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We propose a general framework to build certified proofs of distributed self-stabilizing algorithms with the proof assistant Coq. We first define in Coq the locally shared memory model with composite atomicity, the most commonly used model in the self-stabilizing area. We then validate our framework by certifying a non trivial part of an existing silent self-stabilizing algorithm which builds a k-hop dominating set of the network. We also certified a quantitative property related to the output of this algorithm. Precisely, we show that the computed k-hop dominating set contains at most n-1 k+1 + 1 nodes, where n is the number of nodes in the network. To obtain these results, we also developed a library which contains general tools related to potential functions and cardinality of sets.

Introduction

In 1974, Dijkstra introduced the notion of self-stabilizing algorithm [START_REF] Dijkstra | Self-Stabilizing Systems in Spite of Distributed Control[END_REF] as any distributed algorithm which resumes correct behavior within finite time, regardless of the initial configuration of the system. A self-stabilizing algorithm can withstand any finite number of transient faults. Indeed, after transient faults hit the system and place it in some arbitrary configuration -where, for example, the values of some variables have been arbitrarily modified -a self-stabilizing algorithm is guaranteed to resume correct behavior without external (e.g., human) intervention within finite time. Thus, self-stabilization makes no hypothesis on the nature or extent of transient faults that could hit the system, and recovers from the effects of those faults in a unified manner.

For more than 40 years, a vast literature on self-stabilizing algorithms has been developed. Selfstabilizing solutions have been proposed for many kinds of classical distributed problems, e.g., token circulation [START_REF] Huang | Self-stabilizing depth-first token circulation on networks[END_REF], spanning tree construction [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF], clustering [START_REF] Caron | A self-stabilizing k-clustering algorithm for weighted graphs[END_REF], routing [START_REF] Dolev | Self-stabilizing routing and related protocols[END_REF], propagation of information with feedback [START_REF] Bui | Optimal PIF in tree networks[END_REF], clock synchronization [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF], etc. Moreover, self-stabilizing algorithms have been designed to handle various environments, e.g., wired networks [HC93, CYH91, CDDL10, Dol97, BDPV99, CFG92], WSNs [BOBBP13, STW + 13], peer-to-peer systems [START_REF] Caron | Snap-stabilizing prefix tree for peer-to-peer systems[END_REF][START_REF] Caron | When self-stabilization meets real platforms: An experimental study of a peer-to-peer service discovery system[END_REF], etc.

Progresses in self-stabilization led to consider more and more adversarial environments. As an illustrative example, the three first algorithms proposed by Dijkstra in 1974 [START_REF] Dijkstra | Self-Stabilizing Systems in Spite of Distributed Control[END_REF] where designed for oriented ring topologies and assuming sequential executions only, while nowadays most of self-stabilizing algorithms are designed for fully asynchronous arbitrary connected networks, e.g., [HC93, CDDL10, DLD + 12].

Consequently, the design of self-stabilizing algorithms becomes more and more intricate, and accordingly, the proofs of their respective correctness and complexity are now often tricky to establish. However, Küfner et al [START_REF] Küfner | Formal verification of distributed algorithms[END_REF] propose to certify (using the proof assistant Isabelle) fault-tolerant distributed algorithms. However, the proposed framework deals with masking fault-tolerance and, consequently, is not suited to self-stabilization, which is non-masking by essence. Moreover in the modeling, the network topology is restricted to fully connected graphs.

To the best of our knowledge, only three works deal with certification of self-stabilizing algorithms [START_REF] Courtieu | Proving Self-Stabilization with a Proof Assistant[END_REF][START_REF] Deng | Verifying Self-stabilizing Population Protocols with Coq[END_REF][START_REF] Sandeep | A case-study in componentbased mechanical verification of fault-tolerant programs[END_REF]. A formal correctness proof of Dijkstra's seminal self-stabilizing algorithm [START_REF] Dijkstra | Self-Stabilizing Systems in Spite of Distributed Control[END_REF] is conducted with the PVS proof assistant [START_REF] Sandeep | A case-study in componentbased mechanical verification of fault-tolerant programs[END_REF], however only sequential executions are considered. In [START_REF] Courtieu | Proving Self-Stabilization with a Proof Assistant[END_REF], Courtieu proposes a general setting for reasoning on self-stabilization in Coq. He restricts his study to very simple self-stabilizing algorithms (e.g., the 4-states algorithm of Ghosh [START_REF] Ghosh | An alternative solution to a problem on self-stabilization[END_REF]) working on networks of very restrictive topologies: lines and rings. These two works address too simple cases to draw a general framework. Finally, [START_REF] Deng | Verifying Self-stabilizing Population Protocols with Coq[END_REF] proposes to certify in Coq self-stabilizing population protocols. Population protocols are used as a theoretical model for a collection (or population) of tiny mobile agents that interact with one another to carry out a computation. The movement pattern of the agents is unpredictable, but subject to some fairness constraints, and computations must eventually converge to the correct output value in any schedule that results from that movement. In such a model, communication is implicit and there is no notion of communication network: all pairs of agents interact infinitely often. Hence, this latter work is not relevant for wired networks, as considered here.

Roadmap. The rest of the paper is organized as follows. In the next section, we describe how we define the locally shared memory model with composite atomicity in Coq. In Section 3, we express the definitions of self-stabilization and silence in Coq, moreover we give a sufficient condition to show that an algorithm is silent and self-stabilizing. In Section 4, we present our case study. The three next sections are dedicated to the proof in Coq of the case study: partial correctness (Section5), termination (Section 6), and size of computed k-hop dominating set (Section 7). We make concluding remarks and perspectives in Section 8.

In this report, we present the work together with few pieces of Coq code that we simplify in order to make them readable. In particular, we intend to use notations, as defined in the model or in the algorithm, in those pieces of code. The Coq definitions, lemmas, theorems, and documentation related to this report are available as an online browsing at http://www-verimag.imag.fr/~altisen/PADEC/. All source codes are also available at this address. We encourage the reader to visit this web page for a deeper understanding of our work.

Locally Shared Memory Model in Coq

In this section, we explain how we model in Coq the locally shared memory model with composite atomicity. This model has been introduced by Dijkstra [START_REF] Dijkstra | Self-Stabilizing Systems in Spite of Distributed Control[END_REF], and since then is the most commonly used in the selfstabilizing area.

Distributed Systems

We define a distributed system as a finite set of interconnected nodes. Each node has its own private memory and runs its own code. It can also interact with other nodes in the network via interconnections. The model in Coq reflects this by defining two independent classes:

• A Network is equipped with a type Node, representing nodes of the network. A Network defines functions and properties that depict its topology, i.e., interconnections between nodes. Those interconnections are specified using the type Channel.

• An Algorithm is equipped with a type State which describes the memory state of nodes. Its main function is run which specifies how the codes of nodes execute and interact using channels (type Channel).

Network and Topology

Nodes in a distributed system can directly communicate with a subset of other nodes. As commonly done in the literature, we view the communication network as a simple directed graph G = (V, E), where V is set of vertices representing nodes and E ⊆ V × V is a set of edges representing direct communication between distinct nodes. We note n = |V | the numbers of nodes. Two distinct nodes p and q are said to be neighbors if (p, q) ∈ E. From a computational point of view, p uses a distinct channel c p,q to communicate with each of its neighbors q: it does not have direct access to q. In the type Network, the topology is defined using this narrow point of view, i.e., interconnections (edges of the graph) are represented using channels only. In particular, the neighborhood of p is encoded with the set N p which contains all channels c p,q outgoing from p. The sets N p , for all p, are modeled in Coq as lists, using the function (peers: Node → list Channel). The function (peer: Node → Channel → option Node) returns the destination neighbor for a given channel name, i.e., (peer p c p,q ) returns (Some q), or ⊥1 if the name is unused. We also define the shortcut ternary relation (is_channel p c p') as (peer p c) equals (Some p') where p and p' are nodes and c a channel.

