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Abstract

This paper presents MLBoost, an efficient method for learning to compare face sig-
natures, and shows its application to the hierarchical organization of large face databases.
More precisely, the proposed metric learning (ML) algorithm is based on boosting so that
the metric is learned iteratively by combining several weak metrics. Boosting allows our
method to be free of any hyper-parameters (no cross-validation required) and to be ro-
bust with respect to overfitting. This MLBoost algorithm can be trained from constraints
involving two pairs of vectors (quadruplets) with a quadratic complexity. The paper also
shows how it can be included in a semi-supervised hierarchical clustering framework
adapted to identity based face search. Our approach is validated on a benchmark relying
on the Labelled Faces in the Wild (LFW) dataset supplemented with 1M face distractors.

1 Introduction and related Work
The performance of many visual recognition algorithms – e.g. face verification or person re-
identification – heavily relies on the metric used to measure the similarity between input data.
Recent works such as [5, 10, 12, 25, 31] have shown the interest of learning an optimal metric
for a particular task using Metric Learning (ML). Most approaches learn a Mahalanobis
metric based on an objective function whose constraints come either from a set of labeled
examples or, more frequently, from sets of positive (in the same class) and negative (in
different classes) pairs.

Presenting the exhaustive list of recent works that have used metric learning (ML) in
such a context would be rather tedious, given their large number. However, we can men-
tion a few of the most notable approaches such as DDML [14], RBML [18], Structural
ML [32], PCCA [19], rPCCA [31], LMNN [30], LDML [13], ITML [7], KISSME [17],
RS-KISSME [26], SML [4]. The reader interested in ML in general is referred to the recent
survey by Bellet et al. [1]. The difference among these methods mainly lies in their objective
functions which is task dependent or in the type of constraints of the objective function, (e.g.
some require pairwise distances between points making large scale applications difficult).

The works of Shen et al. [24] and Bi et al. [3], which have introduced Boosting based
approaches, deserve a particular attention due to the interesting properties they offer: i) they
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are efficient and scalable, as no semidefinite programming is required and only the largest
eigenvalue and corresponding eigenvectors are needed at each iteration; ii) like AdaBoost,
they don’t have any parameters to tune and they are easy to implement as no sophisticated
optimization techniques are involved. These approaches hence contrast with most of the
commonly used ML methods e.g. [4, 12, 19, 25, 31] for which hyper-parameters, often
introduced for regularization purposes, have to be adjusted by cross-validation.

However, one strong limitation of these two approaches [3, 24] is that they require hav-
ing triplets for learning the metric, i.e., constraints expressed under the form D(xa,xb) <
D(xa,xc), where xa, xb, xc are three input vectors for which the label is known: positive and
negative pairs within a constraint have to share a common vector. This is a limitation as for
most of the verification task only training pairs are available (e.g., for person re-identification
on the Viper dataset [11] only pairs of same/different persons are provided for training and,
thus, using such triplets is not possible).

One of the key contributions of this paper is to propose a metric learning approach based
on boosting allowing the use of use of pairs of points for training, i.e. which can use con-
straints such as D(xa,xb) < D(xc,xd) while keeping the good properties of the approach
in [24] (scalability, simplicity, no parameters, etc.). Our approach is based on the ranking
algorithm RankBoost [9], known to offer three particularly interesting features: i) it requires
no hyperparameters, ii) it has great robustness to overfitting (explained with a standard VC-
dimensional analysis techniques [8, 27]), and iii) it uses a computational trick for reducing
the complexity of the learning step. In the following, we show how to build on RankBoost [9]
to efficiently address this metric learning problem.

The proposed approach is validated on the identity face retrieval task, such as defined
by Bhattarai et al. [2]. This task consists in retrieving the face(s) of the same person to a
query, from a large database of faces. The task is evaluated both in terms of scalability and
accuracy. The idea presented in [2] bears similarity with the work of Verma et al. [29], who
proposed a method for learning hierarchical similarity metrics using a taxonomy. However,
unlike Verma et al., the method proposed by Bhattarai et al. does not require any preexisting
taxonomy. The experimented validation in [29] shows that using the proposed ML algorithm,
allows to improve the performance by a large margin within the same framework as [2].

