spatial resolutions, as fractal analysis does, but 
also a series of points of view about the quantity of information contained in each spatial unit.

In this paper, we first expose the mathematical bases of multifractal analysis and we describe how it 
applies to geographical analyses. We insist on the mathematical notion of dimension, which allows 
us to describe how multifractal parameters can be used to quantify the MAUP. Then we use the 
method to characterize the spatial distribution of population density in France. The main result is a 
typology map of population density that uses the MAUP as a descriptive tool. This map allows the 
joint identification of several phenomena: the main cities, the rural settlement patterns, and several 
types of periurban settlement patterns.
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1 Introduction

In settlement geography, scholars observe the spatial distribution of population

by dividing space into more or less regular partitions and then calculating the

population density in each spatial unit of the partition. This allows them to

analyze the spatial variation of settlement intensity.

However, when analyzing the spatial distribution of population, we observe

that population density varies greatly with the spatial resolution of the space

partition under consideration. For instance, the average population density in

mainland France in 2010 is 120 inhabitants per km2. In the Île de France region

(around Paris), the population density is 1,000 inhabitants per km2 whereas

population density in the Limousin region is 44 inhabitants per km2. Consider-

ing a finer spatial resolution, differences in population density are greater: the

subregion (i.e. département) of Paris has a very high population density (20,000

inhabitants per km2) whereas the subregion Creuse in the Limousin region is

almost deserted (22 inhabitants per km2).
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Thus case studies in geography are highly dependent on the size of the spatial

units used for the analysis. This has been expressed by Openshaw (1983) as

the Modifiable Areal Unit Problem (MAUP): whatever the phenomenon under

consideration, it is impossible to identify a single spatial partition that would

be most appropriate for analyzing it.

In this respect, fractal analyses are interesting because they allow us to an-

alyze a phenomenon across spatial units of varying sizes. In geography, fractal

analyses are usually performed on binary images representing the presence or

absence of a phenomenon. They are more often used for analyzing the shape

of built patterns within urban agglomerations or urban regions (see e.g. Batty

and Xie (1996), 1999; Benguigui et al. (2000); Benguigui et al. (2006); Feng and

Chen (2010); Shen (2002); Thomas et al. (2008)). Fractal dimensions enable us

to distinguish easily between built-up patterns characterized by high diversity

in the size of the built clusters and in the distances separating these clusters

(fractal dimension close to 1.5) and uniform built-up patterns in which buildings

may be either scattered or concentrated (fractal dimension close to 2) (Thomas

et al. (2007)). As set by Chen (2013), fractal indexes characterizing urban pat-

terns are consistent with one another only if the radial fractal dimension falls

between 1.5 and 2.

Considering a 2D built pattern, the built density ρ is reduced when pass-

ing from a spatial partition at a given spatial resolution i to a finer one at a

resolution i+ 1 = i/r according to the equation:

ρi
ρi+1

= r−2−D (1)

where D is the fractal dimension and r is the reduction factor from a given spa-

tial resolution to a finer one (Tannier et al. (2012)). The built density measured
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for any spatial resolution remains the same only if the fractal dimension of the

built pattern is equal to 2.

Such fractal analyses consider the self-similarity of built patterns under the

assumption that each pattern is characterized by a single self-similarity dimen-

sion. Yet several scholars have shown that the self-similarity dimension is not

always constant in reality (Goodchild (1980)); it is usually constant over a lim-

ited range of scales but varies somewhat over successive ranges of scales (Lam

(1990); Lam and Quattrochi (1992); White and Engelen (1994); Tannier and

Pumain (2005)). Other scholars have suggested that urban patterns are char-

acterized by various fractal properties (Batty and Longley (1994); Frankhauser

(2008)), which explains why a single fractal dimension may not always fully

describe them. As an alternative, they propose using multifractal analysis.

Whereas monofractal analyses are performed on binary images representing

the presence or absence of a phenomenon (e.g. built-up surfaces), multifractal

analyses also take into account the relative amount of the phenomenon in each

place. The intensity of the phenomenon under consideration varies with the

spatial aggregation level. Multifractal analysis can be thought of as an exten-

sion of monofractal analysis by the addition of information about the relative

intensity in each place of the phenomenon under consideration. It integrates not

just a series of nested spatial resolutions (i.e. analyzing the phenomenon using

spatial units of nested sizes), as monofractal analysis does (Frankhauser (1998);

Stanley et al. (1999)), but also a series of points of view about the quantity of

information contained in each spatial unit. Therefore, the effects of the MAUP

are fully taken into account.

In urban geography, Chen and Wang (2013) have applied multifractal anal-

ysis to characterize the built pattern of Beijing at several points in time; Ariza-
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Villaverde et al. (2013) have used it to characterize urban street patterns; other

scholars have used it to characterize systems of cities and rank-size distributions

of settlements (Chen and Zhou (2004); Haag (1994)). To our knowledge, only

two applications of multifractal analysis for analyzing the spatial distribution of

population have been published. Appleby (1996) used multifractal analysis to

measure the spatial distribution of population in the USA and Great Britain.

He considered the multifractal organization of each settlement pattern to be

homogeneous within each country. That strong assumption was contested by

Vega Orozco et al. (2015), who compared the settlement patterns of three Swiss

regions and found differences in the multifractal organization of the population

distribution between the regions.