Communications can be made bidirectional, assuming a property called sym_net, which states that for all nodes p 1 and p 2 , the network defines a channel from p 1 to p 2 if and only if it also defines a channel from p 2 to p 1 . In case of bidirectional links (p, q) and (q, p) in E, p can access its channel name at q using the function ρ p . Thus, we have the following identities: ρ p (c p,q ) equals c q,p ∈ N q and ρ q (c q,p ) equals c p,q ∈ N p . In Coq, the role of ρ p is assigned to the function (reply_to: Node → Channel → Channel).

As last requirement, we suppose that, since the number of nodes in the network is finite, we have a list, called all_nodes, containing all the nodes. In particular, this assumption makes the emptiness test decidable: this test states that for any function (f: Node → option A) (with A, some type), one can compute whether f always returns ⊥ for any parameter. This test is used in the framework to detect termination of the algorithm.

As a means of checking actual usability of the Network type definition, we have defined a function that can build any finite Network from a description of its topology given by a list of lists of neighbors.

Computational Model

In the locally shared memory model with composite atomicity, nodes communicate with their neighbors using finite sets of locally shared registers, called variables. A node can read its own variables and those of its neighbors, but can only write to its own variables. Each node operates according to its local program. Distributed Algorithm. A distributed algorithm A is defined as a collection of n programs, each operating on a single node. The state of a node in A is defined by the values of its local variables and is represented using an abstract immutable Coq datatype State. Such a datatype is usually implemented as a record containing the values of the algorithm variables. A node p can access the states of its neighbors using the corresponding channels: we call this the local configuration of p, and model it as a function typed (Local_Env := Channel → option State) which returns the current state of a neighbor, given the name of the corresponding channel (or ⊥ for an invalid name).

The program of each node p in A consists of a finite set of guarded actions:

guard → statement
The guard is a Boolean expression involving variables of p and its neighbors. The statement updates some variables of p. An action can be executed only if its guard evaluates to true; in this case, the action is said to be enabled. A node is said to be enabled if at least one of its actions is enabled. Semantics. A configuration g of the system is defined as an instance of the states of all nodes in the system, i.e., a function typed (Env := Node → State). For a given node p and configuration (g: Env), the term (g p) represents the state of p in configuration g. Thanks to this encoding, we easily obtain the local configuration (type Local_Env) of node p by composing g and peer as a function (local_env g p) := (fun (c: Channel) => option_map g (peer p c)) which returns (g p') when (peer p c) returns Some p', and ⊥ otherwise. Hence, the execution of the algorithm on node p in current configuration g is obtained by: (run N p ρ p (g p) (local_env g p)); it returns either ⊥ if the node is disabled or (Some s) where (s: State) is next state of p. We define (enabled_b g p) as the Boolean value (type bool) which returns true if node p is enabled in configuration g and false otherwise.

Assume the system is in some configuration g. If there exist some enabled nodes, a daemon3 selects a non-empty set of them; every chosen node atomically executes its algorithm, leading to a new configuration g'. The transition from g to g' is called a step. To model steps in Coq, we use functions with type (Diff := Node → option State). We simply call difference a variable d of type Diff. A difference contains the updated states of the nodes that actually execute some action during the step, and maps any other node to ⊥. We define the predicate valid_diff that qualifies the current configuration and a difference expressing the result of a step. It holds when at least one node actually moves and every update in the difference corresponds to the execution of the algorithm, namely, run. Next configuration, g', is then obtained applying the function (diff_eval d g) such that: ∀p, (g' p) = (d p) if (d p) = ⊥, and (g' p) = (g p) otherwise.

Steps induce a binary relation → over configurations defined in Coq by the relation Step: (Step g' g) expresses that g → g' (Step g' g)4 , meaning that g → g' is actually a valid step, i.e., there exists some valid difference d for g (valid_diff g d) and g' is equal to (diff_eval d g). An execution of A is a sequence of configurations g 0 g 1 . . . g i . . . such that g i-1 → g i for all i > 0. Executions may be finite or infinite and are modeled in Coq with the type where (Fst e) returns the first configuration of execution e. The keyword CoInductive generates a greatest fixed point capturing potentially infinite constructions5 . A variable (e: Exec) actually represents an (valid) execution of A when (valid_exec e) holds, since each pair of consecutive configurations g, g' in e satisfies (Step g' g).

Maximal executions are either infinite, or end at a terminal configuration in which no action of A is enabled at any node. Terminal configurations are detected in Coq using the proposition (terminal g), for a configuration g, which holds when every node computes run from g and returns ⊥. Note that this predicate is decidable thanks to the emptiness test. A maximal execution is described by the coinductive proposition:

C o I n d u c t i v e max_exec: Exec → Prop := | max_one: ∀ (g: Env), terminal g → max_exec (e_one g) | max_cons: ∀ (g: Env) (e: Exec), max_exec e → max_exec (e_cons g e).

As previously stated, each step from a configuration to another is driven by a daemon. In our case study, we assume that the daemon is distributed and unfair. Distributed means that while the configuration is not terminal, the daemon should select at least one enabled node, maybe more. Unfair means that there is no fairness constraint, i.e., the daemon might never select an enabled node unless it is the only one enabled. Notice that the propositions valid_diff, Step and henceforth valid_exec are sufficient to handle the distributed unfair daemon.

Types are Setoids. When using Coq function types to represent configurations and differences, we need to state pointwise function equality, which equates to functions having equal values (extensional equality). The Coq default equality is inadequate for functions since it asserts equality of implementations (intensional equality). So, instead we chose to use the setoid paradigm: we endow every base type with an equivalence relation. Setoids are commonly used in Coq for subsets, function sets, and to represent settheoretic quotient sets (such as rational numbers or real numbers); in particular we make use of libraries Coq.Setoids.Setoid and Coq.Lists.SetoidList. Furthermore, we assume those equivalence relations are decidable.

For instance, the equality for type Node is noted Compatibility. Consequently, every function type is endowed with an equality partial equivalence relation (i.e., symmetric and transitive) which states that, given equivalent inputs, the outputs of two equivalent functions are equivalent. For instance, the equality for the type Env is defined by

eqE := (eqN ==> eqS)
(where eqS is the decidable equivalence relation on type State) and means that for any configuration g1 and g2, (eqE g1 g2) expresses that ∀(p1 p2: Node), eqN p1 p2 -> eqS (g1 p1) (g2 p2)

(in this model, (eqN p1 p2) means that p1 and p2 represent the same node in the network). Note that eqE is not reflexive a priori. However, we can only reason about functions equivalent to themselves: those functions are called compatible, i.e., they return equivalent results when executed with equivalent parameters. Back to the example of configurations, we will require that any configuration (g: Env) is compatible, namely that

Proper EqE g

This means that for two equivalent nodes p1 and p2, i.e., such that (eqN p1 p2), we expect that (g p1) and (g p2) produce the same result with respect to eqS: (eqS (g p1) (g p2)).

In all the framework, we assume compatible configurations only. Also, we require that run is compatible, meaning that it returns equivalent results when executed with equivalent parameters (e.g., a permutation on the list of channels N p or a compatible function equal to (local_env g p)).

Read-Only Variables. We allow a part of a node state to be read-only: this is modeled with the type ROState and by the function (RO_part: State → ROState) which typically represents a subset of the variables handled in the State of the node. The projection RO_part is extended to configurations by the function (ROEnv_part g := (fun (p: Node) => RO_part (g p))), which returns a value of type ROEnv. We add the property RO_stable to express the fact that those variables are actually read-only, namely no execution of run can change their values. From the assumption RO_stable, we show that any property defined on the read-only variables of a configuration is indeed preserved during steps.

