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Remote Sensing Image Classification
Using Attribute Filters Defined

over the Tree of Shapes
Gabriele Cavallaro, Student Member, IEEE, Mauro Dalla Mura, Member, IEEE,

Jón Atli Benediktsson, Fellow, IEEE, and Antonio Plaza, Fellow, IEEE

Abstract—Remotely sensed images with very high spatial
resolution provide a detailed representation of the surveyed scene
with a geometrical resolution that at the present can be up to 30
cm (WorldView-3). A set of powerful image processing operators
have been defined in the mathematical morphology framework.
Among those, connected operators (e.g., attribute filters) have
proven their effectiveness in processing very high resolution
images. Attribute filters are based on attributes which can be
efficiently implemented on tree-based image representations. In
this work, we considered the definition of min, max, direct and
subtractive filter rules for the computation of attribute filters over
the tree of shapes representation. We study their performance
on the classification of remotely sensed images. We compare the
classification results over the tree of shapes with the results
obtained when the same rules are applied on the component
trees. The random forest is used as a baseline classifier and the
experiments are conducted using multispectral data sets acquired
by QuickBird and IKONOS sensors over urban areas.

Index Terms—Remote sensing, Classification, Mathematical
Morphology, Tree of Shapes.

I. INTRODUCTION

REMOTE sensing instruments have been constantly im-
proving their acquisition capabilities in terms of spatial

resolution (e.g., WorldView-3: 0.3 m) and spectral information
(e.g., AVIRIS: 224 spectral channels). Very High Resolution
(VHR) remotely sensed images provide a precise and detailed
representation of a surveyed scene. The spatial information
contained in these images can be fundamental for any appli-
cation which requires a detailed analysis of the scene.

Such detailed automatic analysis and interpretation can
be achieved by using mathematical morphology, a theory
on morphological transformations, which has provided a set
of very powerful tools for image processing. It originates
from the seminal works of Matheron and Serra who worked
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on problems in petrography and mineralogy [1–3]. Due to
their pioneering work, mathematical morphology [4] [5] has
achieved the status of a fundamental set of toolkit in image
processing and analysis and has provided solutions to many
tasks in different domains, such as remote sensing [6][7],
pattern recognition [8][9] and medical imaging [10][11]. Mor-
phological operators perform image analysis mainly at the
pixel-level and the region-level. For instance an image can
be processed by considering the values in the neighborhood
of each pixel. Such neighborhood is defined by the extent of a
spatial mask commonly referred to as a structuring element
(SE) [12]. By varying the size and the shape of the SE,
the image is probed by different spatial windows leading to
different results that can provide useful information about the
shape and size of the objects present in the image.

Recently, region-based filtering tools [13][14] (called con-
nected operators) have received significant attention. Contrary
to classical morphological operators (i.e., based on SEs),
connected operators are edge preserving since they act directly
on the connected components where the image is constant,
the so-called flat zones. As a consequence, the characteristics
of the spatial features are not distorted since the connected
operators can remove boundaries between flat zones but can-
not add new boundaries or modify existing ones. Connected
operators are capable of performing image transformations
that can selectively suppress some details from the image
and maintain unaffected structures that are relevant for the
analysis. However, the spatial information belonging to VHR
images present heterogeneous characteristics, thus a multilevel
analysis is required in order to perform a complete modeling.

For this purpose, the authors in [15] introduced morpho-
logical profiles (MPs). MPs are a multiscale decomposition of
a grayscale image composed by stacking the filtered images
obtained by transforming the input image with a sequence of
opening and closing by reconstruction filters based on SEs.
The operators by reconstruction permit to filter an image by
entirely preserving the geometry of those structures that are not
erased from the scene. In [16], the MPs were applied for the
first time in a remote sensing classification task. Nevertheless,
there are limitations on the capabilities of modeling the spatial
information. In particular, the profiles built by the filters based
on SEs are not able to easily model other features than the size
of the objects.

Breen and Jones originally proposed morphological attribute
filters (AFs) [17], which have received increasing attention
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Fig. 1: Synthetic dataset: (a) binary image composed of three
groups of foreground regions having different shapes (and
different scales), (b) labeling of the pixels (4 classes), (c) clas-
sification with increasing attribute area and (d) classification
with non increasing attribute moment of inertia.

due to the extended works presented in [18][19][20]. Attribute
filters act by merging the connected components of a grayscale
image according to a criterion evaluating one or more at-
tributes computed on the image. They can overcome the main
limitation of the MPs (i.e., they do not operate on SEs)
due to their increased flexibility in defining operators based
on attributes (i.e., the measures driving the type of filtering
produced by the operator). Such an attribute can be related
to the characteristics of the regions in the scene such as the
area, perimeter, moment of inertia etc. The attribute filters can
be efficiently implemented on the hierarchical representations
of an image, such as the component trees (i.e., min-tree or
max-tree [21] [22]) or the tree of shapes [23].

In such tree representations, each node corresponds to a
region within the image. The filtering is not done on the image
space, and it involves the creation of the tree structure, the
analysis of each node by measuring a specific criterion, and
the decision of whether to preserve or delete the node. The
criteria are usually related to whether the value of a measure
(i.e., attribute) fulfills a predefined condition. A criterion is
said to be increasing if it is verified for a node and all the
nodes nested in it. Examples of increasing criteria involve
increasing attributes (such as area, volume, size of the bound-
ing box, etc.). In contrast, non increasing attributes such as
scale invariant measures (e.g., homogeneity, shape descriptors,
orientation, etc.), lead to non increasing criteria, which means
that the value of the attribute is not always greater for the
ancestors of a node. The use of non-increasing attributes is
sometimes necessary as shown in Fig. 1. In this example the
objective is to perform a classification of the scene in which
the discriminant feature is the shape of the regions. Thus, the
objects in the foreground belong to different thematic classes
according to their shape. Considering the area (i.e., increasing
attribute) of the region as feature for the classification (result
in Fig. 1(c)) leads to misclassifications, since some of the
squared and circlular objects have similar size. Conversely, a
shape descriptor such as the moment of inertia (non-increasing
attribute) is able to discriminate all the different classes Fig.
1(d). When non increasing attributes are considered, arbitrary
filter rules have to be defined in order to generate the outputs

of the filter. Several filtering approaches have been proposed
in the literature such as min [13], max [24], viterbi [21] and
direct [25]. The first three strategies belong to the class of
pruning strategy (i.e., entire branches are removed), while
direct is a non pruning strategy (i.e., isolated nodes might
be deleted). The authors in [26] [27] later showed that the
aforementioned filter rules may not offer the best possible
strategy when filtering grayscale images with non increasing
attributes. For instance, the regions that are not supposed to be
deleted by the filter may disappear in the local background or
be merged with adjacent regions. Consequently, they proposed
the non pruning strategy subtractive, a new filter rule which
can be efficiently used for shape decomposition. The above-
mentioned rules have been proposed for dealing with min-tree
and max-tree.