In this paper, we use multifractal indexes for quantifying the MAUP. Our aim

is to use the MAUP as a descriptive tool for identifying local differences in the

spatial distribution of population density in France. By varying the size of the

spatial units under consideration, we analyze the population density through a

series of nested spatial partitions. By changing the focus on the local population

densities, we consider either places where population is highly concentrated, or

places where population is not highly concentrated. As a limiting case, we also

consider the mere presence or absence of population regardless of local density

(i.e. monofractal analysis).

The paper is organized as follows. Section 2 sets out the mathematical bases of

multifractal analysis. Section 3 describes how it applies to geographical analyses.

Section 4 reports the analysis results of the spatial distribution of population

density in France. Section 5 discusses the results in the light of the centuries-

old history of French rural settlements and recent changes in periurban areas.

Section 6 concludes the paper.
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2 Multifractal analysis: mathematical bases

Multifractal analysis is about studying local variations of a measure (Jaffard

et al. (2007)). A measure is similar to a probability: it attributes a size to

a set of points. Considering any set of points F of the Euclidean plane, the

measure µ(F ) of the spatial distribution of population is simply the number of

individuals contained in F :

µ(F ) = Population contained in F (2)

The population density of the set of points F corresponds to the ratio between

the number of inhabitants in F and its area. When the supporting space con-

sidered (i.e. the spatial footprint of the set F ) is small enough, the population

density is said to be local. Exploring the MAUP consists in studying the way

the local density changes when this supporting space becomes smaller.

In terms of mathematics, the local density is said to be regular if it varies

slowly when the area of the supporting space decreases. Conversely, the local

density is irregular when it increases suddenly -it diverges to infinity- when the

area of the supporting space decreases. The regularity of local density around

the point x of the Euclidean plane can be measured with the Hölder exponent

α(x). The closer to 0 the exponent is, the more irregular the local density is.

Very strong local irregularities are called singularities. Conversely, high Hölder

exponents characterize regular places where the variations in the local density

are weak when the area of the supporting space decreases.

The measure µ(F ) can exhibit either only local regularities, or only irregu-

larities, or a mix of both. Multifractal analysis allows us to quantify this. The

first step in the analysis consists in dividing the space supporting the measure

into subsets of the same regularity α. Those subsets are called iso-Hölder sets.
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The area of iso-Hölder sets cannot usually be measured because their shape is

too complex. Consequently, each iso-Hölder set is characterized by its Hausdorff

dimension (see section 2.1). The relation between each Hölder exponent value

and its corresponding Hausdorff dimension gives the multifractal spectrum f(α)

of the spatial distribution of the measure µ(F ) (see section 2.2). The Hausdorff

dimension is almost impossible to use in practice. Consequently, the multifrac-

tal spectrum is obtained through a Legendre transform of two other multifractal

parameters: the scaling exponent τq and the generalized dimension Dq, which

allow the quantification of the MAUP for a measure µ(F ) (see section 2.3).

NB: although the mathematical definitions and examples are presented in R2,

they remain valid and can be generalized for any vector space Rn.

2.1 Fractal box-counting dimension and Hausdorff dimen-

sion

In mathematics, a dimension measures the size of a set of points. In R0, R1 and

R2, the size of a set of points corresponds respectively to its length, its area and

its volume.

One possible way to measure the area of a set of points F in R2 is to cover F

by objects whose area is perfectly known. The sum of the areas of the objects

covering F gives approximately the total area of F . The smaller the covering

objects are, the more precise the approximation of the area of F is. When the

covering objects are infinitely small, we may hope to obtain the exact area of

F .

Yet, mathematicians have long been confronted with the difficulty of mea-

suring the length, area, and volume of complex shapes. For instance, it is
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impossible to measure the length of a line by covering it with line segments (i.e.

1-dimensional shapes) if the line is contained in R2 but not in R. Similarily, it

is impossible to measure the area of a surface by covering it with circles (i.e.

2-dimensional shapes) if this surface is contained in R3 but not in R2. Fractal

dimensions are used for measuring the size of such complex shapes.

2.1.1 Box-counting dimension

One way to define the box-counting dimension calls on the use of a δ-grid (Fal-

coner (2013)). A δ-grid is obtained by partioning space into ordered square grid

cells of side length δ. Considering the Euclidean plane R2, the cells of a δ-grid

are defined as follows:

[ox +mxδ, ox + (mx + 1)δ]× [oy +myδ, oy + (my + 1)δ] (3)

where ox and oy are real numbers representing respectively the origin of the

grid’s x-axis and y-axis. For a given δ-grid, ox and oy are the same for all cells.

mx and my are positive integers corresponding to the row and column numbers

of the grid cells. Cells are numbered from 1 to n.

The box-counting dimension of a set of points F of the plane is given by:

dimB(F ) = lim
δ→0

log(Nδ(F ))
−log(δ) (4)

where Nδ(F ) is the number of δ-grid cells that intersect F .