The introduction of Read-Only variables has been motivated by the fact that we want to encompass the diversity of anonymity levels from the distributing computing literature, e.g., fully anonymous, semianonymous, rooted, fully identified networks, etc. By default (with empty RO_part), our Coq model defines fully anonymous network thanks to the distinction between nodes (type Node) and channels (type Channel). We enriched our model to reflect other assumptions.

For example, consider the fully identified assumption. Identifiers are typically constant integers, stored in the node states. In our model, they would be stored in the read-only part of the state. Furthermore, identifiers should be constant and unique all along the execution of the algorithm. This means they should be unique in initial configuration and kept constant during the whole execution.

We define a predicate Assume_RO on ROEnv (in the case of fully identified assumption, Assume_RO would express uniqueness of identifiers) that will be assumed at each initial configuration. From RO_stable, this property will remain true all along any execution. Furthermore, the predicate Assume_RO can express other assumptions on the network such as connected networks or tree networks (for this latter, see the case study). As a shortcut, for any configuration (g: Env), we use notation Assume g := (Assume_RO (ROEnv_part g)).

Self-Stabilization and Silence

In this section, we express self-stabilization [START_REF] Dijkstra | Self-Stabilizing Systems in Spite of Distributed Control[END_REF] in the locally shared memory model with composite atomicity using Coq properties.

Self-Stabilization. Consider a distributed algorithm A. Let S be a predicate on executions (type (Exec → Prop)). A is self-stabilizing w.r.t. specification S if there exists a predicate P on configurations (type (Env → Prop)) such that:

• P is closed under A, i.e., for each possible step g → g', (P g) implies (P g'):

closure P := ∀ (g g': Env), Assume g → P g → Step g' g → P g';

• A converges to P, i.e., every execution of A contains a configuration which satisfies P: where (safe_suffix S e) inductively checks that execution e contains a suffix that satisfies S. • A meets S from P, i.e., every maximal execution, from configurations which satisfy P, satisfies S: The configurations which satisfy the predicate P are called legitimate configurations. The following predicate charaterizes a self-stabilizing algorithm:

self_stab S := ∃P, closure P ∧ convergence P ∧ spec_ok S P.

Silence. An algorithm is silent if the communication between the nodes is fixed from some point of the execution [START_REF] Dolev | Memory Requirements for Silent Stabilization[END_REF]. This latter definition can be transposed in the locally shared memory model as follows:

A is silent if all its executions are finite. By definition, executions of a silent and self-stabilizing algorithm w.r.t some specification S end in configurations which are usually used as legitimate configurations, i.e., satisfying P. In this case, S can only allow constrained executions made of a single configuration which is legitimate; S is then noted S P . To prove that A is both silent and self-stabilizing w.r.t. S P , we use, as commonly done, a sufficient condition which requires to prove that • all terminal configurations of A satisfy P:

P_correctness P := ∀ (g: Env), Assume g → terminal g → SPEC g
• and all executions of A are finite:

termination := ∀ (g: Env), Assume g → Acc Step g.
The latter property is expressed with (Acc Step g) for every configuration g. The inductive proposition Acc is taken from Library Coq.Init.Wf which provides tools on well-founded induction. The accessibility predicate (Acc Step g) is translated into

(∀ g': Env, Step g' g → Acc Step g') → Acc Step g
Namely, the base case of induction holds when no step is possible from current configuration g and then, inductively, any configuration g' that can reach such a terminal configuration satisfies (Acc Step g').

The sufficient condition, used to prove that an algorithm is both silent and self-stabilizing, is expressed and proved by: Lemma silent_self_stab (P: Env → Prop):

P_correctness P ∧ termination → silence ∧ self_stab S P .

Case Study

To validate our framework, we certified a non trivial part of an existing silent self-stabilizing algorithm proposed in [DLD + 12]. Given a non-negative integer k, this algorithm builds a k-clustering of a bidirectional connected network G = (V, E) which contains at most n-1 k+1 + 1 k-clusters, where n is the number of nodes. A k-cluster of G is defined to be a set C ⊆ V , together with a designated node Clusterhead(C) ∈ C, such that each member of C is within distance k of Clusterhead(C), where the distance between any two nodes p and q (noted p, q in the following) is the length of a shortest path linking p to q in G. A kclustering of G is a partition of V into distinct k-clusters. The k-clustering problem is strongly related to the notion of k-hop dominating set. A subset of nodes D is a k-hop dominating set of G if every node is within distance k from some member of D. So, by definition, the set of clusterheads of any k-clustering is a k-hop dominating set.

The algorithm proposed in [DLD + 12] is actually a hierarchical collateral composition [DLD + 13] of two silent self-stabilizing sub-algorithms: the former builds a particular kind of rooted spanning tree, called an MIS tree;6 the latter is a k-clustering construction which stabilizes once a rooted spanning tree is available in the network.

The crucial part of the second sub-algorithm consists in computing (in a self-stabilizing and silent way) a k-hop dominating set D of size at most n-1 k+1 + 1 in an arbitrary rooted spanning tree. D will designate the set of clusterheads in the computed k-clustering. This task is performed using the 1-rule Algorithm D(k), whose code is given in Algorithm 1.

We have used our framework to build a certified proof which shows that D(k) is a silent and selfstabilizing algorithm for building a k-hop dominating set of at most n-1 k+1 +1 nodes in any network equipped with a rooted spanning tree.

The first step has consisted in encoding D(k) in our framework. We translated the unique rule of the algorithm into the type Algorithm. Moreover, we expressed the assumptions on the network G in the predicate Assume: G is bidirectional and a rooted spanning tree is available in G, n.b., this latter also implies that G is connected. In the sequel, the spanning tree and its root are respectively denoted by T = (V, E ) and r ∈ V . Moreover, for any node p, T (p) denotes the subtree of T with root p.

We certified the correctness part and then the termination part of the specification. For the latter property, the proof we propose assumes a distributed unfair daemon. By contrast, the proof given in [DLD + 12] assumes a stronger daemon (namely, a weakly fair distributed daemon). Finally, we provided a certified Algorithm 1 D(k), code for each process p Constant Input:

Par(p) ∈ N p ∪ {⊥} Variable: p.α ∈ {0, ..., 2k}
Predicates:

IsRoot(p) ≡ Par(p) =⊥ IsShort(p) ≡ p.α < k IsTall(p) ≡ p.α ≥ k kDominator(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ IsRoot(p))
Macros:

Children(p) = {q ∈ N p | Par(q) = ρ p (q)} ShortChildren(p) = {q ∈ Children(p) | IsShort(q)} TallChildren(p) = {q ∈ Children(p) | IsTall(q)} MaxAShort(p) = if ShortChildren(p) = ∅ then -1 else max {q.α | q ∈ ShortChildren(p)} MinATall(p) = if TallChildren(p) = ∅ then 2k + 1 else min {q.α | q ∈ TallChildren(p)} Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k -2 then MinATall(p) + 1 else MaxAShort(p) + 1 Action: p.α = Alpha(p) → p.α ← Alpha(p)
proof on the maximal size of the computed k-hop dominating set. The design of the proofs led us to develop general tools in our framework. In particular, we proposed general theorems to prove termination and tools for counting elements in sets.

Algorithm D(k)

Local States. In the algorithm, the knowledge of T is locally distributed at each node p using the constant input Par(p) ∈ N p ∪ {⊥}. When p = r, Par(p) ∈ N p and designates its parent in the tree. Otherwise, p is the root and Par(p) =⊥. Then, each node p maintains a single variable: p.α, an integer in range {0, ..., 2k}.

We have instantiated the Coq State of a node as a record containing fields (Par: option Channel) and (α: Z). (Par p) stands for Par(p) and is the unique read-only variable for p. Moreover, (α p) stands for p.α and is taken in Z (integer). Indeed, we choose to encode every number in the algorithm as integer in Z, since some of them may be negative (see MaxAShort) and a computation uses minus (see Alpha). Furthermore, we have proven p.α is in range {0, ..., 2k} after p participates in any step and also when the system is in a terminal configuration.

