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A Framework for Certified Self-Stabilization
Case Study: Silent Self-Stabilizing k-Dominating Set on a Tree

Karine Altisen Pierre Corbineau
Stéphane Devismes

VERIMAG UMR 5104, Université Grenoble Alpes, France

Abstract

We propose a general framework to build certified proofs of distributed self-stabilizing algorithms
with the proof assistant Coq. We first define in Coq the locally shared memory model with composite
atomicity, the most commonly used model in the self-stabilizing area. We then validate our framework
by certifying a non trivial part of an existing silent self-stabilizing algorithm which builds a k-hop domi-
nating set of the network. We also certified a quantitative property related to the output of this algorithm.
Precisely, we show that the computed k-hop dominating set contains at most bn−1

k+1 c + 1 nodes, where
n is the number of nodes in the network. To obtain these results, we also developed a library which
contains general tools related to potential functions and cardinality of sets.

Keywords: Self-stabilization, Proof assistant, Coq, Silent algorithms, Potential functions.

1 Introduction

In 1974, Dijkstra introduced the notion of self-stabilizing algorithm [Dij74] as any distributed algorithm
which resumes correct behavior within finite time, regardless of the initial configuration of the system.
A self-stabilizing algorithm can withstand any finite number of transient faults. Indeed, after transient
faults hit the system and place it in some arbitrary configuration — where, for example, the values of
some variables have been arbitrarily modified — a self-stabilizing algorithm is guaranteed to resume correct
behavior without external (e.g., human) intervention within finite time. Thus, self-stabilization makes no
hypothesis on the nature or extent of transient faults that could hit the system, and recovers from the effects
of those faults in a unified manner.

For more than 40 years, a vast literature on self-stabilizing algorithms has been developed. Self-
stabilizing solutions have been proposed for many kinds of classical distributed problems, e.g., token circu-
lation [HC93], spanning tree construction [CYH91], clustering [CDDL10], routing [Dol97], propagation of
information with feedback [BDPV99], clock synchronization [CFG92], etc. Moreover, self-stabilizing algo-
rithms have been designed to handle various environments, e.g., wired networks [HC93, CYH91, CDDL10,
Dol97, BDPV99, CFG92], WSNs [BOBBP13, STW+13], peer-to-peer systems [CDPT10, CCT13], etc.

Progresses in self-stabilization led to consider more and more adversarial environments. As an illustra-
tive example, the three first algorithms proposed by Dijkstra in 1974 [Dij74] where designed for oriented
ring topologies and assuming sequential executions only, while nowadays most of self-stabilizing algorithms
are designed for fully asynchronous arbitrary connected networks, e.g., [HC93, CDDL10, DLD+12].

Consequently, the design of self-stabilizing algorithms becomes more and more intricate, and accord-
ingly, the proofs of their respective correctness and complexity are now often tricky to establish. However,
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proofs in distributed algorithmic, in particular in self-stabilization, are commonly written by hand, based on
informal reasoning. This potentially lead to errors when arguments are not perfectly clear, as explained by
Lamport in its position paper [Lam12]. So, in the current context, such methods are clearly pushed to their
limits, since the question on confidence in proofs naturally arises. This justifies the use of a proof assistant,
a tool which allows to develop certified proofs interactively and check them mechanically.

Contribution. In this paper, we propose a general framework to build certified proofs of self-stabilizing
algorithms for wired networks with the proof assistant Coq [The12], recipient of the ACM 2013 Software
system Award.

We first define in Coq the locally shared memory model with composite atomicity, introduced by Dijk-
stra [Dij74]. This model is the most commonly used in the self-stabilizing area. Our modeling is versatile,
e.g., it supports any class of network topologies (including arbitrary ones), the diversity of anonymity levels
(from fully anonymous to fully identified), and various levels of asynchrony (e.g., sequential, synchronous,
fully asynchronous).

We validate our framework by certifying a non trivial part of an existing silent self-stabilizing algorithm
proposed in [DLD+12] which builds a k-hop dominating set of the network. Starting from an arbitrary con-
figuration, a silent algorithm converges within finite time to a configuration from which all communication
variables are constant. This class of self-stabilizing algorithms is important, as self-stabilizing algorithms
building distributed data structures (such as spanning tree or clustering) often achieve the silent property,
and these silent self-stabilizing data structures are widely used as basic building blocks for more complex
self-stabilizing solutions, e.g., [DLD+12, DLD+13].

Using a classical proof scheme, the certified proof consists of two main parts, one relying on partial
correctness and the other on termination. For the termination part, we developed tools on potential functions
and termination at a fine-grained level. Precisely, we define a potential function as a multiset containing a
local potential per node. We then exploit two criteria that are sufficient to meet the conditions for using the
Dershowitz–Manna well-founded ordering on multisets. Notice that the termination proof we propose for
the algorithm assumes a distributed unfair daemon, the most general scheduling assumption of the model.
By contrast, the proof given in [DLD+12] assumes a stronger daemon, namely, a distributed weakly fair
daemon.

Finally, we certify a quantitative property, as we show that the computed k-hop dominating set contains
at most bn−1k+1c + 1 nodes, where n is the number of nodes in the network. To obtain this result, we had to
write a library dealing with cardinality of sets in general and properties on cardinals of finite sets w.r.t. basic
set operations, i.e., Cartesian product, disjoint union and subsets.

This work represents about 12250 lines of code (as computed by coqwc: 4k lines of specifications, 7k
lines of proofs) written in Coq 8.4pl4 compiled with OCaml 3.11.2.

Related Work. Coq has been successfully employed for various tasks such as mathematical developments
as involved in the Feit-Thompson [Ga13] theorem, formalization of the correctness of a C compiler [Ler09,
MP67], certified numerical libraries [FMP13], and verification of cryptographic protocols [BABB+12,
CDL11].

Several works have shown that proof assistants (in particular Coq) are well-suited to certification of
distributed algorithms in various contexts, e.g., certification of non fault-tolerant (consequently non self-
stabilizing) distributed algorithms is addressed in [CFM09, CM12, ABC+13, CRTU15]. In particular, mo-
bile distributed systems are considered in [ABC+13, CRTU15]: these works are dedicated to swarms of
robots that are endowed with motion actuators and visibility sensors.
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Küfner et al [KNR12] propose to certify (using the proof assistant Isabelle) fault-tolerant distributed
algorithms. However, the proposed framework deals with masking fault-tolerance and, consequently, is
not suited to self-stabilization, which is non-masking by essence. Moreover in the modeling, the network
topology is restricted to fully connected graphs.

To the best of our knowledge, only three works deal with certification of self-stabilizing algorithms [Cou02,
DM09, KRS99]. A formal correctness proof of Dijkstra’s seminal self-stabilizing algorithm [Dij74] is
conducted with the PVS proof assistant [KRS99], however only sequential executions are considered. In
[Cou02], Courtieu proposes a general setting for reasoning on self-stabilization in Coq. He restricts his
study to very simple self-stabilizing algorithms (e.g., the 4-states algorithm of Ghosh [Gho93]) working on
networks of very restrictive topologies: lines and rings. These two works address too simple cases to draw
a general framework. Finally, [DM09] proposes to certify in Coq self-stabilizing population protocols. Pop-
ulation protocols are used as a theoretical model for a collection (or population) of tiny mobile agents that
interact with one another to carry out a computation. The movement pattern of the agents is unpredictable,
but subject to some fairness constraints, and computations must eventually converge to the correct output
value in any schedule that results from that movement. In such a model, communication is implicit and there
is no notion of communication network: all pairs of agents interact infinitely often. Hence, this latter work
is not relevant for wired networks, as considered here.

Roadmap. The rest of the paper is organized as follows. In the next section, we describe how we define
the locally shared memory model with composite atomicity in Coq. In Section 3, we express the definitions
of self-stabilization and silence in Coq, moreover we give a sufficient condition to show that an algorithm
is silent and self-stabilizing. In Section 4, we present our case study. The three next sections are dedicated
to the proof in Coq of the case study: partial correctness (Section5), termination (Section 6), and size of
computed k-hop dominating set (Section 7). We make concluding remarks and perspectives in Section 8.

In this report, we present the work together with few pieces of Coq code that we simplify in order to
make them readable. In particular, we intend to use notations, as defined in the model or in the algorithm,
in those pieces of code. The Coq definitions, lemmas, theorems, and documentation related to this report
are available as an online browsing at http://www-verimag.imag.fr/~altisen/PADEC/. All
source codes are also available at this address. We encourage the reader to visit this web page for a deeper
understanding of our work.

