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Abstract8

A new functional-structural model SUNLAB for the crop sunflower (He-

lianthus annuus L.) was developed. It is dedicated to simulate the sunflower

organogenesis, morphogenesis, biomass accumulation and biomass partition-

ing to organs. It is adapted to model phenotypic responses of different

genotypic variants to diverse environmental factors including temperature

stress and water deficit. A sensitivity analysis was conducted to quantify the

relative parameter influences on the main trait of interest, the grain yield.

The model was calibrated for four genotypes on two experimental datasets

collected on plants grown under standard non-limiting conditions and mod-

erate water stress. Its predictive ability was then tested on an additional

dataset. The four considered genotypes - “Albena”, “Melody”, “Heliasol”

and “Prodisol” - are the products of more than 30 years of breeding ef-

fort. Comparing the values found for the four parameter sets associated to

each variant, allows to identify genotype-specific parameters. The model also

provides a novel way of investigating genotype performances under different

environmental conditions. These promising results are a first step towards
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the potential use of the model as a support tool to design sunflower ideotypes

adapted to the current worldwide ecological and economical challenges and

to assist the breeding procedure.

Keywords: SUNLAB, SUNFLO, GREENLAB, Sunflower model9

1. Introduction10

As one of the major oilseed crops worldwide, sunflower production has11

to face the growing social demand in a context of strong ecological and eco-12

nomical constraints: growers are confronted to the challenge of increasing13

sunflower productivity under changing climatic conditions while maintaining14

low input levels and reduced costs. A partial response to this challenge could15

be found by breeding new genotypes or by identifying the best genotype,16

among a set of existing ones, for a given location and for given management17

practices; see for instance Allinne et al. (2009).18

Assessments of genotype performances for in situ experimental trials ham-19

per the breeding process by temporal, logistic and economical difficulties.20

Indeed, genotypes perform differently depending on the environmental con-21

ditions (soil, climate, etc.) and the management practices (sowing date,22

nitrogen inputs, irrigation, etc.). Therefore a large number of trials are23

needed to explore a sufficiently diverse set of genotypes x environment x24

management (GxExM) combinations in order to characterize these complex25

interactions. An emerging approach to overcome these difficulties relies on26

the use of models represented as a set of biophysical functions that deter-27

mine the plant phenotype in response to environmental inputs. Models can28

help in breeding strategies and management by dissecting physiological traits29
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into their constitutive components and thus allow shifting from highly inte-30

grated traits to more gene-related traits that should reveal more stable under31

varying environmental conditions (Yin et al., 2004; Hammer et al., 2006).32

Consequently, an important question to examine is how to design models33

that can be used in that context. The models should simulate the phenotypic34

traits of interest (e.g. yield) with good robustness and predictive capacity.35

The models should also present a trade-off between mechanistic aspect and36

complexity: Chapman et al. (2003) state that, for such use, a growth model37

should include ‘principles of response and feedbacks’ to ‘handle perturbations38

to any process and self-correct, as do plants under hormonal control when39

growing in the field’ and to ‘express complex behavior even given simple op-40

erational rules at a functional crop physiological level’. Casadebaig et al.41

(2011) discuss that question in the case of their model SUNFLO (Lecoeur42

et al., 2011). SUNFLO is a biophysical plant model that describes organo-43

genesis, morphogenesis, and metabolism of sunflower (Helianthus annuus L.).44

It has shown good performances to identify, quantify, and model phenotypic45

variability of sunflower at the individual level in response to the main abi-46

otic stresses occurring at field level but also in the expression of genotypic47

variability (Casadebaig et al., 2011). The authors mixed mechanistic and sta-48

tistical approaches to deal with highly integrative variables such as harvest49

index (HI). This HI factor is determined by a simple statistical relation-50

ship dependent on covariables previously simulated by the mechanistic part51

of the crop model throughout the growing season. Although this statistical52

solution and the large datasets used for its parameterization conferred good53

robustness to the prediction of HI and thereby crop harvest, biomass parti-54
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tioning to other plant organs and trophic competition between organs were55

not taken into account. Fenni: Here, in last review, the third reviewer posed56

a question “ The idea of formalizing trophic competition between organs (p 457

l 27-33) is at the core of this new model. You write that such a formalization58

should help representing feedback effects of biomass partitioning on “other59

processes” (p 4 l 13-15). What do you mean?”, I simply deleted the sentence60

that saying “feedback effects of biomass partitioning on other processes can-61

not be taken into account”, but I still tried to mention it in the discussion62

saying “The plants are considered only at the minimal level of organ com-63

partments. PBM model ignores plant architecture and its plasticity. The64

lack of individual organ’s simulation can influence the simulation of plant65

functioning. For example, PBMs models normally use the relative values of66

the sink strength of organs to simulate biomass partitioning. These sink val-67

ues are assessed directly from experiments and the sources and sinks have no68

significant direct interaction in these models (de Reffye et al., 2008). How-69

ever, the lack of trophic competition simulation may hinder the simulation of70

feedback effects of biomass partitioning on other processes. As Pallas et al.71

(2008) state, trophic competition influenced the organogenesis of grapevine72

in their research”. That paragraph had been deleted by you in last revision.73

Do you think we should still mention somewhere this idea “mechanistic sink-74

source solver helps the simulation of biomass partitioning, and also the future75

possibility of simulating feedback effects”?. I added one sentence in the dis-76

cussion to add about considering feedback effects:”’Introducing a mechanism77

of trophic competition at organ level in a PBM, as done in this study, opens78

the possibility to model feedbacks effects of biomass partitioning on other79
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processes such as photosynthesis or organogenesis (Mathieu et al., 2009).80

”‘. Do you agree? Moreover, it was shown in Lecoeur et al. (2011) that81

HI is the parameter that contributes the most (14.3%) to the coefficient of82

variation of the potential grain yield. It was also shown that when ranking83

the processes in terms of their impact on yield variability, the first one was84

biomass allocation (before light interception according to plant architecture,85

plant phenology and photosynthesis). Therefore, Lecoeur et al. (2011) sug-86

gested that a better formalisation of the trophic competition between organs87

could be a way to improve our understanding of genotypic variation for the88

harvest index Fenni: here the third reviewer posed another question last89

time “ Please elaborate and give appropriate references to clarify the idea of90

formalizing trophic competition (direct formalization? It could also be indi-91

rect) and to construct a sound argument (e.g. which outlines to satisfy the92

need of feedback effects of biomass partitioning).” I actually didn’t answer93

his question about direct formalization or indirectIn fact I don’t understand94

the reviewer’s question; what do you think he means by ”‘direct or indi-95

rect formalization”’?. In order to take up this challenge, a new sunflower96

model, named SUNLAB, was derived from SUNFLO. The representation97

of plant topological development and allocation process at individual organ98

scale were inspired by the functional-structural plant model GREENLAB,99

which has been designed as a “source-sink solver” (Christophe et al., 2008)100

and which is accompanied with the appropriate mathematical tools for its101

identification (Cournede et al., 2011). SUNLAB thus inherits from GREEN-102

LAB the flexible rules of sink competition for biomass partitioning at organ103

scale Fenni:the deleted phrases “(organ type includes blade, petiole, intern-104
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ode and capitulum; a leaf consists of a blade and a petiole; for the modeling105

of trophic competition, blade and petiole are considered as two organ types)”106

were actually trying to answer the second reviewer’s question in the previous107

review “ you are using the word “blade” to designate the leaves all over the108

manuscript. This is somewhere confusing. The manuscript would benefit to109

clarify this”. Maybe somewhere a small explanation of blade could be added110

if it is deleted here Yes, I had taken care of that and I had added it in the MM111

part, in plantstructure paragraph as ”‘ The different organ types, denoted as112

o, include leaves (decomposed into blades and petioles),”’ Do you think that113

it will be ok ?, together with the more detailed representation of ecophysio-114

logical processes and environmental stress effects on biomass production and115

yield from SUNFLO.116

This paper presents in detail the mechanisms of SUNLAB and the pa-117

rameter estimation procedure based on field experimental data. A sensitivity118

analysis is performed on the model parameters, using the Sobol method, to119

investigate the relative contribution of each parameter and their interac-120

tions to the model output uncertainty. The output that we consider is the121

main trait of interest in most breeding procedures, that is the final grain122

yield. The potentials of SUNLAB for genotypic characterization are illus-123

trated by comparing the parameters obtained after the estimation process124

for four genotypes, namely “Albena”, “Heliasol”, “Melody” and “Prodisol”.125

The performances of SUNLAB to reproduce phenotypic variability coming126

either from genotypic or from environmental influences are tested against127

experimental datasets used for parameterization. An additional dataset is128

then used for model evaluation. An interesting and uncommon output of129
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SUNLAB is the simulation of specific leaf area (SLA, also known as leaf spe-130