2.1.2 Hausdorff dimension

The problem with the box-counting dimension is that limδ→0 does not always

exist for any set of points F . The Hausdorff dimension can overcome this prob-

lem by using a δ-cover instead of a δ-grid (Falconer (2013)). A δ-cover is a
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partition of F into parts Ui, which may have any shape and whose diameter

is at most equal to δ. Ui are called hyperballs. The diameter of a hyperball

is defined as the distance between the two elements of it that are the farthest

apart. For any F , δ-covers always exist. The Hausdorff measure of the dimen-

sion of the set F varies according to the chosen δ-cover. The Hausdorff measure

of dimension d (i.e. for a given δ-cover) is defined as:

Hd(S) = lim
δ→0

inf{
+∞∑
i=1
|Ui|d : {Ui} is a δ-cover of F (5)

If Hd(S) is zero then the dimension of F is lower than d. Accordingly, the

Hausdorff dimension dimH(F ) of the set F is the smallest value of d for which

the Hausdorff measure Hd(F ) is non-zero:

dimH(F ) = inf{d : Hd(F ) = 0} (6)

δ-covers are extremely difficult to use in practice, which explains why the

Hausdorff dimension is only used for theoretical purposes. Contrarily, the box-

counting dimension is usable in practice for measuring the size of real objects

although it does not exist for any set F . The box-counting dimension is esti-

mated by calculating the slope of the curve log(Nδ) as a function of −log(δ)

(see equation 4) for the range of δ-values for which the curve is linear.

2.2 Hölder exponent α(x) and singularity spectrum f(α)

The Hölder exponent α(x) measures the irregularity of the local density of a

measure µ (for instance, a local population density) around a point x.

α(x) = lim
δ→0

µ(B(x, r))
−log(δ) (7)
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where B(x, r) is the disc of radius r centered on the point x. This definition

is valid only if the B(x, r) is always positive for any radius. The set of points

having this property is the support of the measure µ.

The Hölder exponent is directly related to the local density density(x, r):

density(x, r) = µ(B(x, r))
πr2 ' rα(x)

πr2 ' r
α(x)−2 (8)

α(x) < 2 In this case, density(x, r) tends to infinity when r tends to 0. As α(x)

comes close to 0, density(x, r) diverges faster toward infinity;

α(x) > 2 In this case, density(x, r) tends to 0 when r tends to 0. As α(x)

increases, density(B(x, r)) converges faster toward 0;

α(x) = 2 In this case, the behaviour of density(x, r) can not be determined.

As r tends to 0, density(x, r) tends either toward a non-zero value or to

infinity, or even converges to 0. The divergence of density(x, r) toward

infinity or its convergence toward 0 is much slower than in the case of

α(x) 6= 2.

By measuring the dimension of the sets of points x characterized by the

same Hölder exponent α(x), we obtain the singularity spectrum (also called

multifractal spectrum) f(α), namely the Hausdorff dimension of iso-Hölder sets

of points Fα = {x : α(x) = α}:

f(α) = dimH(Fα) (9)

f(α(0)) gives the maximum value of the singularity spectrum. It indicates the

strength of the irregularities of the measure. Complementarily, the range of the

spectrum informs us about the multifractality of the spatial distribution of the

measure (more or less strong, even non-existent in the case of a monofractal
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distribution) (Wendt et al. (2007)).

The singularity spectrum f(α) complies with the following property:

0 ≤ f(α) ≤ α (10)

The left-hand side of the inequality is trivial and results from the properties of

fractal dimensions. The right-hand side of the inequality is much more inter-

esting because it implies that the intensity of local singularities constrains their

spatial distribution: a very singular behavior cannot occur in too many places.

Since the Hausdorff dimension is not usable in practice, the direct calcula-

tion of the singularity spectrum using equation 9 is not possible. Instead, the

multifractal formalism can be used (Jaffard et al. (2007)). It enables the de-

termination of the singularity spectrum through a Legendre transform of the

scaling exponent τq:

f(α) = inf
q∈R

(qα− τq) (11)

2.3 Multifractal quantification of the Modifiable Areal Unit

Problem

2.3.1 Scaling exponent τq

A map of population density displays graphically the population contained in

spatial units. In the case of a raster map built upon a δ-grid Gδ,i, the population

contained in a given cell i corresponds to the measure µ(Gδ,i). In such a case, the

MAUP only depends on the variation in spatial resolutions (i.e. variations of the

values of δ) and not on the shape of the spatial units under consideration. The
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analysis of the behavior of the measure µ(Gδ,i) through varying δ-values allows

the effect of the MAUP on the mapped population density to be determined.

For this, one possible way is to abstract the spatial distribution of the measure

µ(Gδ,i) for each δ-value using an appropriate function, and then to observe

the result of the function when δ changes. Obviously, a single function is not

enough to fully characterize the spatial distribution of the measure µ(Gδ,i).

Alternatively, a group of functions, namely the structure functions Sq,δ(µ), are

suitable for this:

Sq,δ(µ) =
∑

µ(Gδ,i)>0

µ(Gδ,i)q (12)

Multifractal analysis requires us to set the assumption that the structure

functions Sq,δ(µ) follow a scaling law when the values of δ are small:

Sq,δ(µ) ≈ δτq (13)

Here τq is a scaling exponent. It can be calculated using the following for-

mula:

τq = lim
δ→0

log(Sq,δ(µ))
−log(δ) (14)

As for estimating the box-counting dimension, it is impossible to reduce δ toward

0 indefinitely. Consequently, the estimation of τq is given by the slope of the

curve of log(Sq,δ(µ)) as a function of log(δ).
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2.3.2 Generalized dimensions Dq

On the basis of τq, it is possible to define the generalized dimensions Dq:


Dq = 1

1−q τq pour q 6= 1

D1 = limδ→0
∑
µ(Gδ,i)>0 µ(Gδ,i)log(µ(Gδ,i))

(15)

Dq with respect to q is called the dimension spectrum. The coefficient q acts as

a filter when calculating the generalized dimensions. For q → +∞, only the cells

in which high measures are concentrated are taken into account. Conversely, for

q → −∞ generalized dimensions describe the spatial distribution of the cells in

which low measures are concentrated. For q = 1, the filter does not give more

or less importance to the cells with respect to the intensity of the measure.