2 Locally Shared Memory Model in Coq

In this section, we explain how we model in Coq the locally shared memory model with composite atomicity.
This model has been introduced by Dijkstra [Dij74], and since then is the most commonly used in the self-
stabilizing area.

2.1 Distributed Systems

We define a distributed system as a finite set of interconnected nodes. Each node has its own private memory
and runs its own code. It can also interact with other nodes in the network via interconnections. The model
in Coq reflects this by defining two independent classes:

• A Network is equipped with a type Node, representing nodes of the network. A Network defines
functions and properties that depict its topology, i.e., interconnections between nodes. Those inter-
connections are specified using the type Channel.
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• An Algorithm is equipped with a type State which describes the memory state of nodes. Its main
function is run which specifies how the codes of nodes execute and interact using channels (type
Channel).

2.2 Network and Topology

Nodes in a distributed system can directly communicate with a subset of other nodes. As commonly done in
the literature, we view the communication network as a simple directed graph G = (V,E), where V is set
of vertices representing nodes and E ⊆ V ×V is a set of edges representing direct communication between
distinct nodes. We note n = |V | the numbers of nodes.

Two distinct nodes p and q are said to be neighbors if (p, q) ∈ E. From a computational point of
view, p uses a distinct channel cp,q to communicate with each of its neighbors q: it does not have di-
rect access to q. In the type Network, the topology is defined using this narrow point of view, i.e., in-
terconnections (edges of the graph) are represented using channels only. In particular, the neighborhood
of p is encoded with the set Np which contains all channels cp,q outgoing from p. The sets Np, for
all p, are modeled in Coq as lists, using the function (peers: Node → list Channel). The func-
tion (peer: Node → Channel → option Node) returns the destination neighbor for a given channel
name, i.e., (peer p cp,q) returns (Some q), or ⊥1 if the name is unused. We also define the shortcut
ternary relation (is_channel p c p’) as (peer p c) equals (Some p’) where p and p’ are nodes
and c a channel.

Communications can be made bidirectional, assuming a property called sym_net, which states that for
all nodes p1 and p2, the network defines a channel from p1 to p2 if and only if it also defines a channel from
p2 to p1. In case of bidirectional links (p, q) and (q, p) in E, p can access its channel name at q using the
function ρp. Thus, we have the following identities: ρp(cp,q) equals cq,p ∈ Nq and ρq(cq,p) equals cp,q ∈ Np.
In Coq, the role of ρp is assigned to the function (reply_to: Node → Channel → Channel).

As last requirement, we suppose that, since the number of nodes in the network is finite, we have
a list, called all_nodes, containing all the nodes. In particular, this assumption makes the emptiness
test decidable: this test states that for any function (f: Node → option A) (with A, some type), one
can compute whether f always returns ⊥ for any parameter. This test is used in the framework to detect
termination of the algorithm.

As a means of checking actual usability of the Network type definition, we have defined a function that
can build any finite Network from a description of its topology given by a list of lists of neighbors.

2.3 Computational Model

In the locally shared memory model with composite atomicity, nodes communicate with their neighbors
using finite sets of locally shared registers, called variables. A node can read its own variables and those of
its neighbors, but can only write to its own variables. Each node operates according to its local program.

Distributed Algorithm. A distributed algorithm A is defined as a collection of n programs, each op-
erating on a single node. The state of a node in A is defined by the values of its local variables and is
represented using an abstract immutable Coq datatype State. Such a datatype is usually implemented as
a record containing the values of the algorithm variables. A node p can access the states of its neighbors

1Option type is used for partial functions which, by convention, returns (Some _) when defined, and None otherwise.
None is denoted by ⊥ in this paper.
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using the corresponding channels: we call this the local configuration of p, and model it as a function typed
(Local_Env := Channel → option State) which returns the current state of a neighbor, given the
name of the corresponding channel (or ⊥ for an invalid name).

The program of each node p in A consists of a finite set of guarded actions:

〈guard〉 ↪→ 〈statement〉

The guard is a Boolean expression involving variables of p and its neighbors. The statement updates some
variables of p. An action can be executed only if its guard evaluates to true; in this case, the action is
said to be enabled. A node is said to be enabled if at least one of its actions is enabled. The local pro-
gram at node p is modeled by a function run of type (list Channel →(Channel → Channel) →
State → Local_Env → option State). This function is given access to the local topology and states
around p. It takes as first two arguments Np and ρp. It then takes as inputs the current state of p and its
current local configuration. The returned value is the next state of node p if p is enabled, ⊥ otherwise.
Note that run provides a functional view of the algorithm: it includes the whole set of possible actions, but
returns a single result; this model is thus restricted to deterministic algorithms.2

Semantics. A configuration g of the system is defined as an instance of the states of all nodes in the system,
i.e., a function typed (Env := Node → State). For a given node p and configuration (g: Env), the
term (g p) represents the state of p in configuration g. Thanks to this encoding, we easily obtain the local
configuration (type Local_Env) of node p by composing g and peer as a function (local_env g p) :=

(fun (c: Channel) => option_map g (peer p c)) which returns (g p’) when (peer p c)

returns Some p’, and ⊥ otherwise. Hence, the execution of the algorithm on node p in current configura-
tion g is obtained by: (run Np ρp (g p) (local_env g p)); it returns either⊥ if the node is disabled
or (Some s) where (s: State) is next state of p. We define (enabled_b g p) as the Boolean value
(type bool) which returns true if node p is enabled in configuration g and false otherwise.

Assume the system is in some configuration g. If there exist some enabled nodes, a daemon3 selects a
non-empty set of them; every chosen node atomically executes its algorithm, leading to a new configuration
g’. The transition from g to g’ is called a step. To model steps in Coq, we use functions with type
(Diff := Node → option State). We simply call difference a variable d of type Diff. A difference
contains the updated states of the nodes that actually execute some action during the step, and maps any other
node to ⊥. We define the predicate valid_diff that qualifies the current configuration and a difference
expressing the result of a step. It holds when at least one node actually moves and every update in the
difference corresponds to the execution of the algorithm, namely, run. Next configuration, g’, is then
obtained applying the function (diff_eval d g) such that: ∀p, (g’ p) = (d p) if (d p) 6= ⊥,
and (g’ p) = (g p) otherwise.

Steps induce a binary relation 7→ over configurations defined in Coq by the relation Step: (Step g’ g)

expresses that g 7→ g’ (Step g’ g)4, meaning that g 7→ g’ is actually a valid step, i.e., there exists
some valid difference d for g (valid_diff g d) and g’ is equal to (diff_eval d g). An execution of
A is a sequence of configurations g0 g1 . . . gi . . . such that gi−1 7→ gi for all i > 0. Executions may be
finite or infinite and are modeled in Coq with the type

CoInduct ive Exec: Type :=
| e_one: Env → Exec

2Finite non-determinism could be handled by having run output list State instead of option State.
3The daemon achieves the asynchrony of the system.
4Please, note the inverse order of the parameters in Step.
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| e_cons: Env → Exec → Exec.

and the predicate

CoInduct ive valid_exec: Exec → Prop :=
| v_one: ∀ (g: Env), valid_exec (e_one g)
| v_cons: ∀ (e: Exec) (g: Env),

valid_exec e → Step (Fst e) g → valid_exec (e_cons g e).

where (Fst e) returns the first configuration of execution e. The keyword CoInductive generates a great-
est fixed point capturing potentially infinite constructions5. A variable (e: Exec) actually represents an
(valid) execution of A when (valid_exec e) holds, since each pair of consecutive configurations g, g’
in e satisfies (Step g’ g).

Maximal executions are either infinite, or end at a terminal configuration in which no action of A is
enabled at any node. Terminal configurations are detected in Coq using the proposition (terminal g),
for a configuration g, which holds when every node computes run from g and returns ⊥. Note that this
predicate is decidable thanks to the emptiness test. A maximal execution is described by the coinductive
proposition:

CoInduct ive max_exec: Exec → Prop :=
| max_one: ∀ (g: Env), terminal g → max_exec (e_one g)
| max_cons: ∀ (g: Env) (e: Exec), max_exec e → max_exec (e_cons g e).