cific surface area, cm2.g−1), i.e. the ratio of leaf area to dry leaf mass. It is131

an influent input variable often associated with large uncertainty ranges in132

most dynamic crop growth models (Rawson et al., 1987).133

2. Materials and methods134

2.1. Modeling: SUNLAB modules135

SUNLAB consists of five modules: phenology, water budget, organogen-136

esis and morphogenesis, biomass accumulation, and biomass partitioning.137

Phenology, water budget, and biomass accumulation modules are directly138

inherited from the SUNFLO model. The organogenesis and morphogenesis139

module is modified from the corresponding SUNFLO module by defining for140

each organ the dates, expressed in thermal time, of initialization, termination141

of its growth, and organ expansion. The biomass partitioning module is an142

entirely new module. We describe here equations of these modules, briefly143

for those inherited from SUNFLO - we refer to Casadebaig et al. (2011) and144

Lecoeur et al. (2011) for an exhaustive description - and in detail for the145

new contributions. Model parameters that are mentioned in the following146

equations will be summarized in section 2.3.147

2.1.1. Phenology148

Plant phenology is driven by thermal time. Cumulative thermal time on149

day d since emergence, CTT (d) (◦C days), is calculated in equation (1) as150

the sum of the daily mean air temperature Tm(d) (◦C) above a base tem-151

perature Tb of 4.8 ◦C, common to all sunflower genotypes. Four key phe-152

nological stages, expressed as genotype-dependent thermal dates (◦C days),153

7



are defined: flower bud appearance E1, beginning of flowering F1, begin-154

ning of grain filling M0 (early maturation) and physiological maturity M3155

(Lecoeur et al., 2011). Crop development can be accelerated by water stress,156

that causes overheating of the plant through the reduction of transpiration.157

This is modeled by using a multiplicative effect of water stress at day d,158

FHTR(d)(the effect of water on transpiration), on thermal time accumula-159

tion CTT (d):160

Teff (d) = max(0, (Tm(d)− Tb))

CTT (d) =
d∑

k=1

Teff (k)× [1 + 0.1× (1− FHTR(k))]
(1)

where Teff (k) is the effective thermal time at day k. FHTR(d) is calculated161

as a function of the fraction of transpirable soil water at day d, FTSW (d)162

(detailed in 2.1.2), divided by a genotypic parameter RT of sensitivity to163

water deficiency (Casadebaig et al. (2011)).164

2.1.2. Water budget165

In SUNLAB, the water cycle of sunflower is modeled considering the plant166

processes (root water absorption and transpiration), in combination with its167

direct environment: precipitation, irrigation, soil evaporation (see Fig. 1a).168

Evaporation and plant transpiration decrease the available amount of water169

in soil, while irrigation and precipitation refill it.170

[Figure 1 about here.]171

The index for the assessment of drought level FTSW (d) at day d depends172

on the simulation of the above mentionned processes (Lecoeur et al., 2011).173

It takes values from 0 (no water stress) to 1 (severe water stress) and it is174

8



used to define three indices to tune three plant functioning processes: leaf175

expansion FHLE , radiation use efficiency FHRUE and plant transpiration176

FHTR. The critical thresholds RT and RO are genotype-dependent pa-177

rameters varying in [0, 1] that characterize the plant drought tolerance (RT ,178

drought tolerance of leaf expansion; RO, drought tolerance of radiation use179

efficiency and transpiration). For instance, FHRUE is calculated as:180

FHRUE (d) =

 FTSW (d)/RT for FTSW (d) < RT

1 for FTSW (d) ≥ RT
(2)

Its effect on radiation use efficiency RUE (d) (g.MJ−1) is defined as:181

RUE(d) = RUEp(d)×min

(
1,

FTSW(d)

RT

)
× FT (d)× PHS (3)

where RUE p(d) (g.MJ−1) is the crop potential (maximal) radiation use ef-182

ficiency, FT (d) is the thermal stress on day d, a function of daily mean183

temperature (Lecoeur et al., 2011) and PHS is a genotypic parameter giving184

the ratio of the genotype photosynthesis capacity to that of the reference185

genotype “Melody”. The potential radiation use efficiency is thus weakened186

by the environmental thermal stress factor FT (d) and the drought stress187

factor FHRUE (d).188

2.1.3. Organogenesis and morphegenesis189

Ecophysiological functions. The number of blades N(d) on day d increases190

linearly with cumulative thermal time CTT (d):191

N(d) = R× CTT (d) + 1 (4)

where R (leaves/ ( ◦C days )) is the rate of leaf production. Leaf senescence192

occurs during the period of grain filling between M0 and M3. Consequently193
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the number of senescent leaves NS(d) is considered to increase in proportion194

to the time elapsed since M0 (Sinclair and de Wit, 1975; Nooden et al., 1997)195

as:196

NS(d) = Ntotal ×
M3− CTT (d)

M3−M0
(5)

where Ntotal is a genotypic parameter equal to the maximal number of leaves.197

Since, in sunflower, leaf area distribution along the stem shows a bell shape,198

total leaf area A(d) (cm2) per plant is calculated with a logistic equation:199

A(d) =
A1

1 + e4×A3×(A2−N(d))/A1
(6)

where A1 (cm2) is the maximal leaf area, A2 and A3 (cm2) are respectively200

the rank and the area of the largest leaf of the plant. The calculation of201

senescent leaf area AS(d) (cm2) is determined by a similar logistic equation202

but replacing N(d) by NS(d). The photosynthetically active leaf area AA(d)203

(cm2) is estimated as the difference between total leaf area A(d) and senescent204

leaf area AS(d). Leaf growth and senescence are affected by water stress and205

temperature stress coefficients as described in Casadebaig et al. (2011).206

AA(d) =
A1

1 + e4×A3×(A2−N(d))/A1
− A1

1 + e4×A3×(A2−NS(d))/A1
(7)

Plant structure. The different organ types, denoted as o, include leaves (de-207

composed into blades and petioles), internodes and capitulum. For each208

individual organ o at rank i (i takes its values from 0 to the total amount of209

individual organs of type o), its emergence thermal time initTT (o, i), senes-210

cence thermal time seneTT (o, i), and growth expansion duration in thermal211

time epdTT (o, i) are defined. The thermal time of blade emergence and212
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senescence are calculated through inversion of equations 4 and 5:213

initTT (blade, i) = (i− 1)/R

seneTT (blade, i) = M3− i× (M3−M1)

Ntotal

(8)

For the calculation of blade expansion duration epdTT (blade, i), three pa-214

rameters initTTAdjust (◦C days), epdTTA (◦C days), epdTTB (◦C days)215

are added to the module to calculate epdTT (blade, i) based on the blade216

emergence and senescence thermal times:217

epdTT (blade, i) = seneTT (blade, i)− (epdTTB − epdTTA× i)

−(initTT (blade, i)− initTTAdjust)
(9)

Since leaf emergence was recorded when lengths of their central vein are big-218

ger than 4cm (Lecoeur et al., 2011), the leaf has already received a small219

amount of biomass at the recorded thermal time initTT (blade, i). There-220

fore, thermal time of blade growth initialization is calculated by subtracting221

initTTAdjust to the emergence thermal time initTT (blade, i). The thermal222

times of end of blade expansion linearly vary with their ranks and depend223

on two parameters, epdTTA and epdTTB.224

The petiole at rank i shares the same initial, senescence and expansion225

thermal times as the blade i belonging to the same metamer. The internode226

i has also the same emergence thermal time as the blade i while its expan-227

sion duration epdTT (internode, i) is driven by a parameter internodeEpdTT228

that is common to all internodes. Capitulum initialization thermal time229

corresponds to M0. Its expansion duration is defined by the parameter230

capitulumEpdTT . These additional parameters to the module are estimated231

as described in 2.3.232
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With all the information of emergence and senescence thermal times of ev-233

ery organ, a general sunflower structure can be constructed. Their expansion234

durations are important variables for the calculation of biomass distribution235

to organs as presented in 2.1.5.236

2.1.4. Biomass accumulation237

Daily increase in above-ground dry matter DM(d) (g.m−2) is calculated238

from Monteith’s equation (1977) linking dry matter production to incom-239

ing photosynthetically active radiation through two radiation efficiencies as240

follows:241

DM(d) = RUE(d)×RIE(d)× PAR0(d) (10)

where PAR0(d) (MJ.m−2) is the daily incident photosynthetically active242

radiation. RUE(d) (g.MJ−1) is daily radiation use efficiency and RIE(d)243

is daily radiation interception efficiency, estimated from Beer’s law. The244

total above-ground biomass CDM(d) (g.m−2) is the cumulated daily biomass245

production from emergence:246

CDM(d) =
d∑

k=1

DM(k) (11)

