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  L'archive ouverte pluridisciplinaire

Ḣs (R d ) → L p (R d ),
when 0 ≤ s < d 2 and 1 p = 1 2 -s d , is not compact. After the pioneering works of P. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF] and [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. I[END_REF], P. Gérard described in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] the lack of compactness of (1.1) by means of profiles in the following terms: a sequence (u n ) n bounded in Ḣs (R d ) can be decomposed, up to a subsequence extraction, on a finite sum of orthogonal profiles such that the remainder converges to zero in L p (R d ) as the number of the sum and n tend to infinity. This question was later investigated by S. Jaffard in [START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF] in the more general case of H s,q (R d ) → L p (R d ), 0 < s < d p and 1 p = 1 q -s d by the use of nonlinear wavelet and recently in [START_REF] Bahouri | A general wavelet-based profile decomposition in critical embedding of function spaces[END_REF] in an abstract frame X → Y including Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces. (One can consult [START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF] and the references therein for an introduction to these spaces). We also mention the work of Brezis-Coron [START_REF] Brezis | Convergence of solutions of H-systems or how to blow bubbles[END_REF] about H-systems. In addition, in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] and [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] H. Bahouri, M. Majdoub and N. Masmoudi characterized the lack of compactness of H 1 (R 2 ) in the Orlicz space (see Definition 1.1)

H 1 (R 2 ) → L(R 2
), in terms of orthogonal profiles generalizing the example by Moser:

g n (x) := α n 2π ψ -log |x| α n ,
where α := (α n ), called the scale, is a sequence of positive real numbers going to infinity and ψ, called the profile, belongs to the set

ψ ∈ L 2 (R, e -2s ds); ψ ∈ L 2 (R), ψ |]-∞,0] = 0 .
The study of the lack of compactness of critical Sobolev embedding was at the origin of several works concerning the understanding of features of solutions of nonlinear partial differential equations. Among others, one can mention [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF], [START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation[END_REF], [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF], [START_REF] Laurent | On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold[END_REF], [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF] and [START_REF] Tao | An inverse theorem for the bilinear L 2 Strichartz estimate for the wave equation[END_REF].

1.2. Critical 4D Sobolev embedding. The Sobolev space H 2 (R 4 ) is continuously embedded in all Lebesgue spaces L p (R 4 ) for all 2 ≤ p < ∞. On the other hand, it is also known that H 2 (R 4 ) embed in BM O(R 4 ) ∩ L 2 (R 4 ), where BM O(R d ) denotes the space of bounded mean oscillations which is the space of locally integrable functions f such that

f BM O = sup B 1 |B| B |f -f B | dx < ∞ with f B = 1 |B| B f dx.
The above supremum being taken over the set of Euclidean balls B, | • | denoting the Lebesgue measure.

In this paper, our goal is to investigate the lack of compactness of the Sobolev space H 2 rad (R 4 ) in the Orlicz space L(R 4 ) defined as follows: Definition 1.1. Let φ : R + → R + be a convex increasing function such that

φ(0) = 0 = lim s→0 + φ(s), lim s→∞ φ(s) = ∞.
We say that a measurable function u : R d → C belongs to L φ if there exists λ > 0 such that

R d φ |u(x)| λ dx < ∞.
We denote then

u L φ = inf λ > 0, R d φ |u(x)| λ dx ≤ 1 .
In what follows we shall fix d = 4, φ(s) = e s 2 -1 and denote the Orlicz space L φ by L endowed with the norm • L where the number 1 is replaced by the constant κ involved in (1.3). It is easy to see that L → L p for every 2 ≤ p < ∞. The 4D Sobolev embedding in Orlicz space L states as follows:

(1.2) u L(R 4 ) ≤ 1 √ 32π 2 u H 2 (R 4 ) .
Inequality (1.2) derives immediately from the following proposition due to Ruf and Sani in [START_REF] Ruf | sharp Adams-type inequalities in R n[END_REF]:

Proposition 1.2. There exists a finite constant κ > 0 such that

(1.3) sup u∈H 2 (R 4 ), u H 2 (R 4 ) ≤1 R 4 e 32π 2 |u(x)| 2 -1 dx := κ < ∞.
Let us notice that if we only require that ∆u L 2 (R 4 ) ≤ 1 then the following result established in [START_REF] Masmoudi | Adams' inequality with the exact growth condition in R 4[END_REF] holds.

Proposition 1.3. Let β ∈ [0, 32π 2 [, then there exists C β > 0 such that (1.4) R 4 e β|u(x)| 2 -1 dx ≤ C β u 2 L 2 (R 4 ) ∀ u ∈ H 2 (R 4 ) with ∆u L 2 ≤ 1,
and this inequality is false for β ≥ 32π 2 .