For q = 0, the generalized dimension does not take into account the spatial

variation of the measure; only the fact that the cells are populated or not is

taken into account. Because of this sort of filtering operated by q, generalized

dimensions Dq allow a characterization of the spatial distribution of population

that is both multiscale (via the introduction of the δ-grid) and multi-viewpoint

(via the coefficient q).

2.3.3 Singularity spectrum, dimension spectrum, and the MAUP

When the multifractal parameters τq, Dq and f(α) are differentiable, the Leg-

endre transform of equation 11 becomes:

α(q) = d

dq
(q − 1)Dq (16)

f(α(q)) = αq − (q − 1)Dq (17)

These two equations show that both the singularity spectrum f(α(q)) and

the dimension spectrum (Dq with respect to q) contain the same information.
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Their relationships and possible uses are discussed in (Chen and Wang (2013)).

Our interest here is that both spectrums enlighten the MAUP.

• The absence of MAUP means that the spatial distribution of population

is almost uniform. In this case, the dimension spectrum is a horizontal

line with the y-intercept equal to 2 and the singularity spectrum is the

point of coordinates (2, 2).

• When the measure is monofractal then the singularity spectrum f(α(q))

is only a point of coordinates α(q) = f(α(q)) = D0. In this case, the

MAUP only results from the spatial distribution of the populated places.

Basically, the study area contains identical buildings all having the same

number of inhabitants and being spatially distributed in a monofractal

manner. In this case, local differences in population density come only

from the spatial distribution of the buildings.

• A singularity spectrum having a range of α(q) values indicates a multifrac-

tal behavior. In this case, the spatial footprint of the buildings varies (e.g.

small single-family houses, multi-family houses, high and large collective

buildings) as well as their number of inhabitants: the MAUP results from

both.

The singularity spectrum f(α) is easier to use than both τq and the generalized

dimensions Dq because f(α) is like a probability density function (Chevillard

et al. (2012)). For this reason, the singularity spectrum f(α) is used in im-

age processing for analyzing the texture of images (Wendt et al. (2009)), and

more particulary for image classification. In this paper, we use the singularity

spectrum in the same way in order to obtain a typology map of the spatial

distribution of human population in France (see section 4.2).
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3 Multifractal analysis: practical application

3.1 Data

For this study we used the 200m-grid population 2010 dataset provided by the

French National Institute of Statistics and Economic Studies (INSEE) for main-

land France. These data result from counting georeferenced households within

georeferenced quadrilateral grid cells having a side length of 200m. One ad-

vantage of this dataset is that counted households are precisely located: the

data of the INSEE’s ‘Revenus Fiscaux Localisés’ database, which contains the

taxable income of all households in France characterized by the address of their

tax domicile (i.e. their principal place of residence) and the number of individ-

uals in the household, are georeferenced by matching them against geographic

information layers of the land registry. Fewer than 0.4% of the households

contained in the ‘Revenus Fiscaux Localisés’ database cannot be located with

200m precision. In general, the reason is that their address is not related to a

land parcel in the land registry. This share of 0.4% of households is sufficiently

dispersed spatially for the quality of the 200m-grid population dataset to be

entirely satisfactory for the present study.

NB: data used as well as the R code written to make the analyses are available

online as “Supporting Information”.

3.2 Estimation of multifractal indexes

3.2.1 Estimation of the generalized dimensions Dq

In practice, the generalized dimensions Dq are defined as:

Dq = lim
δ→0

1
1−q log(

∑n
i=1 µ(Gδ,i)q)

−log(δ) (18)
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By convention, 0q = 0 for any q ∈ R.

The numerator of a generalized q−dimension is the generalized entropy de-

fined by Renyi (Appleby (1996)). When q tends to 1, the generalized dimension

converges on the information dimension. When q = 0, the generalized dimen-

sion D0 is the fractal box-counting dimension of the support of the measure

µ(Gδ,i). When q = 2, the generalized dimension D2 is called the correlation

dimension. It is associated with the probability that two individuals selected

randomly will be a distance δ apart (Seuront (2009)).

In theory, the generalized dimensions are obtained by studying the asymp-

totic behavior of the generalized entropy when the resolution δ of the δ-grid

tends to 0. However, it is impossible to reduce δ toward 0 indefinitely: when

applying the box-counting method on real data, the minimum possible size of a

δ-grid depends on the resolution of the data themselves. Consequently in prac-

tice, generalized dimensions are estimated through a linear regression relating

the generalized entropy to −log(δ) by the ordinary least squares method. Gen-

eralized dimensions correspond to the slope of the regression line. Of course,

the goodness-of-fit of the linear regression has to be satisfactory. Visually, the

plotted points relating entropies (on the y-axis) with log(δ) (on the x-axis) have

to form a straight line. This requires selecting a range of δ values for which the

goodness-of-fit of the linear regression is satisfactory.

3.2.2 Estimation of the multifractal spectrum f(α(q))

To estimate the multifractal spectrum, we do not use the Legendre transform of

τq, which is unstable in practice: we estimate the multifractal spectrum directly

from the formula proposed by Chhabra and Jensen (1989):
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α(q) = lim
δ→0

∑n
i=1 Pq(δ, i)log(µ(Gδ,i))

−log(δ) (19)

and

f(α(q)) = lim
δ→0

∑n
i=1 Pq(δ, i)log(Pq(δ, i))

−log(δ) (20)

with

Pq(δ, i) = µ(Gδ,i)q∑n
i=1 µ(Gδ,i)q

(21)

where {Gδ,i} is a δ-grid.