2.1.5. Biomass partioning247

As in GREENLAB, the biomass produced by leaves is distributed to248

all organs proportionally to their respective demands. Indeed, it has been249

observed for several crops that the final balance of the source and sink rela-250

tionships in the end is similar to the action of a common pool of biomass (e.g.251

Heuvelink (1995) for tomato): this simplification enables skipping the details252

of the transport resistance system and other complex features of branching253
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systems (Christophe et al., 2008). The biomass is dynamically distributed to254

every “sink” organ, including blades, petioles, internodes and the capitulum,255

regardless of their position within the plant structure. Blades are “sources”256

whose photosynthetic production fills the pool biomass. The calculation of257

the daily incremental mass of each organ is done through three steps.258

First step: Definition of individual organ sink. Biomass is partitioned to259

organs according to their number, age and relative sink strength. The relative260

sink strength of organs of given type o is denoted as SR(o), which is a261

dimensionless variable indicating the ability of different kinds of organs in262

competing for biomass. The relative sink strength of all blades is set to 1 as263

a reference value, i.e. SR(blade) = 1 (Kang et al., 2008). The growth rate264

of an individual organ can vary through its expansion period. This change265

is modeled by a normalized discrete Beta density function in GREENLAB266

model (Kang et al., 2008) and in this model. Among any empirical functions267

that could be suitable, the Beta function is recommended by Yin et al. (2003)268

as it presents several advantages: at intial and final times, its values are zero,269

it has a high flexibility and can describe asymmetric growth trajectories and270

it has stable parameters for statistical estimation. Therefore, the actual sink271

strength of an organ SAP (d, o, i) (e.g. the actual sink strength an organ of272

type o = blade, at rank i = 2, on day d SAP (d, blade, 2)) can be expressed273

as:274

SAP (d, o, i) =

(
1− CTT (d) + initTT (o, i)

epdTT (o, i)

)sinkB(o)−1

×
(
CTT (d)− initTT (o, i)

epdTT (o, i)

)sinkA(o)−1

× SR(o)

M(sinkA(o), sinkB(o))

(12)
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where M(A,B) is a normalization factor defined as:275

M(A,B) = (
A− 1

A + B − 2
)A−1 × (1− A− 1

A + B − 2
)B−1 (13)

Two organ-type-specific parameters sinkA(o) and sinkB(o) control the276

function shape, as illustrated in the result section Fig. 4. Thus, the sink277

activity of an organ o at rank i starts from initTT (o, i) and lasts during the278

organ’s expansion duration epdTT (o, i).279

Second step: Total demand. The plant total demand sumSink(d) is com-280

puted as the scalar product of the number of existing organs by their sink281

strength SAP (d, o, i):282

sumSink(d) =
∑
t

∑
i

SAP (d, o, i) (14)

Third step: biomass partitioning to organs. The total dry biomass CDM(d)283

that is produced at day d is allocated to every individual organs propor-284

tionnally the ratio of their sink strength SAP (d, o, i) to the total plant de-285

mand sumSink(d). For example the biomass allocated to an individual blade286

indMS(d, blade, i) (g.m−2) of blade ranking i is:287

indMS(d, blade, i) =
CDM(d)× SAP (d, blade, i)

sumSink(d)
(15)

Total blade biomass organMS(d, blade) (g.m−2) at time d is the sum of all288

individual blade biomass:289

organMS(d, blade) =
∑
i

indMS(d, blade, i) (16)

Similarly, individual and total petiole biomass (indMS(d, petiole, i) and organMS(d, petiole),290

g.m−2) are simulated, as well as individual and total internode biomass291

(indMS(d, internode, i) and organMS(d, internode), g.m−2), and capitu-292

lum biomass(indMS(d, capitulum, i) organMS(d, capitulum), g.m−2).293
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2.2. Field experiments and measurements294

Experiments and measurements for designing and constructing modules295

which are directly inherited from SUNFLO are not presented in this paper, as296

they are described in detail in Lecoeur et al. (2011). Data used for SUNLAB297

parameters estimation, simulation and application include three datasets, re-298

spectively entitled as “2001”, “2002a”and “2002b”. They all come from field299

experiments conducted in 2001 and 2002 at SupAgro experimental station at300

Lavalette (43◦ 36’N, 3◦ 53’ E, altitude 50 m) on a sandy loam soil for four301

genotypes “Albena”, “Heliasol”, “Melody” and “Prodisol”. In “2001”, Sun-302

flowers were sown on 5 May 2001 at a density of about 6 plants m−2 and a303

row spacing of 0.6 m, in a randomized complete block design with four repli-304

cations. Plots measured 5.5.×13.0m. In the other two datasets, experiments305

were conducted with the same plant arrangement. But sunflowers were sown306

on 15 May 2002 and plots measured 8.0 × 8.0m. During the experiment,307

meteorological data such as temperatures and radiation were recorded. The308

total amount of water available for the plant was calculated as the differ-309

ence between soil water content at field capacity estimated at the beginning310

of the experiment and soil water content at 10% of maximal stomatal con-311

ductance. The fraction of transpirable soil water (FTSW ) remaining in the312

soil at a given date was calculated as the ratio of actual plant-available soil313

water content to the total plant-available soil water content (Lebon et al.,314

2006). Organogenesis was described based on the phenomenological stages315

that were recorded every 2-3 days (Lecoeur et al., 2011). Once a week, six316

plants per genotype were harvested. Individual leaf areas were estimated317

from blade lengths and widths. All the above-ground organs (blades, peti-318
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oles, stem, capitulum and seeds) were collected and then oven-dried at 80◦C319

for 48 h. The dry weights of these organs were measured by compartments.320

Daily radiation interception efficiency RIE(d) and daily radiation use ef-321

ficiency RUE(d) were respectively calculated and estimated based on field322

measurements as in (Lecoeur et al., 2011). In all experiments, the crop was323

regularly irrigated and fertilized to avoid severe water deficits and mineral324

deficiency. But in practice, the three experiments showed different water325

deficit conditions. The index FTSW of the three experiments, which can326

represent the water stress level, is illustrated (Fig.2). Since the experiment327

measurements were carried out every a few days, an interpolation on exper-328

imental data was drawn to make the contrast clearer. Datasets “2001” and329

“2002a” correspond to contrasted environmental conditions and are used to330

calibrate SUNLAB model while “2002b” is used for model evaluation.331

[Figure 2 about here.]332

2.3. Parameter analysis333

Four genotypes “Albena”, “Melody”, “Heliasol” and “Prodisol” are con-334

sidered in this paper. These genotypes have been characterized by a large335

study of genetic improvement of sunflower over the last 30 years, and they336

are four of those most widely grown varieties in France from 1960 to 2000337

(Vear et al., 2003). SUNLAB parameters can be decomposed in two subsets.338

One subset contains the parameters inherited from SUNFLO which keep the339

same values in SUNLAB (Table 1).340

[Table 1 about here.]341
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The other subset contains 17 additional parameters, that are introduced in342

SUNLAB, as was presented in section 2.1. They include 12 parameters that343

drive the sink competition (SR, sinkA, sinkB for four types of organs) and 5344

parameters, that are used to adjust or define initial and final organ expansion345

thermal times: initTTAdjust (◦C days), epdTTA (◦C days), epdTTB (◦C346

days), internodeEpdTT (◦C days), and capitulumEpdTT (◦C days). Note347

that the sink strength of blades SR(blade) is set to 1 as a reference value348

(Christophe et al., 2008), therefore only 16 parameters are included in the349

sensitivity analysis and estimation procedure.350

The non-linear generalized least squares method with Gauss Newton al-351

gorithm for optimization (Cournede et al., 2011) was used for estimating the352

16 parameters of four genotypes. The target field data include (i) total blade353

mass, total petiole mass, total internode mass, and capitulum mass, all col-354

lected once a week during 15 weeks in total, and (ii) individual blade mass.355

Regarding the target field data at organ scale used for parameter estimation,356

only individual blade area data was available. All organs were only weighted357

at compartment scale. In particular, independent blade mass data was not358

available, while these data are required for a better estimation of SUNLAB359

parameters. Therefore, profiles of individual blade mass were estimated as360

follows: at each date when total blade mass and total blade areas were mea-361

sured at compartment level, a virtual SLA value was computed as the ratio362

of these two quantities and was used to generate a set of individual blade363

mass from the sequence of areas. The model can thus be viewed as a dynamic364

interpolation solver that generates both blade areas and mass between those365

fixed measurement dates. Since these measurements at individual scale were366
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performed 6 times, the estimated blade mass represent around 150 data for367

each genotype, to be added to the 60 data at compartment scales, giving a368

total of around 210 observation data used for the parameter estimation of369

each genotype.370

A sensitivity analysis was performed on SUNLAB parameters to under-371

stand their relative influence on determining the main model output, the372

yield Y . A global method was used, the Sobol method (Saltelli et al., 2000;373

Wu and Cournede, 2010). In this method, parameters are considered as374

random variables that are drawn from predefined distributions, chosen here375

as uniform distributions since no a priori knowledge is available for the 16376

SUNLAB parameters. Plausible interval boundaries are defined: the lower377

boundary is set as 0.5 times of the parameter’s minimum estimated value378

among all genotypes, and the upper boundary is set as 1.5 times of the pa-379

rameter’s maximum estimated value. This allows computing an estimator380

of the output variance, V (Y ). The first-order sensitivity index of a given381

parameter Xi can thus be defined as:382

Si =
VXi

(E∼Xi
(Y |Xi)

