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DESCRIPTION OF THE LACK OF COMPACTNESS IN ORLICZ SPACES AND APPLICATIONS

In this paper, we investigate the lack of compactness of the Sobolev embedding of H 1 (R 2 ) into the Orlicz space L φp (R 2 ) associated to the function φp defined by φp(s) := e s 2 -p-1 k=0 s 2k k!

• We also undertake the study of a nonlinear wave equation with exponential growth where the Orlicz norm . L φp plays a crucial role. This study includes issues of global existence, scattering and qualitative study.

1. Introduction 1.1. Critical 2D Sobolev embedding. It is well known (see for instance [START_REF] Bahouri | Fourier analysis and applications to nonlinear partial differential equations[END_REF]) that H 1 (R 2 ) is continuously embedded in all Lebesgue spaces L q (R 2 ) for 2 ≤ q < ∞, but not in L ∞ (R 2 ). It is also known that (for more details, we refer the reader to [START_REF] Rao | Applications of Orlicz spaces[END_REF])

H 1 (R 2 ) → L φp (R 2 ), ∀p ∈ N * , (1) 
where L φp (R 2 ) denotes the Orlicz space associated to the function

φ p (s) = e s 2 - p-1 k=0 s 2k k! • (2) 
The embedding (1) is a direct consequence of the following sharp Trudinger-Moser type inequalities (see [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF][START_REF] Moser | A sharp form of an inequality of N. Trudinger[END_REF][START_REF] Ruf | A sharp Trudinger-Moser type inequality for unbounded domains in R 2[END_REF][START_REF] Trudinger | On imbedding into Orlicz spaces and some applications[END_REF]):

Proposition 1.1.

sup u H 1 (R 2 ) ≤1 R 2 e 4π|u(x)| 2 -1 dx := κ < ∞, (3) 
and states as follows:

u L φp (R 2 ) ≤ 1 √ 4π u H 1 (R 2 ) , (4) 
where the norm . L φp is given by:

u L φp (R 2 ) = inf λ > 0, R 2 φ p |u(x)| λ dx ≤ κ .
Note that (4) follows from (3) and the following obvious inequality

u L φp (R 2 ) ≤ u L φ 1 (R 2 ) .
For our purpose, we shall resort to the following Trudinger-Moser inequality, the proof of which is postponed in the appendix.

Proposition 1.2. Let α ∈ [0, 4π[ and p an integer larger than 1. There is a constant c(α, p) such that

R 2 e α|u(x)| 2 - p-1 k=0 α k |u(x)| 2k k! dx ≤ c(α, p) u 2p L 2p (R 2 ) , (5) 
for all u ∈ H 1 (R 2 ) satisfying ∇u L 2 (R 2 ) ≤ 1.

1.2. Development on the lack of compactness of Sobolev embedding in the Orlicz space in the case p = 1. In [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] and [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], H. Bahouri, M. Majdoub and N. Masmoudi characterized the lack of compactness of H 1 (R 2 ) into the Orlicz space L φ 1 (R 2 ).

To state their result in a clear way, let us recall some definitions.

Definition 1.3. We shall designate by a scale any sequence (α n ) of positive real numbers going to infinity, a core any sequence (x n ) of points in R 2 and a profile any function ψ belonging to the set

P := ψ ∈ L 2 (R, e -2s ds); ψ ∈ L 2 (R), ψ |]-∞,0] = 0 .
Given two scales (α n ), (α n ), two cores (x n ), (x n ) and tow profiles ψ, ψ, we say that the triplets (α n ), (x n ), ψ and (α n ), (x n ), ψ are orthogonal if

either log (α n /α n ) → ∞,
or αn = α n and

- log |x n -xn | α n
-→ a ≥ 0 with ψ or ψ null for s < a .

Remarks 1.4.

• The profiles belong to the Hölder space C • Note also that (see [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF]) ψ(s) √ s → 0 as s → 0 and as s → ∞.

The asymptotically orthogonal decomposition derived in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] is formulated in the following terms: Theorem 1.5. Let (u n ) be a bounded sequence in H 1 (R 2 ) such that 

u n 0, (7) 
Then, there exist a sequence of scales (α

(j)
n ), a sequence of cores (x

(j)
n ) and a sequence of profiles (ψ (j) ) such that the triplets (α

(j) n , x (j) 
n , ψ (j) ) are pairwise orthogonal and, up to a subsequence extraction, we have for all ≥ 1,

u n (x) = j=1 α (j) n 2π ψ (j) -log |x -x (j) n | α (j) n + r ( ) n (x), lim sup n→∞ r ( ) n L φ 1 →∞ -→ 0. ( 10 
)
Moreover, we have the following stability estimates

∇u n 2 L 2 = j=1 ψ (j) 2 L 2 + ∇r ( ) n 2 L 2 + •(1), n → ∞. (11) 
Remarks 1.6.