Remarks 1.4. The well-known following properties can be found in [START_REF] Masmoudi | Adams' inequality with the exact growth condition in R 4[END_REF] and [START_REF] Ruf | sharp Adams-type inequalities in R n[END_REF].

a) The inequality (1.3) is sharp. b) There exists a positive constant C such that for any domain

Ω ⊆ R 4 sup u∈H 2 (Ω), (-∆+I)u L 2 (Ω) ≤1 Ω e 32π 2 |u(x)| 2 -1 dx ≤ C.
c) In dimension 2, the inequality (1.4) is replaced by the following Trudinger-Moser type inequality (see [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF] and [START_REF] Ruf | A sharp Trudinger-Moser type inequality for unbounded domains in R 2[END_REF]):

Let α ∈ [0, 4π[. A constant C α exists such that (1.5) R 2 e α|u(x)| 2 -1 dx ≤ C α u 2 L 2 (R 2 ) ∀ u ∈ H 1 (R 2 ) with ∇u L 2 (R 2 ) ≤ 1.
Moreover, if α ≥ 4π then (1.5) is false.

1.3. Lack of compactness in 4D critical Sobolev embedding in Orlicz space.

The embedding of H 2 (R 4 ) into the Orlicz space is non compact. Firstly, we have a lack of compactness at infinity as shown by the following example:

u k (x) = ϕ(x + x k ), ϕ ∈ D(R 4 ) \ {0} and |x k | -→ k→∞ ∞.
Secondly, we have a lack of compactness generated by a concentration phenomenon as illustrated by the following example (see [START_REF] Ruf | sharp Adams-type inequalities in R n[END_REF] for instance):

(1.6)

f α (x) =              α 8π 2 + 1-|x| 2 e 2α √ 32π 2 α if |x| ≤ e -α -log |x| √ 8π 2 α if e -α < |x| ≤ 1 η α (x) if |x| > 1,
where η α ∈ D(R 4 ) and satisfies the following boundary conditions:

η α|∂B 1 = 0, ∂η α ∂ν ∂B 1 = 1 √ 8π 2 α ,
with B 1 is the unit ball in R 4 . In addition, η α , ∇η α , ∆η α are all equal to O 1 √ α ( 1 ) as α tends to infinity. By a simple calculation (see Appendix A), we obtain that

f α 2 L 2 = O 1 α , ∇f α 2 L 2 = O 1 α and ∆f α 2 L 2 = 1 + O 1 α as α → +∞.
Also, we can see that f α α→∞ 0 in H 2 (R 4 ).

The lack of compactness in the Orlicz space L(R 4 ) displayed by the sequence (f α ) when α goes to infinity can be stated qualitatively as follows:

Proposition 1.5. The sequence (f α ) defined by (1.6) satisfies:

f α L → 1 √ 32π 2
, as α → +∞.

Proof. Firstly, we shall prove that lim inf

α→∞ f α L ≥ 1 √ 32π 2
. For that purpose, let us consider

λ > 0 such that R 4 e |fα(x)| 2 λ 2 -1 dx ≤ κ.
Then

|x|≤e -α e |fα(x)| 2 λ 2 -1 dx ≤ κ.
But for |x| ≤ e -α , we have

f α (x) = α 8π 2 + 1 -|x| 2 e 2α √ 32π 2 α ≥ α 8π 2 . So we deduce that 2π 2 e -α 0 e α 8π 2 λ 2 -1 r 3 dr ≤ κ. Consequently, 2π 2 e α 8π 2 λ 2 -1 e -4α 4 ≤ κ,
which implies that

λ 2 ≥ 1 32π 2 + 8π 2 α log( 2κ π 2 + e -4α ) -→ α→∞ 1 32π 2 .
This ensures that lim inf

α→∞ f α L ≥ 1 √ 32π 2 .
To conclude, it suffices to show that lim sup

α→∞ f α L ≤ 1 √ 32π 2
. To go to this end, let us fix ε > 0 and use Inequality (1.4) with β = 32π 2 -ε. Thus, there exists

C ε > 0 such that R 4 e (32π 2 -ε) |fα(x)| 2 ∆fα 2 L 2 -1 dx ≤ C ε f α 2 L 2 ∆f α 2 L 2
.

1 The notation g(α) = O(h(α)) as α → +∞, where g and h are two functions defined on some neighborhood of infinity, means the existence of positive numbers α0 and C such that for any α > α0 we have

|g(α)| ≤ C|h(α)|.
The fact that lim

α→∞ f α L 2 = 0 leads to lim sup α→∞ f α 2 L ≤ 1 32π 2 -ε ,
which ends the proof of the result.

The following result specifies the concentration effect revealed by the family (f α ):

Proposition 1.6. With the above notation, we have

|∆f α | 2 → δ(x = 0) and e 32π 2 |fα| 2 -1 → π 2 16 (e 4 + 3)δ(x = 0) as α → ∞ in D (R 4 ).
Proof. For any smooth compactly supported function ϕ, let us write

R 4 |∆f α (x)| 2 ϕ(x) dx = I α + J α + K α ,
with

I α = |x|≤e -α |∆f α (x)| 2 ϕ(x) dx, J α = e -α ≤|x|≤1
|∆f α (x)| 2 ϕ(x) dx and

K α = |x|≥1 |∆f α (x)| 2 ϕ(x) dx. Noticing that ∆f α (x) = -8e 2α √ 32π 2 α if |x| ≤ e -α , we get |I α | ≤ ϕ L ∞ α -→ α→∞ 0.
On the other hand, as