As previously stated, each step from a configuration to another is driven by a daemon. In our case study,
we assume that the daemon is distributed and unfair. Distributed means that while the configuration is not
terminal, the daemon should select at least one enabled node, maybe more. Unfair means that there is no
fairness constraint, i.e., the daemon might never select an enabled node unless it is the only one enabled.
Notice that the propositions valid_diff, Step and henceforth valid_exec are sufficient to handle the
distributed unfair daemon.

Types are Setoids. When using Coq function types to represent configurations and differences, we need
to state pointwise function equality, which equates to functions having equal values (extensional equality).
The Coq default equality is inadequate for functions since it asserts equality of implementations (inten-
sional equality). So, instead we chose to use the setoid paradigm: we endow every base type with an
equivalence relation. Setoids are commonly used in Coq for subsets, function sets, and to represent set-
theoretic quotient sets (such as rational numbers or real numbers); in particular we make use of libraries
Coq.Setoids.Setoid and Coq.Lists.SetoidList. Furthermore, we assume those equivalence rela-
tions are decidable.

For instance, the equality for type Node is noted (eqN: relation Node) and assumes

eqN_equiv: Equivalence eqN
eqN_dec: Decider eqN

Note that (relation Node) stands for (Node → Node → Prop); Equivalence defines the conjunc-
tion of reflexivity, symmetry, and transitivity of the relation; (Decider eqN) expresses that the relation is
decidable by (∀(p p’: Node), {eqN p p’} + {¬ eqN p p’}), where {A} + {B} is the standard
Coq notation for computational disjunction between A and B, i.e., Booleans carrying proofs of A or B.

5As opposed to this, the keyword Inductive only captures finite constructions.
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Compatibility. Consequently, every function type is endowed with an equality partial equivalence rela-
tion (i.e., symmetric and transitive) which states that, given equivalent inputs, the outputs of two equivalent
functions are equivalent. For instance, the equality for the type Env is defined by

eqE := (eqN ==> eqS)

(where eqS is the decidable equivalence relation on type State) and means that for any configuration g1

and g2, (eqE g1 g2) expresses that

∀(p1 p2: Node), eqN p1 p2 -> eqS (g1 p1) (g2 p2)

(in this model, (eqN p1 p2) means that p1 and p2 represent the same node in the network). Note that
eqE is not reflexive a priori. However, we can only reason about functions equivalent to themselves: those
functions are called compatible, i.e., they return equivalent results when executed with equivalent parame-
ters. Back to the example of configurations, we will require that any configuration (g: Env) is compatible,
namely that

Proper EqE g

This means that for two equivalent nodes p1 and p2, i.e., such that (eqN p1 p2), we expect that (g p1)

and (g p2) produce the same result with respect to eqS: (eqS (g p1) (g p2)).
In all the framework, we assume compatible configurations only. Also, we require that run is compati-

ble, meaning that it returns equivalent results when executed with equivalent parameters (e.g., a permutation
on the list of channels Np or a compatible function equal to (local_env g p)).

Read-Only Variables. We allow a part of a node state to be read-only: this is modeled with the type
ROState and by the function (RO_part: State → ROState) which typically represents a subset of
the variables handled in the State of the node. The projection RO_part is extended to configurations by
the function (ROEnv_part g := (fun (p: Node) => RO_part (g p))), which returns a value of
type ROEnv. We add the property RO_stable to express the fact that those variables are actually read-only,
namely no execution of run can change their values. From the assumption RO_stable, we show that any
property defined on the read-only variables of a configuration is indeed preserved during steps.

The introduction of Read-Only variables has been motivated by the fact that we want to encompass
the diversity of anonymity levels from the distributing computing literature, e.g., fully anonymous, semi-
anonymous, rooted, fully identified networks, etc. By default (with empty RO_part), our Coq model de-
fines fully anonymous network thanks to the distinction between nodes (type Node) and channels (type
Channel). We enriched our model to reflect other assumptions.

For example, consider the fully identified assumption. Identifiers are typically constant integers, stored
in the node states. In our model, they would be stored in the read-only part of the state. Furthermore,
identifiers should be constant and unique all along the execution of the algorithm. This means they should
be unique in initial configuration and kept constant during the whole execution.

We define a predicate Assume_RO on ROEnv (in the case of fully identified assumption, Assume_RO
would express uniqueness of identifiers) that will be assumed at each initial configuration. From RO_stable,
this property will remain true all along any execution. Furthermore, the predicate Assume_RO can express
other assumptions on the network such as connected networks or tree networks (for this latter, see the
case study). As a shortcut, for any configuration (g: Env), we use notation Assume g := (Assume_RO

(ROEnv_part g)).
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3 Self-Stabilization and Silence

In this section, we express self-stabilization [Dij74] in the locally shared memory model with composite
atomicity using Coq properties.

Self-Stabilization. Consider a distributed algorithmA. Let S be a predicate on executions (type (Exec →
Prop)). A is self-stabilizing w.r.t. specification S if there exists a predicate P on configurations (type
(Env → Prop)) such that:
• P is closed under A, i.e., for each possible step g 7→ g’, (P g) implies (P g’):

closure P := ∀ (g g’: Env), Assume g → P g → Step g’ g → P g’;

• A converges to P, i.e., every execution of A contains a configuration which satisfies P:

convergence P := ∀ (e: Exec),
Assume (Fst e) → valid_exec e → max_exec e →
safe_suffix (fun suf: Exec => P (Fst suf)) e,

where (safe_suffix S e) inductively checks that execution e contains a suffix that satisfies S.
• A meets S from P, i.e., every maximal execution, from configurations which satisfy P, satisfies S:

spec_ok P S := ∀ (e: Exec),
Assume (Fst e) → valid_exec e → max_exec e → P (Fst e) → S e.

The configurations which satisfy the predicate P are called legitimate configurations. The following predi-
cate charaterizes a self-stabilizing algorithm:

self_stab S := ∃P, closure P ∧ convergence P ∧ spec_ok S P.

Silence. An algorithm is silent if the communication between the nodes is fixed from some point of the
execution [DGS96]. This latter definition can be transposed in the locally shared memory model as follows:
A is silent if all its executions are finite.

I n d u c t i v e finite_exec: Exec → Prop :=
| f_one: ∀ (g: Env), finite_exec (e_one g)
| f_cons: ∀ (e: Exec) (g: Env),

finite_exec e → finite_exec (e_cons g e)

silence := ∀ (e: Exec), Assume (Fst e) → valid_exec e → finite_exec e

By definition, executions of a silent and self-stabilizing algorithm w.r.t some specification S end in
configurations which are usually used as legitimate configurations, i.e., satisfying P. In this case, S can only
allow constrained executions made of a single configuration which is legitimate; S is then noted SP. To
prove that A is both silent and self-stabilizing w.r.t. SP, we use, as commonly done, a sufficient condition
which requires to prove that
• all terminal configurations of A satisfy P:

P_correctness P :=
∀ (g: Env), Assume g → terminal g → SPEC g

• and all executions of A are finite:

termination := ∀ (g: Env), Assume g → Acc Step g.
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The latter property is expressed with (Acc Step g) for every configuration g. The inductive proposition
Acc is taken from Library Coq.Init.Wf which provides tools on well-founded induction. The accessibility
predicate (Acc Step g) is translated into

(∀ g’: Env, Step g’ g → Acc Step g’) → Acc Step g

Namely, the base case of induction holds when no step is possible from current configuration g and then,
inductively, any configuration g’ that can reach such a terminal configuration satisfies (Acc Step g’).

The sufficient condition, used to prove that an algorithm is both silent and self-stabilizing, is expressed
and proved by:

Lemma silent_self_stab (P: Env → Prop):
P_correctness P ∧ termination → silence ∧ self_stab SP.

4 Case Study

To validate our framework, we certified a non trivial part of an existing silent self-stabilizing algorithm pro-
posed in [DLD+12]. Given a non-negative integer k, this algorithm builds a k-clustering of a bidirectional
connected network G = (V,E) which contains at most bn−1k+1c + 1 k-clusters, where n is the number of
nodes. A k-cluster ofG is defined to be a set C ⊆ V , together with a designated node Clusterhead(C) ∈ C,
such that each member of C is within distance k of Clusterhead(C), where the distance between any two
nodes p and q (noted ‖p, q‖ in the following) is the length of a shortest path linking p to q in G. A k-
clustering of G is a partition of V into distinct k-clusters. The k-clustering problem is strongly related to
the notion of k-hop dominating set. A subset of nodes D is a k-hop dominating set of G if every node is
within distance k from some member of D. So, by definition, the set of clusterheads of any k-clustering is
a k-hop dominating set.