Spanning Tree Assumption. We use the predicate (span_tree r Par) on the read-only variables Par to express the assumption on the spanning tree. First, by construction, each node p has exactly at most one parent (Par p). Then, (span_tree r Par) checks that the graph T induced by Par is a subgraph of G which actually encodes a spanning tree rooted at r by the conjunction of the following predicates.

• Predicate parent_is_peer means that for every non-root node p, any link from p to (Par p) is an existing channel outgoing from p (i.e., is in N p ):

parent_is_peer := ∀(p: Node) (c: Channel), eqoptionA eqC (Par p) (Some c) → ∃(q: Node), is_channel p c q where eqC denotes equality between channels and eqoptionA eqC checks whether parameters are either both ⊥, or (Some c1) and (Some c2) with (eqC c1 c2).

• Predicates is_root_root and is_root_unique say that r is the unique node with no parent, i.e., such that (Par r) is ⊥:

is_root_root := is_root r is_root_unique := ∀(p1 p2: Node), is_root p1 → is_root p2 → eqN p1 p2
where predicate (is_root p) checks whether (Par p) equals ⊥.

• Finally, predicate no_loop requires that there is no loop in T , following Par pointers, namely, the transitive closure of Par is not reflexive: From the last point, we show that, since the number of nodes is finite, the relation extracted from Par between nodes and their parents (resp. children) in T is well-founded:

WF_par := well_founded (is_tree_parent_of) WF_child := well_founded (flip (is_tree_parent_of))
where (flip is_tree_parent_of) is the relation between nodes and their children (since flip provides the inverse relation); and (well_founded R := ∀a, Acc R a) means that relation R is wellfounded (primitive well_founded is taken from standard Coq Library Coq.Init.Wf, as Acc).

Finally, we express that a spanning tree exists, rooted at r and using Par by the predicate (span_tree r Par) which is the conjunction of the four predicates above (namely is_root_unique, is_root_root, parent_is_peer and no_loop). We now instantiate predicate Assume, for any configuration (g: Env) with read-only part noted Par as:

Assume kdom g := sym_net ∧ ∃ (r: Node), span_tree r Par.

k-hop Dominating Set. The goal of D(k) is to compute an output predicate kDominator(p) for every node p (see Algorithm 1 for its definition) in such way that the system converges to a terminal configuration in which the set Dom = {p ∈ V | kDominator(p)} defines a k-hop dominating set of T (and so of G). We pose an arbitrary positive parameter k, taken in Z as for other numbers, with assumption that it is positive. We define the expected specification using predicate P kDom on configurations, where P kDom holds in configuration g if and only if the set Dom = {p ∈ V | kDominator(p)} is a k-hop dominating set of T : P kDom g := ∀(p: Node), ∃(kdom: Node), (kDominator g kdom) ∧ ∃(path: list Node), (is_path g path kdom p) ∧ (length path) ≤ k.

where the predicate is_path detects if the list of nodes path actually represents a path on the tree T between the nodes kdom and p, and length computes the length of the path. (Z.eqb stands for Boolean equality (return type bool) between integer numbers in Z; orb (resp. andb) stands for Boolean-or (resp. -and). Z_le_gt_dec is a decidable comparator ≤ between integer numbers of type Z and Z.eq_dec is a decidable equality.) Remind that the fact that node p is not enabled at current step is encoded by ⊥. Finally, the definition of D(k), of type Algorithm, comes with a proof that run is compatible, as composition of compatible functions, and also with a straightforward proof of RO_stable which asserts that the read-only part of the state, Par, is constant during steps, when applying run. Overview of D(k). Algorithm D(k) computes a k-hop dominating set of T , noted Dom, using the variable α at each node. Precisely, Dom is defined as the set of nodes p such that kDominator(p) holds, i.e., where p.α = k, or p.α < k and p = r. Dom is constructed by dynamic programming, in a bottom-up fashion starting from the leaves of T . The goal of variable p.α at each node p is twofold:

• Variable p.α allows to determine a path of length at most k from p to some node q of Dom which acts as a witness for guaranteeing the k-hop domination of Dom. Consequently, q will be denoted as W itness(p) in the following.

• Once correctly evaluated, the value p.α is equal to p, q , where q is the furthest node in T (p) that has the same witness as p.

We divide processes into short and tall according to the value of their α-variable: If p satisfies IsShort(p), i.e., p.α < k, then p is said to be short; otherwise, p satisfies IsTall(p) and is said to be tall. In a terminal configuration, the meaning of p.α depends on whether p is short or tall.

(i) If p is short, we have two cases: p = r or p = r. In the former case, W itness(p) ∈ Dom is outside of T (p), that is, the path from p to W itness(p) goes through the parent link of p in the tree, and the distance from p to W itness(p) is at most k -p.α. See, for example, in Configuration (I) of Figure 1, k = 2 and g.α = 0 mean that W itness(g) is at most at distance k -0 = 2, now its witness d is at distance 1. In the latter case, p is not k-hop dominated by any other process of Dom inside its subtree and, by definition, there is no process outside its subtree, indeed T (p) = T , see the root a in Configuration (I) of Figure 1. Thus, p must be placed in Dom.

(ii) If p is tall, there is a process q at p.α -k hops below p such that q.α = k. So, q ∈ Dom and p is k-hop dominated by q. Hence, W itness(p) = q. The path from p to W itness(p) goes through its tall child with minimum α-value. See, for example, in Configuration (I) of Figure 1, k = 2 and c.α = 3 mean that W itness(c), here d, is 3 -k = 1 hop below c. Note that, if p.α = k, then p.α -k = 0, that is, p = q = W itness(p) and p belongs to Dom.

In D(k), p.α is computed using macro Alpha(p) (see Algorithm 1). Two examples of 2-clustering computed by D(2) are given in Figure 1. In Subfigure 1.(I), the root is a short process, consequently it belongs to Dom. In Subfigure 1.(II), the root is a tall process, consequently it does not belong to Dom.

Detailed Explanation of D(k).

According to the macro Alpha(p), p.α is computed in a bottom-up fashion in T using the unique action of the algorithm.

Consider a leaf f . By definition, MaxAShort(f ) + MinATall(f ) = -1 + 2k + 1 > 2k -2. Thus, f.α = -1 + 1 = 0, which corresponds to the distance between f and its furthest descendant that will have The shade area shows the nodes that already choose the same witness as p. The light gray area shows the nodes that already choose the same witness as z.

the same witness (actually f itself). Consider now any internal node p and assume that the α-variables of all its children are correctly evaluated. p should choose a witness that will be either (1) in its subtree (in this case, p will be tall), or (2) outside its subtree (in this case, p will be short). We should preferably make the choice (1) to reduce the number of witnesses, and so the size of Dom.

Let q be a short child of p. From bullet (i) in the previous paragraph, the path from q to its witness goes through p. Thus, to prevent cycle creation, ( * ) p must not choose a witness which is in the subtree of any of its short children.

From now on, follow the illustrative example given in Figure 2. Let x be the furthest node that is in the subtree of some short child of p and has the same witness as p. Let q be the short child of p such that x ∈ T (q). Then, from bullet (i) in the previous paragraph, x is at distance MaxAShort(p) + 1 from p. Two cases are then possible:

• Assume MaxAShort(p) + MinATall(p) > 2k -2. If p chooses a node y of its subtree as witness, then from ( * ), the path from p to y should go through one of its tall children. So, p will be at least at distance MinATall(p) -k + 1 from y, by (ii). Now, in this case, x will be at least at distance

MaxAShort(p) + 1 + MinATall(p) -k + 1 > 2k -2 -k + 2 = k
from its witness y, so x is not k-hop dominated by y. Thus, p should necessarily choose its witness outside the subtrees of any of its children (that is, either p declares itself as member of Dom or chooses an ancestor as witness). From (i) and (ii), this means that all nodes in the subtrees of the tall children of p adopt a witness different from the one p, and consequently the node x is then the furthest node that belongs to T (p) and has the same witness as p. This implies that p.α = p, x = MaxAShort(p) + 1.