• It will be useful later on to point out that for any q ≥ 2, we have

g n L q n→∞ -→ 0, ( 12 
)
where g n is the elementary concentration defined by

g n (x) := α n 2π ψ -log |x -x n | α n . ( 13 
)
Since the Lebesgue measure is invariant under translations, we have

g n q L q = (2π) -q 2 (α n ) q 2 R 2 ψ - log |x| α n q dx.
Performing the change of variable s = -log |x| αn yields

g n q L q = (2π) 1-q 2 (α n ) q 2 +1
∞ 0 ψ(s) q e -2αns ds.

Fix ε > 0. Then in view of (6), there exist two real numbers s 0 and S 0 such that 0 < s 0 < S 0 and

|ψ(s)| ≤ ε √ s, ∀ s ∈ [0, s 0 ] ∪ [S 0 , ∞[.
This implies, by the change of variable u = α n s, that

(α n ) q 2 +1 s 0 0 |ψ(s)| q e -2αns ds ≤ ε q αns 0 0 u q 2 e -2u du ≤ C q ε q .
In the same way, we obtain

(α n ) q 2 +1 ∞ S 0 |ψ(s)| q e -2αns ds ≤ C q ε q .
Finally, taking advantage of the continuity of ψ, we deduce that

(α n ) q 2 +1 S 0 s 0 |ψ(s)| q e -2αns ds (α n ) q 2 +1 S 0 s 0 e -2αns ds (α n ) q 2 e -2αns 0 -e -2αnS 0 n→∞ -→ 0,
which ends the proof of the assertion [START_REF] Chemin | Fluides parfaits incompressibles[END_REF].

• Setting

g (j) n (x) := α (j) n 2π ψ (j) -log |x -x (j) n | α (j) n (14)
the elementary concentration involved in Decomposition [START_REF] Ben Ayed | Characterization of the lack of compactness of H 2 rad (R 4 ) into the Orlicz space[END_REF], we recall that it was proved in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] that

g (j) n L φ 1 n→∞ -→ 1 √ 4π max s>0 |ψ (j) (s)| √ s and j=1 g (j) n L φ 1 n→∞ -→ sup 1≤j≤ lim n→∞ g (j) n L φ 1 , (15) 
in the case when the scales (α

(j)
n ) 1≤j≤ are pairwise orthogonal. Note that Property (15) does not necessarily remain true in the case when we have the same scales and the pairwise orthogonality of the couples (x

(j) n ), ψ (j) (see Lemma 3.6 in [4]).
1.3. Study of the lack of compactness of Sobolev embedding in the Orlicz space in the case p > 1. Our first goal in this paper is to describe the lack of compactness of the Sobolev embedding (1) for p > 1. Our result states as follows:

Theorem 1.7. Let p > 1 be an integer and (u n ) be a bounded sequence in

H 1 (R 2 ) such that u n 0, (16) 
lim sup n→∞ u n L φp = A 0 > 0 and (17) 
lim R→∞ lim sup n→∞ u n L φp (|x|>R) = 0. (18) 
Then, there exist a sequence of scales (α

(j) n ), a sequence of cores (x (j)
n ) and a sequence of profiles (ψ (j) ) such that the triplets (α

(j) n , x (j)
n , ψ (j) ) are pairwise orthogonal in the sense of Definition 1.3 and, up to a subsequence extraction, we have for all ≥ 1,

u n (x) = j=1 α (j) n 2π ψ (j) -log |x -x (j) n | α (j) n + r ( ) n (x), (19) 
with lim sup n→∞ r ( ) n L φp →∞ -→ 0. Moreover, we have the following stability estimates

∇u n 2 L 2 = j=1 ψ (j) 2 L 2 + ∇r ( ) n 2 L 2 + •(1), n → ∞. (20) 
Remarks 1.8.