The algorithm proposed in [DLD+12] is actually a hierarchical collateral composition [DLD+13] of two
silent self-stabilizing sub-algorithms: the former builds a particular kind of rooted spanning tree, called an
MIS tree;6 the latter is a k-clustering construction which stabilizes once a rooted spanning tree is available
in the network.

The crucial part of the second sub-algorithm consists in computing (in a self-stabilizing and silent way)
a k-hop dominating set D of size at most bn−1k+1c + 1 in an arbitrary rooted spanning tree. D will designate
the set of clusterheads in the computed k-clustering. This task is performed using the 1-rule Algorithm
D(k), whose code is given in Algorithm 1.

We have used our framework to build a certified proof which shows that D(k) is a silent and self-
stabilizing algorithm for building a k-hop dominating set of at most bn−1k+1c+1 nodes in any network equipped
with a rooted spanning tree.

The first step has consisted in encoding D(k) in our framework. We translated the unique rule of
the algorithm into the type Algorithm. Moreover, we expressed the assumptions on the network G in the
predicate Assume: G is bidirectional and a rooted spanning tree is available inG, n.b., this latter also implies
that G is connected. In the sequel, the spanning tree and its root are respectively denoted by T = (V,E′)
and r ∈ V . Moreover, for any node p, T (p) denotes the subtree of T with root p.

We certified the correctness part and then the termination part of the specification. For the latter property,
the proof we propose assumes a distributed unfair daemon. By contrast, the proof given in [DLD+12]
assumes a stronger daemon (namely, a weakly fair distributed daemon). Finally, we provided a certified

6An MIS tree is a spanning tree whose nodes at even levels form a maximal independent set (MIS) of the network.
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Algorithm 1 D(k), code for each process p

Constant Input: Par(p) ∈ Np ∪ {⊥}

Variable: p.α ∈ {0, ..., 2k}

Predicates:

IsRoot(p) ≡ Par(p) =⊥
IsShort(p) ≡ p.α < k
IsTall(p) ≡ p.α ≥ k

kDominator(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ IsRoot(p))

Macros:

Children(p) = {q ∈ Np | Par(q) = ρp(q)}
ShortChildren(p) = {q ∈ Children(p) | IsShort(q)}
TallChildren(p) = {q ∈ Children(p) | IsTall(q)}

MaxAShort(p) = if ShortChildren(p) = ∅ then −1
else max {q.α | q ∈ ShortChildren(p)}

MinATall(p) = if TallChildren(p) = ∅ then 2k + 1
else min {q.α | q ∈ TallChildren(p)}

Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k − 2 then MinATall(p) + 1
else MaxAShort(p) + 1

Action:
p.α 6= Alpha(p) ↪→ p.α← Alpha(p)

10



proof on the maximal size of the computed k-hop dominating set. The design of the proofs led us to develop
general tools in our framework. In particular, we proposed general theorems to prove termination and tools
for counting elements in sets.

4.1 Algorithm D(k)

Local States. In the algorithm, the knowledge of T is locally distributed at each node p using the constant
input Par(p) ∈ Np ∪ {⊥}. When p 6= r, Par(p) ∈ Np and designates its parent in the tree. Otherwise, p is
the root and Par(p) =⊥. Then, each node p maintains a single variable: p.α, an integer in range {0, ..., 2k}.
We have instantiated the Coq State of a node as a record containing fields (Par: option Channel)

and (α: Z). (Par p) stands for Par(p) and is the unique read-only variable for p. Moreover, (α p)

stands for p.α and is taken in Z (integer). Indeed, we choose to encode every number in the algorithm
as integer in Z, since some of them may be negative (see MaxAShort) and a computation uses minus (see
Alpha). Furthermore, we have proven p.α is in range {0, ..., 2k} after p participates in any step and also
when the system is in a terminal configuration.

Spanning Tree Assumption. We use the predicate (span_tree r Par) on the read-only variables Par
to express the assumption on the spanning tree. First, by construction, each node p has exactly at most one
parent (Par p). Then, (span_tree r Par) checks that the graph T induced by Par is a subgraph of G
which actually encodes a spanning tree rooted at r by the conjunction of the following predicates.

• Predicate parent_is_peer means that for every non-root node p, any link from p to (Par p) is an
existing channel outgoing from p (i.e., is in Np):

parent_is_peer := ∀(p: Node) (c: Channel),
eqoptionA eqC (Par p) (Some c) → ∃(q: Node), is_channel p c q

where eqC denotes equality between channels and eqoptionA eqC checks whether parameters are
either both ⊥, or (Some c1) and (Some c2) with (eqC c1 c2).

• Predicates is_root_root and is_root_unique say that r is the unique node with no parent, i.e.,
such that (Par r) is ⊥:

is_root_root := is_root r
is_root_unique := ∀(p1 p2: Node), is_root p1 → is_root p2 → eqN p1 p2

where predicate (is_root p) checks whether (Par p) equals ⊥.

• Finally, predicate no_loop requires that there is no loop in T , following Par pointers, namely, the
transitive closure of Par is not reflexive:

no_loop: ∀(p: Node), ¬transitive_closure (is_tree_parent_of Par) p p

where is_tree_parent_of is the relation between nodes and their parents in T , extracted from
Par and (transitive_closure R) is the relation obtained from the transitive closure of relation
R.

From the last point, we show that, since the number of nodes is finite, the relation extracted from Par

between nodes and their parents (resp. children) in T is well-founded:
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WF_par := well_founded (is_tree_parent_of)
WF_child := well_founded (flip (is_tree_parent_of))

where (flip is_tree_parent_of) is the relation between nodes and their children (since flip pro-
vides the inverse relation); and (well_founded R := ∀a, Acc R a) means that relation R is well-
founded (primitive well_founded is taken from standard Coq Library Coq.Init.Wf, as Acc).

Finally, we express that a spanning tree exists, rooted at r and using Par by the predicate (span_tree
r Par) which is the conjunction of the four predicates above (namely is_root_unique, is_root_root,
parent_is_peer and no_loop). We now instantiate predicate Assume, for any configuration (g: Env)

with read-only part noted Par as:

Assumekdom g := sym_net ∧ ∃ (r: Node), span_tree r Par.

k-hop Dominating Set. The goal of D(k) is to compute an output predicate kDominator(p) for every
node p (see Algorithm 1 for its definition) in such way that the system converges to a terminal configuration
in which the set Dom = {p ∈ V | kDominator(p)} defines a k-hop dominating set of T (and so of G).
We pose an arbitrary positive parameter k, taken in Z as for other numbers, with assumption that it is
positive. We define the expected specification using predicate PkDom on configurations, where PkDom holds
in configuration g if and only if the set Dom = {p ∈ V | kDominator(p)} is a k-hop dominating set of T :

PkDom g := ∀(p: Node), ∃(kdom: Node), (kDominator g kdom) ∧
∃(path: list Node), (is_path g path kdom p) ∧ (length path) ≤ k.

where the predicate is_path detects if the list of nodes path actually represents a path on the tree T
between the nodes kdom and p, and length computes the length of the path.

D(k) in Coq. Every predicate and macro of Algorithm 1 has been directly encoded in Coq. For a node p
and current configuration g, all predicates and functions depend onNp, ρp, (g p) and (local_env g p).
The translation is quasi-syntactic as shown in the following two examples:7

kDominator p := orb (Z.eqb p.(alpha) k) (andb (IsShort p) (IsRoot p))

Alpha p := if Z_le_gt_dec (MaxAShort p + MinATall p + 2) (2 * k)
then MinATall p + 1
else MaxAShort p + 1

run p := if Z.eq_dec (α p) (Alpha p)
then ⊥
else Some {| α := Alpha p; Par := (Par p) |}

(Z.eqb stands for Boolean equality (return type bool) between integer numbers in Z; orb (resp. andb)
stands for Boolean-or (resp. -and). Z_le_gt_dec is a decidable comparator ≤ between integer numbers
of type Z and Z.eq_dec is a decidable equality.) Remind that the fact that node p is not enabled at current
step is encoded by ⊥. Finally, the definition of D(k), of type Algorithm, comes with a proof that run is
compatible, as composition of compatible functions, and also with a straightforward proof of RO_stable
which asserts that the read-only part of the state, Par, is constant during steps, when applying run.