∆f α = -2 |x| 2 √ 8π 2 α if e -α ≤ |x| ≤ 1, we get J α = 1 2π 2 α e -α ≤|x|≤1 1 |x| 4 ϕ(0) dx + 1 2π 2 α e -α ≤|x|≤1 1 |x| 4 ϕ(x) -ϕ(0) dx = ϕ(0) + 1 2π 2 α e -α ≤|x|≤1 1 |x| 4 ϕ(x) -ϕ(0) dx. Using the fact that |ϕ(x) -ϕ(0)| ≤ |x| ∇ϕ L ∞ we obtain that |J α -ϕ(0)| ≤ ∇ϕ L ∞ α (1 -e -α ) -→ α→∞ 0.
Finally, taking advantage of the existence of a positive constant C such that ∆η α L ∞ ≤ C √ α and as ϕ is a smooth compactly supported function, we deduce that

|K α | -→ α→∞ 0.
This ends the proof of the first assertion. For the second assertion, we write

R 4 e 32π 2 |fα(x)| 2 -1 ϕ(x) dx = L α + M α + N α ,
where

L α = |x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(x) dx, M α = e -α ≤|x|≤1 e 32π 2 |fα(x)| 2 -1 ϕ(x) dx and N α = |x|≥1 e 32π 2 |fα(x)| 2 -1 ϕ(x) dx.
We have

L α = |x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(x) -ϕ(0) dx + |x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(0) dx.
Arguing as above, we infer that

L α - |x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(0) dx ≤ 2π 2 ∇ϕ L ∞   e 32π 2 √ α 8π 2 + 1 √ 32π 2 α 2 -1   e -5α 5 .
As the right hand side of the last inequality goes to zero when α tends to infinity, we find that

L α - |x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(0) dx -→ α→∞ 0.
Besides,

|x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(0) dx = 2π 2 e 4(α+1) e 1 α ϕ(0) e -α 0 e e 4α α r 4 -2e 2α (2+ 1 α )r 2 r 3 dr - π 2 2 ϕ(0)e -4α .
Now, performing the change of variable s = re α , we get

|x|≤e -α e 32π 2 |fα(x)| 2 -1 ϕ(0) dx = 2π 2 e 1 α +4 ϕ(0) 1 0 s 3 e s 4 α -2(2+ 1 α )s 2 ds - π 2 2 ϕ(0)e -4α ,
which implies, in view of Lebesgue's theorem, that

lim α→∞ L α = 2π 2 e 4 ϕ(0) 1 0 s 3 e -4s 2 ds = π 2 16 (e 4 -5)ϕ(0).
Also, writing

M α = e -α ≤|x|≤1 ϕ(x) -ϕ(0) e 4(log |x|) 2 α -1 dx + e -α ≤|x|≤1 ϕ(0) e 4(log |x|) 2 α -1 dx,
we infer that M α converges to π 2 2 ϕ(0) by using the following lemma the proof of which is similar to that of Lemma 1.9 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF].

Lemma 1.7. When α goes to infinity, Finally, in view of the existence of a positive constant C such taht η α L ∞ ≤ C √ α and as ϕ is a smooth compactly supported function, we get

N α -→ α→∞ 0,
which achieves the proof of the proposition.

1.4. Statement of the results. Before entering into the details, let us introduce some definitions as in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] and [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF].

Definition 1.8. We shall designate by a scale any sequence α := (α n ) of positive real numbers going to infinity. Two scales α and β are said orthogonal if

log β n α n → ∞.
The set of profiles is

P := ψ ∈ L 2 (R, e -4s ds); ψ ∈ L 2 (R), ψ |]-∞,0] = 0 .
Remark 1.9. The profiles belong to the Hölder space C 1 2 . Indeed, for any profile ψ and real numbers s and t, we have by Cauchy-Schwarz inequality

|ψ(s) -ψ(t)| = t s ψ (τ ) dτ ≤ ψ L 2 (R) |s -t| 1 2 .
Our main goal is to establish that the characterization of the lack of compactness of critical Sobolev embedding

H 2 rad (R 4 ) → L(R 4
) can be reduced to the example (1.6). In fact, we can decompose the function f α as follows:

f α (x) = α 8π 2 L - log |x| α + r α (x),
where

L(t) =    1 if t ≥ 1 t if 0 ≤ t < 1 0 if t < 0 and r α (x) =      1-|x| 2 e 2α √ 32π 2 α if |x| ≤ e -α 0 if e -α < |x| ≤ 1 η α (x) if |x| > 1.
The sequence α is a scale, the function L is a profile and the function r α is called the remainder term. We can easily see that r α -→ α→∞ 0 in L. Indeed, for all λ > 0, we have

|x|≤e -α e |rα(x)| 2 λ 2 -1 dx ≤ 2π 2 e -α 0 e 1+r 4 e 4α 16π 2 αλ 2 -1 r 3 dr ≤ 8π 4 λ 2 e 1 16π 2 αλ 2 αe -4α e 1 16π 2 αλ 2 -1 - π 2 e -4α 2 -→ α→∞ 0.
Moreover, since η belongs to D(R 4 ) and satisfies

η α L ∞ ≤ C √ α for some C > 0, we get |x|>1 e |rα(x)| 2 λ 2 -1 dx -→ α→∞ 0.
Let us observe that h α (x) := α 8π 2 L -log |x| α does not belong to H 2 (R 4 ). To overcome this difficulty, we shall convolate the profile L with an approximation to the identity ρ n where ρ n (s) = α n ρ(α n s) with ρ is a positive smooth compactly supported function satisfying