As when estimating the generalized dimensions, the multifractal spectrum

is obtained by a linear regression relating the numerator of equation 19 (respec-

tively 20) to −log(δ) considering the same range of δ values as when estimating

the corresponding generalized dimensions.

3.3 Choice of the parameters involved in the multifractal

analysis of the spatial distribution of population in

France

To compare local settlement patterns with multifractal analysis, we need to

divide mainland France into regular spatial units. We choose a regular square

partitioning into spatial units ζ (Figures 1 and 2). The size of the square

spatial units ζ depends on and determines the scale range (i.e. series of spatial

resolutions δ) for estimating the multifractal indexes. Consequently both the

size of the spatial units and the scale range of analysis have been chosen jointly.

Yet, for the sake of clarity these two aspects are set out successively in what

16



follows.

Figure 1: 992 square spatial units regularly dividing the area of mainland France

a cell of the δ-grid

a cell of the δ-grid

a cell of the
data population grid
(200m side length)A square unit ζ

zoom

Figure 2: A square spatial unit ζ, δ-grid cells, and 200m-grid population cells

3.3.1 Choice of the scale range of δ-values for estimating multifractal

indexes

Comparing multifractal indexes across a large series of spatial units ζ involves

setting a single scale range of δ-values for all spatial units. This requirement
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strongly constrained our study because the settlement pattern in each spatial

unit may be very different and, consequently, the scale range that allows the best

estimation of multifractal indexes for each spatial unit may be also different.

Considering this, the choice of the scale range of δ values for estimating

multifractal indexes results in a tradeoff between statistical goodness-of-fit and

geographical purposes. We conducted a series of tests consisting in calculating

multifractal indexes for several portions of mainland France with very differ-

ent spatial distributions of population. In general, we observed the following

phenomena:

• at very fine spatial resolutions (side length of the δ-grid cells less than

800m), grid population data are not precise enough to allow a good mul-

tifractal description of population distributions. At those scales, simple

fractal analyses of built patterns carried out on detailed data (e.g. land

registry data - see for instance (Tannier and Thomas (2013))) provide

more information;

• at coarse spatial resolutions (side length of the δ-grid cells larger than

6400m), the scaling behavior corresponds to a fractal degenerated behav-

ior. At this scale range, every grid cell of a spatial unit ζ is populated.

The dimension of the support D0 is very close to 2. Besides this, the use

of coarse spatial resolutions would imply defining very large square spa-

tial units ζ to ensure a good statistical estimation of multifractal indexes,

which is not relevant for analyzing local spatial distributions of population;

• by contrast, considering medium spatial resolutions (side length the δ-grid

cells between 800m and 6400m) the multifractal analysis of grid popula-

tion data interestingly informs us about the effect of urban sprawl on

regional settlement patterns.
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3.3.2 Choice of the size of the square spatial units ζ

According to the chosen scale range of δ-values, the square spatial units ζ must

have a minimum size to allow a good estimation of the slope of regression lines

used for calculating multifractal indexes. Knowing that the maximum resolution

δ is equal to 6400m, the size of the square spatial units ζ has to be large enough.

Otherwise, calculated entropies would be null or quasi-null, which would bias

estimations of multifractal indexes. Considering this, the size chosen for the

square spatial units ζ is 25km side length (Figure 1). The spatial units ζ are

therefore almost four times larger than the larger δ-grid cells when the resolution

δ is 6400m.

With a side length of 25km, the square spatial units ζ divide the largest

French metropolitan areas quite finely: on average, the spatial units ζ partition

large metropolitan areas into nine portions. The average size of the 10 most

populated metropolitan areas is 4900km2, which corresponds approximately to

a diameter of 79km. This partitioning of metropolitan areas enables us to

distinguish the urban centers from their periphery. Moreover, it is possible to

compare the spatial distributions of population in periurban areas to those of

areas bordering on periurban areas. Thus metropolitan areas can be analyzed

in their surrounding context.

No scale range can be unequivocally associated with a given geographical phe-

nomenon. Yet from the arguments exposed above, it can be surmised that geo-

graphical phenomena change differently with different scales of analysis. Built

patterns change quickly at fine scales as a consequence of urban sprawl. Con-

versely, the macro-structure of the French settlement system remains unchanged

at large scales. Finally, an intermediate scale range (intermediate size of both δ-

grids and square spatial units ζ) seems to be well adapted for studying changes
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in the spatial distribution of population. According to Orozco et al. (2015),

this intermediate scale range is suitable for studying the influence of societies

on space.

3.3.3 Choice of the appropriate δ-grid position for calculating en-

tropies for each q−dimension

Each grid cell of a δ-grid results from the aggregation by longitude and latitude

of k cells of the grid population dataset. Accordingly, considering a given k

corresponding to a given resolution δ, a set of k2 δ-grids can be built by varying

the origins ox and oy of respectively the grid’s x-axis and y-axis 200m by 200m.