V (Y )
(17)

where the inner expectation operator is the mean of Y taken over the possible383

values of all other parameters except Xi (E∼Xi
) while keeping Xi fixed. Then384

outer variance is taken over all possible values of Xi. Similarly, higher order385

sensitivity indices can be defined to characterize the effects of interactions386

between parameters on the output variance. Sensitivity indices are normal-387

ized thanks to the well-known formula of variance decomposition. Here, 1000388

parameter sets are generated from the Sobol sequence in the calculation.389
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This crop model SUNLAB and the statistical analysis methods are inte-390

grated in the platform PYGMALION (Cournède et al., 2013): this platform391

is currently developed and used in the laboratory of Applied Mathematics392

and Systems at Ecole Centrale Paris, and is available to a few other labs for393

collaborative research projects. Programmed in C++ computer language, it394

is dedicated to the mathematical analysis of plant growth models, including395

the parameter estimation and sensitivity analysis methods used in this pa-396

per. It comprises approximately 20 classical and new models of plant growth,397

among which are Greenlab (Hu et al., 2003), PILOTE (Mailhol et al., 1997,398

2004), STICS (Brisson et al., 1998), SUNFLO (Casadebaig et al., 2011) and399

SUNLAB.400

3. Results401

3.1. Sensitivity analysis402

A sensitivity analysis was performed on the 16 parameters (described in403

2.3) of SUNLAB for the yield, using the Sobol method of variance decompo-404

sition. Results are gathered in Table 2 for the most influential parameters.405

The sum of all first order indices was 0.87, which means that the part of406

variance due to parameter interactions was less than 15%: this justifies that407

the sensitivity analysis of this model can be grounded on first-order indices408

of parameters. The most influential parameters are those driving the dynam-409

ics of capitulum sink variations, sinkA(cap) and sinkB(cap), accounting for410

51% and 12% respectively of the yield variance. The only other parameter411

with significant sensibility index is a parameter of internode sink variation,412

sinkA(intern). All other parameters account for less than 5% of the yield413
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variance. This result suggests that dynamics of biomass allocation to the414

capitulum, more than the value of its sink, are important for yield determi-415

nation.416

[Table 2 about here.]417

3.2. Model parameterization418

3.2.1. Parameter estimation for four sunflower genotypes419

The SUNLAB parameters were estimated for the four different geno-420

types (“Albena”, “Melody”,“Heliasol”, and “Prodisol”) using experimental421

datasets of “2001” (non-limiting conditions) and “2002a” (with water deficit).422

The values of the 12 sink competition related parameters are shown in Table423

3 with the associated standard deviation.424

These parameter values were independently estimated for each genotype,425

i.e. no a priori genotypic correlations were imposed. This allows comparing426

the genotypes according to their parameter values. The standard error could427

allow testing the significance of differences between two parameter values, but428

this would only be an approximate result since the number of observations429

that directly influence the estimation of each parameter was unknown. to430

change with the results of the test. Qualitative observations can nevertheless431

be done. For example, blade parameter sinkA(blade) in the sink variation432

function of blades appears significantly different between four genotypes,433

while no clear evidence of genotypic variability was found for capitulum sink434

strength ratio SR(capitulum) (see also Fig. 4). The internode sink ratio,435

SR(internode), was found different for genotypes “Albena” and “Melody”,436

but took similar values for “Heliasol” and “Prodisol”.437
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[Table 3 about here.]438

3.2.2. Model performances: reproducing genotype-induced variability439

Even when grown under non-limiting controlled conditions, the four stud-440

ied varieties presented some phenotypic variability, that might be intrinsically441

regulated by genotypic influences. This phenotypic variability was in partic-442

ular observed on daily radiation interception efficiency RIE(d), total blade443

area AA(d), leaf number N(d), cumulated dry biomass CDM(d) and biomass444

partitioning. This is illustrated in Fig. 3 for dry mass compartments (blade,445

internode and capitulum) with the “2001” experimental dataset. This figure446

also illustrates the model ability to reproduce this (presumably) gentoypic447

variability.448

[Figure 3 about here.]449

The estimated parameter values (Table 3) allow tracking back the dy-450

namics of biomass allocation and analyzing the internal mechanisms under-451

lying sink competition. For instance, compared to “Prodisol”, blades of452

“Albena” entered earlier in the competition for biomass but the capitulum453

reached its maximum demand later (Fig. 4): this may explain that in the454

end “Albena” had bigger total blade biomass but smaller capitulum biomass455

than “Prodisol”(Fig. 3). Genotypic characterization can also come from the456

biomass accumulation module: “Melody” had larger internode and capitu-457

lum biomass than “Heliasol”, and they had similar blade biomass, as can458

be seen in Fig. 3. This was due to a higher radiation use efficiency of the459

“Melody” genotype.460

[Figure 4 about here.]461
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3.2.3. Model performances: reproducing environment-induced variability462

The SUNLAB model was calibrated using “2001” and “2002a” exper-463

imental datasets that included data for plants grown without water deficit464

(“2001”) and plants grown under water deficit (“2002a”). The parameterized465

SUNLAB model was able to simulate the phenotypic variability induced by466

the two contrasted environmental conditions of “2001” and “2002a” datasets.467

This is illustrated in Fig.5 that shows experimental data and simulations of468

radiation interception efficiency RIE(d), total blade area AA(d), leaf number469

N(d), cumulated dry above-ground biomass CDM(d) and biomass compart-470

ments (capitulum, blades, petioles, internodes) for the “Melody” genotype.471

It can be noticed that “Melody” was not very sensitive to water stress since472

the dry mass accumulation did not significantly vary. Graph B shows that473

there were under-estimations of total blade area. This was due to the mod-474

eling equations of leaf area (see equation 6 and equation 7). These equations475

are inherited from SUNFLO model and define a common formula for all geno-476

types to calculate total leaf area based on genotype-specific parameters A2477

and A3. This common formula does not allow to account for all the genotypic478

variance of total leaf area: possible improvements on this part of the model479

are discussed in section 4. Graph E and Graph F of this Fig.5 present some480

details on two other genotypes: biomass compartments of “Prodisol” and in-481

dividual blade mass profile for “Heliasol”. Water stress induced a decrease in482

the capitulum biomass of “Prodisol” plants, despite a slight increase in blade483

biomass. The effect of water stress can also be observed on the individual484

blade mass profile of “Heliasol” plants: blades on the last ranks grew less in485

water deficit conditions (“2002a”) than in standard conditions (“2001”).486
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[Figure 5 about here.]487

3.3. Model evaluation488

In order to test the model predictive ability, SUNLAB was confronted489

to an additional experimental dataset “2002b”, that was not used for the490

parameterization step. Fig. 6 presents some phenotypic traits for the “Al-491

bena” genotype: for total blade areas and radiation interception efficiency,492

data were underestimated by model predictions, total dry biomass was also493

proportionally affected, but the results were reasonable for the biomass com-494

partment dynamics. The root mean square error (RMSE) of organ mass495

for genotype “Albena”, calculated on days with available experimental data,496

was 36.4 and its coefficient of determination was 0.95. However, it has to be497

noticed that this evaluation process was still at a preliminary step since our498

additional experimental dataset “2002b” was measured in experimental con-499

ditions similar to those of the “2002a” dataset which was used to calibrate500

the model.501

[Figure 6 about here.]502

3.4. Model Application: an exploratory study on specific leaf area503

Specific leaf area (SLA) is an important variable in plant growth mod-504

eling. In most dynamic models, it is usually used to determine blade sur-505

face area values from blade biomass, as in GREENLAB (Christophe et al.,506

2008) or in TOMSIM (Heuvelink, 1999). Since blade area in turn determines507

the biomass production, accurate estimation of SLA is mentioned as a ma-508

jor source of error in models and implies difficulties in obtaining a reliable509

computation of leaf area index, which is the main component of biomass510
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production modules (Heuvelink, 1999; Marcelis et al., 1998). It is however511