(1.7) supp ρ ⊂ [-1, 1] and (1.8) 1 -1 ρ(s) ds = 1.
More precisely, we shall prove that the lack of compactness can be described in terms of an asymptotic decomposition as follows:

Theorem 1.10. Let (u n ) n be a bounded sequence in H 2 rad (R 4 ) such that u n n→∞ 0, (1.9) lim sup n→∞ u n L = A 0 > 0, and (1.10) lim R→∞ lim sup n→∞ |x|>R |u n (x)| 2 dx = 0. (1.11)
Then, there exists a sequence (α (j) ) of pairwise orthogonal scales and a sequence of profiles (ψ (j) ) in P such that up to a subsequence extraction, we have for all ≥ 1 (1.12)

u n (x) = j=1 α (j) n 8π 2 ψ (j) * ρ (j) n -log |x| α (j) n + r ( ) n (x),
where ρ

(j) n (s) = α (j) n ρ(α (j) n s) and lim sup n→∞ r ( ) n L →∞ -→ 0.
Remarks 1.11. a) As in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], the decomposition (1.12) is not unique.

b)

The assumption (1.11) means that there is no lack of compactness at infinity. We are particularly satisfied when the sequence (u n ) is supported in a fixed compact of R 4 and also by the sequences

(1.13) g (j) n (x) := α (j) n 8π 2 ψ (j) * ρ (j) n -log |x| α (j) n
involved in the decomposition (1.12).

c) As it is mentioned above, the functions h

(j) n (x) := α (j) n 8π 2 ψ (j) -log |x| α (j) n
do not belong to H 2 (R 4 ). However, we have

(1.14) g (j) n -h (j) n L(R 4 ) -→ n→∞ 0,
where the functions g

(j)
n are defined by (1.13). Indeed, by the change of variable s = -log |x| α (j) n and using the fact that, for any integer number j, ψ (j) * ρ

(j) n is supported in [-1 α (j) n
, ∞[ and

ψ (j) is supported in [0, ∞[, we infer that for all λ > 0 R 4 e g (j) n (x)-h (j) n (x) λ 2 -1 dx = 2π 2 α (j) n ∞ -1 α (j) n e α (j) n 8π 2 λ 2 ψ (j) * ρ (j) n (s)-ψ (j) (s) 2 -1 e -4α (j)
n s ds.

Since

ψ (j) * ρ (j) n (s) -ψ (j) (s) ≤ 1 -1 ψ (j) s - t α (j) n -ψ (j) (s) ρ(t) dt,
we obtain, according to Cauchy-Schwarz inequality,

ψ (j) * ρ (j) n (s) -ψ (j) (s) 2 1 -1 ψ (j) s - t α (j) n -ψ (j) (s) 2 dt α (j) n 1 α (j) n -1 α (j) n ψ (j) (s -τ ) -ψ (j) (s) 2 dτ α (j) n 1 α (j) n -1 α (j) n s s-τ ψ (j) (u) du 2 dτ.
Applying again Cauchy-Schwarz inequality, we get

ψ (j) * ρ (j) n (s) -ψ (j) (s) 2 α (j) n 1 α (j) n -1 α (j) n s s-τ ψ (j) (u) 2 du |τ | dτ 1 α (j) n sup |τ |≤ 1 α (j) n s s-τ ψ (j) (u) 2 du.
Then, there exists a positive constant C such that

R 4 e g (j) n (x)-h (j) n (x) λ 2 -1 dx α (j) n ∞ -1 α (j) n   e C λ 2 sup |τ |≤ 1 α (j) n s s-τ |(ψ (j) ) (u)| 2 du -1    e -4α (j) n s ds I n + J n ,
where

I n = α (j) n ∞ s 0   e C λ 2 sup s∈[s 0 ,∞[,|τ |≤ 1 α (j) n s s-τ |(ψ (j) ) (u)| 2 du -1    e -4α (j)
n s ds and

J n = α (j) n s 0 -1 α (j) n   e C λ 2 sup s∈[-1 α (j) n ,s 0 ],|τ |≤ 1 α (j) n s s-τ |(ψ (j) ) (u)| 2 du -1    e -4α (j) n s ds,
for some positive real s 0 . Noticing that

I n   e C ( ψ (j) ) 2 L 2 (R) λ 2 -1    e -4α (j) n s 0 4 ,
we infer that

lim n→∞ I n = 0.
Moreover, the fact that n

C n := C sup s∈[-1 α (j) n ,s 0 ],|τ |≤ 1 α (j) n s s-τ ψ (j) (u) 2 du -→ n→∞ 0, implies that lim n→∞ J n = lim
L(R 4 ) = lim n→∞ h (j) n L(R 4 ) = 1 √ 32π 2 max s>0 ψ (j) (s) √ s .
e) Setting gn (x) := α (j)

n 8π 2 ψ (j) * ρ(j) n ) -log |x| α (j) n
, where ρ(j)

n (s) = α (j) n ρ α (j)
n s with ρ is a positive smooth compactly supported function satisfying (1.7) and (1.8), we notice that

(1.15) g (j) n -g(j) n L(R 4 ) -→ n→∞ 0,
where the functions g

(j)
n are defined by (1.13). To prove (1.15), we apply the same lines of reasoning of the proof of (1.14). f ) Compared with the decomposition in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], it can be seen that there's no core in (1.12). This is justified by the radial setting.