In this work, we considered the definition min, max, direct
and subtractive for the computation of attribute filters over
the tree of shapes. The hierarchy between its nodes is not
driven by an ordering criterion of their graylevels (i.e., min-
tree and max-tree), since the ordering follows the inclusion
relationship of the regions. In such structure, the applica-
tion of non pruning strategies is not straightforward. For
instance, in the subtractive rule, the operation of updating
the descendants over the tree of shapes can introduce new
graylevels in the filtered images which were not present in
the original image. We study the effect of the filtering rules
by considering non increasing attributes, such as standard
deviation and moment of inertia. We show that, according to
the selected attributes and the filter rule, the characterization of
the spatial information is performed differently. The sequential
application of attribute filters over the component trees and
the tree of shapes generates multi-level decompositions of
the image which are called Attribute Profiles (APs) [28]
and Self-Dual Attribute Profiles (SDAPs) [29], respectively.
In this contribution we evaluate the classification accuracies
obtained by applying APs and SDAPs generated by different
filter rules. SDAPs already proved to be more effective than
APs [29] for the increasing attribute area, since bright and
dark regions are simultaneously processed. In [30], we have
presented a preliminary comparison of the impact of different
filter rules in the context of classification. Yet this comparison
was performed on a single data set, and the description of those
rules and their comparison were not complete. This paper aims
at extending this analysis, by presenting a full and exhaustive
comparison conducted using multispectral data sets acquired
by QuickBird and IKONOS sensors over urban areas.

The remainder of the paper is structured as follows. Section
II reviews morphological attribute filters computed on min-
tree and max-tree and describes the filtering strategies in
the context of increasing and non increasing operators. In
Section III, we compute attribute filters with pruning and non
pruning rules over the tree of shapes. The use of morphological
attribute profiles in the context of classification of remotely
sensed images is reviewed in Section IV. The experimental
analysis, which includes the description of the data sets,
the setup and the results, is given in section V. Section VI
concludes this work with some remarks and hints at future
research directions.
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II. ATTRIBUTE FILTERS BASED ON MIN AND MAX TREE

Attribute filters are morphological operators that perform
a region processing since they act by merging regions of
constant value, the so-called flat zones. Attribute filters can
be efficiently implemented taking advantage of hierarchical
representations of the image as a tree. In the following these
representations will be introduced along with the implemen-
tation of the filtering techniques based on the min-tree and
max-tree.

A. Min and Max tree

Let f be a discrete two-dimensional grayscale image, then
its spatial domain E is a set of positions which map into a
set of scalar values V, f : E → V with typically E ⊆ Z2

and V ⊆ Z. A flat zone of f is a region of connected pixels
CCv(f) (connected component) of the level set Hv(f) = {x ∈
E, f(x) = v}, with v ∈ V . At each gray level, there may be
multiple connected components CCkv(f), with k being some
index variable. A peak component can be defined as the kth
connected component CCkv(f) of the lower L(f) and upper
U(f) threshold sets as [31]:

L(f) = {x ∈ E, f(x) < v}, (1)

U(f) = {x ∈ E, f(x) ≥ v}, (2)

There is an inclusion relationship between the peak compo-
nents extracted by L(f) and U(f) which allows to associate
a node of a tree Nk

v (f) to the subset of CCkv(f) with a
fixed graylevel v and represent the image as an hierarchical
structure. The min-tree and max-tree structures represent the
components in L(f) and U(f) respectively with their inclusion
relations. The min-tree models the inclusion of regions ac-
cording to the ordering graylevel criterion (≤), thus the tree
contains only the shapes that are darker than their neighbor-
hood (i.e., the graylevel of each region is lower than their
neighborhood graylevel). The root of the min-tree is the entire
image domain at the greatest grayscale value, while the leaves
are the regional minima. The max-tree is dual, and it contains
only the regions that are brighter than the graylevel of their
neighboring pixels. In this case the root is the whole image
at the lowest graylevel and leaves are the regional maxima.
Component trees are widely used for computing attribute
filters [17] [27], pattern spectra [27] [32], and multi-scale
decompositions [33]. In [34] a complete comparison of the
different algorithms proposed in the literature (sequential and
parallel) for their computation is detailed.

B. Increasing and Non increasing operators

Once the tree representation has been created, the filtering
step analyzes each node by measuring a specific criterion
and takes a decision on the elimination or preservation of
the node. The simplification itself is governed by a criterion
(e.g., a binary predicate P ) that may involve simple notions
such as size, contrast, or more complex ones such as texture,
motion, or even criteria close to semantic notions, such as
similarity to predefined shapes. Taking as a reference the
predicate P = α(Nk

v (f)) ≥ λ, an attribute α is computed

over each node Nk
v (f) and if it does not satisfy the predicate

different strategies as remove/preserve decisions can be used
[27]. According to the type of criteria (e.g., predicate) and the
property of the attribute, the resulting operator can be defined
as increasing or non increasing.

In the context of a tree structure, this characteristic is related
to the criterion assessed for each node. When the predicate is
in the form P = α(Nk

v (f)) ≥ λ or P = α(Nk
v (f)) ≤ λ

and the attribute is increasing (i.e., the attribute of a node can
never be less than the values of its descendants in the tree), the
operator is also increasing. In this case, as shown in Fig. 2(b),
there is no problem in defining a level where the criterion is
higher or lower than a given λ threshold. Contrarily, when
the attribute is not increasing (i.e. the attribute of a node can
be less than the values of its descendants in the tree), any
predicate leads to a non increasing operation. In particular, as
shown in Fig. 2(c), the criterion sequence fluctuates around
the λ threshold and defining the set of nodes to remove is less
straightforward.
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Fig. 2: Example of attribute values sequences for the nodes
marked in red of the tree branch (a). Increasing attribute area
(b), and non-increasing attribute moment of inertia (c). The
attribute values sequence is marked are red, while the threshold
imposed by the predicate P is marked in blue.

C. Connected operators: attribute filters

In this work we use a specific category of connected
operators called attribute filters. When attribute filters are
applied over the tree representation of an image, the operator
leads to a pruning of the tree by removing the nodes whose
associated regions do not fulfill P.

Two general approaches might be used at this point: pruning
and non pruning strategies. In the former, a single cut is made
along each path from leaf to root, and all nodes leaf-side of
the cut are collapsed onto the highest surviving ancestor. In
the second class of rules, the simplification of the tree is not
limited to the removal of entire branches but also isolated
nodes might be removed along a root path. For example,
when a node is deleted, the value of the pixels belonging
to the node are updated to the value of its oldest surviving
ancestor. Different approaches can be used for dealing with
non increasing attributes. For example, the Viterbi algorithm
[21] addresses the decision of removing or preserving a node
as an optimization problem, while in [35] the authors apply
the filtering on a graph whose nodes are weighted with an
increasing order by the attribute.

In the following section, a description of pruning and non
pruning strategies is provided by including the pseudo-code of
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the algorithms (a complete analysis can be found in [21] and
[27]).