• Arguing as in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], we can easily prove that

g n L φp n→∞ -→ 1 √ 4π max s>0 |ψ(s)| √ s , (21) 
where

g n (x) := α n 2π ψ -log |x -x n | α n •
Indeed setting L = lim inf n→∞ g n L φp , we have for fixed ε > 0 and n sufficiently large

(up to subsequence extraction) R 2 e gn(x+xn) L+ε 2 - p-1 k=0 |g n (x + x n )| 2k (L + ε) 2k k! dx ≤ κ.
Therefore,

R 2 e gn(x+xn) L+ε 2 -1 dx κ + p-1 k=1 g n 2k L 2k . ( 22 
) Since R 2 e gn(x+xn) L+ε 2 -1 dx = 2π +∞ 0 α n e 2αns 1 4π(L+ε) 2 ψ(s) √ s 2 -1 ds -π,
we obtain in view of ( 12) and ( 22)

that +∞ 0 α n e 2αns 1 4π(L+ε) 2 ψ(s) √ s 2 -1 ds ≤ C,
for some absolute constant C and for n large enough. Using the fact that ψ is a continuous function, we deduce that

L + ε ≥ 1 √ 4π max s>0 |ψ(s)| √ s , which ensures that L ≥ 1 √ 4π max s>0 |ψ(s)| √ s •
To end the proof of [START_REF] Rao | Applications of Orlicz spaces[END_REF], it suffices to establish that for any δ > 0

R 2 e gn(x+xn) λ 2 - p-1 k=0 |g n (x + x n )| 2k (λ) 2k k! dx n→∞ -→ 0, where λ = 1+δ √ 4π max s>0 |ψ(s)| √ s • Since R 2 e gn(x+xn) λ 2 - p-1 k=0 |g n (x + x n )| 2k (λ) 2k k! dx ≤ R 2 e gn(x+xn) λ 2 -1 dx,
the result derives immediately from Proposition 1.15 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], which achieves the proof of the result. • Applying the same lines of reasoning as in the proof of Proposition 1.19 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], we obtain the following result:

Proposition 1.9. Let (α

(j) n ), (x (j) n ), ψ (j)
1≤j≤ be a family of triplets of scales, cores and profiles such that the scales are pairwise orthogonal. Then for any integer p larger than 1, we have

j=1 g (j) n L φp n→∞ -→ sup 1≤j≤ lim n→∞ g (j) n L φp
, where the functions g

(j)
n are defined by [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF].

As we will see in Section 2, it turns out that the heart of the matter in the proof of Theorem 1.7 is reduced to the following result concerning the radial case: Theorem 1.10. Let p be an integer strictly larger than 1 and (u n ) be a bounded sequence in

H 1 rad (R 2 ) such that u n 0 and (23) lim sup n→∞ u n L φp = A 0 > 0. ( 24 
)
Then, there exist a sequence of pairwise orthogonal scales (α

(j)
n ) and a sequence of profiles (ψ (j) ) such that up to a subsequence extraction, we have for all ≥ 1,

u n (x) = j=1 α (j) n 2π ψ (j) -log |x| α (j) n + r ( ) n (x), lim sup n→∞ r ( ) n L φp →∞ -→ 0. ( 25 
)
Moreover, we have the following stability estimates

∇u n 2 L 2 = j=1 ψ (j) 2 L 2 + ∇r ( ) n 2 L 2 + •(1), n → ∞.
Remarks 1.11.

• Compared with the analogous result concerning the Sobolev embedding of H 1 rad (R 2 )into L φ 1 established in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], the hypothesis of compactness at infinity is not required. This is justified by the fact that H 1 rad (R 2 ) is compactly embedded in L q (R 2 ) for any 2 < q < ∞ which implies that

lim n→∞ u n L q (R 2 ) = 0, ∀ 2 < q < ∞. (26) 
• In view of Proposition 1.9, Theorem 1.10 yields to

u n L φp → sup j≥1 lim n→∞ g (j) n L φp ,
which implies that the first profile in Decomposition (25) can be chosen such that up to extraction

A 0 := lim sup n→∞ u n L φp = lim n→∞ α (1) n 2π ψ (1) - log |x| α (1) n L φp . ( 27 
)
Note that the description of the lack of compactness in other critical Sobolev embeddings was achieved in [START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF][START_REF] Ben Ayed | Characterization of the lack of compactness of H 2 rad (R 4 ) into the Orlicz space[END_REF][START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] and has been at the origin of several prospectus. Among others, one can mention [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF][START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF][START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF][START_REF] Brezis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF][START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation[END_REF].