Theorem 1.10 induces to

u n L → sup j≥1 lim n→∞ g (j) n L .
This is due to the following proposition proved in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF].

Proposition 1.12. Let (α (j) ) 1≤j≤ be a family of pairwise orthogonal scales and (ψ (j) ) 1≤j≤ be a family of profiles, and set

g n (x) = j=1 α (j) n 8π 2 ψ (j) * ρ (j) n -log |x| α (j) n := j=1 g (j)
n (x) .

Then

g n L → sup 1≤j≤ lim n→∞ g (j) n L .
1.5. Structure of the paper. The paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.10 by describing the algorithm construction of the decomposition of a bounded sequence (u n ) in H 2 rad (R 4 ), up a subsequence extraction, in terms of orthogonal profiles. In the last section, we deal with several complements for the sake of completeness. We mention that C will be used to denote a constant which may vary from line to line. We also use A B to denote an estimate of the form A ≤ CB for some absolute constant C and A ≈ B if A B and B A. For simplicity, we shall also still denote by (u n ) any subsequence of (u n ).

2. Proof of the main theorem 2.1. Scheme of the proof. The first step of the proof is based on the extraction of the first scale and the first profile. As in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], the heart of the matter is reduced to the proof of the following lemma: Lemma 2.1. Let (u n ) be a sequence in H 2 rad (R 4 ) satisfying the assumptions of Theorem 1.10. Then there exists a scale (α n ) and a profile ψ such that

(2.1) ψ L 2 (R) ≥ CA 0 ,
where C is a universal constant.

Then, the problem will be reduced to the study of the remainder term. If the limit of its Orlicz norm is null we stop the process. If not, we prove that this remainder term satisfies the same properties as the sequence start which allows us to apply the lines of reasoning of the first step and extract a second scale and a second profile which verify the above key property (2.1). By contradiction arguments, we get the property of orthogonality between the two first scales. Finally, we prove that this process converges.

Preliminaries.

To describe the lack of compactness of the Sobolev space H 2 rad (R 4 ) into the Orlicz space L(R 4 ), we will make firstly the change of variable s := -log r with r = |x| and associate to any radial function u on R 4 a one space variable function v defined by v(s) = u(e -s ). It follows that:

u 2 L 2 (R 4 ) = 2π 2 R e -4s |v(s)| 2 ds, (2.2) ∂u ∂r 2 L 2 (R 4 ) = 2π 2 R e -2s |v (s)| 2 ds, (2.3) 1 r ∂ r u 2 L 2 (R 4 ) = 2π 2 R |v (s)| 2 ds and (2.4) ∆u 2 L 2 (R 4 ) = 2π 2 R | -2v (s) + v (s)| 2 ds. (2.5)
The quantity (2.4) will play a fondamental role in our main result. Moreover, for a scale (α n ) and a profile ψ we define

g n (x) := α n 8π 2 (ψ * ρ n ) -log |x| α n ,
where ρ n (s) = α n ρ(α n s) with ρ is a positive smooth compactly supported function satisfying (1.7) and (1.8). Straightforward computations show that

g n L 2 (R 4 ) α n ∞ 0 |ψ(s)| 2 e -4αns ds 1 2 , (2.6) ∂g n ∂r L 2 (R 4 ) R |ψ (s)| 2 e -2αns ds 1 2 , (2.7) 1 r ∂ r g n L 2 (R 4 ) ψ L 2 (R) and (2.8) ∆g n L 2 (R 4 ) ψ L 2 (R) . (2.9)
Indeed, we have

g n L 2 (R 4 ) = α n 2 R |(ψ * ρ n )(s)| 2 e -4αns ds 1 2 = ψn * ρn L 2 (R) ,
where ψn (τ ) = αn 2 ψ(τ )e -2αnτ and ρn (τ ) = ρ n (τ )e -2αnτ . According to Young's inequality, we get

g n L 2 (R 4 ) ≤ ψn L 2 (R) ρn L 1 (R) . Since ψn L 2 (R) = αn 2 ∞ 0 |ψ(τ )| 2 e -4αnτ dτ 1 2
and ρn

L 1 (R) = 1 -1
ρ(τ )e -2τ dτ , we obtain (2.6).

Similarly, writing

∂g n ∂r L 2 (R 4 ) = 1 2 R |(ψ * ρ n )(s)| 2 e -2αns ds 1 2 = ψn * ρn L 2 (R)
,

where ψn (τ ) = 1 2 ψ (τ )e -αnτ and ρn (τ ) = ρ n (τ )e -αnτ and using Young's inequality, we infer that

∂g n ∂r L 2 (R 4 ) ≤ ψ L 2 (R) ρ L 1 (R) ≤ 1 2 R |ψ (τ )| 2 e -2αnτ dτ 1 2 1 -1 ρ(τ )e -τ dτ,
which leads to (2.7). Also, we have

1 r ∂ r g n L 2 (R 4 ) = 1 2 ψ * ρ n L 2 (R) ≤ 1 2 ψ L 2 (R) .
Finally,

∆g n L 2 (R 4 ) = 1 2 R -2(ψ * ρ n )(s) + 1 α n (ψ * ρ n )(s) 2 ds 1 2 ≤ ψ * ρ n L 2 (R) + 1 2α n ψ * ρ n L 2 (R) ≤ ψ L 2 (R) + 1 2α n ψ L 2 (R) ρ n L 1 (R) .
The fact that

ρ n L 1 (R) = α n 1 -1
ρ (τ ) dτ ensures (2.9).