D. Pruning strategy

Pruning strategies consist in removing whole branches of the
tree. They are simple to apply when the attribute is increasing
since all nodes on which the criterion is not verified are
organized in entire branches (i.e., if a node has to be removed,
all of its descendants also have to be removed). When nodes
of a branch are deleted, the level (i.e., graylevel) of their pixels
are assigned to the level of the highest ancestor which satisfies
the criterion.

The min rule prunes the branches from the leaves up to the
last node that has to be removed. Therefore a node is removed
if the predicate is false or if one of its ancestors is removed.
The function Min rule (Algorithm 1) scans the tree starting
from the root, and deletes a node when it does not satisfy the
predicate or when its parent has to be removed.

The max rule cuts out the branches from the leaves up to
the first node that has to be preserved. Thus, a node has to
be removed if the predicate is false and all of its descendant
nodes are deleted as well. In this case, the function Max rule
(Algorithm 2) scans the tree starting from the leaves, and
removes a node only when itself and its parent do not satisfy
the predicate.

E. Non pruning strategy

A different type of image decomposition can be used in
order to characterize heterogeneous regions and objects. The
extraction of the pattern spectra [27] can be useful if the types
of the details of interest are characterized by shape rather than
size. This idea has been formalized as the so-called shape
filters [26], and the operators which are anti-extensive and
idempotent are not necessarily increasing. One example is
the region perimeter: if a node Nk

0 (f) is included in region
Nk

1 (f), no specific relation can be stated about their respective
values. Non pruning strategies provide solutions for such cases
where the simplification approach is not straightforward (i.e.,
the descendants of a node to be removed have not necessarily
been removed).

Algorithm 1 Min rule
1: procedure MIN(tree, image, P)
2: all nodes ← mark false
3: for all nodes (from root to leafs) do
4: if mark(parent)=true or P(node)=false then
5: level(node) ← level(parent)
6: node ← mark true

The direct rule consists simply in removing the nodes that
do not fulfill the criterion. Thus, a node is removed if the
predicate is false; its pixels are assigned to the graylevel of the
highest ancestor which meets the criterion and its descendants
are left unaffected (Algorithm 3). It has been proven in the
literature that the direct rule is not the best strategy to deal
with object enhancement and image decomposition based on
shape [26]. The reason is that this strategy may lead to
a loss of the contrast between the local background and

Algorithm 2 Max rule
1: procedure MAX(tree, image, P)
2: all nodes ← mark false
3: for all nodes (from leafs to root) do
4: if mark(node)=false then
5: parent ← mark true
6: if P(node)=true then
7: node ← mark true
8: parent ← mark true
9: for all nodes (from root to leafs) do

10: if mark(node)=true then
11: level(node) ← level(parent)

the surviving descendant regions. The consequence, which is
shown in [26], is that the difference between the original image
and the filtered image may contain structures that meet the
aforementioned criterion (further details will be explained in
the next section).

In order to solve the previous issues, the authors in [26] pro-
posed the subtractive rule, as a simple and consistent approach
for non increasing attributes. The first part of the algorithm
performs the same as the direct rule, meaning that the nodes
that do not satisfy the predicate are removed. Afterwards,
the deletion of a node triggers a propagation process, which
updates the graylevel of the surviving descendant nodes, so
that the contrast with the local background remains invariant.
Algorithm 4 shows that, for each descendant node, firstly, its
value is set to the minimum, and then, by considering all
graylevels in turn, a unit term is added every time the algorithm
finds a connected component which satisfies the predicate and
contains the considered node. A dual analysis can be done
in the case of a min-tree, where first the maximum value is
assigned and then a unit term is subtracted for each node which
satisfies the previous requirements.

Algorithm 3 Direct rule
1: procedure DIRECT(tree, image, P)
2: for all nodes (from root to leafs) do
3: if P(node)=false then
4: level(node) ← level(parent)

Algorithm 4 Subtractive component tree rule
1: procedure SUBTRACTIVE (tree, image, P)
2: for all nodes (from root to leafs) do
3: if P(node)=false then
4: UPDATE DESCENDANTS(tree, node, P)
5:
6: function UPDATE DESCENDANTS (tree, node, P)
7: for all the descendants do
8: level(descendant)=min graylevel(tree)
9: for all the graylevels considers each region do

10: if P(region)=true and region ⊆ node then
11: level(descendant) ← level(descendant) + 1
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III. ATTRIBUTE FILTERS BASED ON TREE OF SHAPES

Pruning and non pruning strategies have been proposed
for the min-tree and max-tree representations. In this section,
we consider pruning and non pruning filter rules for the
computation of attribute filters over the tree of shapes. We
show that the definition of min, max, direct is equivalent to
the case of component trees. We propose a different definition
for the subtractive rule, since the principle that regulates
the hierarchy of the nodes in the tree of shapes follows the
inclusion of different structures.

A. Tree of shapes

A self-dual tree has been defined in [23], called the tree of
shapes (also known as inclusion tree), that describes the image
f contents in a unique way; such a tree can be interpreted
as the result of merging the min- and a max-tree of the
same image. The tree of shapes is a morphological self-dual
representation of the CCkv(f) within an image (i.e., zones
enclosed by an isolevel line). It was firstly introduced by
Monasse et al. [23], where the structure was computed with the
Fast Level Line Transform (FLLT) algorithm: it first computes
the pair of dual component trees and then obtains the tree of
shapes by merging both trees. Afterwards, Caselles et al. [31]
introduced the Fast Level Set Transform algorithm (FLST),
which relies on a region-growing approach to decompose the
image into shapes. An operation called saturation is applied to
the connected components which gives flat regions obtained
by progressively merging nested regions. Specifically, the
algorithm extracts each branch of the tree starting from the
leaves and growing them up to the root until only a single flat
region is reached. Song et al. [36], proposed to retrieve the
tree of shapes by building the tree of level lines and exploiting
its interior of each level line. Recently Geraud et al. [37]
proposed a new algorithm to compute the tree of shapes in
order to reduce the computational complexity and overcome
the restriction to only 2D images of the previous methods.
The algorithm computes the tree of shapes with quasi-linear
time complexity when data quantization is low (typically 12
bits or less) and it works for nD images. Moreover, Crozet et
al. [38] presented the first parallel algorithm to compute the
morphological tree of shapes based on the previous algorithm
[37]. The tree of shapes is a more general representation of
the image with respect to the min-tree and max-tree and it has
many advantages.

An example of tree of shapes computation (i.e., region
growing) is shown in Fig. 3 (f). The FLST algorithm extracts
each branch of the tree starting from the leaves and growing
them up to the root until only a single flat region is reached.
It comprehends both the L(f) and U(f) sets, and intrinsically
eliminates the redundancy of information contained in those
sets. Min-tree and max-tree are representations of the image,
and usually not all the connected components present in L(f)
are also present in U(f) and vice versa. Since the tree of
shapes is self-dual, it makes no assumption about the contrast
of objects (either light object over dark background or the
contrary). Finally, it encodes the spatial inclusion of CCkh(f)
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Fig. 4: Attribute filtering of the grayscale image f in Fig. 3(a)
using the area attribute with P = α(CC) ≤ 20. (a) Tree of
shapes (nodes marked in red are removed). (b) Filtered image
ρP(f) and (c) difference image f− ρP(f).

in gray-level images so it is complementary to some other
representations that focus on component (or region) adjacency.