1.4. Layout of the paper. Our paper is organized as follows: in Section 2, we establish the algorithmic construction of the decomposition stated in Theorem 1.7. Then, we study in Section 3 a nonlinear two-dimensional wave equation with the exponential nonlinearity u φ p ( √ 4πu). Firstly, we prove the global well-posedness and the scattering in the energy space both in the subcritical and critical cases, and secondly we compare the evolution of this equation with the evolution of the solutions of the free Klein-Gordon equation in the same space. We mention that C will be used to denote a constant which may vary from line to line. We also use A B to denote an estimate of the form A ≤ CB for some absolute constant C and A ≈ B if A B and B A. For simplicity, we shall also still denote by (u n ) any subsequence of (u n ) and designate by •(1) any sequence which tends to 0 as n goes to infinity.

2. Proof of Theorem 1.7 2.1. Strategy of the proof. The proof of Theorem 1.7 uses in a crucial way capacity arguments and is done in three steps: in the first step, we begin by the study of u * n the symmetric decreasing rearrangement of u n . This led us to establish Theorem 1.10. In the second step, by a technical process developed in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], we reduce ourselves to one scale and extract the first core (x

(1)
n ) and the first profile ψ (1) which enables us to extract the first element α (1)

n 2π ψ (1) -log |x-x (1) n | α (j) n
. The third step is devoted to the study of the remainder term. If the limit of its Orlicz norm is null we stop the process. If not, we prove that this remainder term satisfies the same properties as the sequence we start with which allows us to extract a second elementary concentration concentrated around a second core (x

(2) n ).
Thereafter, we establish the property of orthogonality between the first two elementary concentrations and finally we prove that this process converges.

2.2. Proof of Theorem 1.10. The main ingredient in the proof of Theorem 1.10 consists to extract a scale and a profile ψ such that

ψ L 2 (R) ≥ CA 0 , ( 28 
)
where C is a universal constant. To go to this end, let us for a bounded sequence (u n ) in H 1 rad (R 2 ) satisfying the assumptions ( 23) and ( 24), set v n (s) = u n (e -s ). Combining ( 26) with the following well-known radial estimate:

|u(r)| ≤ C r 1 p+1 u p p+1 L 2p ∇u 1 p+1 L 2
where r = |x|, we infer that

lim n→∞ v n L ∞ (]-∞,M ]) = 0, ∀M ∈ R. ( 29 
)
This gives rise to the following result:

Proposition 2.1. For any δ > 0, we have

sup s≥0 v n (s) A 0 -δ 2 -s → ∞, n → ∞. (30) 
Proof. We proceed by contradiction. If not, there exists δ > 0 such that, up to a subsequence extraction

sup s≥0,n∈N v n (s) A 0 -δ 2 -s ≤ C < ∞. (31) 
On the one hand, thanks to (29) and (31), we get by virtue of Lebesgue theorem

|x|<1 e | un(x) A 0 -δ | 2 - p-1 k=0 |u n (x)| 2k (A 0 -δ) 2k k! dx ≤ |x|<1 e | un(x) A 0 -δ | 2 -1 dx ≤ 2π ∞ 0 e | vn(s) A 0 -δ | 2 -1 e -2s ds n→∞ -→ 0.
On the other hand, using Property (29) and the simple fact that for any positive real number M , there exists a finite constant C M,p such that

sup |t|≤M e t 2 -p-1 k=0 t 2k k! t 2p < C M,p ,
we deduce in view of ( 26) that

|x|≥1 e | un(x) A 0 -δ | 2 - p-1 k=0 |u n (x)| 2k (A 0 -δ) 2k k! dx u n 2p L 2p → 0 . Consequently, lim sup n→∞ u n L φp ≤ A 0 -δ,
which is in contradiction with Hypothesis [START_REF] Struwe | A Super-Critical NonlinearWave Equation in 2 Space Dimensions[END_REF].

An immediate consequence of the previous proposition is the following corollary whose proof is identical to the proof of Corollaries 2.4 and 2.5 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF].

Corollary 2.2. Under the above notations, there exists a sequence (α

(1) n ) in R + tending to infinity such that 4 v n (α (1) 
n ) A 0 2 -α (1) n n→∞ -→ ∞ (32)
and for n sufficiently large, there exists a positive constant C such that

A 0 2 α (1) n ≤ |v n (α (1) n )| ≤ C α (1) 
n + •(1). (33) 
Now, setting

ψ n (y) = 2π α (1) n v n (α (1) n y),
we obtain along the same lines as in Lemma 2.6 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] the following result:

Lemma 2.3. Under notations of Corollary 2.2, there exists a profile ψ (1) ∈ P such that, up to a subsequence extraction

ψ n (ψ (1) ) in L 2 (R) and (ψ (1) ) L 2 ≥ π 2 A 0 .
To achieve the proof of Theorem 1.10, let us consider the remainder term

r (1) n (x) = u n (x) -g (1) n (x), (34) 
where

g (1) n (x) = α (1) n 2π ψ (1) -log |x| α (1) n 
.