2.3.

Extraction of the first scale and the first profile. Let us consider a bounded sequence (u n ) in H 2 rad (R 4 ) satisfying the assumptions (1.9), (1.10) and (1.11) and let us set v n (s) := u n (e -s ).

We have the following lemma.

Lemma 2.2. Under the above assumptions, the sequence (u n ) converges strongly to 0 in L 2 (R 4 ). Moreover, for any real number M , we have

(2.10) lim n→∞ v n L ∞ (]-∞,M [) = 0.
Proof. For any R > 0, we have

u n L 2 (R 4 ) = u n L 2 (|x|<R) + u n L 2 (|x|>R) .
According to Rellich's theorem, the Sobolev space H 2 (|x| < R) is compactly embedded in L 2 (|x| < R). Thanks to (1.9), we get

lim n→∞ u n L 2 (|x|<R) = 0.
Now, taking advantage of the compactness at infinity of the sequence (u n ) given by (1.11), we deduce that

(2.11) lim n→∞ u n L 2 (R 4 ) = 0.
Besides, according to Proposition 3.4, we infer that (2.12)

|v n (s)| e 3 2 s u n 1 2 L 2 (R 4 ) ∇u n 1 2
L 2 (R 4 ) . For s < M , (2.10) derives immediately from (2.12) and the strong convergence of (u n ) to zero in L 2 (R 4 ). Now, we shall determine the first scale and the first profile.

Proposition 2.3. For all 0 < δ < A 0 , we have

sup s≥0 v n (s) A 0 -δ 2 -3s -→ n→∞ ∞.
Proof. To go to the proof of Proposition 2.3, we shall proceed by contradiction by assuming that there exists a positive real δ such that, up to a subsequence extraction, (2.13) sup

s≥0,n∈N v n (s) A 0 -δ 2 -3s ≤ C,
where C is a positive constant. Thanks to (2.10) and (2.13), we get by virtue of Lebesgue's theorem

lim n→∞ |x|<1 e un(x) A 0 -δ 2 -1 dx = lim n→∞ 2π 2 ∞ 0 e vn(s) A 0 -δ 2 
-1 e -4s ds = 0.

On the other hand, using Proposition 3.4, the boundedness of (u n ) in H 2 (R 4 ) ensures the existence of a positive constant C such that

|u n (x)| ≤ C, ∀ n ∈ N and |x| ≥ 1.
By virtue of the fact that for any positive M there exists a finite constant C M such that

sup |t|≤M e t 2 -1 t 2 < C M , we obtain that |x|≥1 e un(x) A 0 -δ 2 -1 dx ≤ C u n 2 L 2 (R 4 ) .
The strong convergence of (u n ) to 0 in L 2 (R 4 ) leads to

R 4 e un(x) A 0 -δ 2 -1 dx -→ n→∞ 0. Thus, lim n→∞ u n L ≤ A 0 -δ,
which is in contradiction with Hypothesis (1.10).

Corollary 2.4. There exists a scale α

(1) n such that

4 v n α (1) n A 0 2 -3 α (1) n -→ n→∞ ∞.
Proof. Let us set

W n (s) := 4 v n (s) A 0 2 -3s and a n := sup s≥0 W n (s).
Then, there exists a positive sequence α

(1) n such that

W n α (1) n ≥ a n - 1 n .
According to Proposition 2.3, a n tends to infinity and then

W n α (1) n -→ n→∞ ∞.
It remains to show that α is bounded in R and so is W n α

(1) n thanks to (2.10). This yields a contradiction.

Corollary 2.5. Under the above assumptions, we have for n big enough,

√ 3 2 A 0 α (1) n ≤ v n α (1) n ≤ C α (1) 
n + o [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF],

where C = 1 √ 8π 2 lim sup n→∞ ∆u n L 2 (R 4 ) .
Proof. The left hand side inequality follows directly from Corollary 2.4. On the other hand, for any s ≥ 0 and according to Cauchy-Schwarz inequality, we obtain that

|v n (s)| = v n (0) + s 0 v n (τ ) dτ ≤ |v n (0)| + √ s v n L 2 (R) .
By virtue of (2.4) and Lemma 3.3, we get

v n L 2 (R) = ∞ 0 1 r u n (r) 2 r 3 dr 1 2 ≤ 1 √ 8π 2 ∆u n L 2 (R 4 ) .
Using the boundedness of the sequence (∆u n ) in L 2 (R 4 ) and the convergence of v n (0) to zero, we infer that

|v n (s)| ≤ o(1) + C √ s, where C = 1 √ 8π 2 lim sup n→∞ ∆u n L 2 (R 4 )
, which ensures the right hand side inequality.

Now we are able to extract the first profile. To do so, let us set

ψ n (y) := 8π 2 α (1) n v n α (1) n y .
The following lemma summarizes the principle properties of ψ n .