7Notice that p should be instantiated by (g p) in those definitions; we adopt this writing to make Coq definitions resemble
Algorithm 1.
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Figure 1: Two examples of 2-hop dominating sets computed byD(2). We only draw the spanning tree, other
edges are omitted. The root of each tree is the rightmost node. α-values are given inside the nodes. Bold
circles represent members of Dom. Arrows represent the path from nodes to their associated witnesses.

Overview ofD(k). AlgorithmD(k) computes a k-hop dominating set of T , notedDom, using the variable
α at each node. Precisely, Dom is defined as the set of nodes p such that kDominator(p) holds, i.e., where
p.α = k, or p.α < k and p = r. Dom is constructed by dynamic programming, in a bottom-up fashion
starting from the leaves of T . The goal of variable p.α at each node p is twofold:

• Variable p.α allows to determine a path of length at most k from p to some node q of Dom which
acts as a witness for guaranteeing the k-hop domination of Dom. Consequently, q will be denoted as
Witness(p) in the following.

• Once correctly evaluated, the value p.α is equal to ‖p, q‖, where q is the furthest node in T (p) that
has the same witness as p.

We divide processes into short and tall according to the value of their α-variable: If p satisfies IsShort(p),
i.e., p.α < k, then p is said to be short; otherwise, p satisfies IsTall(p) and is said to be tall. In a terminal
configuration, the meaning of p.α depends on whether p is short or tall.

(i) If p is short, we have two cases: p 6= r or p = r. In the former case, Witness(p) ∈ Dom is outside
of T (p), that is, the path from p toWitness(p) goes through the parent link of p in the tree, and the distance
from p to Witness(p) is at most k − p.α. See, for example, in Configuration (I) of Figure 1, k = 2 and
g.α = 0 mean that Witness(g) is at most at distance k − 0 = 2, now its witness d is at distance 1. In the
latter case, p is not k-hop dominated by any other process ofDom inside its subtree and, by definition, there
is no process outside its subtree, indeed T (p) = T , see the root a in Configuration (I) of Figure 1. Thus, p
must be placed in Dom.

(ii) If p is tall, there is a process q at p.α − k hops below p such that q.α = k. So, q ∈ Dom and p
is k-hop dominated by q. Hence, Witness(p) = q. The path from p to Witness(p) goes through its tall
child with minimum α-value. See, for example, in Configuration (I) of Figure 1, k = 2 and c.α = 3 mean
that Witness(c), here d, is 3 − k = 1 hop below c. Note that, if p.α = k, then p.α − k = 0, that is,
p = q =Witness(p) and p belongs to Dom.

In D(k), p.α is computed using macro Alpha(p) (see Algorithm 1). Two examples of 2-clustering
computed by D(2) are given in Figure 1. In Subfigure 1.(I), the root is a short process, consequently it
belongs to Dom. In Subfigure 1.(II), the root is a tall process, consequently it does not belong to Dom.

Detailed Explanation ofD(k). According to the macro Alpha(p), p.α is computed in a bottom-up fashion
in T using the unique action of the algorithm.

Consider a leaf f . By definition, MaxAShort(f) + MinATall(f) = −1 + 2k + 1 > 2k − 2. Thus,
f.α = −1 + 1 = 0, which corresponds to the distance between f and its furthest descendant that will have
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Figure 2: Illustrative example: Light gray nodes are short children of p; gray nodes are tall children of p.
The shade area shows the nodes that already choose the same witness as p. The light gray area shows the
nodes that already choose the same witness as z.

the same witness (actually f itself).
Consider now any internal node p and assume that the α-variables of all its children are correctly evalu-

ated. p should choose a witness that will be either (1) in its subtree (in this case, p will be tall), or (2) outside
its subtree (in this case, p will be short). We should preferably make the choice (1) to reduce the number of
witnesses, and so the size of Dom.

Let q be a short child of p. From bullet (i) in the previous paragraph, the path from q to its witness goes
through p. Thus, to prevent cycle creation,

(∗) p must not choose a witness which is in the subtree of any of its short children.

From now on, follow the illustrative example given in Figure 2. Let x be the furthest node that is in
the subtree of some short child of p and has the same witness as p. Let q be the short child of p such that
x ∈ T (q). Then, from bullet (i) in the previous paragraph, x is at distance MaxAShort(p) + 1 from p. Two
cases are then possible:

• Assume MaxAShort(p) + MinATall(p) > 2k − 2. If p chooses a node y of its subtree as witness,
then from (∗), the path from p to y should go through one of its tall children. So, p will be at least
at distance MinATall(p) − k + 1 from y, by (ii). Now, in this case, x will be at least at distance
MaxAShort(p) + 1 + MinATall(p) − k + 1 > 2k − 2 − k + 2 = k from its witness y, so x is not
k-hop dominated by y. Thus, p should necessarily choose its witness outside the subtrees of any of its
children (that is, either p declares itself as member of Dom or chooses an ancestor as witness). From
(i) and (ii), this means that all nodes in the subtrees of the tall children of p adopt a witness different
from the one p, and consequently the node x is then the furthest node that belongs to T (p) and has the
same witness as p. This implies that p.α = ‖p, x‖ = MaxAShort(p) + 1.

• Assume MaxAShort(p)+MinATall(p) ≤ 2k−2. Let z be a tall child of p such that z.α = MinATall(p).
Unlike the previous case, p can choose a node y in the subtree of z as witness. Indeed, in this case,
x will be at distance MaxAShort(p) + 1 + MinATall(p) − k + 1 ≤ 2k − 2 − k + 2 = k from
y. Hence, the nodes (other than p) that are in the subtree of p and has the same witness will be
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either nodes in subtrees of short children of p or nodes in T (z). Since by definition, MinATall(p) >
MaxAShort(p), the furthest node that both belongs to T (p) and has the same witness as p will be at
distance MinATall(p) + 1 from p, i.e., p.α = MinATall(p) + 1.

Proof Scheme. D(k) is a silent and self-stabilizing algorithm for PkDom. The proof of this result uses
Lemma silent_self_stab given Section 3 which requires the following two proof obligations:

Partial Correctness: All terminal configurations of D(k) satisfy PkDom (P_correctness).

Termination: All executions of D(k) are finite (termination).

Proof of P_correctness is described in Section 5. Proof of termination is described in Section 6.2;
it uses general tools for termination that we develop in Section 6.1. Furthermore, we also proved that
|Dom| ≤ bn−1k+1c+ 1. The expected property is expressed by:

counting := n - 1 ≥ (k + 1) * (|Dom| - 1).

This requirement is the third development of the certified proof:

Counting: All terminal configurations ofD(k) contains at most bn−1k+1c+1 nodes p for which kDominator(p)
holds.

The way |Dom| and n (number of nodes) are defined in Coq is described in Section 7.1. The proof of
counting is explained in Section 7.2.

5 Proving Partial Correctness of D(k)

The proof of partial correctness consists in showing that predicate PkDom holds in any terminal configuration
satisfying Assumekdom:

Theorem kdom_set_at_terminal:
∀(g: Env), Assumekdom g → terminal g → PkDom g.

Values of α are in range {0, ..., 2k}. As a preliminary result, we need to check that α, whose domain is Z
in the Coq definition, matches the range {0, ..., 2k}. Actually, this might not be true at initial configuration,
but this is true both since the very first step and in any terminal configuration. The Coq proof first shows
that the value returned by macro Alpha(p) is in range {0, ..., 2k}: this is proven using a case analysis on
MaxAShort(n) + MinATall(n) > 2k − 2 and the fact that, by definition, −1 ≤ MaxAShort(n) ≤ k − 1
and k ≤ MinATall(n) ≤ 2k + 1. Then, for terminal configuration, the result comes from the fact that
p.alpha = Alpha(p).

Tree Paths. From definition of PkDom, we need to check the existence of a path in G between any node
p and any node kdom of Dom, such that this path is of length at most k. To achieve this property, the
algorithm builds tree paths of particular shape: those paths use edges of T in both direct sense (from a node
to its parent) and reverse sense (from a node to one of its children). Precisely, these edges are defined using
relation is_kDom_edge, which depends on α-values: for any short node s, we select the edge linking s to
its parent in T (using Par); while for any tall node t which is not in Dom, we select the edge linking t to a
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child c (using (flip Par)) such that c.α = t.α − 1. The relation is_kDom_edge defines a subgraph of
G called kdom-graph.