• Assume MaxAShort(p)+MinATall(p) ≤ 2k-2. Let z be a tall child of p such that z.α = MinATall(p). Unlike the previous case, p can choose a node y in the subtree of z as witness. Indeed, in this case,

x will be at distance MaxAShort(p)

+ 1 + MinATall(p) -k + 1 ≤ 2k -2 -k + 2 = k from y.
Hence, the nodes (other than p) that are in the subtree of p and has the same witness will be either nodes in subtrees of short children of p or nodes in T (z). Since by definition, MinATall(p) > MaxAShort(p), the furthest node that both belongs to T (p) and has the same witness as p will be at distance MinATall(p) + 1 from p, i.e., p.α = MinATall(p) + 1.

Proof Scheme. D(k) is a silent and self-stabilizing algorithm for P kDom . The proof of this result uses Lemma silent_self_stab given Section 3 which requires the following two proof obligations:

Partial Correctness: All terminal configurations of D(k) satisfy P kDom (P_correctness).

Termination: All executions of D(k) are finite (termination).

Proof of P_correctness is described in Section 5. Proof of termination is described in Section 6.2; it uses general tools for termination that we develop in Section 6.1. Furthermore, we also proved that |Dom| ≤ n-1 k+1 + 1. The expected property is expressed by:

counting := n -1 ≥ (k + 1) * (|Dom| -1).
This requirement is the third development of the certified proof:

Counting: All terminal configurations of D(k) contains at most n-1 k+1 +1 nodes p for which kDominator(p) holds.

The way |Dom| and n (number of nodes) are defined in Coq is described in Section 7.1. The proof of counting is explained in Section 7.2.

Proving Partial Correctness of D(k)

The proof of partial correctness consists in showing that predicate P kDom holds in any terminal configuration satisfying Assume kdom :

Theorem kdom_set_at_terminal: ∀(g: Env), Assume kdom g → terminal g → P kDom g.

Values of α are in range {0, ..., 2k}. As a preliminary result, we need to check that α, whose domain is Z in the Coq definition, matches the range {0, ..., 2k}. Actually, this might not be true at initial configuration, but this is true both since the very first step and in any terminal configuration. The Coq proof first shows that the value returned by macro Alpha(p) is in range {0, ..., 2k}: this is proven using a case analysis on MaxAShort(n) + MinATall(n) > 2k -2 and the fact that, by definition,

-1 ≤ MaxAShort(n) ≤ k -1 and k ≤ MinATall(n) ≤ 2k + 1.
Then, for terminal configuration, the result comes from the fact that p.alpha = Alpha(p).

Tree Paths. From definition of P kDom , we need to check the existence of a path in G between any node p and any node kdom of Dom, such that this path is of length at most k. To achieve this property, the algorithm builds tree paths of particular shape: those paths use edges of T in both direct sense (from a node to its parent) and reverse sense (from a node to one of its children). Precisely, these edges are defined using relation is_kDom_edge, which depends on α-values: for any short node s, we select the edge linking s to its parent in T (using Par); while for any tall node t which is not in Dom, we select the edge linking t to a child c (using (flip Par)) such that c.α = t.α -1. The relation is_kDom_edge defines a subgraph of G called kdom-graph.

To prove Theorem kdom_set_at_terminal, it is sufficient to prove that for any configuration g where (Assume kdom g) and (terminal g) hold, we have: ∀(p: Node), ∃(kdom: Node), (kDominator g kdom) ∧ ∃(path: list Node), (is_kDom_path g path kdom p) ∧ (length path) ≤ k.

where is_kDom_path checks that its parameter path is a path on the kdom-graph between kdom and p.

The rest of the analysis is conducted assuming a terminal configuration g which contains a rooted spanning tree built upon a bidirectional graph, namely such that (Assume kdom g) and (terminal g) hold. The proof is split into two cases, depending on whether the node is tall or short.

Proof for Tall Nodes. First, we prove a lemma, called Alpha_inv, stating that any node p satisfying p.α > 0 has a child q such that p.α = q.α + 1. The proof is simply a case analysis on MaxAShort(q) + MinATall(q) ≤ 2k -2. We then prove the following lemma:

Lemma tall_is_kDominated: ∀(p: Node) (i: nat), (alpha (g p)) = k + Z_of_nat i → ∃(kdom: Node), (kDominator g kdom) ∧ ∃(path: list Node), (is_kDom_path g path kdom p) ∧ (length path) ≤ i.

(Z_of_nat is a wrapper which transforms a natural number into integer of type Z.) The proof straightforward by induction on i:

• For (i = 0), p satisfies kDominator(p).

• For (i = j + 1), we apply Lemma Alpha_inv to node p such that p.α = (k + j). This provides node q with q.α = (k + i) on which we apply the induction hypothesis. This exhibits a path path of length at most j in kdom-graph from some k-dominator kdom to q. Since p is the parent of q in T , we can build a path path' of length at most j+1 = i linking kdom to p in kdom-graph.

Proof for Short Nodes. We now want to prove the similar lemma for short nodes:

Lemma short_is_kDominated: ∀(p: Node) (i: nat), (alpha (g p)) = k -Z_of_nat i → ∃(kdom: Node), (kDominator g kdom) ∧ ∃(path: list Node), (is_kDom_path g path kdom p) ∧ (length path) ≤ i.

We also proceed by induction. The case (i=0) is already proved by Lemma tall_is_kDominated. For the case (i = j + 1), we look at the tree parent q of p. If q is short, we apply the induction hypothesis, add a step to the path and we are done. If q is tall, we have two cases:

• If MaxAShort(q) + MinATall(q) > 2k -2, q.α = MaxAShort(q) + 1 ≤ k. Since q is tall, q.α ≥ k so q.α = k.
Since q is the parent of p in the tree, there is a path of length 1 in kdom-graph and we are done. • If MaxAShort(q) + MinATall(q) ≤ 2k -2, we have

(MinATall(q) + 1) -k + 1 ≤ k -MaxAShort(q)
Since p is a short child of q in T , p.α ≤ MaxAShort(q) or equivalently

k -MaxAShort(q) ≤ k -p.α
We also have, MinATall(q) + 1 = q.α. Combining those three equations, we have

q.α -k + 1 ≤ k -p.α
Since q is tall, by tall_is_kDominated, there is a node kdom and a path path of length at most q.α -k in kdom-graph from kdom to q. Since q is the parent of p in the tree, we have a path path' in kdom-graph of length at most q.α -k + 1 from kdom to p. From last inequality, path' has a length at most k -p.α, so we are done.

Overall Result. Since g is a terminal configuration, all the values α are between 0 and 2k. This result, Lemmas tall_is_kDominated, and short_is_kDominated imply that all short and tall nodes are within distance k of a node of the k-hop dominating set Dom. Since a node is either short or tall, we have therefore proven Theorem kdom_set_at_terminal. As a simple rewriting, (P_correctness P kDom ) is proven.

Termination

Termination proofs of self-stabilizing (silent) algorithm often rely on induction scheme, and in particular on potential functions. A potential function is a function mapping each configuration to some value (typically an integer) which is monotonic with steps of the algorithm and bounded, i.e., either monotonically decreasing with steps and lower bounded, or monotonically increasing with steps and upper bounded. A potential is usually based on global criteria, i.e., the proof of its monotony usually requires to observe executions at a global level. To simplify the proofs, we developed tools on potential functions and termination at a finer-grained level. We first present these tools and, then, show how to use them to prove termination of D(k).