In theory, the position of the δ-grid does not influence the value of multifractal

indexes. Appleby (1996) notices, however, the variation in entropies depending

on the chosen δ-grids. As he suggests, we selected, among the k2 possible δ-

grids, the δ-grid for which we obtained the lowest entropy value. This selection

was made at each resolution δ for each q value and each entropy. Such a method-

ological choice is based on the consideration of the very nature of entropy. In

information theory, a source transmitting information can be characterized by

a probability distribution, namely optimal coding, which is the shortest infor-

mation coding by which the result of a given action can be transmitted (for

instance, transmitting the information that the result of a throw of dice is the

number 2). The entropy measures the length of this coding. In geographical

multifractal analysis, entropy represents the minimum amount of information

required for locating an individual in a δ-grid. When choosing the δ-grids asso-

ciated with the lowest entropy value we consider the optimal information coding

that characterizes the population distribution.
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3.3.4 Selection of a set of q values

In principle, q can be chosen in R. However, when q is negative, the multifractal

parameter estimates are very unstable: when focusing on the cells with very

little population, the generalized entropies are very sensitive to the positioning

of the δ-grid. The generalized dimensions are also unstable when q values are

very high because only few cells of maximum measures are taken into account

in the calculation. To avoid these estimation problems, we chose here to restrict

the range of multifractal analyses to q in {0, 0.5, 1, 1.5, 2}.

4 Results

When estimating multifractal indexes, we need to verify the quality of the esti-

mation. As shown in Table 1, R2 values calculated are satisfactory: more than

90% are higher than 0.96. Only the quality of the estimation of α2, f(α2) is

slightly lower.

Quantile D0 D1 D2 α0 α1 α2 f(α0) f(α1) f(α1.5) f(α2)
minimum 0.94 0.90 0.81 0.89 0.90 0.53 0.94 0.90 0.63 0.00

10% 0.98 0.99 0.96 0.96 0.99 0.88 0.98 0.99 0.93 0.64
25% 0.99 1.00 0.98 0.98 1.00 0.93 0.99 1.00 0.96 0.80
50% 1.00 1.00 0.99 0.99 1.00 0.97 1.00 1.00 0.98 0.91
75% 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.97

Table 1: Distribution of R2 values obtained by estimating the multifractal in-
dexes

4.1 Maps of generalized dimensions Dq

Figure 3 displays three maps of generalized dimensions for q = 0, 1, 2. Each

map exhibits a clear spatial structure, which differs from one map to the other.

As explained in section 3.1, the quality of data used does not vary spatially.

Hence we assume that the revealed spatial structures do not result from cal-
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(a) Logarithm of population density (b) Generalized dimension of order q = 0

(c) Generalized dimension of order q = 1 (d) Generalized dimension of order q = 2

Figure 3: Population densities and corresponding multifractal generalized di-
mensions in France. Source: 200m-grid population 2010 dataset provided by the
French National Institute of Statistics and Economic Studies (INSEE)

culation artefacts but correspond to real structures of the French settlement

pattern.

On the map of generalized dimensions D0, the spatial organization of main-

land France consists of very large areas of the same dimension. Generalized
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dimensions are high (in general higher than 1.5) in the West and the South-

West, the Rhone valley, and the largest metropolitan areas (see Figure 4 for

the location of each element). By contrast, generalized dimensions are low in

the East of France (Champagne, Ardennes, Lorraine, and Vosges) as well as in

mountain and forest zones. The fact that areas characterized by high dimen-

sions are either rural zones or metropolitan areas illustrates the indifference of

the generalized dimensions D0 to the spatial variations of the density measure.

As stated above, when q = 0 the generalized dimensions take into account only

the fact that the cells are populated or not, but ignore their population density.

In contrast, dense urban metropolitan areas (see Figure 5) are very clearly

identified on the map of generalized dimensions D2. They look like islands of

high dimension D2 surrounded by spatial units of low dimension. Multifractal

analysis for q = 2 concentrates on very populated cells. Only urban spatial

units have enough highly populated cells close enough together to reach high

D2 values. In rural zones, densely populated urban centers are too far apart to

increase the value of D2. Last but not least, non-urban areas with high values

of D0 (in the West, the South-West, and in the Rhone valley) have lower values

of D2. They stand out much less clearly on the map of generalized dimensions

D2 than on the map of generalized dimensions D0.

The map displaying the generalized dimensions D1 exhibits an intermediate

spatial configuration between the maps of D0 and D2. This illustrates the

continuous change of Dq with respect to q.

The fourth map represents the logarithm of population density, which has

been here preferred to the raw population density because when mapping the

latter, the spatial unit containing the city of Paris with its population density

overburdens the other spatial units. Besides this, the logarithm of population
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density is in accordance with the rank-size (in population) distribution of urban

areas: when transforming the population density of each spatial unit into its

logarithm, spatial units are approximately classified according to their rank

order considering their population.

Maps of q−dimensions yield different and non-redundant information than

the map of population density. The main metropolitan areas stand out clearly

on the population density map but not so clearly as on the map of general-

ized dimensions D2. Moreover, maps of generalized dimensions can be used for

detecting a variety of settlement patterns in non-urban areas but not so the

population density map. The fact that density is unable to capture such mor-

phological variations is logical: density is an averaging index, which hides the

variations of population concentrations across scales (Thomas et al. (2007)). By

contrast, generalized dimensions measure the variations of population density

across scales.

4.2 Classification of spatial units according to their mul-

tifractal spectrum f(α)

For defining a typology of spatial units according to their multifractal spectrum,

we used a Hierarchical Cluster Analysis. HAC first involves measuring the

discrepancy between the multifractal spectra of each couple of spatial units.