Lemma 2.6. Under the same assumptions, we have

(2.14) √ 6π 2 A 0 ≤ |ψ n (1)| ≤ C + o(1),
where C = lim sup n→∞ ∆u n L 2 (R 4 ) . Moreover, there exists a profile ψ (1) such that, up to a subsequence extraction,

ψ n n→∞ (ψ (1) ) in L 2 (R) and (ψ (1) ) L 2 (R) ≥ √ 6π 2 A 0 .
Proof. According to Corollary 2.5, we get (2.14). Besides, thanks to (2.4) and Lemma 3.3 we obtain that

ψ n L 2 (R) = √ 8π 2 ∞ 0 1 r u n (r) 2 r 3 dr 1 2 ≤ ∆u n L 2 (R 4 ) .
Then, (ψ n ) is bounded in L 2 (R). Consequently, up to a subsequence extraction, (ψ n ) converges weakly in L 2 (R) to some function g ∈ L 2 (R). Let us introduce the function

ψ (1) (s) := s 0 g(τ ) dτ.
It's obvious that, up asubsequence extraction, ψ n (ψ (1) ) in L 2 (R). It remains to prove that ψ (1) is a profile. Firstly, since

ψ (1) (s) = s 0 g(τ ) dτ ≤ √ s g L 2 (R) ,
we get ψ (1) ∈ L 2 (R + , e -4s ds).

Secondly, ψ (1) (s) = 0 for all s ≤ 0. Indeed, using the fact that

u n 2 L 2 (R 4 ) = α (1) n 2 4 R |ψ n (s)| 2 e -4α (1)
n s ds,

we obtain that 0 -∞ |ψ n (s)| 2 ds ≤ 0 -∞ |ψ n (s)| 2 e -4α (1) n s ds ≤ 4 α (1) n 2 u n 2 L 2 (R 4 ) .
By virtue of the boundedness of (u n ) in L 2 (R 4 ), we deduce that ψ n converges strongly to zero in L 2 (] -∞, 0[). Consequently, for almost all s ≤ 0, up to a subsequence extraction, ψ n (s) goes to zero. In other respects, as (ψ n ) converges weakly to g in L 2 (R) and ψ n belongs to H 1 loc (R), we infer that

ψ n (s) -ψ n (0) = s 0 ψ n (τ ) dτ -→ n→∞ s 0 g(τ ) dτ = ψ (1) (s).
This gives rise to the fact that (2.15)

ψ n (s) -→ n→∞ ψ (1) (s), ∀ s ∈ R,
and ensures that ψ (1) |]-∞,0] = 0. Finally, knowing that ψ (1) 

(1) ≥ √ 6π 2 A 0 and (ψ (1) ) L 2 (R) ≥ 1 0 (ψ (1) ) (τ ) dτ = ψ (1) (1) , we deduce that (ψ (1) ) L 2 (R) ≥ √ 6π 2 A 0 .
Let us now consider the first remainder term:

(2.16) r (1) n (x) = u n (x) -g (1) n (x), where g (1) n

(x) = α (1) n 8π 2 ψ (1) * ρ (1) n -log |x| α (1) n with ρ (1) 
n (s) = α (1) 
n ρ α

(1)

n s . Recalling that u n (x) = α (1) n 8π 2 ψ n -log |x| α (1) n
and taking advantage of the fact that (ψ n ) converges weakly in L 2 (R) to (ψ (1) ) , we get the following result.

Proposition 2.7. Let (u n ) n be a sequence in H 2 rad (R 4 ) satisfying the assumptions of Theorem 1.10. Then, there exist a scale α (1) n and a profile ψ (1) such that

(2.17) (ψ (1) ) L 2 (R) ≥ √ 6π 2 A 0 .
In addition, we have

(2.18) lim n→∞ 1 r ∂ r r (1) n 2 L 2 (R 4 ) = lim n→∞ 1 r ∂ r u n 2 L 2 (R 4 ) - 1 4 (ψ (1) ) 2 L 2 (R) ,
where r

n is given by (2.16).

Proof. The inequality (2.17) is contained in Lemma 2.6. Besides, noticing that ) ) (s) ds.

1 r ∂ r r (1) n L 2 (R 4 ) = 1 2 ψ n -(ψ (1) ) * ρ (1) n L 2 (R) , we get lim n→∞ 1 r ∂ r r (1) n 2 L 2 (R 4 ) = 1 4 lim n→∞ ψ n 2 L 2 (R) + 1 4 lim n→∞ (ψ (1) ) * ρ (1) n 2 L 2 (R) - 1 2 lim n→∞ R ψ n (s) (ψ (1) ) * ρ (1) n (s) ds = lim n→∞ 1 r ∂ r u n 2 L 2 (R 4 ) + 1 4 (ψ (1) ) 2 L 2 (R) - 1 2 lim n→∞ R ψ n (s) (ψ (1) ) * ρ (1) n (s) ds. We write R ψ n (s) (ψ (1) ) * ρ (1) n (s) ds = R ψ n (s) (ψ (1) ) * ρ (1) n (s) -(ψ (1) ) (s) ds + R ψ n (s)(ψ ( 1 
For any real number s, we have