Core Results for Proving Termination

We give a sufficient condition for termination based on some potential function in which the (global) potential function is based on local potential at each node.

Usual termination proofs are based on some global potential built from local ones. For example, local potentials can be integers and the global potential can be the sum of them. In this case, the argument for termination may be, for example, the fact that the global potential is lower bounded and strictly decreases at each step of the algorithm. Global potential decrease is due to the modification of local states at some nodes, however studying aggregators such as sums may hide scenarios, making the proof more complex.

Instead here, we build a global potential as the multiset containing the local potential of each node. Our method for termination is based on two criteria that are sufficient to meet the conditions for using the Dershowitz-Manna well-founded ordering on multisets [START_REF] Dershowitz | Proving termination with multiset orderings[END_REF]. Given those criteria, we can show that the multiset of (local) potentials globally decreases at each step. For multisets and the Dershowitz-Manna order, we used results from the CoLoR library [START_REF] Blanqui | Color: a coq library on well-founded rewrite relations and its application to the automated verification of termination certificates[END_REF].

Steps. One difficulty we face, when trying to apply this technique straightly, is that we cannot always define the local potential function at a node without assuming some properties on its local state, and so on the configuration. Thus, we may have to assume the existence of some stable set of configurations in which the local potential function can be defined. When necessary, we use our technique to prove termination of a subrelation of the relation Step, provided that the algorithm has been initiated in the required stable set of configurations. This point is modeled by a predicate on configurations, safe, and a type safeEnv which represents the set of safe configurations into which we restrict the termination proof: safe: Env → Prop safeEnv: Type := { g: Env | safe g } (safeEnv is a type whose values are ordered pairs containing a term g and a proof of (safe g).) This set of configurations should be stable, i.e., it is assumed that no step can exit from the set, using the predicate stable_safe: stable_safe := ∀ (g g': Env), safe g → Step g' g → safe g'

The relation for which termination will be proven is then defined by: safeStep (g' g: safeEnv) := Step (getEnv g') (getEnv g)

where getEnv accesses the actual configuration (of type Env).

Potential. We assume that within safe configurations, each node can be endowed with a potential value obtained using function:

pot: safeEnv → Node → Mnat.
Mnat simply represents natural numbers8 encoded using the type from Library CoLoR.MultisetNat [START_REF] Blanqui | Color: a coq library on well-founded rewrite relations and its application to the automated verification of termination certificates[END_REF]; it is equipped with the usual equivalence relation, noted = P , and the usual well-founded order, noted < P , on natural numbers.

Multiset ordering. We recall that a multiset of elements in the setoid, P , endowed with its equivalence relation = P , is defined as a set of elements of P with a finite number of occurrences with respect to = P . Such a multiset is usually formally defined as a multiplicity function m : P → N ≥1 which maps any element to its number of occurrences in the multiset. We focus here on finite multisets, namely, multisets whose multiplicity function has finite support. Now, we assume that P is also ordered using relation < P , compatible with = P . We use the Dershowitz-Manna order on finite multisets [START_REF] Dershowitz | Proving termination with multiset orderings[END_REF] defined as follows: the multiset N is smaller than the multiset M , noted N ≺ M , if and only if there are three multisets X, Y and Z such that X = ∅ ∧ M = Z + X ∧ N = Z + Y ∧ ∀y ∈ Y, ∃x ∈ X, y < P x, where '+' between multisets means adding multiplicities. Informally, to obtain a multiset N smaller than M , we may remove from M all elements of X and then add all elements of Y . Elements in Z are the ones that are present in both M and N . It is required that some element is removed (X = ∅) and each element that is added must be smaller (w.r.t. < P ) than some removed element. It has been shown that if < P is a well-founded order, then so is the corresponding order ≺.

In our context, we consider finite multisets over Mnat, (i.e., = P is = P and < P stands for < P ). We have chosen to model them as lists of elements of Mnat and we build the potential of a safe configuration as the multiset of the potentials of all nodes, namely a multiset of potentials of a safe configuration sg is defined by Pot (sg: safeEnv): list Mnat := List.map (pot sg) all_nodes where all_nodes is the list of every node in the network (see Section 2.2) and (List.map f l) is the standard operation that returns the list made of each elements of l on which f has been applied.

The corresponding Dershowitz-Manna order is defined using the library CoLoR [START_REF] Blanqui | Color: a coq library on well-founded rewrite relations and its application to the automated verification of termination certificates[END_REF] with (≺ := MultisetLT > P ). The library also contains the proof that (well_founded < P ) implies (well_founded ≺). Using this latter result and the standard result which proves (well_founded < P ), we easily deduce (well_founded ≺).

Termination Theorem. Proving the termination of an algorithm then consists in showing that for any safe step of the algorithm, the corresponding global potential decreases w.r.t. the Dershowitz-Manna order ≺, namely: We established a sufficient condition made of two criteria on node potentials which validate the conditions for using the Dershowitz-Manna well-founded order on multisets ≺. Local criterion finds for any node p whose potential has changed but has not decreased, a witness node q (typically a neighbor) whose potential has decreased from a value that was even higher than the new potential of p:

H y p o t h e s i s local_crit:

∀ (sg sg': safeEnv), safeStep sg' sg → ∀ (p: Node), (pot sg p) < P (pot sg' p) → ∃ (q: Node), (pot sg q) = P (pot sg' q) ∧ (pot sg' p) < P (pot sg q).

Global criterion exhibits, at any step, a node whose potential has changed:

H y p o t h e s i s global_crit: ∀ (sg sg': safeEnv), safeStep sg' sg → ∃ (p: Node), (pot sg' p) = P (pot sg p).

Assuming local_crit and global_crit, we are able to prove safe_incl as follows: we define Z as the multiset of local potentials of nodes whose potential did not change, and X (resp. Y ) as the complement of Z in the multiset of local potentials (Pot sg) (resp. (Pot sg')). Global criterion is used to show that X = ∅, and local criterion is used to show that ∀y ∈ Y, ∃x ∈ X, y < P x. Since any relation included in a well-founded order is also well-founded, we get that relation safeStep is well-founded.

Lemma Wf_safeAlgo_Multiset: well_founded safeStep.

And since we know that property safe is stable (from stable_safe), we get ∀g, safe g → Acc Step g which proves that the algorithm terminates from any safe configuration.

Proving Termination for D(k)

We use the above method to prove termination of D(k), expressed as:

Theorem k_dom_set_terminates: ∀(g: Env), Assume kdom g → Acc Step g.

First, we assume sym_net and that the root node r exists. We instantiate safe as every configuration in which read-only variables Par satisfy: (span_tree r Par). Indeed, it is mandatory to assume the spanning tree T rooted at r to be able to define local potentials on which we perform the proof since they are based on the depth of nodes in T . Note that it is easy to prove that safe is stable since it only depends on read-only variables; safe is also proven compatible.

Cardinality on Setoids. To be able to order cardinalities, we define a property, called Inj, on a pair of setoids (A, = A ) and (B, = B ): it requires the existence of an injective and compatible function, inj, from A to B whose domain is A, namely:

• Inj_compat: inj is compatible (see Section 2.3),

• Inj_left_total: domain of inj is A, i.e., any element in A is related to at least one element in B,

• Inj_left_unique: inj is injective, i.e., any element in B is related to at most one (w.r.t. = A ) element in A.

Relation Inj is proven reflexive and transitive. We model cardinality ordering using the three-valued type • and (Card Same A B) by (Inj B A ∧ Inj A B).

(Card prop) is reflexive and transitive for any value of prop in Card_prop. It is also antisymmetric in the sense that (Card Smaller) and (Card Larger) implies (Card Same) for a given pair of setoids (trivial from the definitions).