Because multifractal spectra do not all have the same extent on the y-axis, we

cannot use the usual distance: d(ζ1, ζ2) =
∑
α(f1(α)− f2(α))2 where ζ1 and ζ2

are two spatial units with identical α values.

After several unsuccessful trials, we chose to use the geometrical Hausdorff

distance. The Hausdorff distance respects the axioms laid down for defining a

distance mathematically, in particular the triangle inequality, which is conve-

nient for a HAC. The Hausdorff distance relies on the notion of δ−neighborhood.
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A δ−neighborhood of a set A is the set of points within a distance δ of A (i.e.

the points belonging to a buffer zone of width δ around the set A):

Aδ = {x ∈ R2 : |x− a| 6= δ for some a ∈ A} (22)

On this basis, the Hausdorff distance between two given multifractal spectra

f1(α) and f2(α) is the least δ for which the δ−neighborhood (i.e. the buffer

zone of width δ) of f1(α) contains f2(α) and vice versa (Falconer (2013)).

Once all Hausdorff distances between the multifractal spectra of the 992 spa-

tial units had been computed, we calculated the HAC using the Ward algorithm.

The Ward algorithm minimizes intra-group variation and maximizes inter-group

variation. Figure 6 displays the dendrogram. Classes are defined by cutting

branches off the dendrogram. The dendrogram suggests grouping the spatial

units into five classes.

• Class 1: spatial units in which population is moderately concentrated

locally

• Class 2: spatial units in which population is highly concentrated locally

• Class 3: spatial units in which population is dispersed (non-urban spatial

units)

• Class 4: spatial units in which population density is uniformly high (urban

spatial units)

• Class 5: spatial units exhibiting an intermediate spatial configuration

For each class, we calculated a representative multifractal spectrum by av-

eraging for every q the Hölder coefficient and the Hausdorff dimension of all
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spatial units of the class (Figure 7).

αq(Class) =
∑
i∈Class(αq(i))
|Class|

(23)

f(αq(Class)) =
∑
i∈Class(f(αq(i)))
|Class|

(24)

Logically, the map of the multifractal spectra typology (Figure 8) synthesizes

the three maps of generalized dimensions displayed in Figure 3. Spatial units

characterized by low generalized dimensions D0, which appear clearly on the

corresponding map, appear also clearly on the typology map (classes 1 and

2). Urban centers, which appear clearly on the map of generalized dimensions

D2, also appear clearly on the typology map (class 4). Classes 3 and 5 of the

typology map correspond to non-urban spatial units having high generalized

dimensions D0 and high or moderately high generalized dimensions D1 and D2.

The average multifractal spectrum of spatial units in which population is

locally concentrated pertains to low α values. This reflects the existence of nu-

merous singularities in the spatial units concerned. In geographical terms, a

multifractal spectrum limited to low α values characterizes clearly delineated

villages or small towns surrounded by areas containing few (or even no) popu-

lation. The average multifractal spectrum of class 2 is located at the links of

the spectrum of class 1. This shows that population in spatial units belonging

to class 2 is more concentrated across scales than population in spatial units

of class 1. On the map displayed in Figure 8, we see that class 2 spatial units

are mainly located in the East of France as well as in mountain and forested

areas. Class 1 spatial units surround class 2 spatial units. Both the geographical

location of class 1 spatial units and their average multifractal spectrum suggest
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that class 1 is a mitigated version of class 2.

The average multifractal spectrum of spatial units in which population is uni-

formly distributed associates high α and f(α) values. For q = 0, the value of α0

is approximately 2 and the value of f(α0) is approximately 1.7. Such a multi-

fractal spectrum characterizes a homogeneous and uniform spatial distribution

of population in the spatial units considered. The average multifractal spec-

trum of class 4 is narrower than the spectrum of class 3. This indicates that the

spatial distribution of population in class 4 is less multifractal than in class 3.

Figure 8 shows that the geographical location of spatial units belonging to class

4 corresponds to the location of the main urban centers. These exhibit high

densities of population spreading uniformly across large portions of space. By

contrast, the population density varies more according to the spatial resolution

in class 3 spatial units. Spatial units belonging to class 3 are located on the

periphery of large cities as well as in rural areas in the West of France.

The average multifractal spectrum of class 5 spatial units encompasses all the

spectra described above. Class 5 combines the characteristics of classes 2 and

3. This intermediate position also characterizes the geographical location of the

spatial units belonging to it: they are in general located between spatial units

of class 2 and class 3 (Figure 8). Class 5 corresponds to villages surrounded

by areas of low population density in which population is uniformly dispersed.

Most spatial units characterized by high generalized dimensions D0 and low

generalized dimensions D2 belong to class 5.
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5 Discussion

5.1 Traces of century-old agrarian systems

In the early twentieth century, renowned French geographers and historians an-

alyzed the geography of rural areas (Bloch (1931)), (Dion (1934)), (Demangeon

(1927)). Their research led to a classical division of mainland France into two

agrarian systems:

• enclosed field systems associated with scattered settlements in the centre

and the West of France;

• openfield systems associated with grouped settlements in the East of

France.

Although actual research in history currently questions the relevance of the dis-

tinction between openfield systems and enclosed field systems (Lavigne (2003)),

this distinction interestingly enlightens the multifractal typology map of Figure

8.

Classes 1 and 2 of the multifractal typology (locally concentrated population)

are located in the East of France as well as in mountain and forested areas. In

those areas the traditional agrarian systems were openfield systems.