2 Proposed method : from RankBoost to boosted ML

2.1 Metric learning with boosting
Our approach, referred to as MLBoost, lies in the family of Mahalanobis ML. This means
that the metric DW (xi,x j) = (xi − x j)

>W(xi − x j) is parametrized by the positive semi-
definite (PSD) matrix W and (xi,x j) ∈ RD×RD. This metric has two very interesting prop-
erties: (i) it is convex in W allowing to build convex objective functions; (ii) it can be used
for the dimensionality reduction of the input data. Regarding this last point, we use the fol-
lowing decomposition W = LL>, with L ∈ RD×d and d << D the dimension of reduced
space. The data can be projected as: yi = L>xi and can be compared with the Euclidean
distance: DLL> (xi,x j) = (xi−x j)

>LL>(xi−x j) = ‖yi−y j‖2
2.

In the same way boosting builds strong (good) solutions to a problem by the combination
of weak solutions [23], ML with boosting (e.g. [24]) consists in iteratively building a linear
combination of weak Mahalanobis distances of rank 1, denoted by D(t)

Z (with rank(Z(t)) = 1
and tr(Z(t)) = 1): DW (x,y) = ∑

T
t=1 α(t) DZ(t) (x,y) in the following.
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2.2 Metric Leaning with Boosting

We assume that the constraints consist of positive and negative pairs such as DW (p1i,p2i)
< DW

(
n1 j,n2 j

)
, with (p1i,p2i) ∈ P the set of similar pairs and (n1 j,n2 j) ∈ N the set of

dissimilar pairs. This ML problem is closely related the following ranking problem : H(pi)<
H(n j),∀(pi,ni), where H(·) denotes a ranking function and pi = (p1i,p2i) ∈ P and ni =
(n1i,n2i) ∈N . We address this problem by building on the RankBoost algorithm [9].

Let us start by associating a weight to each constraint: D(t) =
{

d(t)
i j ∈ (0,1)

∣∣∣ ci j ∈ C
}
,

with C =
{(

(p1i,p2i) ,
(
n1 j,n2 j

))
∈ P ×N

}
the set of all quadruplets composed by a pos-

itive and a negative pair. These weights change over the iterations (denoted as t) of the
algorithm. They can be interpreted as a measure of the importance of the correct ranking the
pair (i, j) at the current iteration t. During the iterations, these weights are normalized such
that:

∑
d(t)i j ∈D(t)

d(t)
i j = 1. (1)

At the initialization of the algorithm, all quadruples have the same importance and the
weights are uniform : d(1)

i j = 1
|P||N | ,∀di j ∈ D. The loss function of MLBoost can be written

as:
loss(W) = ∑

C
d(1)

i j

q
DW (p1i,p2i)≥ DW

(
n1 j,n2 j

)y
, (2)

with the function JπK that returns 1 if predicate π holds and 0 otherwise. At each iteration,
the weights are updated according to:

d(t+1)
i j =

d(t)
i j eα(t)

(
D

Z(t)
(p1i,p2i)−D

Z(t)(n1 j ,n2 j)
)

w(t)
, (3)

with DZ(t) the weak metric computed at iteration t, α(t) its weight and w(t) the normalization
factor chosen so that the constraint (1) is met. Equation (3) and the inequality Jx≥ 0K≤ ex,
allow us to show that:

loss(W)≤
T

∏
t=1

w(t). (4)

The objective at each iteration is then to compute the weak metric DZ(t) and the weight α(t)

which minimizes the following function:

w(t) = ∑
C

d(t)
i j eα(t)

(
D

Z(t)
(p1i,p2i)−D

Z(t)(n1 j ,n2 j)
)
, (5)

with rank(Z(t)) = 1, tr(Z(t)) = 1 and α(t) > 0. We note that for increasing the performance
of the final metric, we only need to have w(t) < 1.

Weak learning algorithm: The weak metric DZ(t) is obtained by computing the so-
lution of an approximation of Equation (5). Freund et al. [9] propose to approximate the
exponential by the following lower bound:

eαx ≤
(

1+ x
2

)
eα +

(
1− x

2

)
e−α , (6)
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for x ∈ [−1,1] and α ∈ R. Using, this idea, obtain the following optimization problem :

argmin
α,Z

((
1− r(Z)

2

)
eα +

(
1+ r(Z)

2

)
e−α

)
, (7)

where
r(Z) = ∑

C
d(t)

i j

(
DZ
(
n1 j,n2 j

)
−DZ (p1i,p2i)

)
. (8)

The optimization problem (7) is minimized when α = 1
2 ln
(

1+r(Z)
1−r(Z)