generally considered as constant, although it has been shown, for instance512

on wheat (Rawson et al., 1987), that SLA varies according to genotypes,513

leaf ranks and leaf growing periods. Regarding sunflower, the variations of514

SLA and the factors influencing them are still poorly known. As SUNLAB515

can simulate dynamics of individual blade mass profiles independently from516

those of blade areas, the SLA can be computed as a model output, contrary517

to the classical situation where it is taken as input. In Fig.7, the simulated518

and observed values for individual blade areas and masses of “Melody” in519

the “2001” dataset are displayed for each blade rank and six different growth520

stages.521

[Figure 7 about here.]522

The SLA was computed at the time when individual blades have reached523

their highest mass on 67th day. SLAs are illustrated for blades ranking from524

9 to 15 which are those whose individual blade mass and area had the best525

accordance to the field data (Fig. 7). The root mean squared error (RMSE)526

of SLA for these blades ranking from 9 to 15 was 11 and the coefficient of527

variation (CV) was 25%. But for all blades on 67th day, including those528

whose individual blade leaf areas were poorly simulated, the RMSE of SLA529

for genotype Melody became 35, with CV value 76%. The computed SLA530

showed some variability among the four genotypes. But since the current531

SUNLAB parameters came from reconstructed individual blade masses, these532

simulated SLA results are expected to be improved with better experimental533

data in the future. Moreover, the modeling of individual leaf area should be534

improved as well for more accuracy on this result.535
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4. Discussion and conclusion536

Models in the breeding process. After further tests and improvements, this537

new SUNLAB model should present robust enough predictive capacities and538

ability to differentiate between genotypes in order to be proposed as a proper539

tool for the understanding of crop phenotypes induced by genotype × en-540

vironment interactions. Practical considerations should also be examined541

in our context of model application, i.e. transferring model-based informa-542

tion to breeders. This kind of information could be for instance recommen-543

dations on optimal environmental conditions or management practices for544

a given genotype; the identification of particular features (a subset of the545

model parameters, for instance) to focus on in the breeding process in order546

to create variants with some targeted traits; environmental characterization547

for genotypes performances; or the prediction of crop growth and harvest.548

SUNLAB has the potential to be used in studying the link between crop549

model parameters and genetic information. As stated in Messina et al.550

(2006), the breeding of higher-yielding crop plants would be greatly accel-551

erated if the phenotypic consequences of changes at some genetic markers552

of an organism could be reliably predicted. Recently, quantitative trait loci553

(QTL) information has been incorporated into some organ-level crop models554

(Reymond et al., 2003; Yin et al., 2006; Xu et al., 2011). To address the555

link between model parameters and QTL, well designed models and suit-556

able experimental data are required. Appropriate model structures allow557

sufficient physiological feedback features to be incorporated. Model input558

parameters should be designed to be grounded potentially in gene-level un-559

derstanding (Yin et al., 2004). It requires the plant growth model parameters560
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having biological meaning to represent genetic coefficients (Yin and Struik,561

2010; Tardieu, 2003). The organ-level model SUNLAB and its parameters562

are expected to meet the requirements. In line with what has been done563

for pepper in Alimi et al. (2013), SUNLAB is considered to be used in a564

study with an experimental database of 90 sunflower genotypes which are565

F1 hybrid of the first filial generation resulting from a cross mating of 9 ×566

10 distinctly different parental types. After estimating SUNLAB parameters567

for the 90 genotypes, statistical analyses of the correlations between different568

genotypes’ parameters could reveal certain genetic links.569

About the modeling approach: from process-based model to functional struc-570

tural model. The design of the SUNLAB model was based on an ecophys-571

iological model, SUNFLO, that was transformed to a FSPM and enriched572

with a mechanistic module for biomass allocation to organs. Fenni: in the573

deleted paragraph “While there exist many excellent PBM models with ac-574

curate model identification and growth description, it is possible to convert575

them into FSPMs to take advantage of FSPMs’ structures and organs’ in-576

teraction, and to reduce the efforts of building a FSPM from blank. Feng577

et al. (2010) tested using GREENLAB sink-source solver to improve the PBM578

model PILOTE (Mailhol et al., 1997) for the crop Maize (Zea mays L.) Ac-579

tually, these previous sentences were already re-used below.. In this paper,580

SUNLAB is a good demonstration for the crop Sunflower (Helianthus an-581

nuus L.). It defines sunflower’s structural development and it adds complex582

biomass partitioning mechanism to SUNFLO, while it keeps certain modules583

of this PBM model, with the advantages of inheriting its ecophysiological584

merits...”, some sentences were actually trying to answer the first reviewer’s585
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question in the previous review: “ A simple conceptual representation could586

be useful to better understand how the source-sink model (GREENLAB)587

integrates with process-based model (SUNFLO)”. Do you think we should588

add some more sentences as the conceptual representation of the integration589

of FSPM module in SUNLAB?Vero: I am not sure, but I think that what590

the reviewer meant was that we add a figure with a diagramm of the SUN-591

LAB model, don’t you think so? If so, anyway, we have not done it. In592

process-based models (PBM), plants are usually considered only at the level593

of organ compartments. Turning them into FSPM allows taking advantage594

of the simulation of individual organs’ growth and of interactions between595

organogenesis and functioning. FSPMs focuses on the development, growth596

and function of individual cells, tissues, organs and plants in their spatial and597

temporal contexts (Godin and Sinoquet, 2005). It is a solution to take into598

account the plant’s architectural development and to extrapolate PBM at599

organ level by merging the botanical knowledge on plant development with600

the functional equations (de Reffye et al., 2008). Introducing a mechanism601

of trophic competition at organ level in a PBM, as done in this study, opens602

the possibility to model feedbacks effects of biomass partitioning on other603

processes such as photosynthesis or organogenesis (Mathieu et al., 2009).604

A more classical way to construct FSPM consists in integrating function-605

ing processes into an existing architectural model. This was done for instance606

for trees in the AMAP- suite (Barczi et al., 2008), for grappevine in Pallas607

et al. (2011) based on the relationships defined for organogenesis in Lebon608

et al. (2004), or for wheat in Evers et al. (2010) who built a FSPM from609

the ADEL-wheat model. Once plant architecture is simulated, incorporating610
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functional processes arise as a natural subsequent step in model development.611

In particular, these 3D-mock-ups are often used to compute light intercep-612

tion. In contrast, since SUNLAB originates from a PBM, the emphasis is613

put on modeling plant functioning, phenology and effects of water and ther-614

mal stresses, while light interception is modeled in a rather simplistic way615

not relying on the exact 3D structure. A similar approach was applied for616

the development of the Ecomeristem model of rice growth (Luquet et al.,617

2006) that incorporates some features (carbon supply, simulation of an ini-618

tial carbon reserve pool and the mobilisable fraction thereof) of a simple crop619

model SARRA-H (Dingkuhn et al., 2003). Feng et al. (2010) also tested us-620

ing the GREENLAB sink-source solver to improve the PBM model PILOTE621

(Mailhol et al., 1997) for the crop Maize (Zea mays L.).622

Generally, our approach fits into a current general trend of development623

of modular models, with generic modules that can be shared by other mod-624

elers. This trend goes hand in hand with the increasing number of modeling625

platforms: Pygmalion in our case (Cournède et al., 2013), OpenAlea (Pradal626

et al., 2004), GroIMP (Kniemeyer et al., 2006), etc. These platforms pro-627

vide flexible frameworks for the coupling of models or the re-use of modules628

in different models. It reduces the efforts of building models from blank629

and mutualizes the implementation work. SUNLAB falls within that trend630

since most of its modules are generic and could be easily adapted to other631

crops (e.g. biomass allocation module, biomass production module, water632

budget,...).633

Mechanistic modeling and empirical modeling. SUNLAB is the fruit of an ef-634

fort to make the SUNFLO model more mechanistic (through the modeling of635
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biomass partitioning). Mechanistic models generally arise from approaches636

relating to the complex system theory: they consider the individual com-637

ponents of the system and their interactions, and what emergent properties638

appear. They have the potential to be used out of their calibration inter-639

val, provided that the model predictive capacities have been preliminarily640

checked. In contrast, empirical models are derived on direct descriptions of641

observed data. They are usually regression based and provide a quantitative642

summary of the observed relationships among a set of measured variables.643

Most plant growth models combine in fact both modeling approaches as a644

mixture of mechanistic modules and empirical modules.645

It is expected that mechanistic description of ecophysiological processes646

improves the model predictive capacities and their ability to differentiate be-647