B. Increasing attributes

When the attribute is increasing, the filtering is straight-
forward and it consists of removing whole branches of the
tree. In particular, all the filtering rules (i.e., pruning and
non pruning) lead to the same filtering result [30]. However,
in [29] it was shown that the use of the tree of shapes as
a structure representing the image allows simultaneously to
access the information present on both min-tree and max-
tree. Moreover, the self-dual connected operators ρP that are
computed on the tree of shapes produce a greater simplification
of the image with respect to non dual filters, since they
operate simultaneously on the bright and dark components. An
example of an attribute filter computed on the tree of shapes
representation with the increasing attribute area is shown in
Fig. 4. The self-dual operator ρP is able to remove directly
both bright and dark small structures [see the difference image
f − ρP(f) Fig. 4(c)], and it leads to a complete simplification
of the image [see the filtered image ρP(f) Fig. 4(b)].

C. Non increasing attributes

As already explained in the previous section, in order to
handle the non increasing attributes, pruning and non pruning
strategies have been proposed. The decision about the most
suitable strategy depends mainly on the application (e.g.,
image filtering or decomposition). An intuitive requirement
when decomposing an image f based on shape rather than
size (e.g., moment of inertia) is that the difference between
the image f and the filtered image ρP(f) is an image which
should only contain structures that do not meet the P [26]
(i.e., the regions which have been filtered out). It was shown
that the pruning strategies can not satisfy this requirement.
For example, in the branch of the tree of shapes shown in Fig.
5(a):

(A)N5 −→ (D)N0 −→ (I)N5,

which means that only the node D has to be removed (i.e., it
does not satisfy P). In this case, there are no pruning strategies
that can simultaneously retain A and I, while removing D (e.g.,
Fig. 5(c) min removes all the nodes A-D-I, while Fig. 5(d)
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structure (k).

max preserves the whole branch). Furthermore, the authors in
[26] proved that also the non pruning strategies such as direct
may not perform efficiently. For example, the difference image
shown in Fig. 5(e) contains regions which satisfy P (e.g., the
nodes F-G-I-N).

The authors in [27] proposed a new strategy for non
increasing attributes called subtractive rule, in order to address
the previous issues. However, its definition was formulated for
the max-tree structure for which the inclusion of the nodes is
driven by graylevels. For instance, the definition of subtractive

Algorithm 5 Subtractive tree of shapes rule
1: procedure SUBTRACTIVE (tree, image, P)
2: all ∆(node) ← 0
3: for all nodes (from root to leafs) do
4: ∆(node)=∆(parent)
5: if P(node)=false then
6: ∆(node)=∆(node)+level(node)-level(parent)
7: for all nodes (from root to leafs) do
8: level(node)=level(node)-∆(node)

can not be directly applied to the tree of shapes. Particularly, in
Algorithm 4 the updating process is achieved by considering
all the graylevels in turn starting from the minimum (i.e.,
max-tree). This approach would make no sense in the tree of
shapes structure since the hierarchy between the nodes follows
the inclusion relationship of the regions. We propose here
a different approach, where the intensity of each descendant
node is lowered by the same amount of which the deleted node
was lowered. The proposed subtractive function (Algorithm
5) begins with a loop where, for each node, starting from the
leafs, a ∆ value is stored. The ∆ is equal to the ∆ of its parent.
If the P of the node is false, a new value is added to ∆, equals
to the difference between the level of the node and the level
of its parent. Finally, for each node, ∆ is used to lower all the
sub-components level of the surviving descendants nodes.

In this scenario, for the branch of the tree of shapes
previously considered, the attribute filter removes the nodes
D and updates the graylevel of the surviving descendant I.

The filter first computes ∆ and then it updates the level of the
node I as follows:

∆ = (A)N5 − (D)N0 = 5− 0 = 5

(I)N = (I)N5 −∆ = 5− (−5) = 10

The updating process solves the problem found in direct,
where regions that satisfy P are lost in the filtered image since
the contrast with the local background is not maintained. For
example the surviving regions I and N do not appear in the
filtered image with the direct rule in Fig. 5(e) while they are
preserved by the subtractive rule in Fig. 5(f). This effect may
become critical when filtering images representing objects in
a real scene (i.e., remotely sensed images). For instance, the
number of connected components within a filtered image with
the direct rule can be much lower than the one contained in an
image filtered with subtractive, which means that a part of the
information related to the objects is lost. Finally, the updating
of the graylevels of the descendants over the tree of shapes
introduces new graylevels in the filtered image in Fig. 5(f),
which were not present in the original image in Fig. 5(b).

IV. CLASSIFICATION WITH MORPHOLOGICAL
ATTRIBUTE PROFILES

Attribute profiles (APs) were introduced in remote sensing
in [39] as a sequential application of attribute filters based on a
min-tree (i.e., attribute thickening operation φT ) and max-tree
(i.e., attribute thinning operation γT ). The AP is obtained by
filtering an image f with attribute operators using a predicate
with increasing threshold values {λk}1L:

AP (f) = {φTλL (f), φTλL−1 (f), ..., f, ..., γTλL−1 (u), γTλL (f)}
(3)

with φ and γ being the thickening and thinning operators based
on the predicate T , respectively, and Tλ a set of L ordered
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predicates.
APs provide a multilevel characterization of the spatial fea-
tures which can be useful for the classification of very high
resolution remote sensing images [29].

The Self-Dual Attribute Profiles (SDAPs) [29], were pro-
posed as a version of the APs based on self-dual connected
operators ρT computed on the tree of shapes instead of con-
sidering a min-tree or max-tree. The use of the tree of shapes
as a structure representing the image allows simultaneously
to access the information present on the component trees.
Moreover, the self-dual connected operators that are computed
on the tree of shapes produce a greater simplification of the
image with respect to non dual filters, since they operate
simultaneously on bright and dark components of the image.
SDAPs is obtained by filtering an image f with attribute
operators using a predicate with increasing threshold values:

SDAP (f) = {f, ρTλ1 (f), ..., ρTλL−1 (f), ρTλL (f)} (4)

with ρ being the self-dual operator based on the predicate T ,
and Tλ a set of L ordered predicates.