In non-urban areas (i.e. outside the limit of urban areas), spatial units be-

longing to class 3 of the multifractal typology (dispersed population) are located

in areas where the traditional agrairian systems were enclosed field systems

(mainly in the West of France). Class 5, which corresponds to an intermedi-

ate configuration, is also mainly located in the West of France as well as in

Burgundy.
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5.2 Urban sprawl in France: a single process resulting in

multiple settlement patterns

Ideally, the analysis of the effect of urban sprawl on settlement patterns should

be based on the comparison of grid population data at several points in time.

The first point in time should be just before the beginning of the urban sprawl

process. Regrettably, there are no such time series of data for France and even

if there were, it would be very difficult to deduce from them which changes

in settlement patterns really stem from urban sprawl and which from other

processes, in particular rural exodus. Indeed, urban sprawl and rural exodus

were concomitant in France over a more or less long time period. Moreover,

urban sprawl did not begin at the same point in time eveywhere in France.

Urban sprawl is basically defined as the expansion of the cities beyond their

initial limits. Yet urban delineations used for creating statistical data change

over the course of time to adjust to the outline of changing urban forms. This

makes it difficult to use such statistical data to analyze urban sprawl. To over-

come this difficulty, we did not introduce any a priori urban delineation. We

also adopted an ergodic point of view by saying that observed differences in

actual settlement patterns are due (at least partly) to local differences in the

way the process of urban sprawl occurred. In adopting this point of view, the

risk is that cause and effect might be inferred where mere contingencies exist.

To avoid this, we did not posit a priori morphological criteria by which to define

periurban settlement patterns.

With the multifractal analysis applied to the 992 French spatial units, the

largest cities stand out clearly (except in Burgundy and Champagne): they all

have high generalized dimensions. However, the analysis does not allow us to

identify a type of settlement patterns specific to periurban areas: the multifrac-
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tal index values of periurban areas around the largest cities differ widely.

Three different periurban configurations are observed for France’s three largest

metropolitan areas (Paris, Lyon, and Marseille). Paris’s urban core is made up

of several spatial units categorized as class 4 of the multifractal spectra ty-

pology. The periphery of Paris corresponds to spatial units belonging to class

3 (dispersed population) and class 1 (locally concentrated population). The

metropolitan area of Lyon similarly contains several spatial units categorized

as class 4 of the multifractal typology, which are mainly surrounded by class

3 spatial units (dispersed population). The urban area of Marseille exhibits a

third configuration: in the neighborhood of class 4 spatial units, we find spatial

units of classes 1 and 3 but also class 2 spatial units (concentrated population).

The local concentration of population in those periurban areas can be explained

for Marseille by strong relief constraints (hilly landscapes and Calanques) that

preclude urban development.

In the Champagne-Ardennes region, multifractal analysis does not allow the

detection of any urban area (no class 4 spatial unit). In this region, the

metropolitan areas (Reims, Troyes, Charleville-Mézières, etc.) belong to classes

1 or 2 of the multifractal typology. In the West of France, too, the smallest

urban areas belong not to class 4 of the multifractal typology but to class 3

(dispersed population).

The existence of all these different types of urban and periurban settlement

patterns suggests that the urban sprawl process does not affect all places in the

same way, which has previously been well documented (Frankhauser (1994)).

Settlement patterns resulting from urban sprawl depend not only on the location

of areas considered with respect to center cities but also on the preexisting

types of agrarian systems (uniformly dispersed periurban settlement patterns
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located in the traditional areas of enclosed field systems; periurban settlement

patterns locally concentrated in the traditional areas of openfield systems), and

the natural shapes (mountains, forests) in those areas.

6 Conclusion

Whereas classical fractal dimensions (box-counting dimension, dilation dimen-

sion, correlation dimension, etc.) only characterize the spatial organization of

the support of a measure (i.e. a container), generalized multifractal dimensions

Dq also characterize the spatial variations of the measure (i.e. the content).

Generalized dimensions Dq are constant for any q when the spatial distribution

of population is monofractal. In this case, the spatial variation of the measure

is the same as the spatial variation of its support: container and content are

combined. This is the case for large French metropolitan areas whose gener-

alized dimensions are high whatever the value of q. By contrast, some spatial

units in the West of France exhibit a clear multifractal behavior: they have high

generalized dimensions for q = 0 and low dimensions for q = 2.

Besides the generalized dimensions, the singularity spectrum f(α) enables

geographers to quantify the MAUP. When the singularity spectrum is reduced to

the point of coordinates (2, 2), the population is spatially uniformly distributed:

population densities are almost constant locally; in this case, the effect of the

MAUP is weak or even non-existent. In the other cases, the distribution of

population is subject to the MAUP. Two types of phenomena can occur:

1. Container shape: the smaller the maximum of f(α) (reached for α = α0),

the more irregular the support of the measure, the more numerous the

empty cells in the δ-grid for small δ-values, and consequently the stronger

the MAUP resulting from the shape of the container.
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2. Content heterogeneity: two measures with the same maximum value of

f(α) may have different intensities of multifractality. The multifractality

is weak when the singularity spectrum concentrates around α0: in this

case, population densities vary little among the cells of the δ-grid. Only

the support of the measure (i.e. the container) creates the MAUP: the

spatial distribution of population is almost monofractal. Contrarily, a

large singularity spectrum indicates strong multifractality. In this case,

the MAUP results both from the container shape and from the content

heterogeneity within the container.
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