By straightforward computations, we can easily prove that (r

(1) n ) is bounded in H 1 rad (R 2
) and satisfies the hypothesis [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF] together with the following property:

lim n→∞ ∇r (1) n 2 L 2 (R 2 ) = lim n→∞ ∇u n 2 L 2 (R 2 ) -(ψ (1) ) 2 L 2 (R) . (35) 
Let us now define

A 1 = lim sup n→∞ r (1) 
n L φp . If A 1 = 0, we stop the process. If not, arguing as above, we prove that there exist a scale (α

n ) satisfying the statement of Corollary 2.2 with A 1 instead of A 0 and a profile ψ (2) in P such that r (1) 

n (x) = α (2) n 2π ψ (2) -log |x| α (2) n + r (2) n (x), with (ψ (2) ) L 2 ≥ π 2 A 1 and lim n→∞ ∇r (2) n 2 L 2 (R 2 ) = lim n→∞ ∇r (1) n 2 L 2 (R 2 ) -(ψ (2) ) 2 L 2 (R) .
Moreover, as in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] we can show that (α

n ) and (α

n ) are orthogonal. Finally, iterating the process, we get at step

u n (x) = j=1 α (j) n 2π ψ (j) -log |x| α (j) n + r ( ) n (x), with lim sup n→∞ r ( ) n 2 H 1 1 -A 2 0 -A 2 1 -• • • -A 2 -1 ,
which implies that A → 0 as → ∞ and ends the proof of the theorem.

2.3. Extraction of the cores and profiles. This step is performed as the proof of Theorem 1.16 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF]. We sketch it here briefly for the convenience of the reader. Let u * n be the symmetric decreasing rearrangement of u n . Since u * n ∈ H 1 rad (R 2 ) and satisfies the assumptions of Theorem 1.10, we infer that there exist a sequence (α (j) n ) of pairwise orthogonal scales and a sequence of profiles (ϕ (j) ) such that, up to subsequence extraction,

u * n (x) = j=1 α (j) n 2π ϕ (j) -log |x| α (j) n + r ( ) n (x), lim sup n→∞ r ( ) n L φp →∞ -→ 0.
Besides, in view of (27), we can assume that

A 0 = lim n→∞ α (1) n 2π ϕ (1) - log |x| α (1) n L Φp
. Now to extract the cores and profiles, we shall firstly reduce to the case of one scale according to Section 2.3 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], where a suitable truncation of u n was introduced. Then assuming that

u * n (x) = α (1) n 2π ϕ (1) -log |x| α (1) n ,
we apply the strategy developed in Section 2.4 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] to extract the cores and the profiles. This approach is based on capacity arguments: to carry out the extraction process of mass concentrations, we prove by contradiction that if the mass responsible for the lack of compactness of the Sobolev embedding in the Orlicz space is scattered, then the energy used would exceed that of the starting sequence. This main point can be formulated on the following terms:

Lemma 2.4 ( Lemma 2.5 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF]). There exist δ 0 > 0 and N 1 ∈ N such that for any n ≥ N 1 there exists x n such that

|E n ∩ B(x n , e -bα (1) n )| |E n | ≥ δ 0 A 2 0 , (36) 
where

E n := {x ∈ R 2 ; |u n (x)| ≥ 2α (1) n (1 -ε 0 10 )A 0 } with 0 < ε 0 < 1 2 , B(x n , e -b α (1) n )
designates the ball of center x n and radius e -b α (1) n with b = 1 -2ε 0 and |.| denotes the Lebesgue measure.