)
, showing that:

t

∏
t ′=1

w(t ′) ≤
√

1− r(Z)2, (9)

Shen et al. [24] proposed to use eq. (8) to compute the weak metric by solving the following
optimization problem:

Z(t) =argmax
Z

r(Z)

s.t. rank(Z) = 1, tr(Z) = 1
(10)

By making the following variable change: Z = zz>, the previous problem is equivalent to:

z(t) =argmax
z

z>A(t)z

s.t. ‖z‖2 = 1
(11)

with A(t) = ∑C d(t)
i j

(
(n1 j−n2 j)(n1 j−n2 j)

>− (p1i−p2i)(p1i−p2i)
>). The optimization

problem (11) is simply solved by the computation of the eigenvector corresponding to the
largest eigenvalue of the A(t) matrix.

Choosing α(t): once the weak metric D(t)
Z is computed with the aforementioned method,

the best weight α(t) of this weak metric is computed by solving the following problem:

α
(t) = argmin

α
∑
C

d(t)
i j eα

(
D

Z(t)
(p1i,p2i)−D

Z(t)(n1 j ,n2 j)
)
. (12)

This optimization problem is strictly convex and therefore has a unique minimum. We find
the solution numerically via the golden section search method. We note that if α(t) is negative
or zero, we stop the algorithm. Indeed, we want the parameter matrix of the final metric to
meet the positive-semidefinite constraint.

2.3 Reduction of the algorithmic complexity
A naive implementation of the presented MLBoost algorithm would induce a high compu-
tational complexity. Indeed, the complexity depends on the cardinality of C, the set quadru-
plets. Under the assumption that the images are uniformly distributed across identities, we
can approximate the cardinality of C by:

|C|= |P||N | ≈ |I|
4

2c
, (13)
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Algorithm 1 MLBoost with efficient learning implementation
1: procedure MLBOOST(X,P,N , itersMax)
2: t← 1
3: L(t)←∅
4: Initialize weights: u(t)i = 1/|P|, ∀i ∈ 1 . . . |P|, v(t)j = 1/|N |, ∀ j ∈ 1 . . . |N |.
5: repeat
6: Compute weak metric: z(t) by solving of eq. (11) + (16).
7: Choose the best: α(t) by solving of eq. (17).
8: if α(t) ≤ 0 then
9: break

10: L(t+1)←
[
L(t),
√

α(t)z(t)
]

11: Update weights : u(t+1)
i and v(t)j with the eq. (15).

12: until t < itersMax
13: return L

with |I| the total number of images and c the number of identities. The computational
complexity, as a function of the number of images, is thus O(|I|4).

Interestingly, Freund et al. [9] have introduced a way to rewrite the equations of Rank-
Boost in order to reduce the computational complexity. It turns out these principles extend
to our MLBoost algorithm. For doing this, we decompose d(t)

i j , the weights of quadruplets in
C, as follows:

d(t)
i j = u(t)i v(t)i , (14)

with u(1)i = 1/|P|, ∀i and v(1)j = 1/|N |, ∀ j. Equation (3) used to update the weights can be
rewritten as :

u(t+1)
i =

u(t)i eα(t) D
Z(t)

(p1i,p2i)

w(t)
P

, ∀i v(t+1)
j =

v(t)j e−α(t) D
Z(t)(n1 j ,n2 j)

w(t)
N

, ∀ j (15)

with w(t)
P and w(t)

N the normalization factors chosen such that ∑u(t+1)
i = 1 and ∑v(t+1)

i = 1.
The expression of matrix A(t) used to compute the weak metric (11) is rewritten as follows:

A(t) = ∑
N

v(t)j

(
(n1 j−n2 j)(n1 j−n2 j)

>
)
−∑

P
u(t)i

(
(p1i−p2i)(p1i−p2i)

>
)
. (16)

The optimization problem (12) allowing to compute α(t), which are the weights of this weak
metric, is rewritten as:

α
(t) = argmin

α

(
∑
P

u(t)i eα

(
D

Z(t)
(p1i,p2i)

))(
∑
N

v(t)j e−α

(
D

Z(t)(n1 j ,n2 j)
))

. (17)