tween genotypes (Allen et al., 2005; Minchin and Lacointe, 2005; Bertheloot648

et al., 2011). However, the extent to which more mechanistic models are649

necessarily better should be questioned. In particular, since the parameters650

in mechanistic modules are assumed to have assigned biological meanings651

and to represent properties of real system components, the reliability of the652

underlying assumptions need to be carefully validated. I kept this sentence,653

but I am not sure of what you meant, Fenni. Could you explain me? Fenni:654

because the mechanistic models normally try to simulate the biological hy-655

pothesis, the parameters in mechanistic modules have assigned biological656

meanings. Therefore, it need more scrutiny to determine whether the hy-657

pothesis and the biological meanings are true. I got this sentence from this658

article: Biomedical Applications of Computer Modeling, Chapter 7.2 Em-659

pirical or mechanisticvro: ok. Do you agree with the way I modified the660
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previous sentence, then?. Thus, the appropriateness of mechanistic models661

needs close scrutiny (Christopoulos and Michael, 2000). Moreover, the pa-662

rameterization effort of these more and more complex models should always663

be taken into account when improving their mechanistic description, to pre-664

vent from a high level of uncertainty in the parameters which may hinder the665

original purposes of the model in terms of prediction and genotypic differen-666

tiation. So, as stated in the introduction, a delicate trade-off has to be found667

between mechanistic aspects and complexity, in order to provide proper tools668

that might be used in the breeding context.669

Parameter estimation issue: direct measurements and model inversion. Two670

kinds of methods were involved for SUNLAB parameterization: estima-671

tion through direct measurements and estimation through statistical meth-672

ods, sometimes referenced as model inversion methods. Direct measurement673

method enables direct access to the desired parameter via experimental mea-674

surements (Jeuffroy et al., 2006). The model inversion method, involving675

mathematical and statistical calculations, estimates one or more parame-676

ters by confronting observed data to simulation results (Guo et al., 2006;677

Cournede et al., 2011).678

Direct measurement is used to estimate parameters that have biological679

meanings, and that can be directly observable or easily calculated from mea-680

sured indicators. Parameters with biological meanings consist of two types:681

“genotypic parameters” which differ between varieties and “crop parameters”682

which are parameters with small variance among all genotypes. Theoretically,683

direct measurement method is the best for estimating genotypic parameters684

and consequently for genotype characterization. The breeder could measure685
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it directly on lines under development in experiments in order to predict the686

expected effects (Reymond, 2001). Similarly crop parameters can be mea-687

sured directly from field data. Because of the direct and accurate measures on688

elementary processes, these estimated parameters have advantages in terms689

of ecophysiological relevance, parameter accuracy and genotype characteriza-690

tion, compared with model inversion method. This perspective has led to au-691

tomated and high-throughput advanced plant phenotyping (see for example692

Granier et al. (2005), Sotirios and Christos (2009)). However, the accurate693

elementary processes do not necessarily imply that the combination of these694

processes will provide the same accuracy at plant scale. The nonlinear in-695

teractions between processes as well as the necessary simplifications in terms696

of the number of ecophysiological processes considered in the model make697

the whole plant model not a simple combination of the elementary models698

that were well calibrated by experiments: plants are complex systems whose699

description of elementary process interactions, plasticity and robustness re-700

mains an open issue (Yin and Struik, 2010). Therefore, parameterization701

methods relying on model inversion to estimate parameters from experimen-702

tal data at organ or whole plant levels offers an alternative. This method can703

ensure an optimized fitting error on training data, but the prediction error704

on validation data has to be carefully checked to avoid over-fitting problems.705

The parameters thus obtained have the risk to be less relevant for their bio-706

logical meanings than direct measurement, because these parameters values707

may be altered by the error compensation from fitting whole plant processes708

and from other simultaneously estimated parameters (Jeuffroy et al., 2006).709

They nevertheless characterize the plant global behavior and may still be710
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used to differentiate between genotypes (Letort, 2008).711

When parameter estimation is demanded for a high number of genotypes,712

direct measurement method becomes impractical, because this method often713

requires specific trials and measurements, which are complicated, costly and714

even impossible to implement sometimes (Reymond, 2001). Routine mea-715

surement of these parameters for a large number of varieties may also pose716

a problem, particularly when measurements require special equipment and717

controlled condition experiments (Jeuffroy et al., 2006). Model inversion718

method is adopted for these cases because it is experimentally less costly719

and less time-consuming. For instance in most dynamic models, the direct720

measurement method would often require frequent measurement points (e.g.721

daily), while with the indirect method, data can be collected only at some722

given time points and still allow the modellers to retrieve the past growth of723

the crop. Parameters can even be estimated from very limited sets of data724

(Kang et al., 2011).725

Moreover, some parameters are “hidden”,i.e. cannot be experimentally726

measured and can only be estimated by model inversion method. They usu-727

ally appear in mechanistic modules, because their underlying mechanisms728

can produce emergent properties that can be difficult to disentangle a pos-729

teriori from the resulting phenotype. It also implies that, because of their730

interactions, these kinds of parameters cannot be obtained independently731

from each other: the whole estimation process needs to be performed on all732

the data at the same time (it is not possible to optimize sequentially on data733

for different types of organs, for instance).734

In SUNLAB, the parameters inherited from SUNFLO have biological735

32



meaning and had been measured for 20 genotypes. Meanwhile, the param-736

eters involved in the new biomass allocation module are hidden parameters737

that can only be estimated by model inversion, because the biomass alloca-738

tion process at organ level is difficult to observe and to be directly measured.739

Limitations and perspectives740

Modeling. From the model performances results, we can see that the mod-741

eling of blade area needs to be uppermost improved in SUNLAB. A first742

improvement could consist in replacing the use of the logistic function by a743

fully mechanistic approach including modeling the SLA instead of deriving it744

a posteriori from the simulated mass and areas. Thereby, feedbacks effects of745

trophic competition on leaf area expansion could be explored and modeled.746

The biomass accumulation module was directly inherited from SUNFLO747

that has been tested in different environmental conditions for 26 genotypes748

(Casadebaig et al., 2011; Lecoeur et al., 2011) and is in line with what is classi-749

cally done in models of the same class as SUNLAB (e.g. Tomsim (Heuvelink,750

1999), Ecomeristem (Luquet et al., 2006)). A more detailed approach, at751

individual leaf level, could be considered by computing the amount of inter-752

cepted radiations: several methods are available (e.g. Nested Radiosity light753

model in Evers et al. (2010) or a Monte-Carlo radiation model in Xu et al.754

(2011)) but they require an accurate modeling of the plant structure which is755

currently not available and would necessitate additional experimental work756

to be parameterized. It has to be noted that SUNLAB is not stricto-sensu a757

FSPM since no 3D shape is simulated.758

As regards the biomass distribution module that was introduced in our759

study, our approach is based on the concept of common pool of assimilates760
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and relative sink competition. However, some other models (e.g. ECOPHYS761

[Lacointe et al., 2002])) and experimental observations (Pallas et al. (2008))762

suggest that the distance from source to sink could have an influence. An al-763

ternative approach is thus to consider transport-resistance methods, as done764

for instance in the L-PEACH model [Allen et al., 2005]: although these meth-765

ods are biologically more relevant, they are generally complex and the result-766

ing biomass distribution remains highly dependent on the determination of767

sink activity. Bancal and Soltani [2002] compared the partitioning coeff-768

cients obtained from an improved version of the transport-resistance model769

of [Minchin et al., 1993] to the classical sink-based partitioning model: they770

concluded that the resistance to flux propagation has an influence only in771

pathologic cases of very low source activity and that resistance terms could772

be abandoned in most cases as they are only a mathematical burden whose773

parameter values are very diffcult to measure experimentally. In our source-774

sink approach, the main limiting factor is not the geometrical distance but775

the topological organization of source and sinks (i.e. the number of other776

sinks in a source-sink pathway) (Letort, 2008).777

what do you mean exactly, with this solution?Fenni: I mean the feedback778

effects of trophic competition on other plant functions could be simulated779

in the future. It was written in the paragraph you deleted as such “How-780

ever, the lack of trophic competition simulation may hinder the simulation of781

feedback effects of biomass partitioning on other processes. As Pallas et al.782

(2008) state, trophic competition influenced the organogenesis of grapevine783

in their research. They suggest that a modeling approach simulating sink784

strength variation and the local effects of sink proximity would be more rele-785
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vant than a model considering only development as a function of thermal time786

or the global distribution of available biomass”. I tried to write the modeling787

limitations in term of blade area modeling, and the modeling of feedback ef-788

fects of trophic competition. Besides, the third reviewer asked in last review789