Once extracting the first core (x

(1)
n ) making use of the previous lemma, we focus on the extraction of the first profile. For that purpose, we consider the sequence

ψ n (y, θ) = 2π α (1) n v n (α (1) n y, θ),
where

v n (s, θ) = (τ x (1) n u n )(e -s cos θ, e -s sin θ) and (x (1) 
n ) satisfies

|E n ∩ B(x n , e -(1-2ε 0 )α (1) n | |E n | ≥ δ 0 A 2 0 .
Taking advantage of the invariance of Lebesgue measure under translations, we deduce that

∇u n 2 L 2 = 1 2π R 2π 0 |∂ y ψ n (y, θ)| 2 dydθ + α (1) n 2π R 2π 0 |∂ θ ψ n (y, θ)| 2 dydθ.
Since the scale α

n tends to infinity and the sequence (

u n ) is bounded in H 1 (R 2 ), this implies that up to a subsequence extraction ∂ θ ψ n → n→∞ 0 and ∂ y ψ n → n→∞ g in L 2 (R×[0, 2π]),
where g only depends on the variable y. Thus introducing the function ψ (1) (y) = y 0 g(τ )dτ, we obtain along the same lines as in Proposition 2.8 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] the following result: Proposition 2.5. The function ψ (1) belongs to the set of profiles P. Besides for any y ∈ R, we have

1 2π 2π 0 ψ n (y, θ) dθ → ψ (1) (y), (37) 
as n tends to infinity and there exists an absolute constant C such that

ψ (1) L 2 ≥ C A 0 . (38) 
2.4. End of the proof. To achieve the proof of the theorem, we argue exactly as in Section 2.5 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] by iterating the process exposed in the previous section. For that purpose, we set r (1) n (x) = u n (x) -g (1) n (x), where g (1) n

(x) = α (1) n 2π ψ (1) - log |x -x (1) n | α (1) n .
One can easily check that the sequence (r

(1) n ) weakly converges to 0 in H 1 (R 2 ). Moreover, since ψ (1)
|]-∞,0] = 0, we have for any R ≥ 1

r (1) n L Φp (|x-x (1) n |≥R) = u n L Φp (|x-x (1) n |≥R) . (39) 
But by assumption, the sequence (u n ) is compact at infinity in the Orlicz space L Φp . Thus the core (x

n ) is bounded in R 2 , which ensures in view of (39) that (r

n ) satisfies the hypothesis of compactness at infinity [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF]. Finally, taking advantage of the weak convergence of (∂ y ψ n ) to ψ (1) in L 2 (y, θ) as n goes to infinity, we get lim n→∞ ∇r (1) 

n 2 L 2 = lim n→∞ ∇u (1) n 2 L 2 -ψ (1) 2 L 2 .

Now, let us define

A 1 := lim sup n→∞ r (1) 
n L Φp . If A 1 = 0, we stop the process. If not, knowing that (r

n ) verifies the assumptions of Theorem 1.7, we apply the above reasoning, which gives rise to the existence of a scale (α

(2) n ), a core (x (2)
n ) satisfying the statement of Lemma 2.4 with A 1 instead of A 0 and a profile ψ (2) in P such that

r (1) n (x) = α (2) n 2π ψ (2) - log |x -x (2) 
n | α (2) n + r (2) n (x), with ψ (2) L 2 ≥ C A 1 and lim n→∞ ∇r (2) 
n 2 L 2 = lim n→∞ ∇r (1) 
n 2 L 2 -ψ (2) 2 L 2 .
Arguing as in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], we show that the triplets α

n , ψ (1) and α

(2)

n , x (2) 
n , ψ (2) are orthogonal in the sense of Definition 1.3 and prove that the process of extraction of the elementary concentration converges. This ends the proof of Decomposition [START_REF] Ben Ayed | Characterization of the lack of compactness of H 2 rad (R 4 ) into the Orlicz space[END_REF]. The orthogonality equality [START_REF] Brezis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] derives immediately from Proposition 2.10 in [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF]. The proof of Theorem 1.7 is then achieved.

Nonlinear wave equation

3.1.

Statement of the results. In this section, we investigate the initial value problem for the following nonlinear wave equation:

         u + u + u e 4πu 2 - p-1 k=0 (4π) k u 2k k! = 0, u(0) = u 0 ∈ H 1 (R 2 ), ∂ t u(0) = u 1 ∈ L 2 (R 2 ), (40) 
where p ≥ 1 is an integer, u = u(t, x) is a real-valued function of (t, x) ∈ R × R 2 and = ∂ 2 t -∆ is the wave operator.

Let us recall that in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF][START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF], the authors proved the global well-posedness for the Cauchy problem (40) when p = 1 and the scattering when p = 2 in the subcritical and critical cases (i.e when the energy is less or equal to some threshold). Note also that in [START_REF] Struwe | A Super-Critical NonlinearWave Equation in 2 Space Dimensions[END_REF][START_REF] Struwe | Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions[END_REF], M. Struwe constructed global smooth solutions to (40) with smooth data of arbitrary size in the case p = 1.