In this form, the equations have a much lower computational complexity which it depends
on the sum of the number of positive and negative pairs : |P|+ |N |. The computational
complexity is then of the order of O(|I|2). The different steps of MLBoost are described in
Algorithm 1.
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Algorithm 2
1: procedure HIERARCHICAL_TREE_CLUSTERING(X,y,nbPairs,nbCluster, treeDepth)
2: rootNode.idxC← [1 . . .N] and rootNode.idxML← [1 . . .N]
3: WorkQueue.push(rootNode)
4: while WorkQueue.empty() == false do
5: node←WorkQueue.pop()
6: (P,N )← build_pairs(y[node.idxML], nbPairs)
7: L← RankBoost(X[:, node.idxML], P, N ,1024)
8: node.L← L
9: if node.depth < treeDepth then

10: X′← L>X[:, node.idxC]
11: C← clustering(X′, nbCluster)
12: for i = 1 . . . nbCluster do
13: childNode.idxC← cluster_assign(node.idxC, X′, C, i)
14: childNode.idxML← ml_selection(y, childNode.idxC)
15: node.addChild(childNode)
16: WorkQueue.push(childNode)
17: return rootNode

3 MLBoost for Semi-Supervised Hierarchical Clustering

In [2], Bhattarai et al. proposed a method for building hierarchical face representations for
efficient identity-based face retrieval. The main idea is to use a ML algorithm for building a
tree structured representation of a large set of faces, such that identical-identity faces belongs
to the same cluster at each tree level. The hierarchical clustering is built recursively: at each
level, a new metric is learned using the faces belonging to a particular tree node which is
then used to locally cluster the faces and to create the sub-branches.

The retrieval for a new query face is done by visiting the tree from top to bottom until
a leaf is reached; if the current node is a non-leaf node, the face is projected into the cor-
responding subspace and compared with its centroids, which allows to move to the closest
child node. When a leaf is reached, the face is compared with all the faces contained in the
leaf using the corresponding local metric.

The main drawback of this method is that, when a local metric is learned within a par-
ticular node of the tree, no information is retained from the parent nodes. By doing this, the
metrics become quickly too local (over specialized). Furthermore, misclassified faces (those
going in to the wrong branches) can strongly impact the local metrics.

We therefore propose to improve [2] by combining the metrics learnt at different levels of
the tree. A simple method for doing this would be to add an elastic term between the metric
from the parent branch and the metric learned. However, the addition of these terms would
add hyper-parameters to the metric learning problem and would require some additional
tuning. We propose instead a simple method based on the selection of training samples: if
one or more examples of an identity belongs to a given node, we use all the examples of this
identity to learn the metric as described in Algo. 2. We see that, in each branch, we have two
vectors of example indices: the one of the faces actually belonging to the branch (denoted
as idxC in Algo. 2 this vector is the same as that used in the algorithm proposed by [2]); the
example indices used to learn the metric in the branch, denoted as idxML in Algo. 2.
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4 Experiments
Performance evaluation. In the considered scenario: a person has to be identified given an
image of his face by querying a dataset containing faces of different identities. The perfor-
mance should reflect the ability of the system to place the correct identity at the beginning
of a list of candidate identities. The criterion used to evaluate the performance is the one
used in [2], i.e., the mean of k-call@n (such as defined in [6]), with k = 1. We measure the
performance for several values of n, i.e., n ∈ {1,10,20,50,100}.

Database: We use the well known Labeled Faces in the Wild (LFW) database by Huang et
al. [16]. This database has more than 13000 images of over 4000 different identity. We use
its aligned version with deep funneling [15]. In our experiments, we use the same set of
images and queries than the ones used by Bhattarai et al. [2]. We keep only the images of
identities with at least five examples each, all other images are not used during the experi-
ments; it results in a set of 5985 images of 423 persons. Regarding the query set, we select
one query image per identity (the same as Bhattarai et al.). The training set contains the se-
lected images, excluding the query set. To evaluate the robustness with respect to large-scale
databases, we use the set of million distractor faces kindly provided by Bhattarai et al. [2].

Image description: We evaluate the methods with two types of image signatures: (i)
Local Binary Pattern (LBP) [20] and (ii) Fisher Vector (FV) [21, 22]. To extract the LBP
signature, we use the same protocol as proposed by Bhattarai et al., each image being de-
scribed by a vector of 9860 dimensions [2, 28]. To extract the FV signature, we use the
implementation proposed by Simonyan et al. [25]. We use the publicly available source
code1 with the default parameters and with our own training set. Each image is then de-
scribed by a vector of 67584 dimensions. The two types of signatures (LPB and FV) are
subsequently `2-normalized.