To prove Theorem kdom_set_at_terminal, it is sufficient to prove that for any configuration g where
(Assumekdom g) and (terminal g) hold, we have:

∀(p: Node), ∃(kdom: Node), (kDominator g kdom) ∧
∃(path: list Node), (is_kDom_path g path kdom p) ∧ (length path) ≤ k.

where is_kDom_path checks that its parameter path is a path on the kdom-graph between kdom and p.
The rest of the analysis is conducted assuming a terminal configuration g which contains a rooted spanning
tree built upon a bidirectional graph, namely such that (Assumekdom g) and (terminal g) hold. The
proof is split into two cases, depending on whether the node is tall or short.

Proof for Tall Nodes. First, we prove a lemma, called Alpha_inv, stating that any node p satisfying
p.α > 0 has a child q such that p.α = q.α + 1. The proof is simply a case analysis on MaxAShort(q) +
MinATall(q) ≤ 2k − 2. We then prove the following lemma:

Lemma tall_is_kDominated:
∀(p: Node) (i: nat), (alpha (g p)) = k + Z_of_nat i →
∃(kdom: Node), (kDominator g kdom) ∧
∃(path: list Node), (is_kDom_path g path kdom p) ∧ (length path) ≤ i.

(Z_of_nat is a wrapper which transforms a natural number into integer of type Z.) The proof straightfor-
ward by induction on i:
• For (i = 0), p satisfies kDominator(p).
• For (i = j + 1), we apply Lemma Alpha_inv to node p such that p.α = (k + j). This pro-

vides node q with q.α = (k + i) on which we apply the induction hypothesis. This exhibits a path
path of length at most j in kdom-graph from some k-dominator kdom to q. Since p is the parent of q
in T , we can build a path path’ of length at most j+1 = i linking kdom to p in kdom-graph.

Proof for Short Nodes. We now want to prove the similar lemma for short nodes:

Lemma short_is_kDominated:
∀(p: Node) (i: nat), (alpha (g p)) = k - Z_of_nat i →
∃(kdom: Node), (kDominator g kdom) ∧
∃(path: list Node), (is_kDom_path g path kdom p) ∧ (length path) ≤ i.

We also proceed by induction. The case (i=0) is already proved by Lemma tall_is_kDominated. For
the case (i = j + 1), we look at the tree parent q of p. If q is short, we apply the induction hypothesis,
add a step to the path and we are done. If q is tall, we have two cases:
• If MaxAShort(q) + MinATall(q) > 2k − 2, q.α = MaxAShort(q) + 1 ≤ k. Since q is tall, q.α ≥ k

so q.α = k. Since q is the parent of p in the tree, there is a path of length 1 in kdom-graph and we are
done.
• If MaxAShort(q) + MinATall(q) ≤ 2k − 2, we have

(MinATall(q) + 1)− k + 1 ≤ k −MaxAShort(q)

Since p is a short child of q in T , p.α ≤ MaxAShort(q) or equivalently

k −MaxAShort(q) ≤ k − p.α
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We also have, MinATall(q) + 1 = q.α. Combining those three equations, we have

q.α− k + 1 ≤ k − p.α

Since q is tall, by tall_is_kDominated, there is a node kdom and a path path of length at most
q.α− k in kdom-graph from kdom to q. Since q is the parent of p in the tree, we have a path path’ in
kdom-graph of length at most q.α− k + 1 from kdom to p. From last inequality, path’ has a length
at most k − p.α, so we are done.

Overall Result. Since g is a terminal configuration, all the values α are between 0 and 2k. This result,
Lemmas tall_is_kDominated, and short_is_kDominated imply that all short and tall nodes are
within distance k of a node of the k-hop dominating set Dom. Since a node is either short or tall, we have
therefore proven Theorem kdom_set_at_terminal. As a simple rewriting, (P_correctness PkDom) is
proven.

6 Termination

Termination proofs of self-stabilizing (silent) algorithm often rely on induction scheme, and in particular on
potential functions. A potential function is a function mapping each configuration to some value (typically an
integer) which is monotonic with steps of the algorithm and bounded, i.e., either monotonically decreasing
with steps and lower bounded, or monotonically increasing with steps and upper bounded. A potential
is usually based on global criteria, i.e., the proof of its monotony usually requires to observe executions
at a global level. To simplify the proofs, we developed tools on potential functions and termination at a
finer-grained level. We first present these tools and, then, show how to use them to prove termination of
D(k).

6.1 Core Results for Proving Termination

We give a sufficient condition for termination based on some potential function in which the (global) poten-
tial function is based on local potential at each node.

Usual termination proofs are based on some global potential built from local ones. For example, local
potentials can be integers and the global potential can be the sum of them. In this case, the argument for
termination may be, for example, the fact that the global potential is lower bounded and strictly decreases
at each step of the algorithm. Global potential decrease is due to the modification of local states at some
nodes, however studying aggregators such as sums may hide scenarios, making the proof more complex.

Instead here, we build a global potential as the multiset containing the local potential of each node.
Our method for termination is based on two criteria that are sufficient to meet the conditions for using the
Dershowitz–Manna well-founded ordering on multisets [DM79]. Given those criteria, we can show that the
multiset of (local) potentials globally decreases at each step. For multisets and the Dershowitz-Manna order,
we used results from the CoLoR library [BK11].

Steps. One difficulty we face, when trying to apply this technique straightly, is that we cannot always
define the local potential function at a node without assuming some properties on its local state, and so on
the configuration. Thus, we may have to assume the existence of some stable set of configurations in which
the local potential function can be defined. When necessary, we use our technique to prove termination of a
subrelation of the relation Step, provided that the algorithm has been initiated in the required stable set of
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configurations. This point is modeled by a predicate on configurations, safe, and a type safeEnv which
represents the set of safe configurations into which we restrict the termination proof:

safe: Env → Prop
safeEnv: Type := { g: Env | safe g }

(safeEnv is a type whose values are ordered pairs containing a term g and a proof of (safe g).) This set
of configurations should be stable, i.e., it is assumed that no step can exit from the set, using the predicate
stable_safe:

stable_safe := ∀ (g g’: Env), safe g → Step g’ g → safe g’

The relation for which termination will be proven is then defined by:

safeStep (g’ g: safeEnv) := Step (getEnv g’) (getEnv g)

where getEnv accesses the actual configuration (of type Env).

Potential. We assume that within safe configurations, each node can be endowed with a potential value
obtained using function:

pot: safeEnv → Node → Mnat.

Mnat simply represents natural numbers8 encoded using the type from Library CoLoR.MultisetNat

[BK11]; it is equipped with the usual equivalence relation, noted =P, and the usual well-founded order,
noted <P, on natural numbers.

Multiset ordering. We recall that a multiset of elements in the setoid, P , endowed with its equivalence
relation =P , is defined as a set of elements of P with a finite number of occurrences with respect to =P .
Such a multiset is usually formally defined as a multiplicity function m : P → N≥1 which maps any
element to its number of occurrences in the multiset. We focus here on finite multisets, namely, multisets
whose multiplicity function has finite support. Now, we assume that P is also ordered using relation <P ,
compatible with =P . We use the Dershowitz–Manna order on finite multisets [DM79] defined as follows:
the multiset N is smaller than the multiset M , noted N ≺ M , if and only if there are three multisets X , Y
and Z such that X 6= ∅ ∧M = Z + X ∧ N = Z + Y ∧ ∀y ∈ Y,∃x ∈ X, y <P x, where ’+’ between
multisets means adding multiplicities. Informally, to obtain a multiset N smaller than M , we may remove
from M all elements of X and then add all elements of Y . Elements in Z are the ones that are present in
both M and N . It is required that some element is removed (X 6= ∅) and each element that is added must
be smaller (w.r.t. <P ) than some removed element. It has been shown that if <P is a well-founded order,
then so is the corresponding order ≺.

In our context, we consider finite multisets over Mnat, (i.e., =P is =P and <P stands for <P). We have
chosen to model them as lists of elements of Mnat and we build the potential of a safe configuration as the
multiset of the potentials of all nodes, namely a multiset of potentials of a safe configuration sg is defined
by

Pot (sg: safeEnv): list Mnat := List.map (pot sg) all_nodes

where all_nodes is the list of every node in the network (see Section 2.2) and (List.map f l) is the
standard operation that returns the list made of each elements of l on which f has been applied.

8Natural numbers cover many cases and we expect the same results when further extending to other types of potential.
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The corresponding Dershowitz–Manna order is defined using the library CoLoR [BK11] with (≺ :=

MultisetLT >P). The library also contains the proof that (well_founded <P) implies
(well_founded ≺). Using this latter result and the standard result which proves (well_founded <P),
we easily deduce (well_founded ≺).