Formally, the solutions of the Cauchy problem (40) satisfy the following conservation law:

E p (u, t) := ∂ t u(t) 2 L 2 + ∇u(t) 2 L 2 + 1 4π e 4πu(t) 2 -1 - p k=2 (4π) k k! u(t) 2k L 1 (41) 
= E p (u, 0) := E 0 p . This conducts us, as in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF], to define the notion of criticality in terms of the size of the initial energy E 0 p with respect to 1.

Definition 3.1. The Cauchy problem (40) is said to be subcritical if

E 0 p < 1.
It is said to be critical if E 0 p = 1 and supercritical if E 0 p > 1. We shall prove the following result:

Theorem 3.2. Assume that E 0 p ≤ 1.
Then the Cauchy problem (40) has a unique global solution u in the space

C(R, H 1 (R 2 )) ∩ C 1 (R, L 2 (R 2 )).
Moreover, u ∈ L 4 (R, C 1/4 ) and scatters.

3.2. Technical tools. The proof of Theorem 3.2 is based on a priori estimates. This requires the control of the nonlinear term

F p (u) := u e 4πu 2 - p-1 k=0 (4π) k u 2k k! (42) in L 1 t (L 2 
x ). To achieve our goal, we will resort to Strichartz estimates for the 2D Klein-Gordon equation. These estimates, proved in [START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF], state as follows: Proposition 3.3. Let T > 0 and (q, r) ∈ [4, ∞] × [2, ∞] an admissible pair, i.e

1 q + 2 r = 1.
Then,

v L q ([0,T ],B 1 r,2 (R 2 )) v(0) H 1 (R 2 ) + ∂ t v(0) L 2 (R 2 ) + v + v L 1 ([0,T ],L 2 (R 2 )) , (43) 
where B 1 r,2 (R 2 ) stands for the usual inhomogeneous Besov space (see for example [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] or [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF] for a detailed exposition on Besov spaces).

Noticing that (q, r) = (4, 8/3) is an admissible pair and recalling that

B 1 8/3,2 (R 2 ) → C 1/4 (R 2 ), we deduce that v L 4 ([0,T ],C 1/4 (R 2 )) v(0) H 1 (R 2 ) + ∂ t v(0) L 2 (R 2 ) + v + v L 1 ([0,T ],L 2 (R 2 )) . ( 44 
)
To control the nonlinear term

F p (u) in L 1 t (L 2 
x ), we will make use of the following logarithmic inequalities proved in [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF]Theorem 1.3].

Proposition 3.4. For any λ > 2 π and any 0 < µ ≤ 1, a constant C λ,µ > 0 exists such that for any function u in H 1 (R 2 ) ∩ C 1/4 (R 2 ), we have

u 2 L ∞ ≤ λ u 2 µ log C λ,µ + 2 u C 1/4 u µ , (45) 
where

u 2 µ := ∇u 2 L 2 + µ 2 u 2 L 2 . 3.3. Proof of Theorem 3.2.
The proof of this result, divided into three steps, is inspired from the proofs of Theorems 1.8, 1.11, 1.12 in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF] and Theorem 1.3 in [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF]. 

E T = C([0, T ], H 1 (R 2 )) ∩ C 1 ([0, T ], L 2 (R 2 )) ∩ L 4 ([0, T ], C 1/4 (R 2 ))
endowed with the norm

u T = sup 0≤t≤T u(t) H 1 + ∂ t u(t) L 2 + u L 4 ([0,T ],C 1/4 ) .
For a positive time T and a positive real number δ, we denote by E T (δ) the ball in the space E T of radius δ and centered at the origin. On this ball, we define the map Φ by

v -→ Φ(v) = v, where v + v = -F p (v + v 0 ), v(0) = ∂ t v(0) = 0 and v 0 is the solution of the free Klein-Gordon equation v 0 + v 0 = 0, v 0 (0) = u 0 , and ∂ t v 0 (0) = u 1 .
Now, the goal is to show that if δ and T are small enough, then the map Φ is well-defined from E T (δ) into itself and it is a contraction. To prove that Φ is well-defined, it suffices in view of the Strichartz estimates (43) to estimate F p (v + v 0 ) in the space L 1 ([0, T ], L 2 (R 2 )). Arguing as in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF] and using the Hölder inequality and the Sobolev embedding, we obtain for any > 0