“why the biomass accumulation is a very global level compared to the organ790

level elsewhere. How do you justify these differences?” I answered him that791

“The biomass accumulation module is directly inherited from SUNFLO while792

the biomass distribution module is completely changed, as the first step of793

adapting it into a FSPM model. Its performance and evaluation have shown794

satisfactory results. Next step will be to add feedback effects of biomass795

partitioning to the model, which will improve the simulation of morphogen-796

esis, biomass production etc. This point is discussed in the Discussion and797

conclusion session in this new version of paper”. Therefore I discussed here798

why feedback effects need to be simulated. This is also my answer to the799

first reviewer’s question “where is the biomass production’s under-estimation800

from” and “why the upper leaves’ SLA can not be well simulated”. I put801

the reasons to the bad simulation of blade area, especially the upper leaves’802

blade area. I mentioned some improvements of biomass production modeling803

can be planned in the future, such as the feedback effects of biomass distribu-804

tion on blade area modeling, and also the consequent simulation of biomass805

production. I also mentioned that to improve the simulation of SLA, “Be-806

sides the approach that the logistic function, which is used to model leaf area807

in SUNLAB, can be compared with other functions, the feedback effect of808

trophic competition on leaf area expansion can be investigated and modeled.”809

So to sum up, with the limitation of blade area modeling, I tried to answer810
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reviewers’ three questions: 1, why the biomass production is a very global811

level compared with biomass distribution; 2, where is the under-estimation812

of biomass production from; 3, why did we state that the SLA simulation of813

upper leaves are not well simulated.814

Fenni: the deleted sentences of leaf senescence “In SUNLAB, leaf senes-815

cence is modeled to occur between phenology stages M0 and M3. The816

phenology timing “CTT(d)” is affected by water stress, which affects con-817

sequently the rate of leaf senescence. Its leaf senescence start time can be818

better modeled, since sunflower leaves senescence may occur before M0 stage819

in drought stressed conditions”, is actually an answer to the second reviwer’s820

question in previous review: “Leaf senescence is in the model expected to821

occur between the stages M0 and M3. In the SUNLAB model, the impact822

of the drought stress on the phenology is tsaken into account (page 6-line 54823

to page 7-line 20); however this point should benefit to be discussed, as sun-824

flower leaves senescence may occur before the M0 stage in drought stressed825

conditions”. I tried to mention the limit of leaf senescence modeling. Sunlab826

doesn’t simulate leaf senescence in strong stress, occuring before M0. Ok,827

I put some back, then. Do you agree? Besides, leaf senescence is currently828

affected by water stress only (through the phenology timing “CTT(d)” that829

affects consequently the rate of leaf senescence) and occurs between phenol-830

ogy stages M0 and M3 while, in reality, it may occur before M0 stage in831

severe drought conditions. Therefore, the SUNLAB leaf senescence may need832

also modifications and could include the effects of other environmental cues833

such as day length and temperature, and various biotic and abiotic sources of834

stress, that can affect the initiation and progress of leaf senescence (Aguera835
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et al., 2012).836

Sensitivity analysis. The sensitivity analysis of SUNLAB model in this arti-837

cle has provided parameters’ accountability to the variance of crop yield and838

revealed less than 15% of effects of parameter interactions in biomass dis-839

tribution module. It suggests that for the simulation of yield, the empirical840

modeling could be reasonable, i.e. calculating the yield without the con-841

sideration of interactions between the capitulum and other organs’ growth.842

However, the dominant influence of capitulum’s sink strength dynamics pa-843

rameters sinkA(cap) and sinkB(cap) may indicate that a better harvest844

function should be tested rather than a linear relationship with total dry845

biomass. Sensitivity analysis could also be perfomed on other output of in-846

terest such as blade area or stem biomass, in order to better understand the847

respective influence of the input parameters on the different components of848

plant phenotype. A sensitivity anlaysis considering all SUNLAB parameters,849

rather than only parameters in biomass distribution, is also necessary to dis-850

cover the potential interactions existing among all parameters and modules.851

A limitation of the Sobol method that was used for these senstivity analyses,852

is that no correlations were included between the parameters, although they853

might certainly exist. For example, the correlation analysis of these param-854

eters based on our estimated values in a family of four genotypes indicates855

a correlation factor of 0.8 for parameters SR(petiole) and SR(internode).856

For the further characterization of genotypes, sensitivity techniques designed857

for taking into account input parameters correlations should be adopted (Xu858

and Gertner, 2007; Chastaing et al., 2012; Wu et al., 2013).859
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Model parameterization and evaluation. Once calibrated, SUNLAB was able860

of reproducing phenotypic variabilities in different genotypic and environ-861

ment experiments scenarios. The genotypes “Melody” and “Heliasol” (Fig. 3)862

were shown to have better drought tolerance than the two other genotypes.863

Their yields were hardly not influenced by water stress while the other two864

experienced a slight reduction(around 15% of 2001 harvest). With some vari-865

ation according to plant species, certain stages such as germination, seedling866

or flowering are known to be the most critical stages, vulnerable to water867

stress (Hadi et al., 2012). Seed germination is the first critical stage and868

the most sensitive in the life cycle of plants (Ahmad et al., 2009) and seeds869

exposed to unfavorable environmental conditions, such as water stress at this870

stage may have seedling establishment compromised (Albuquerque and Car-871

valho, 2003). However our simulation and field data suggested that drought872

stress had little effect on crop growth. As sunflower is categorized as a low to873

medium drought sensitive crop (Turhan and Baser, 2004), the water deficit874

level might not be strong enough to cause severe growth deficits. An environ-875

mental scenario with stronger water deficiency would be required to better876

parameterize the model. Then, additional scenarios (more cultivar/lines or877

different kinds of stress conditions) could either help further quantifying the878

model predictive ability and the range of its validity conditions, or help iden-879

tifying the inappropriate or missing modules that need further investigation.880

More importantely, since the model parameters are numerically estimated,881

these additional scenarios will also allow testing their stability under differ-882

ent environmental conditions and using phenotyping data at different growth883

stages (Ma et al., 2007, 2008). A good stability is a necessary condition to884
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consider these parameters as genotype-dependent and to move forward in-885

vestigating their potential genetic determinism, as illustrated for example in886

(Buck-Sorlin et al., 2005).887

Fenni: Ok, I agree. This paragraph was added because of the first re-888

viewer’s question “ Results from model evaluation are not really discussed.889

I mean, all model are wrong but it is needed to discuss how suitable they890

are for their use. e.g. Does improving the phenotyping (more cultivar/lines,891

stress scenarios) automatically increase the prediction capacity when param-892

eter are numerically estimated? Any insights on the actual model perfor-893

mance for discriminating cultivars Vs working with lines?”. I didn’t answer894

him about “discrimating cultivars” vs “working with lines”, because I don’t895

know the answer. I think in our model, we don’t have parameters which can896

discriminate lines. We only have genotypic parameters, which are cultivar-897

dependant, and common parameters for all genotypes. He didn’t pose any898

further question about this point in the new letter, but maybe you could add899

something to answer his previous question. Ok, see above: I have added the900

sentences from ”‘Then, additional scenarios...”’: do you agree?”’901

Conclusion: Summary of results. A functional-structural model SUNLAB902

was developed. It describes the sunflower topology and morphogenesis at903

organ level with blades, petioles, internodes, and capitulum. Coordination904

of the expansion dynamics of these organs is ruled by their initiation and905

senescence thermal times. Ecophysiological processes interact with plant906

structural dynamics to affect biomass accumulation and partitioning to or-907

gans. As a joint concept of GREENLAB and SUNFLO models, SUNLAB908

has better structural features than SUNFLO and it succeeds to deal with the909
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biomass distribution at organ level. SUNLAB inherits the ecophysiological910

merits of SUNFLO that have been validated in different environmental con-911

ditions for 26 genotypes (Casadebaig et al., 2011; Lecoeur et al., 2011). In912

contrast, GREENLAB over-simplifies a number of processes, such as photo-913

synthesis and assimilate conversion to biomass (Guo et al., 2006; Ma et al.,914

2008), and it is still in its preliminary stage to include water source influence915

and root system (Li et al., 2009). The ability of this newly-developed SUN-916

LAB model to reproduce observed data of sunflower growth was evaluated917
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Cournède, P.-H., Chen, Y., Wu, Q., Baey, C., Bayol, B., 2013. Development978

and evaluation of plant growth models: Methodology and implementa-979

tion in the PYGMALION platform. Mathematical Modelling of Natural980

Phenomena 8, 112–130.981

de Reffye, P., Heuvelink, E., Barthlmy, D., Cournde, P.-H., 2008. Plant982

growth models. In: Jorgensen, S., Fath, B. (Eds.), Ecological Models. Vol.983

4 of Encyclopedia of Ecology (5 volumes). Elsevier, Oxford, pp. 2824–2837.984

Dingkuhn, M., Baron, C., Bonnal, V., Maraux, F., Sarr, B., Sultan, B.,985

Clopes, A., Forest, F., 2003. Decision support tools for rainfed crops in the986

Sahel at the plot and regional scales, international fertilizer development987

center and acp-eu technical centre for agricultural and rural cooperation:988

wageningen, the netherlands Edition. Struiff Bontekes, T.E. and Wopereis,989

M.C.S., p. 127139.990

Evers, J., Vos, J., Yin, X., Romero, P., van der Putten, P., Struik, P., 2010.991