Dalla Mura et al. in [40] proposed Extended Attribute
Profiles (EAPs) as the application of APs to hyperspectral data.
An EAP is obtained by concatenating the APs (i.e., based on
a single attribute) built on several feature components (FCs)
extracted by a reduction technique (i.e., PCA) computed on the
hyperspectral image. Thus, the EAP can be formally defined
as:

EAP = {AP (FC1), AP (FC2), ..., AP (FCN )} (5)

Analogously to the definition of EAP, Extended Self-Dual
Attribute Profiles (ESDAPs) were proposed in [41]. They are
generated by concatenating the SDAPs computed on different
components. Each SDAP is built on one of the N features
components extracted by a feature reduction transformation
from a hyperspectral image:

ESDAP = {SDAP (FC1), SDAP (FC2), ..., SDAP (FCN )}
(6)

In contrast to APs, the SDAPs are composed of N + 1
images while APs, built with the same sequence of predicates
are made up of 2N + 1 images.

V. EXPERIMENTAL RESULTS

The filtering strategies introduced in the previous section are
highly relevant in any problem related with the identification
of objects of different shape and structure on different scales.
In this work we will illustrate their performance on the clas-
sification of remotely sensed images. Moreover, we provide
the experimental results obtained by classifying stacks of
filtered images generated by min, max, direct and subtractive
filter rules applied over the tree of shapes representation (i.e.,
SDAP). We study the capability of those rules in extracting
spatial information from a scene by considering different
attributes. Additionally, we compare the performance of those

rules in terms of classification accuracy by comparing their
application to the min-tree and max-tree (i.e., AP).

A. Data set description and experimental setup
The first dataset used in our experiments is an image of

Rome, Italy, acquired by the QuickBird satellite. The dataset
consists of a low-resolution (2.4m) multispectral image with
four bands Red, Green, Blue and Near Infrared and a high
spatial resolution panchromatic image of 0.6m resolution.
Fig. 6(a) shows the true-colour image while Fig. 6(b) shows
the groundtruth data with the 9 classes available. The second
dataset is an image of Reykjavik, Iceland, acquired by the
IKONOS Earth imaging satellite. As with the other dataset, it
consists of a low-resolution (4m) multispectral image with the
four bands and a high spatial resolution panchromatic image of
1m resolution. A groundtruth dataset of 6 classes reported in
Fig. 7(b) is available. For each data set the panchromatic and
multispectral images are pansharpened using the undecimated
discrete wavelet transform (UDWT) method [42], and the
obtained high-resolution multispectral images are used for the
classification. For the experiments, the names of the different
features used for the classification process will be referred
hereinafter as follows:

1) PAN: panchromatic image.
2) AP: attribute profile built from the panchromatic image

by using a specific attribute and filter rule.
3) SDAP: self-dual attribute profile built from the panchro-

matic image by using a specific attribute and filter rule.
4) MS+AP: stacked vector consisting of multispectral im-

ages (Red, Green, Blue and Infrared) and AP.
5) MS+SDAP: stacked vector consisting of MS and SDAP.
The attributes and the corresponding threshold values used

for building APs and SDAPs are reported in Table. I(a) and
Table I(b) for the Rome and Reykjavik data set respectively.
The APs are computed by using the implementation of the
min-tree and max-tree included in the C++ Milena library [43],
while the SDAPs from an adaptation of the code for the tree of
shapes provided in the MegaWave2 toolbox [44]. The number
of trees of the RF classifier is 200, and all the other options are
set with the default values. For each attribute, the table shows
the classification result by considering different filtering rules
and distinct features configuration. For example, each column
(filter rule) of Table IV(a) consists of four different features
configuration: AP (21 features), SDAP (11 features), MS (4
features) + AP (21 features) and MS (4 features) + SDAP
(11 features). The classification experiments are repeated ten
times, randomly selecting 10 % of the references samples as
training set, and the mean values of the overall (OA), average
(AA) accuracy and kappa (K) coefficient are given.

B. Results
In the following subsections, we discuss the experimental

results obtained for each attribute. Each table reports the
classification accuracies for the features AP, SDAP, MS+AP
and MS+SDAP. It is taken for granted that every time
spectral features MS are added to the classifier, the resulting
accuracies can only improve.
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(f) Subtractive ρP(f) f− ρP(f)
Fig. 5: Attribute filtering of the grayscale image f (b), rep-
resented by the tree in (a), using moment of inertia with
P = α(CC) ≤ 0.22 using pruning (min (c) and max (d))
and non pruning filtering strategies (direct (e) and subtractive
(f)). Each column represents, from left to right, pruned tree,
filtered image ρP(f) and difference image f− ρP(f).

Attribute Thresholds

Area 25, 100, 500, 1000, 5000, 10000, 20000,50000,100000,150000
Standard Deviation 5, 10 ,15, 20, 25, 30, 35, 40, 45, 50
Moment of Inertia 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65

(a)

Attribute Thresholds

Area 25, 100, 500, 1000, 5000, 10000, 20000,50000,100000,150000
Standard Deviation 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40
Moment of Inertia 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65

(b)
+++

TABLE I: Attribute threshold values for the profiles: (a) Rome
and (b) Reykjavik data set.

(a) (b)
Thematic classes:

Building Block Road
Light Train Vegetation Trees
Bare Soil Soil Tower

Fig. 6: QuickBird Rome dataset: (a) true color image and (b)
groundtruth data.

(a) (b)
Thematic classes:

Small building Open area Shadow
Large building Large road Street

Fig. 7: IKONOS Reykjavik dataset: (a) true color image and
(b) groundtruth data.

1) Area: it belongs to the class of increasing attributes,
thus each filter rule generate identical filtered images. In
Table III we report the classification results for three feature
stack compositions. The first column considers the features
PAN and MS+PAN (i.e. the results are reported only for
comparison purposes). The second and third columns report
AP and SDAP respectively, which are built with the area
attribute. When APs and SDAPs are classified, all the classes
are detected with a higher precision since they carry a
significant amount of geometrical information. The accuracies
obtained by the SDAPs are slightly better than those achieved
with the APs. In [29] it was already shown the effectiveness
of SDAP based on the area attribute for the classification of
a very high geometrical resolution scene.

2) Standard deviation: filters based on the non
increasing attribute standard deviation perform a multilevel
decomposition of the objects in the scene. Specifically, the
simplification process is not related to the geometry of
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Fig. 8: The averages of the gray levels of the pixels within each
class for each threshold of the moment of inertia attribute in
the SDAPs generated by different filter rules (Rome data set):
(a) min, (b) max, (c) direct, (d) subtractive.

the shapes but to the modeling of the homogeneity of the
graylevels of the pixels belonging to the regions. We start
the analysis by looking at the classification accuracies shown
in Table IV and notice that the results for the different filter
rules are comparable. Even if the standard deviation is a
non increasing attribute, all the nodes belonging to a single
branch of the tree may or not satisfy the predicate. This is
because the attribute does not have a strong non increasing
behavior. As a result, a filter which uses pruning and non
pruning strategies will generate similar filtered images, and
the profiles (i.e., APs or SDAPs) built on different rules will
be very similar to each other.