Finite Cardinalities. Now we focus on finite setoids and define tools to express their cardinalities. We first define, for a given natural number N , the setoid M N := {i: nat | i < N }. Its values are ordered pairs containing a natural number i and a proof of (i < N ); it is equipped with the standard equality on type nat (wrapped to be able to compare values of type M N ). In short, M N simply models the set of natural numbers {0, 1, ..., N -1}. We first proved that Inj captures finite cardinality ordering

Lemma Inj_le_iff: ∀(m n: nat), Inj M m M n ↔ m ≤ n.
and the corresponding corollaries with Card, e.g.,

∀(m n: nat), Card Smaller M m M n ↔ m ≤ n.
(similar corollaries exist for Larger and Same). The following predicate Num_Card is then used to express that a setoid A has cardinality at least (resp. at most, resp. equal to) some natural number n with Num_Card prop A n := (Card prop A M n ) where prop is any Card_Prop. For instance, (Num_Card Smaller A n) means that A contains at most n elements w.r.t. = A .

Cartesian Products. We developed results about Cartesian products. First, Cartesian product is monotonic w.r.t cardinality:

Lemma Inj_prod: ∀prop, Card prop A 1 A 2 → Card prop B 1 B 2 → Card prop (A 1 × B 1 ) (A 2 × B 2 ).
where (A 1 , = A 1 ), (A 2 , = A 2 ), (B 1 , = B 1 ), (B 2 , = B 2 ) are any setoids. Now, we showed that:

∀ n m: nat, Card Same (M n × M m ) M n×m namely, the Cartesian product of M n = {0, ..., n -1} and M m = {0, ..., m -1} contains the same number of elements as M n×m = {0, ..., n×m -1}. This latter result is showed using encoding functions from M n × M m to M n×m and from M n×m to M n × M m . This intermediate result allows to easily deduce that the cardinality of a Cartesian product is the product of cardinalities:

∀prop (n m: nat), Num_Card prop A n → Num_Card prop B m → Num_Card prop (A × B) (n×m)
Disjoint Unions. We developed similar lemmas about disjoint union of sets, noted + for which the main results is:

∀prop (n m: nat), Num_Card prop A n → Num_Card prop B m → Num_Card prop (A + B) (n + m)
Subsets. We proved many toolbox results, about subsets, which are expressed using Card as well as Num_Card. For instance,

• any subset of a set A has Smaller cardinality than that of A,

• the set itself is one of its subset with Same cardinality,

• the trivially empty subset contains 0 element, • a non-empty set contains at least 1 element,

• a singleton contains exactly one element, • ...

Number of Elements in Lists.

To prove the existence of finite cardinality for finite setoids, we use lists, since, in particular, in our framework, the setoid of nodes of the network is encoded as the list all_nodes. In this paragraph, we consider a setoid A, whose equality = A satisfies classical property (∀a1 a2: A, a1 = A a2 ∨ a1 = A a2) and a predicate function (P: A → Prop) which satisfies also classical property (∀a: A, P a ∨ ¬ P a). Under those conditions, we can prove:

∀(l: list A), ∃(n: nat), Num_Card Same {a: A | P a ∧ a ∈ = A l} n namely, for any list l, the set of elements in l (w.r.t. = A ) which satisfies predicate P has finite cardinality n. Or, equivalently, assuming the existence of a list l which contains every element of type A, we get that the number of elements which satisfy P is finite:

∀(l: list A), (∀(a: A), a ∈ = A l) → ∃(n: nat), Num_Card Same {a: A | P a } n

When predicate function P returns True for any parameter, this provides the number of elements of list l (up to = A ).

Proving Counting for D(k)

As stated above, we prove that, in a network of n nodes, the final number of nodes in Dom satisfies (n-1) ≥ (k + 1)(|Dom| -1). The proof outline is the following. First, we assume a terminal configuration g (such that terminal g). The existence of the natural number n (number of nodes) is given using the above results about the number of elements in the list all_nodes. Similarly, the existence of the natural number |Dom| (number of nodes in Dom) is given using the above results applied to list all_nodes and predicate function (fun p: Node => (kDominator (g p) = true)).

We define as regular head each node p such that α equals k: RegDomHead p := (α p) = k and the set of regular heads as RegDomHeads := { p: Node | RegDomHead (g p) }. Note that by definition, RegDomHeads is included in Dom. Again, we prove the existence of the natural number rh * which represents the number of nodes in RegDomHeads using list all_nodes and predicate RegDomHead.

We also define a regular node as a node which designates a regular head as witness: RegNodes := { p: Node | HasTallAncestor p }. Predicate HasTallAncestor is an inductive predicate which selects any node which has an ancestor, with α at least k, in the tree T , (namely, there is an increasing path from the node p to the root r which contains, meanwhile, a node with α at least k). Again, we prove the existence of the natural number rn * which is the number of nodes in RegNodes.

Now, we prove the following theorem:

Theorem simple_counting: rn * ≥ (k + 1)rh * .

Using results from the library on cardinality of sets and lists, this theorem is reduced to

Card Smaller (M k+1 × RegDomHeads) RegNodes

This latter proposition is proven by constructing a relation Rcount from pairs of natural numbers i ∈ {0, ..., k} and regular heads to regular nodes, such that: for a regular head h, some i ∈ {0, ..., k} and a regular node p i , (Rcount (i, h) p i ) holds if and only if p i .α = i and p i designates h as witness (i.e., there is a path from p i to h in kdom-graph). We show that Rcount is actually an injection of domain (M k+1 × RegDomHeads). Indeed, for any pair (i, h), there is a node p i such that p i .α = i which designates h as witness; the proof is made by induction on values of i. Intuitively, this implies that there is a path of length k + 1 in kdom-graph linking p 0 to h. We then group each regular head with the regular nodes that designate it as witness: each contains at least k + 1 regular nodes, i.e, rn * ≥ (k + 1)rh * . Now, we have two cases. If the root is tall, with r.α ≥ k, every dominating node (from Dom) is regular (in RegDomHeads) and every node is regular (in RegNodes). Otherwise, if the root is short, every dominating node is regular but the root and at least one node is not regular, namely the root. These two cases yield the following lemma: The proof of the lemma first uses the corresponding results on cardinalities (in particular disjoint union between the singleton containing the root and the set of regular nodes (resp. dominating nodes)) and then the above case analysis. The main theorem that proves Counting is then just a case analysis from this lemma and proves that (n -1) ≥ (k + 1)(|Dom| -1).

Conclusion

We proposed a general framework to build certified proofs of self-stabilizing algorithms. To achieve our goals, we, in particular, developed general tools about potential functions, which are commonly used in termination proofs of self-stabilizing algorithms. We also proposed a library dealing with cardinality of sets. We apply this framework to prove that an existing algorithm is silent self-stabilizing for its specification and we show a quantitative property on the output of this case study.

In future works, we expect to certify more complex self-stabilizing algorithms. Such algorithms are usually designed by composing more basic blocks. In this line of thought, we envision to certify general theorems related to classic composition techniques such as collateral or fair compositions.

Finally, we expect to use our experience on quantitative properties to tackle the certification of time complexity of stabilizing algorithms, aka. the stabilization time.
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  (eqN: relation Node) and assumes eqN_equiv: Equivalence eqN eqN_dec: Decider eqN Note that (relation Node) stands for (Node → Node → Prop); Equivalence defines the conjunction of reflexivity, symmetry, and transitivity of the relation; (Decider eqN) expresses that the relation is decidable by (∀(p p': Node), {eqN p p'} + {¬ eqN p p'}), where {A} + {B} is the standard Coq notation for computational disjunction between A and B, i.e., Booleans carrying proofs of A or B.

  convergence P := ∀ (e: Exec), Assume (Fst e) → valid_exec e → max_exec e → safe_suffix (fun suf: Exec => P (Fst suf)) e,

  spec_ok P S := ∀ (e: Exec), Assume (Fst e) → valid_exec e → max_exec e → P (Fst e) → S e.