Termination Theorem. Proving the termination of an algorithm then consists in showing that for any safe
step of the algorithm, the corresponding global potential decreases w.r.t. the Dershowitz-Manna order ≺,
namely:

safe_incl := ∀ (sg sg’: safeEnv), safeStep sg’ sg → (Pot sg’) ≺ (Pot sg)

We established a sufficient condition made of two criteria on node potentials which validate the con-
ditions for using the Dershowitz–Manna well-founded order on multisets ≺. Local criterion finds for any
node p whose potential has changed but has not decreased, a witness node q (typically a neighbor) whose
potential has decreased from a value that was even higher than the new potential of p:

Hypothes i s local_crit:
∀ (sg sg’: safeEnv), safeStep sg’ sg →
∀ (p: Node), (pot sg p) <P (pot sg’ p) →
∃ (q: Node), (pot sg q) 6=P (pot sg’ q) ∧ (pot sg’ p) <P (pot sg q).

Global criterion exhibits, at any step, a node whose potential has changed:

Hypothes i s global_crit:
∀ (sg sg’: safeEnv), safeStep sg’ sg →

∃ (p: Node), (pot sg’ p) 6=P (pot sg p).

Assuming local_crit and global_crit, we are able to prove safe_incl as follows: we define
Z as the multiset of local potentials of nodes whose potential did not change, and X (resp. Y ) as the
complement of Z in the multiset of local potentials (Pot sg) (resp. (Pot sg’)). Global criterion is used
to show that X 6= ∅, and local criterion is used to show that ∀y ∈ Y,∃x ∈ X, y <P x. Since any relation
included in a well-founded order is also well-founded, we get that relation safeStep is well-founded.

Lemma Wf_safeAlgo_Multiset: well_founded safeStep.

And since we know that property safe is stable (from stable_safe), we get

∀g, safe g → Acc Step g

which proves that the algorithm terminates from any safe configuration.

6.2 Proving Termination for D(k)

We use the above method to prove termination of D(k), expressed as:

Theorem k_dom_set_terminates:
∀(g: Env), Assumekdom g → Acc Step g.

First, we assume sym_net and that the root node r exists. We instantiate safe as every configuration
in which read-only variables Par satisfy: (span_tree r Par). Indeed, it is mandatory to assume the
spanning tree T rooted at r to be able to define local potentials on which we perform the proof since they
are based on the depth of nodes in T . Note that it is easy to prove that safe is stable since it only depends
on read-only variables; safe is also proven compatible.
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Potential. We define the depth of a node as the distance of the node from the root r in the tree T . Function
depth is defined using an induction scheme based on (WF_par n): for a given safe configuration sg and
node p, (depth sg p) returns the natural number (type nat) defined by 1 if p is the root r and, otherwise,
1 + (depth sg q) with q the parent of p in the tree T , namely such that (is_tree_parent_of q p).
We proved that depth is a compatible function, always greater than 0, and, when descending a path from
the root to some leaf of the tree, depth increases by one at each hop. Furthermore, whatever be the steps
computed by the algorithm, depth is preserved. Now, we define the potential of node p in safe configuration
sg as the natural number (type nat) defined by:

pot sg p := if (enabled_b (getEnv sg) p) then (depth sg p) else 0%nat

i.e., the potential of node p in safe configuration sg equals 0 if p is not enabled in sg and the depth of p in
the tree T , otherwise. This function is proved compatible.

Local Criterion. Here we fix two safe configurations sg and sg’, such that (safeStep sg’ sg);
we note g and g’ the corresponding configurations (obtained using getEnv) and we use the proposition
(has_moved p) for a node p which holds when p actually executes during step g 7→ g’ (evaluated by
(d p) 6= ⊥ with d the difference encoded in the step). We also use predicate enabled to represent that
enabled_b is true.

We now detail the proof of local criterion. Let consider a node p whose potential has increased during
the step, i.e., such that (pot sg p) <P (pot sg’ p). This means, from definition of pot, that p is
disabled at g (potential is 0) and becomes enabled at g’ (potential equals (depth sg’ p) > 0), since
depth is preserved during any step. Hence, local criterion is a direct consequence of the following lemma:

Lemma new_enabled_node_has_disabled_descendant:
∀(p: Node), ¬(enabled g p) → (enabled g’ p) →
∃(descendant: Node),

(∃(path: list Node), directed_tree_path g p path descendant) ∧
(enabled g descendant) ∧ ¬(enabled g’ descendant).

where directed_tree_path means that path is a decreasing path along the tree from p to descendant.
Therefore, to prove local criterion, we propose to exhibit a down-path from p in T which contains a node,
called descendant, which is enabled at g and becomes disabled at next configuration, g’. We prove the
lemma in two steps. First, for a node p, disabled at g but enabled at g’, we necessarily exhibit a child of p,
child, which moved during the step:

Lemma enabled_child_has_moved:
∀(p: Node), ¬(enabled g p) → (enabled g’ p) →
∃(child: Node), (is_tree_parent_of g p child) ∧ (has_moved child).

This is proved by induction on the neighbors of p using that the result of run only depends on the states of
the children of p in the tree T (directly based on the definition of run, see Algorithm 1).

Hence, as the second step, the proof of Lemma new_enabled_node_has_disabled_descendant
is reduced to the proof of:

Lemma moving_node_has_disabled_descendant:
∀(child: Node), has_moved child →
∃(descendant: Node),

(∃(path: list Node), directed_tree_path g child path descendant) ∧
(enabled g descendant) ∧ ¬(enabled g’ descendant).
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When the node child moves, it is down-linked in T to a node which was enabled and becomes disabled,
during the step. This result is proven by induction on (WF_child child), i.e., on the decreasing paths
from child in T . Consider a node in such a path, enabled at g and that moves during step g 7→ g’: we
have two cases.

• Either it becomes disabled at g’: this is the basis case of induction, since we have found the witness
node descendant;

• Or it is still enabled at g’: for this case, we prove:

Lemma node_has_moved:
∀(x: Node), has_moved x → enabled g’ x →
∃(xchild: Node),

(is_tree_parent_of g x xchild) ∧ (has_moved xchild).

(i.e., when a node has moved, but is still enabled at next configuration, it has a child that also moved.)
The proof is based on the same schema as Lemma enabled_child_has_moved. The lemma pro-
vides the induction step for the above proof.

Global Criterion. Global criterion requires to find a witness node whose potential differs between g and
g’. We show that there exists a node p with potential (depth sg p)> 0 at g and potential 0 at g’, namely,
which is enabled at g but disabled at g’:

Lemma one_disabled: ∃(p: Node), (enabled g p) ∧ ¬(enabled g’ p).

Indeed, by definition of the daemon, at least one node has moved during the step. Then Lemma moving_
node_has_disabled_descendant is used to show that this node necessarily has a descendant (on a
given decreasing path of T ) which is enabled at g but disabled at g’.

Conclusion. Local and global criteria being proved, we obtain Theorem k_dom_set_terminates di-
rectly: this is exactly predicate termination for Algorithm D(k). Using Lemma silent_self_stab,
we obtain that D(k) is a silent self-stabilizing algorithm for PkDom:

Theorem kdom_silent_self_stab:
silence Assumekdom ∧ self_stab Assumekdom SPkDom

.

7 Quantitative Properties

In addition to the partial correctness property which states thatD(k) computes a k-hop dominating setDom,
we have shown that |Dom| ≤ bn−1k+1c+1, where n the number of nodes. Precisely, we have formally proven
the equivalent property counting which states that (n− 1) ≥ (k+ 1)(|Dom| − 1). Intuitively, this means
that all but one element of Dom have been chosen as witness by at least k + 1 distinct nodes each.

7.1 Counting Elements in Sets

First, we have set up a library dealing with cardinality of sets in general and then cardinals of finite sets. The
library contains basic properties about set operations such as Cartesian product, disjoint union and subset.
Proofs are conducted using standard techniques.
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Cardinality on Setoids. To be able to order cardinalities, we define a property, called Inj, on a pair of
setoids (A,=A) and (B,=B): it requires the existence of an injective and compatible function, inj, from
A to B whose domain is A, namely:

• Inj_compat: inj is compatible (see Section 2.3),

• Inj_left_total: domain of inj is A, i.e., any element in A is related to at least one element in B,

• Inj_left_unique: inj is injective, i.e., any element in B is related to at most one (w.r.t. =A)
element in A.