3) Moment of Inertia: filters based on the non increasing
attribute moment of inertia are able to discriminate the shape
of different structures, since the attribute provides a measure
related to the elongation of a region. Contrary to the stan-
dard deviation, the classification accuracies obtained with the
different filter rules vary greatly to each other, as shown in
Table V. This is due to the considerable non increasing trend

(a) (b)

(c) (d)
Fig. 9: Result after filtering the Rome panchromatic image by
considering moment of inertia and 0.35 as threshold value.
The four filter rules are applied over tree of shapes: (a) min
filtered image, (c) max filtered image, (d) direct filtered image
and (e) subtractive filtered image.

along the tree branches of the attribute values, which lead each
filter rule to decompose an image in a different way.

We consider each filter rule separately and we provide a
detailed analysis for the attribute filters applied over the tree of
shapes for the Rome data set (there is an exhaustive literature
related to the use of pruning and non pruning strategies with
min-tree and max-tree [27]). The graphs in Fig. 8 show the
average values of the graylevels of the pixels within each class
for each threshold of the moment of inertia attribute in the
SDAPs generated by different filter rules. This is useful for
understanding the response of each class through the different
threshold values of the profile.

When considering the min rule, the filter produces a consid-
erable simplification of the scene. Moreover, the presence of a
node that does not fulfill the criterion close to the root of the
tree produces the removal of entire branches. For example, the
filter starts to remove almost all the regions at the threshold
value λ = 0.35 as shown in Fig. 9(a). The plot of Fig. 8(a)
indicates that the pixels belonging to the different classes
get the same constant value for threshold values greater than
λ = 0.35. The images within the profile which are filtered at
those thresholds, do not carry any spatial information (i.e., no
regions have survived), leading the classifier to achieve poor
classification results in both datasets, as shown in Table V.

In the case of max rule, the filter might not perform any
effective simplification of the scene leading to filtered images
that can be similar to the original image for most part of the
threshold set. The plot of Fig. 8(b), shows that the pixels within
the classes maintain almost the same grayvalue for all the
thresholds. For instance, the filtered image at the threshold
value λ = 0.35 shown in Fig. 9(b) is not decomposed yet. As
a consequence, the classification accuracies obtained with AP
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and SDAP are similar, since the operator does not perform an
effective filtering for the different thresholds (i.e., no structures
are extracted).

Different considerations have to be done when the non
pruning rules direct and subtractive are taken into account.
As shown in Fig. 8(c) and 8(d) the pixel values of the
different classes do not take the same constant value at
a certain threshold as in the case of min rule. Moreover,
contrary to the max rule, the change in the trend of each
class is more visible along the thresholds. This is due to
the spatial information represented by the surviving regions
after the filtering with non pruning strategies. Looking at
the classification results in Table V, SDAPs achieve greater
classification results with the subtractive if compared with the
direct rule. As discussed in section III, unlike the direct rule,
when a node in the tree is deleted, the subtractive propagates
new values to its surviving descendants. Consequently, the
contrast grayvalue between regions that are not filtered out and
the local background is preserved. An example of a subscene
of the Rome data set filtered with direct and subtractive is
shown in Fig. 10. The effect of the propagation can be see in
Table II, which reports the number of connected components
within the filtered images with direct and subtractive rules at
different threshold values. For each threshold value, the num-
ber of connected components after filtering with subtractive
is always greater than the one obtained with direct. Regions
that satisfy P may be lost in the filtered image with direct
since the contrast with the local background is not maintained.
Thus, the classifier can benefit from the spatial information
brought by those additional regions. Subtractive can achieve
better accuracy results as reported in Table V and provide
more accurate classification maps as shown in Fig. 11. The
difference between the considered filter rules in terms of CPU
processing time is not relevant. The profiles AP and SDAP
are computed in a few seconds only by the rules for both data
sets on a computer having Intel(R) Core (TM) i7-4710HQ
CPU 2.50 GHz and 16 GB of memory.

threshold 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

direct 733759 559334 432206 330832 264216 214168 181111 155237 132170 114753
subtractive 733901 559710 432749 331511 264772 214608 181477 155634 132531 115121

difference 142 376 543 679 556 440 366 397 361 368

TABLE II: The number of connected components within the
filtered images with direct and subtractive rules and their
difference number |CC|sub − |CC|direct for each threshold
values of moment of inertia.

VI. CONCLUSIONS AND FUTURE LINES

Very high resolution remotely sensed imagery provides
precise geometrical information. In this paper, mathematical
morphology has been exploited for designing new operators
able to filter hierarchical structures which represent an image.
In this work, we considered the definition of the filter rules di-
rect, max, min and subtractive for the computation of attribute
filters over the tree of shapes representation. We generated
a tree-based representation of the image, then filtered the

(a) (b)
Fig. 10: Comparison of the direct and subtractive rules when
filtering of a subscene of the Rome panchromatic image with
inclusion tree using moment of inertia (0.35 as threshold
value).

representation and finally reconstructed the filtered image from
the filtered tree. We showed that subtractive rule preserves
contrast grayvalue between regions that are not filtered out and
introduces new graylevels in the filtered images which were
not present in the original image. We studied the performance
of the different rules in terms of classification accuracy in the
context of APs and SDAPs, by considering the non increasing
attributes standard deviation and moment of inertia. We have
proved that when the criterion presents a strong non increasing
behavior (i.e., moment of inertia), attribute filters provide
heterogeneous profiles for the different filtering strategies. In
this case, by looking at the classification accuracies obtained in
our experiments, one can conclude that subtractive is the most
effective filter rule in our context. Contrary to that, we have
shown that if the criterion is more similar to an increasing
behavior (i.e., standard deviation), the different filter rules
provide similar profiles. Finally, due to the properties of the
tree of shapes, we have shown that SDAPs outperform APs
in terms of classification accuracies. Although the acceptable
time for generating the profiles, our future research aims to
develop real-time implementations for large scenes on GPUs.
We will work on a new algorithm implemented in parallel
fashion in order to compute the tree of shapes and the different
filter rules.
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PAN (1) AP (21) SDAP (11)

AA 26.64 (0.19) 85.06 (0.12) 87.34 (0.12)
OA 41.66 (0.04) 85.58 (0.04) 88.04 (0.04)

K 28.15 (0.14) 82.86 (0.04) 85.79 (0.05)

MS+PAN (5) AP (25) SDAP (15)

AA 70.16 (0.11) 94.23 (0.05) 95.18 (0.07)
OA 75.05 (0.03) 94.71 (0.03) 95.55 (0.03)

K 70.12 (0.04) 93.72 (0.04) 94.72 (0.04)

PAN (1) AP (21) SDAP (11)

AA 52.82 (0.21) 87.62 (0.12) 90.55 (0.08)
OA 51.13 (0.14) 87.12 (0.13) 90.32 (0.06)

K 40.91 (0.21) 84.45 (0.16) 88.31 (0.08)

MS+PAN (5) MS + AP (25) MS + SDAP (15)

AA 76.87 (0.12) 92.82 (0.06) 94.23 (0.08)
OA 76.74 (0.11) 92.78 (0.05) 94.26 (0.07)

K 71.91 (0.14) 91.29 (0.06) 93.07 (0.09)

(a) (b)
TABLE III: Classification accuracies of (a) Rome and (b) Reykjavik data set (mean value with its standard deviation in brackets)
obtained by the panchromatic and spectral features MS and the AP and SDAP based on the attribute area.