ψ n (s) -ψ (1) * ρ (1) n (s) ≤ ψ n (s) -ψ (1) (s) + ψ (1) * ρ (1) n (s) -ψ (1) (s) .
As ψ (1) belongs to the Hölder space C 1 2 , we obtain that

ψ (1) * ρ (1) n (s) -ψ (1) (s) = 1 αn -1 αn ρ (1) n (t) ψ (1) (s -t) -ψ (1) (s) dt 1 αn -1 αn ρ (1) n (t) |t| dt 1 √ α n -→ n→∞ 0.
Thanks to (2.15), we infer that

ψ n (s) -ψ (1) * ρ (1) n (s) -→ n→∞ 0.
This gives rise to

lim n→∞ 8π 2 α (1) n r(1) n α (2) n = lim n→∞ ψ n α (2) n α (1) n 
-ψ (1) * ρ (1) n α

(2) n α

(1) n = 0, which is in contradiction with the left hand side inequality of (2.21). Moreover, there exists a profile ψ (2) such that r (1) n (x) = α Therefore A → 0 as → ∞ and the proof of the main theorem is achieved.

Appendix

The first part of this appendix presents the proof of the following proposition concerning the convergence in H 2 (R 4 ) of the sequence (f α ) defined by (1.6). It is easy to see that for α large enough

I ≤ 2π 2 e -α 0 r 3 α 8π 2 + 1 √ 32π 2 α 2 dr ≤ α 8π 2 + 1 32π 2 α + 1 8π 2 π 2 e -4α 2 = O 1 α .
Besides, by repeated integration by parts, we obtain that

II = 1 4α - α 2 e -4α
4 - 

  This leads to (1.14) as desired. d) Similarly to the proof of Proposition 1.15 in[START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], we get by using (1.14) lim n→∞ g(j) 

  If not, up to a subsequence extraction, the sequence α

√ 6π 2 A 1 and lim n→∞ 1 r ∂ r r ( 2 ) n 2 L 2 (R 4 ) 2 L 2 (R 4 )r u n 2 L 2 (R 4 ).

 212224224224 n s . Proceeding as the first step, we obtain that (ψ(2) ) L 2 (R) ≥ At iteration , we get u n (x) =

Proposition 3 . 1 .have f α 2 L 2 (R 4 ) = O 1 α , ∇f α 2 L 2 (R 4 ) = O 1 α and ∆f α 2 L 2 (R 4 )Proof. Let us write f α 2 L 2 (R 4 )

 3122422224224 We = I + II + III, with I = |x|≤e -α |f α (x)| 2 dx, II = e -α <|x|≤1 |f α (x)| 2 dx and III = |x|>1 |f α (x)| 2 dx.

2 √ 8π 2 α 1 , we easily get ∇f α 2 L 2 (

 22122 The fact that η α ∈ D(R 4 ) andη α = O 1 si e -α < |x| ≤ 1, ∇η α (x) si |x| > x)| 2 dx.Proof. Let u ∈ D rad (R 4 ) and let us write for r > 0, 3 u L 2 (R 4 ) ∇u L 2 (R 4 ) , which leads to (3.2) by density arguments.
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Since (ψ n ) converges weakly in L 2 (R) to (ψ (1) ) , we obtain that (2.19) R ψ n (s)(ψ (1) ) (s) ds -→ n→∞ (ψ (1) )

Besides, according to Cauchy-Schwarz inequality, we infer that R ψ n (s) (ψ (1) ) * ρ (1) n (s) -(ψ (1) ) (s) ds ≤ ψ n L 2 (R) (ψ (1) ) * ρ (1) n -(ψ (1) ) L 2 (R)

(ψ (1) ) * ρ (1) n

The boundedness of ( 1 r ∂ r u n ) in L 2 (R 4 ) and the strong convergence of (ψ (1) ) * ρ

(1) n to (ψ (1) 

Taking advantage of (2. [START_REF] Ruf | sharp Adams-type inequalities in R n[END_REF]) and (2.20), we deduce (2.18).

Conclusion.

Our concern now is to iterate the previous process and to prove that the algorithmic construction converges. Thanks to the fact that ψ (1) * ρ

This implies that r

(1) n satisfies the hypothesis of compactness (1.11). According to (2.18) and the inequalities (2.6), (2.7) and (2.8), we deduce that r 

n (e -s ). In addition, the scales α

(1) n and α

(2) n are orthogonal. Otherwise, there exists a constant C such that

Using (2.16), we get

.

This ensures the result knowing that η α ∈ D(R 4 ) and

Finally, since

which ends the proof of the last assertion in view of the fact that η α ∈ D(R 4 ) and

In the following proposition, we recall the characterization of H 2 rad (R 4 ) which is useful in this article. Proposition 3.2. We have

The proof of Proposition 3.2 is based on the following lemma proved in [START_REF] Ruf | sharp Adams-type inequalities in R n[END_REF]:

), we have

Proof. By density, it suffices to consider smooth compactly supported functions. Let us then consider u ∈ D rad (R 4 ). We have

By integration by parts, we deduce that

which achieves the proof of (3.1).

It will be useful to notice, that in the radial case, we have the following estimate which implies the control of the L ∞ -norm far away from the origin. L 2 (R 4 ) ,