Relation Inj is proven reflexive and transitive. We model cardinality ordering using the three-valued type
(Card_Prop := Smaller | Same | Larger) and the following property Card. Card distinguishes
the different ways Inj can apply to pairs of setoids such that

• (Card Smaller A B)9 is defined by (Inj A B) which expresses that A has a cardinal smaller
or equal to that of B, w.r.t. equalities =A and =B;

• Similarly, (Card Larger A B) is defined by (Inj B A)

• and (Card Same A B) by (Inj B A ∧ Inj A B).

(Card prop) is reflexive and transitive for any value of prop in Card_prop. It is also antisymmetric in
the sense that (Card Smaller) and (Card Larger) implies (Card Same) for a given pair of setoids
(trivial from the definitions).

Finite Cardinalities. Now we focus on finite setoids and define tools to express their cardinalities. We
first define, for a given natural number N , the setoidMN := {i: nat | i < N}. Its values are ordered
pairs containing a natural number i and a proof of (i < N); it is equipped with the standard equality on type
nat (wrapped to be able to compare values of typeMN ). In short,MN simply models the set of natural
numbers {0, 1, ..., N − 1}. We first proved that Inj captures finite cardinality ordering

Lemma Inj_le_iff: ∀(m n: nat), Inj Mm Mn ↔ m ≤ n.

and the corresponding corollaries with Card, e.g.,

∀(m n: nat), Card Smaller Mm Mn ↔ m ≤ n.

(similar corollaries exist for Larger and Same). The following predicate Num_Card is then used to ex-
press that a setoid A has cardinality at least (resp. at most, resp. equal to) some natural number n
with Num_Card prop A n := (Card prop A Mn) where prop is any Card_Prop. For instance,
(Num_Card Smaller A n) means that A contains at most n elements w.r.t. =A.

Cartesian Products. We developed results about Cartesian products. First, Cartesian product is mono-
tonic w.r.t cardinality:

Lemma Inj_prod:
∀prop, Card prop A1 A2 → Card prop B1 B2 → Card prop (A1 ×B1) (A2 ×B2).

where (A1,=A1), (A2,=A2), (B1,=B1), (B2,=B2) are any setoids. Now, we showed that:

9We omit parameters =A and =B for better readability.
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∀ n m: nat, Card Same (Mn ×Mm) Mn×m

namely, the Cartesian product ofMn = {0, ..., n−1} andMm = {0, ...,m−1} contains the same number
of elements as Mn×m = {0, ..., n×m − 1}. This latter result is showed using encoding functions from
Mn ×Mm toMn×m and fromMn×m toMn ×Mm. This intermediate result allows to easily deduce
that the cardinality of a Cartesian product is the product of cardinalities:

∀prop (n m: nat), Num_Card prop A n → Num_Card prop B m →
Num_Card prop (A×B) (n×m)

Disjoint Unions. We developed similar lemmas about disjoint union of sets, noted + for which the main
results is:

∀prop (n m: nat), Num_Card prop A n → Num_Card prop B m →
Num_Card prop (A+B) (n+m)

Subsets. We proved many toolbox results, about subsets, which are expressed using Card as well as
Num_Card. For instance,
• any subset of a set A has Smaller cardinality than that of A,
• the set itself is one of its subset with Same cardinality,
• the trivially empty subset contains 0 element,
• a non-empty set contains at least 1 element,
• a singleton contains exactly one element,
• ...

Number of Elements in Lists. To prove the existence of finite cardinality for finite setoids, we use
lists, since, in particular, in our framework, the setoid of nodes of the network is encoded as the list
all_nodes. In this paragraph, we consider a setoid A, whose equality =A satisfies classical property
(∀a1 a2: A, a1 =A a2 ∨ a1 6=A a2) and a predicate function (P: A → Prop)which satisfies also
classical property (∀a: A, P a ∨ ¬ P a). Under those conditions, we can prove:

∀(l: list A), ∃(n: nat), Num_Card Same {a: A | P a ∧ a ∈=A
l} n

namely, for any list l, the set of elements in l (w.r.t. =A) which satisfies predicate P has finite cardinality
n. Or, equivalently, assuming the existence of a list l which contains every element of type A, we get that
the number of elements which satisfy P is finite:

∀(l: list A), (∀(a: A), a ∈=A
l) →

∃(n: nat), Num_Card Same {a: A | P a } n

When predicate function P returns True for any parameter, this provides the number of elements of list l
(up to =A).

7.2 Proving Counting for D(k)

As stated above, we prove that, in a network of n nodes, the final number of nodes inDom satisfies (n−1) ≥
(k + 1)(|Dom| − 1). The proof outline is the following. First, we assume a terminal configuration g (such
that terminal g). The existence of the natural number n (number of nodes) is given using the above
results about the number of elements in the list all_nodes. Similarly, the existence of the natural number
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|Dom| (number of nodes in Dom) is given using the above results applied to list all_nodes and predicate
function (fun p: Node => (kDominator (g p) = true)).

We define as regular head each node p such that α equals k: RegDomHead p := (α p) = k and the
set of regular heads as RegDomHeads := { p: Node | RegDomHead (g p) }. Note that by defini-
tion, RegDomHeads is included in Dom. Again, we prove the existence of the natural number rh∗ which
represents the number of nodes in RegDomHeads using list all_nodes and predicate RegDomHead.

We also define a regular node as a node which designates a regular head as witness: RegNodes :=

{ p: Node | HasTallAncestor p }. Predicate HasTallAncestor is an inductive predicate which
selects any node which has an ancestor, with α at least k, in the tree T , (namely, there is an increasing path
from the node p to the root r which contains, meanwhile, a node with α at least k). Again, we prove the
existence of the natural number rn∗ which is the number of nodes in RegNodes.

Now, we prove the following theorem:
Theorem simple_counting: rn∗ ≥ (k + 1)rh∗.

Using results from the library on cardinality of sets and lists, this theorem is reduced to
Card Smaller (Mk+1 × RegDomHeads) RegNodes

This latter proposition is proven by constructing a relation Rcount from pairs of natural numbers i ∈
{0, ..., k} and regular heads to regular nodes, such that: for a regular head h, some i ∈ {0, ..., k} and a
regular node pi, (Rcount (i, h) pi) holds if and only if pi.α = i and pi designates h as witness (i.e.,
there is a path from pi to h in kdom-graph). We show that Rcount is actually an injection of domain
(Mk+1 × RegDomHeads). Indeed, for any pair (i, h), there is a node pi such that pi.α = i which desig-
nates h as witness; the proof is made by induction on values of i. Intuitively, this implies that there is a path
of length k + 1 in kdom-graph linking p0 to h. We then group each regular head with the regular nodes that
designate it as witness: each contains at least k + 1 regular nodes, i.e, rn∗ ≥ (k + 1)rh∗.

Now, we have two cases. If the root is tall, with r.α ≥ k, every dominating node (from Dom) is
regular (in RegDomHeads) and every node is regular (in RegNodes). Otherwise, if the root is short, every
dominating node is regular but the root and at least one node is not regular, namely the root. These two cases
yield the following lemma:

Lemma split_counting_cases:
|Dom| = rh∗ ∧ n = rn∗ ∨ |Dom| = 1 + rh∗ ∧ n ≥ 1 + rn∗.

The proof of the lemma first uses the corresponding results on cardinalities (in particular disjoint union
between the singleton containing the root and the set of regular nodes (resp. dominating nodes)) and then
the above case analysis. The main theorem that proves Counting is then just a case analysis from this
lemma and proves that (n− 1) ≥ (k + 1)(|Dom| − 1).

8 Conclusion

We proposed a general framework to build certified proofs of self-stabilizing algorithms. To achieve our
goals, we, in particular, developed general tools about potential functions, which are commonly used in
termination proofs of self-stabilizing algorithms. We also proposed a library dealing with cardinality of sets.
We apply this framework to prove that an existing algorithm is silent self-stabilizing for its specification and
we show a quantitative property on the output of this case study.

In future works, we expect to certify more complex self-stabilizing algorithms. Such algorithms are
usually designed by composing more basic blocks. In this line of thought, we envision to certify general
theorems related to classic composition techniques such as collateral or fair compositions.
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Finally, we expect to use our experience on quantitative properties to tackle the certification of time
complexity of stabilizing algorithms, aka. the stabilization time.
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