MIN MAX DIR SUB

AP (21)

AA 76.82 (0.09) 74.05 (0.09) 75.25 (0.07) 76.73 (0.09)
OA 77.36 (0.05) 75.64 (0.05) 76.10 (0.04) 77.37 (0.06)
K 72.89 (0.07) 70.81 (0.07) 71.35 (0.05) 72.91 (0.08)

SDAP (11)

AA 79.83 (0.09) 69.53 (0.22) 77.46 (0.08) 79.21 (0.09)
OA 80.74 (0.04) 74.22 (0.08) 78.82 (0.05) 80.13 (0.06)
K 76.95 (0.05) 69.01 (0.11) 74.59 (0.05) 76.22 (0.07)

MS + AP (25)

AA 88.58 (0.06) 86.31 (0.07) 87.56 (0.06) 88.35 (0.07)
OA 89.65 (0.04) 88.12 (0.04) 88.89 (0.05) 89.58 (0.04)
K 87.68 (0.05) 85.85 (0.05) 86.76 (0.06) 87.59 (0.05)

MS + SDAP (15)

AA 89.54 (0.06) 84.33 (0.11) 87.81 (0.11) 88.75 (0.08)
OA 90.80 (0.02) 87.16 (0.05) 89.52 (0.04) 90.23 (0.03)
K 89.05 (0.03) 84.69 (0.06) 87.51 (0.05) 88.37 (0.04)

MIN MAX DIR SUB

AP (21)

AA 78.57 (0.35) 85.20 (0.16) 81.92 (0.29) 82.12 (0.21)
OA 77.96 (0.43) 84.62 (0.14) 81.26 (0.33) 81.50 (0.24)
K 73.37 (0.51) 81.43 (0.17) 77.37 (0.39) 77.66 (0.29)

SDAP (11)

AA 85.96 (0.12) 84.86 (0.16) 86.13 (0.13) 87.32 (0.17)
OA 85.64 (0.11) 84.12 (0.17) 85.76 (0.12) 86.90 (0.15)
K 82.64 (0.13) 80.83 (0.21) 82.79 (0.14) 84.17 (0.19)

MS + AP (25)

AA 88.87 (0.12) 91.45 (0.08) 89.62 (0.08) 89.65 (0.11)
OA 88.95 (0.12) 91.40 (0.08) 89.64 (0.07) 89.67 (0.11)
K 86.66 (0.15) 89.62 (0.09) 87.49 (0.09) 87.53 (0.12)

MS + SDAP (15)

AA 91.77 (0.11) 90.71 (0.04) 91.38 (0.09) 91.98 (0.07)
OA 91.72 (0.09) 90.64 (0.03) 91.33 (0.09) 91.91 (0.07)
K 90.01 (0.11) 88.70 (0.04) 89.54 (0.11) 90.24 (0.08)

(a) (b)

TABLE IV: Classification accuracies of (a) Rome and (b) Reykjavik data set (mean value with its standard deviation in bracket)
for each filter rule. First. the spatial features APs and SDAPs are considered (non increasing attribute standard deviation). Finally.
the spectral information MS is added as additional features. The number of features is reported in the parentheses.

MIN MAX DIR SUB

AP (21)

AA 18.60 (0.01) 69.11 (0.19) 68.04 (0.21) 82.07 (0.14)
OA 37.10 (0.01) 75.78 (0.07) 74.36 (0.09) 83.08 (0.07)
K 18.87 (0.01) 71.15 (0.08) 69.40 (0.11) 79.85 (0.08)

SDAP (11)

AA 43.60 (0.37) 51.96 (0.17) 69.05 (0.28) 83.85 (0.21)
OA 57.87 (0.44) 62.17 (0.04) 74.66 (0.11) 84.50 (0.07)
K 48.95 (0.58) 54.40 (0.05) 69.79 (0.14) 81.56 (0.08)

MS + AP (25)

AA 38.48 (0.69) 88.62 (0.13) 88.35 (0.16) 92.20 (0.07)
OA 56.58 (0.65) 90.25 (0.05) 89.91 (0.08) 92.76 (0.05)
K 46.10 (0.89) 88.41 (0.06) 88.00 (0.09) 91.40 (0.06)

MS + SDAP (15)

AA 76.40 (0.64) 78.03 (0.08) 87.66 (0.13) 92.54 (0.11)
OA 82.07 (0.36) 81.78 (0.04) 89.25 (0.04) 92.93 (0.06)
K 78.48 (0.45) 78.23 (0.05) 87.22 (0.05) 91.60 (0.08)

MIN MAX DIR SUB

AP (21)

AA 31.72 (0.01) 76.84 (0.11) 79.37 (0.06) 84.08 (0.08)
OA 32.10 (0.01) 75.63 (0.12) 78.51 (0.07) 83.38 (0.09)
K 15.18 (0.02) 70.57 (0.14) 74.04 (0.08) 79.93 (0.11)

SDAP (11)

AA 73.95 (0.38) 69.25 (0.12) 78.30 (0.13) 85.98 (0.13)
OA 72.58 (0.47) 68.00 (0.08) 77.32 (0.12) 85.42 (0.11)
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(a) (b)

TABLE V: Classification accuracies of (a) Rome and (b) Reykjavik data set (mean value with its standard deviation in bracket)
for each filter rule. First. the spatial features APs and SDAPs are considered (non increasing attribute moment of inertia).
Finally. the spectral information MS is added as additional features. The number of features is reported in the parentheses.



12

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 11: Classification maps for the experiments reported in Table V(a) using a single training and test set: (a) SDAP with min,
(b) SDAP with max, (c) SDAP with direct, (d) SDAP with subtractive, (e) MS+SDAP with min, (f) MS+SDAP with max, (g)
MS+SDAP with direct and (h) MS+SDAP with subtractive.
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[43] R. Levillain, T. Géraud, and L. Najman, “Milena: Write Generic
Morphological Algorithms Once, Run on Many Kinds of Images,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5720
LNCS, 2009, pp. 295–306.

[44] M. L. Froment J. and M. J. (1993) Megawave2. [Online]. Available:
http://megawave.cmla.ens-cachan.fr/index.php

Gabriele Cavallaro received the B.S. and M.S.
degrees in telecommunications engineering from the
University of Trento, Trento, Italy, in 2011 and 2013,
respectively. At present he is a Ph.D. student at
the University of Iceland, Reykjavik, Iceland. He
was the recipient of the IEEE GRSS Third Prize
in the Student Paper Competition of the 2015 IEEE
International Geoscience and Remote Sensing Sym-
posium 2015 (Milan, Italy, July 2015). He serves as
a reviewer for IEEE Geoscience and Remote Sensing
Letters and IEEE Journal of Selected Topics in Earth

Observations and Remote Sensing. His research interests include remote
sensing and analysis of very high geometrical and spectral resolution images
with the current focus on mathematical morphology and high performance
computing.