Simulation of wheat growth and development based on organ-level photo-992

synthesis and assimilate allocation. Journal of Experimental Botany 61 (8),993

2203–2216.994

Feng, L., Mailhol, J.-C., Rey, H., Griffon, S., Auclair, D., Reffye, P. D., 2010.995

Combining a process based model with a functional structural plant model996

for production partitioning and visualization. 6th International workshop997

on functional-structural plant models, 41–43.998

Godin, C., Sinoquet, H., 2005. Functional-strucutural plant modelling. New999

Phytologist 166, 705–708.1000

43



Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S. J., Dauzat, M.,1001

Hamard, P., Thioux, J.-J., Rolland, G., Bouchier-Combaud, S., Lebaudy,1002

A., et al., 2005. Phenopsis, an automated platform for reproducible phe-1003

notyping of plant responses to soil water deficit in arabidopsis thaliana1004

permitted the identification of an accession with low sensitivity to soil1005

water deficit. New Phytologist 169 (3), 623–635.1006

Guo, Y., Ma, Y., Zhan, Z., Li, B., Dingkuhn, M., Luquet, D., de Reffye,1007

P., 2006. Parameter optimization and field validation of the functional-1008

structural model greenlab for maize. Annals of Botany 97, 217–230.1009

Hadi, H., Khazaei, F., Babaei, N., Daneshian, J.and Hamidi, A., 2012. Evalu-1010

ation of water deficit on seed size and seedling growth of sunflower cultivars.1011

International Journal of AgriScience 2 (03), 280–290.1012

Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., F, F. V. E.,1013

2006. Models for navigating biological complexity in breeding improved1014

crop plants. Trends in Plant Science 11, 587–593.1015

Heuvelink, E., August 1995. Dry matter partitioning in a tomato plant: one1016

common assimilate pool? Journal of Experimental Botany 46 (289), 1025–1017

1033.1018

Heuvelink, E., 1999. Evaluation of a dynamic simulation model for tomato1019

crop growth and development. Annals of Botany 83, 413–422.1020

Hu, B., de Reffye, P., Zhao, X., Yan, H., Kang, M., 2003. Greenlab: A1021

new methodology towards plant functional-structural model – structural1022

44



aspect. In: Hu, B., Jaeger, M. (Eds.), Plant Growth Models and Applica-1023

tions. Tsinghua University Press and Springer.1024

Jeuffroy, M.-H., Barbottin, A., Jones, J., Lecoeur, J., 2006. Chapter 10: Crop1025

models with genotype parameters. Working with Dynamic Crop Models,1026

281–307.1027

Kang, F., Galinier, T., henry Cournede, P., Lecoeur, J., 2011. Parameter-1028

ization of plant growth models to characterize genotype by environment1029

interactions: a methodology adapted to breeding programmes. Aspects of1030

Applied Biology, Systems Approaches to Crop Improvement 107, 161–170.1031

Kang, M.-Z., Evers, J., Vos, J., De Reffye, P., 2008. The derivation of sink1032

functions of wheat organs using the greenlab model. Annals of Botany1033

101(9).1034

Kniemeyer, O., Buck-Sorlin, G., Kurth, W., 2006. Groimp as a platform for1035

functional-structural modelling of plants. In: Vos, J., Marcelis, L. F. M.,1036

deVisser, P. H. B., Struik, P. C., Evers, J. B. (Eds.), Functional-Structural1037

Plant Modelling in Crop Production. 5.-8. 3. 2006. Springer, Berlin, p.1038

4352.1039

Lebon, E., Pellegrino, A., Louarn, G., Lecoeur, J., 2006. Branch development1040

controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying1041

soil. Annals of Botany 98 (1), 175.1042

Lebon, E., Pellegrino, A., Tardieu, F., Lecoeur, J., 2004. Shoot development1043

in grapevine (vitis vinifera) is affected by the modular branching pattern of1044

45



the stem and intra and intershoot trophic competition. Annals of Botany1045

93 (3), 263–274.1046

Lecoeur, J., Poire-Lassus, R., Christophe, A., Pallas, B., Casadebaig, P.,1047

Debaeke, P., Vear, F., Guiloni, L., 2011. Quantifying physiological de-1048

terminants of genetic variation for yield potential in sunflower. sunflo: a1049

model-based analysis. Functional plant biology 38(3), 246–259.1050

Letort, V., 2008. Multi-scale analysis of source-sink relationships in plant1051

growth models for parameter identification. case of the greenlab model.1052

Ph.D. thesis, Ecole Centrale Paris.1053
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Table 1: Values of the main parameters inherited from SUNFLO.

Parameter Parameter values
Name Albena Melody Heliasol Prodisol

E1 (◦Cd) 510 540 480 510
F1 (◦Cd) 900 920 880 900
M0 (◦Cd) 1160 1160 1150 1120
M3 (◦Cd) 1800 2060 1940 1840
Nmax (#) 31 26 24 25
A1 (cm2) 9999 9380 8707 8233
A2 (#) 18.9 15.4 15.3 15.9

A3 (cm2) 488 613 670 498
k (#) 0.78 0.96 0.88 0.87
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Table 2: Sensitivity analysis of SUNLAB parameters: first-order indices of the most influ-
ential parameters (with index > 1%).

sinkA(cap) sinkB(cap) sinkA(intern) SR(cap) SR(intern) sinkB(intern) internEpdTT

0.51 0.12 0.12 0.05 0.03 0.02 0.02
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Table 3: Estimated parameter values of SUNLAB for four genotypes.

Parameter Param. values (with associated standard error)

Name Albena Melody Heliasol Prodisol
sinkA(blade) 8.4 (0.22) 2.8 (0.12) 2 (0.1) 4 (0.16)

sinkA(petiole) 3.4 (0.33) 1.5 (0.22) 1.5 (0.7) 4.3 (0.76)

sinkA(internode) 2.2 (0.12) 3.5 (0.05) 2.2 (0.07) 3.8 (0.08)

sinkA(capitulum) 5.6 (0.12) 4.3 (0.17) 6.5 (0.3 ) 6.5 (0.28 )

sinkB(blade) 14.8 (0.4) 2.3 (0.16) 2.1 (0.18 ) 3.6 (0.26 )

sinkB(petiole) 16.8 (1.8) 4.1 (6.4) 2.7(0.76 ) 4.2 ( 0.5)

sinkB(internode) 13.8 (3.9) 7.7 (0.29) 1.7(0.07 ) 12.2 ( 0.44)

sinkB(capitulum) 3.4 (0.22) 2.5 (0.23) 6.1(0.44) 5.8(0.52 )

SR(petiole) 0.5 (0.04) 0.2 (0.03) 0.24(0.03 ) 0.43 (0.04 )

SR(internode) 1 (0.06) 3 (0.19) 1.6(0.08 ) 1.8(0.09 )

SR(capitulum) 1000 (253) 600 (126) 350(54 ) 500( 144)
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Figure 1: Water cycle processes as considered in the water budget module of SUNLAB
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Figure 2: Fraction of transpirable soil water FTSW for three datasets “2001”, “2002a”,
“2002b”
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Figure 3: Experimental data (dots) and simulation (lines) comparisons of blade dry mass,
internode dry mass, and capitulum dry mass for the four genotypes - “Albena”, “Melody”,
“Heliasol”, and “Prodisol” - in dataset “2001”.
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Figure 4: Sink strength variation based on SUNLAB estimated parameters
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Figure 5: Graphs A to D: experimental data (dots) and simulations (lines) comparisons
for the “2001” (blue) and “2002a” (red) conditions of the radiation interception efficiency
RIE(d), total blade area AA(d), leaf number N(d), cumulated dry above-ground biomass
CDM(d) and biomass compartments (capitulum, blades, petioles, internodes) for the
“Melody” genotype. Graph E: biomass compartments of “Prodisol” genotype. Graph F:
experimental data (dots) and simulations (lines) comparisons for individual blade biomass
of “Heliasol” genotype on different days in dataset “2001” (blue) and “2002a” (red).
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Figure 6: Model evaluation for genotype “Albena” using an additional experimental
dataset: “2002b” (RMSE: 36.4; coefficient of determination: 0.95)
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Figure 7: Comparison of simulation and field data for individual blade area and biomass
of genotype “Melody”; the right graph is the simulation of specific leaf area for the four
genotypes
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