  I n d u c t i v e finite_exec: Exec → Prop := | f_one: ∀ (g: Env), finite_exec (e_one g) | f_cons: ∀ (e: Exec) (g: Env), finite_exec e → finite_exec (e_cons g e) silence := ∀ (e: Exec), Assume (Fst e) → valid_exec e → finite_exec e

  no_loop: ∀(p: Node), ¬transitive_closure (is_tree_parent_of Par) p p where is_tree_parent_of is the relation between nodes and their parents in T , extracted from Par and (transitive_closure R) is the relation obtained from the transitive closure of relation R.

D

  (k) in Coq. Every predicate and macro of Algorithm 1 has been directly encoded in Coq. For a node p and current configuration g, all predicates and functions depend on N p , ρ p , (g p) and (local_env g p). The translation is quasi-syntactic as shown in the following two examples: 7 kDominator p := orb (Z.eqb p.(alpha) k) (andb (IsShort p) (IsRoot p)) Alpha p := if Z_le_gt_dec (MaxAShort p + MinATall p + 2) (2 * k) then MinATall p + 1 else MaxAShort p + 1 run p := if Z.eq_dec (α p) (Alpha p) then ⊥ else Some {| α := Alpha p; Par := (Par p) |}

Figure 1 :

 1 Figure 1: Two examples of 2-hop dominating sets computed by D(2). We only draw the spanning tree, other edges are omitted. The root of each tree is the rightmost node. α-values are given inside the nodes. Bold circles represent members of Dom. Arrows represent the path from nodes to their associated witnesses.

Figure 2 :

 2 Figure 2: Illustrative example: Light gray nodes are short children of p; gray nodes are tall children of p.The shade area shows the nodes that already choose the same witness as p. The light gray area shows the nodes that already choose the same witness as z.

  safe_incl := ∀ (sg sg': safeEnv), safeStep sg' sg → (Pot sg') ≺ (Pot sg)

  Lemma split_counting_cases:|Dom| = rh * ∧ n = rn * ∨ |Dom| = 1 + rh * ∧ n ≥ 1 + rn * .

  The local program at node p is modeled by a function run of type (list Channel →(Channel → Channel) → State → Local_Env → option State). This function is given access to the local topology and states around p. It takes as first two arguments N p and ρ p . It then takes as inputs the current state of p and its current local configuration. The returned value is the next state of node p if p is enabled, ⊥ otherwise. Note that run provides a functional view of the algorithm: it includes the whole set of possible actions, but returns a single result; this model is thus restricted to deterministic algorithms. 2

  (Card_Prop := Smaller | Same | Larger) and the following property Card. Card distinguishes the different ways Inj can apply to pairs of setoids such that • (Card Smaller A B) 9 is defined by (Inj A B) which expresses that A has a cardinal smaller or equal to that of B, w.r.t. equalities = A and =

B ;

• Similarly, (Card Larger A B) is defined by (Inj B A)

Option type is used for partial functions which, by convention, returns (Some _) when defined, and None otherwise. None is denoted by ⊥ in this paper.

Finite non-determinism could be handled by having run output list State instead of option State.

The daemon achieves the asynchrony of the system.

Please, note the inverse order of the parameters in Step.

As opposed to this, the keyword Inductive only captures finite constructions.

An MIS tree is a spanning tree whose nodes at even levels form a maximal independent set (MIS) of the network.

Notice that p should be instantiated by (g p) in those definitions; we adopt this writing to make Coq definitions resemble Algorithm 1.

Natural numbers cover many cases and we expect the same results when further extending to other types of potential.

We omit parameters =A and =B for better readability.

Potential. We define the depth of a node as the distance of the node from the root r in the tree T . Function depth is defined using an induction scheme based on (WF_par n): for a given safe configuration sg and node p, (depth sg p) returns the natural number (type nat) defined by 1 if p is the root r and, otherwise, 1 + (depth sg q) with q the parent of p in the tree T , namely such that (is_tree_parent_of q p). We proved that depth is a compatible function, always greater than 0, and, when descending a path from the root to some leaf of the tree, depth increases by one at each hop. Furthermore, whatever be the steps computed by the algorithm, depth is preserved. Now, we define the potential of node p in safe configuration sg as the natural number (type nat) defined by: pot sg p := if (enabled_b (getEnv sg) p) then (depth sg p) else 0%nat

i.e., the potential of node p in safe configuration sg equals 0 if p is not enabled in sg and the depth of p in the tree T , otherwise. This function is proved compatible.

Local Criterion. Here we fix two safe configurations sg and sg', such that (safeStep sg' sg); we note g and g' the corresponding configurations (obtained using getEnv) and we use the proposition (has_moved p) for a node p which holds when p actually executes during step g → g' (evaluated by (d p) = ⊥ with d the difference encoded in the step). We also use predicate enabled to represent that enabled_b is true.

We now detail the proof of local criterion. Let consider a node p whose potential has increased during the step, i.e., such that (pot sg p) < P (pot sg' p). This means, from definition of pot, that p is disabled at g (potential is 0) and becomes enabled at g' (potential equals (depth sg' p) > 0), since depth is preserved during any step. Hence, local criterion is a direct consequence of the following lemma: where directed_tree_path means that path is a decreasing path along the tree from p to descendant. Therefore, to prove local criterion, we propose to exhibit a down-path from p in T which contains a node, called descendant, which is enabled at g and becomes disabled at next configuration, g'. We prove the lemma in two steps. First, for a node p, disabled at g but enabled at g', we necessarily exhibit a child of p, child, which moved during the step:

This is proved by induction on the neighbors of p using that the result of run only depends on the states of the children of p in the tree T (directly based on the definition of run, see Algorithm 1). Hence, as the second step, the proof of Lemma new_enabled_node_has_disabled_descendant is reduced to the proof of: 
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When the node child moves, it is down-linked in T to a node which was enabled and becomes disabled, during the step. This result is proven by induction on (WF_child child), i.e., on the decreasing paths from child in T . Consider a node in such a path, enabled at g and that moves during step g → g': we have two cases.

• Either it becomes disabled at g': this is the basis case of induction, since we have found the witness node descendant;

• Or it is still enabled at g': for this case, we prove: (i.e., when a node has moved, but is still enabled at next configuration, it has a child that also moved.)

The proof is based on the same schema as Lemma enabled_child_has_moved. The lemma provides the induction step for the above proof.

Global Criterion. Global criterion requires to find a witness node whose potential differs between g and g'. We show that there exists a node p with potential (depth sg p)> 0 at g and potential 0 at g', namely, which is enabled at g but disabled at g':

Lemma one_disabled: ∃(p: Node), (enabled g p) ∧ ¬(enabled g' p).

Indeed, by definition of the daemon, at least one node has moved during the step. Then Lemma moving_ node_has_disabled_descendant is used to show that this node necessarily has a descendant (on a given decreasing path of T ) which is enabled at g but disabled at g'.

Conclusion.

Local and global criteria being proved, we obtain Theorem k_dom_set_terminates directly: this is exactly predicate termination for Algorithm D(k). Using Lemma silent_self_stab, we obtain that D(k) is a silent self-stabilizing algorithm for P kDom :

Theorem kdom_silent_self_stab: silence Assume kdom ∧ self_stab Assume kdom S PkDom .

Quantitative Properties

In addition to the partial correctness property which states that D(k) computes a k-hop dominating set Dom, we have shown that |Dom| ≤ n-1 k+1 + 1, where n the number of nodes. Precisely, we have formally proven the equivalent property counting which states that (n -1) ≥ (k + 1)(|Dom| -1). Intuitively, this means that all but one element of Dom have been chosen as witness by at least k + 1 distinct nodes each.

Counting Elements in Sets

First, we have set up a library dealing with cardinality of sets in general and then cardinals of finite sets. The library contains basic properties about set operations such as Cartesian product, disjoint union and subset. Proofs are conducted using standard techniques.