Mauro Dalla Mura Mauro Dalla Mura (S’08
M’11) received the laurea (B.E.) and laurea special-
istica (M.E.) degrees in Telecommunication Engi-
neering from the University of Trento, Italy, in 2005
and 2007, respectively. He obtained in 2011 a joint
Ph.D. degree in Information and Communication
Technologies (Telecommunications Area) from the
University of Trento, Italy and in Electrical and
Computer Engineering from the University of Ice-
land, Iceland. In 2011 he was a Research fellow at
Fondazione Bruno Kessler, Trento, Italy, conducting

research on computer vision. He is currently an Assistant Professor at Greno-
ble Institute of Technology (Grenoble INP), France. He is conducting his
research at the Grenoble Images Speech Signals and Automatics Laboratory
(GIPSA-Lab). His main research activities are in the fields of remote sensing,
image processing and pattern recognition. In particular, his interests include
mathematical morphology, classification and multivariate data analysis. Dr.
Dalla Mura was the recipient of the IEEE GRSS Second Prize in the Student
Paper Competition of the 2011 IEEE IGARSS 2011 and co-recipient of the
Best Paper Award of the International Journal of Image and Data Fusion for
the year 2012-2013 and the Symposium Paper Award for IEEE IGARSS 2014.
He is a Reviewer of IEEE Transactions on Geoscience and Remote Sensing,
IEEE Geoscience and Remote Sensing Letters, IEEE Journal of Selected
Topics in Earth Observations and Remote Sensing, IEEE Journal of Selected
Topics in Signal Processing, Pattern Recognition Letters, ISPRS Journal
of Photogrammetry and Remote Sensing, Photogrammetric Engineering and
Remote Sensing (PERS). He is a member of the Geoscience and Remote
Sensing Society (GRSS) and IEEE GRSS Data Fusion Technical Committee
(DFTC) and Secretary of the IEEE GRSS French Chapter (2013-2016).
He was a lecturer at the RSSS12 - Remote Sensing Summer School 2012
(organized by the IEEE GRSS), Munich, Germany.



14

Jón Atli Benediktsson Jón Atli Benediktsson re-
ceived the Cand.Sci. degree in electrical engineering
from the University of Iceland, Reykjavik, in 1984,
and the M.S.E.E. and Ph.D. degrees in electrical
engineering from Purdue University, West Lafayette,
IN, in 1987 and 1990, respectively. On July 1, 2015
he became the Rector of the University of Iceland.
From 2009 to 2015 he was the Pro Rector of Science
and Academic Affairs and Professor of Electrical
and Computer Engineering at the University of Ice-
land. His research interests are in remote sensing,

biomedical analysis of signals, pattern recognition, image processing, and
signal processing, and he has published extensively in those fields. Prof.
Benediktsson was the 2011-2012 President of the IEEE Geoscience and and
Remote Sensing Society (GRSS) and has been on the GRSS AdCom since
2000. He was Editor in Chief of the IEEE Transactions on Geoscience and
Remote Sensing (TGRS) from 2003 to 2008 and has served as Associate
Editor of TGRS since 1999, the IEEE Geoscience and Remote Sensing Letters
since 2003 and IEEE Access since 2013. He is on the Editorial Board of the
Proceedings of the IEEE, the International Editorial Board of the International
Journal of Image and Data Fusion and was the Chairman of the Steering
Committee of IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing (J-STARS) 2007-2010. Prof. Benediktsson is a co-
founder of the biomedical start up company Oxymap (www.oxymap.com).
He is a Fellow of the IEEE and a Fellow of SPIE. Prof. Benediktsson is
a member of the 2014 IEEE Fellow Committee. He received the Stevan
J. Kristof Award from Purdue University in 1991 as outstanding graduate
student in remote sensing. In 1997, Dr. Benediktsson was the recipient of
the Icelandic Research Council’s Outstanding Young Researcher Award, in
2000, he was granted the IEEE Third Millennium Medal, in 2004, he was a
co-recipient of the University of Iceland’s Technology Innovation Award, in
2006 he received the yearly research award from the Engineering Research
Institute of the University of Iceland, and in 2007, he received the Outstanding
Service Award from the IEEE Geoscience and Remote Sensing Society. He
was co-recipient of the 2012 IEEE Transactions on Geoscience and Remote
Sensing Paper Award and in 2013 he was co-recipient of the IEEE GRSS
Highest Impact Paper Award. In 2013 he received the IEEE/VFI Electrical
Engineer of the Year Award. In 2014 he was a co-recipient of the International
Journal of Image and Data Fusion Best Paper Award. He is a member of the
Association of Chartered Engineers in Iceland (VFI), Societas Scinetiarum
Islandica and Tau Beta Pi.

Antonio Plaza (M05-SM07-F15) is the Head of
the Hyperspectral Computing Laboratory at the De-
partment of Technology of Computers and Com-
munications, University of Extremadura. His main
research interests comprise hyperspectral data pro-
cessing and parallel computing of remote sensing
data. He has authored more than 500 publications,
including more than 170 journal papers (more than
120 in IEEE journals), 20 book chapters, and over
250 peer-reviewed conference proceeding papers. He
has guest edited 9 special issues on hyperspectral

remote sensing for different journals. Dr. Plaza is a Fellow of IEEE for
contributions to hyperspectral data processing and parallel computing of Earth
observation data. He is a recipient of the recognition of Best Reviewers of the
IEEE Geoscience and Remote Sensing Letters (in 2009) and a recipient of the
recognition of Best Reviewers of the IEEE Transactions on Geoscience and
Remote Sensing (in 2010), for which he served as Associate Editor in 2007-
2012. He is also an Associate Editor for IEEE Access, and was a member of
the Editorial Board of the IEEE Geoscience and Remote Sensing Newsletter
(2011-2012) and the IEEE Geoscience and Remote Sensing Magazine (2013).
He was also a member of the steering committee of the IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing
(JSTARS). He is a recipient of the Best Column Award of the IEEE Signal
Processing Magazine in 2015, the 2013 Best Paper Award of the JSTARS
journal, and the most highly cited paper (2005-2010) in the Journal of Parallel
and Distributed Computing. He received best paper awards at the IEEE
International Conference on Space Technology and the IEEE Symposium on
Signal Processing and Information Technology. He served as the Director of
Education Activities for the IEEE Geoscience and Remote Sensing Society
(GRSS) in 2011-2012, and is currently serving as President of the Spanish
Chapter of IEEE GRSS. He has reviewed more than 500 manuscripts for
over 50 different journals. He is currently serving as the Editor-in-Chief of
the IEEE Transactions on Geoscience and Remote Sensing journal. Additional
information: http://www.umbc.edu/rssipl/people/aplaza.