Traing pairs: We select as many positive pairs as negative ones, uniformly distributed
across the identities.

Dimension of the output space: The proposed algorithm does not allow to control
explicitly the dimension of the output space, which is required for fair comparisons (i.e.,
for comparing two approaches for a given dimensionality of the projected features). Thus,
we select the d best projectors by applying a singular value decomposition of the projectors
resulting in a d-dimensional signature.

Baseline (PCA, no metric learning): These experiments are intended to evaluate the
performance obtained by the raw signatures (without metric learning), possibly projected
in a low dimensional space by PCA. They are reported in Table 1, which compares the
performance of the two signatures (LBP and FV), without distractors or with 100.000 and
1M distractors, and for different values of recall n. The performances are given in the mean
1-call@n (%). Without distractors, the FV signatures perform better than LBP, while with
distractors LBP outperforms FV. Projecting the signatures on a subspace of 4096 dimensions
or more does not alter the performance significantly. In the following experiments, we pre-
reduce the signatures at 4096 components with the PCA projectors.

Experimental validation of the proposed algorithm (exhaustive search)

Figure 1(a) illustrates some results on convergence of the algorithm (without distractors,
using 2×32768 pairs for training). Interestingly, we do not see any overfitting (this is con-
firmed by adding even more iterations). Figure 1(b) shows the performance of the algorithm

1http://www.robots.ox.ac.uk/~vgg/software/face_desc/
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No distractor +100.000 distractors +1.000.000 distractors

Sign. Dim. n= n= n= n= n= n= n= n= n= n= n= n= n= n= n=
1 10 20 50 100 1 10 20 50 100 1 10 20 50 100

LBP 9860 31.9 53.7 60.5 68.8 74.7 31.4 52.7 59.3 67.8 73.3 31 50.6 57.2 65.0 70.4
LBP-PCA 8192 31.9 53.7 60.5 68.8 74.7 31.4 52.2 58.4 66.7 72.1 30.3 49.4 55.8 61.9 69
LBP-PCA 4096 31.7 52.7 60.3 68.1 74.2 30.5 49.6 56.5 62.6 69.3 28.1 44.7 48.9 57.2 62.4
LBP-PCA 32 16.1 33.3 43.3 55.8 66.7 15.1 31.4 39.5 51.3 60.3 13.2 29.1 33.3 42.3 50.1

FV 67584 57.9 77.5 83.5 86.6 92.8 53.2 69.3 73 78 72.7 - - - - -
FV-PCA 8192 55.8 75.2 81.3 88.4 92.9 12.5 17.3 18 19.6 20.8 11.1 13.7 14.4 16.3 17.0
FV-PCA 4096 56.5 75.2 81.8 90.1 92 17.49 21.5 22.9 26.5 30 13.9 18.4 19.6 20.3 21
FV-PCA 32 21.7 42.1 49.4 62.9 72.8 16.5 25.5 29.8 35.7 40 10.4 18.2 20.6 24.8 28.1

Table 1: Mean 1-call@n performance given by raw LBP and FV signatures (no ML),
with/without PCA, with/without distractors.
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Figure 1: Performance of the proposed ML approach

as a function of the number of pairs used to learn the metric (no distractors, 1000 rounds of
boosting). We observe that the evolution of performance is sub-logarithmic in the number of
pairs.

Table 2 compares the performance of the proposed MLBoost algorithm to the perfor-
mance of the state-of-the art PCCA (Pairwise Constrained Component Analysis) [2, 19]
with and without distractors for different dimensions of the final signature. For fair compar-
ison, we use the signatures kindly given by the authors of [2]. We apply 1000 rounds of
boosting. The performance of the proposed approach improves over PCCA by about 20%
(LBP, n = 10). We observe, in our experiments, that PCCA tends to overfit and that the
performance could certainly be improved by adding a regularization term, such as proposed
by Xiong et al. [31]. However, adding a regularization term would add a second hyper-
parameter to PCCA, whereas our method has no hyper-parameter at all.

No distractor +100.000 distractors +1.000.000 distractors

Sign. Dim. n= n= n= n= n= n= n= n= n= n= n= n= n= n= n=
1 10 20 50 100 1 10 20 50 100 1 10 20 50 100

FV-MLBoost 32 44.2 70 78.7 85.8 91 28.4 47.3 52.7 60 63.6 20.3 32.6 38.1 44 50.1
LBP-MLBoost 32 31 54.1 63.4 74 83.2 26.2 43.7 49.2 57.7 64.1 22.9 34.3 39.5 46.1 51.8
LBP-PCCA [2] 32 - 32.1 41.3 53.4 63.5 - 23.6 28.3 41.1 48.9 - 13.4 18.2 26.7 33.8

Table 2: Comparison with PCCA [2].
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No distractor +100.000 distractors +1.000.000 distractors

Sign. Method Dim. n= n= n= n= n= n= n= n= n=
1 10 20 1 10 20 1 10 20

LBP MLBoost 32 30.7 53.7 62.2 26.2 43.0 48.7 21.5 34.5 38.5
LBP MLBoost-Tree-d3-Global 32 27.9 50.4 58.6 24.1 39.5 46.1 20.1 31.4 36.2
LBP MLBoost-Tree-d3 32 29.6 54.6 62.2 23.6 39.5 45.2 17.7 31.0 35.2
LBP PCCA-Tree-d3 [2] 32 - 33.3 40.9 - 27.4 32.2 - 18.5 23.9
LBP MLBoost-Tree-d4-Global 32 27.0 49.2 56.7 22.7 37.4 42.3 18.9 30.5 33.6
LBP MLBoost-Tree-d4 32 28.6 52.0 59.3 21.0 35.5 40.9 17.3 26.7 30.5
LBP PCCA-Tree-d4 [2] 32 - 36.2 41.6 - 32.4 36.6 - 30.3 31.7
FV MLBoost 32 44.7 69.0 78.0 28.6 48.0 52.5 20.1 34.0 38.3
FV MLBoost-Tree-d3-Global 32 42.6 65.7 75.7 27.7 45.9 48.9 19.1 33.3 37.1
FV MLBoost-Tree-d3 32 48.0 69.0 75.2 30.3 42.8 45.4 22.0 33.1 36.4
FV MLBoost-Tree-d4-Global 32 43.0 66.0 75.2 27.6 45.4 48.9 19.1 33.3 36.9
FV MLBoost-Tree-d4 32 51.1 70.2 73.8 27.0 39.2 42.3 22.5 30.3 31.7

Table 3: Performance of the hierarchical tree structure and comparison with PCCA [2].

Hierarchical tree structure for efficient large-scale identity-based face retrieval

This last part of this experimental section focuses on the use of our MLBoost algorithm for
face retrieval, in the context of semi-supervised hierarchical clustering, with/without dis-
tractors. Here again, we use LBP and FV signatures and set the number of training pairs
to 2× 16384 and the dimension of the output space to 32. We restrict ourselves to a bi-
nary clustering tree of 3 and 4 levels (denoted with suffix “-d3” and “-d4”). Table 3 reports
the 1-recall@n performance for the two descriptors, for different depths of the tree and for
different amounts of distractors.

Searching the faces in only one leaf of the tree affects the overall performance: mis-
classifications that can happen at any level of the tree cannot be recovered later. This loss
increases with the depth of the tree. We can observe this by comparing the performance of
the global metric used without and with the tree structure (“MLBoost” in Table 3) (methods
whose names include “MLBoost-Tree-d*-Global”). The loss is of about 1-2% at n = 1 with
FV.

We can also observe that the local metric (the lines denoted as “MLBoost-Tree-d*”)
improves the performance of the tree-based structure for the small values of n, not only
compensating entirely the loss induced by the tree but also giving a significant improvement
of more than 6% (n = 1, without distractors, with FV). Comparing our method with the
state-of-the-art method of [2] (lines denoted as “PCCA-Tree-d*”) shows that our methods
can perform up to 30% better for some configurations. We can also see that the FV signature
provides significant gain compared to the LBP signature.

5 Conclusions

This paper has introduced a boosted ML method called MLBoost that, in contrast with most
of ML methods, does not require any hyper-parameters to be tuned and is not subject to
overfitting. The paper also shows how to use the proposed MLBoost algorithm for computing
hierarchical organizations of face databases allowing to reduce the computational cost of
identity-based face retrieval. The proposed experimental validation has demonstrated the
robustness of the method w.r.t. overfitting. In addition, its performance is significantly better
than PCCA, which is one of the state-of-the-art ML method. Finally, local ML has been
shown to provide better performance than global ML in this context.
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