R 2 |F p (v + v 0 )| 2 dx ≤ R 2 |F 1 (v + v 0 )| 2 dx v + v 0 2 H 1 e 4π v+v 0 2 L ∞ e 4π(v+v 0 ) 2 -1 L 1+
. Note that the assumption E 0 p ≤ 1 implies that ∇u 0 L 2 < 1. Hence, we can choose µ > 0 such that u 0 µ < 1. Since v 0 is continuous in time, there exist a time T 0 and a constant 0 < c < 1 such that for any t in [0, T 0 ] we have

v 0 (t) µ ≤ c.
According to Proposition 3.4, we infer that e 4π v+v 0 2

L ∞ 1 + v + v 0 C 1/4 δ + c 8η ,
for some 0 < η < 1. Besides, applying the Trudinger-Moser inequality (5) for p = 1, the fact that

4π(1 + )(δ + c) 2 -→ 4πc < 4π as , δ → 0 and ∇ v + v 0 δ + c L 2 ≤ 1 ensures that e 4π(v+v 0 ) 2 -1 1+ L 1+ ≤ C e 4π(1+ )(v+v 0 ) 2 -1 L 1 ≤ C ,δ v + v 0 2 L 2 ≤ C ,δ (1 + u 0 H 1 + u 1 L 2 ) 2 .
Therefore, for any 0 < T ≤ T 0 , we obtain that

F p (v + v 0 ) L 1 ([0,T ],L 2 (R 2 )) T 1-η (1 + u 0 H 1 + u 1 L 2 ) 4η .
Now, to prove that Φ is a contraction (at least for T small), let us consider two elements v 1 and v 2 in E T (δ). Notice that, for any > 0,

|F p (v 1 + v 0 ) -F p (v 2 + v 0 )| = |v 1 -v 2 |(1 + 8πv 2 ) e 4πv 2 - p-2 k=0 (4π) k v 2k k! ≤ C |v 1 -v 2 | e 4π(1+ )v 2 -1 , where v = (1 -θ)(v 0 + v 1 ) + θ(v 0 + v 2 ), for some θ = θ(t, x) ∈ [0, 1]
. Using a convexity argument, we get

|F p (v 1 + v 0 ) -F p (v 2 + v 0 )| ≤ C (v 1 -v 2 ) e 4π(1+ )(v 1 +v 0 ) 2 -1 + C (v 1 -v 2 ) e 4π(1+ )(v 2 +v 0 ) 2 -1 .
This implies, in view of Strichartz estimates (44), that

Φ(v 1 ) -Φ(v 2 ) T F p (v 1 + v 0 ) -F p (v 2 + v 0 ) L 1 ([0,T ],L 2 (R 2 )) ≤ C T 0 (v 1 -v 2 ) e 4π(1+ )(v 1 +v 0 ) 2 -1 L 2 dt + C T 0 (v 1 -v 2 ) e 4π(1+ )(v 2 +v 0 ) 2 -1 L 2 dt,
which leads along the same lines as above to

Φ(v 1 ) -Φ(v 2 ) T T 1-(1+ )η (1 + u 0 H 1 + u 1 L 2 ) 4(1+ )η v 1 -v 2 T .
If the parameter is small enough, then (1 + )η < 1 and therefore, for T small enough, Φ is a contraction map. This implies the uniqueness of the solution in v 0 + E T (δ). Now, we shall prove the uniqueness in the energy space. The idea here is to establish that,

if u = v 0 + v is a solution of (40) in C([0, T ], H 1 (R 2 )) ∩ C 1 ([0, T ], L 2 (R 2 )), then necessarily v ∈ E T (δ) at least for T small. Starting from the fact that v satisfies v + v = -F p (v + v 0 ), v(0) = ∂ t v(0) = 0,
we are reduced, thanks to the Strichartz estimates (43), to control the term

F p (v + v 0 ) in the space L 1 ([0, T ], L 2 (R 2 )). But |F p (v + v 0 )| ≤ |F 1 (v + v 0 )
|, which leads to the result arguing exactly as in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF].

3.3.2. Global existence. In this section, we shall establish that our solution is global in time both in subcritical and critical cases. Firstly, let us notice that the assumption E 0 p ≤ 1 implies that ∇u 0 L 2 (R 2 ) < 1, which ensures in view of Section 3.3.1 the existence of a unique maximal solution u defined on [0, T * ) where 0 < T * ≤ ∞ is the lifespan time of u. We shall proceed by contradiction assuming that T * < ∞. In the subcritical case, the conservation law (41) implies that sup

t∈(0,T * ) ∇u(t) L 2 (R 2 ) < 1.
Let then 0 < s < T * and consider the following Cauchy problem:

v + v + F p (v) = 0, v(s) = u(s), and ∂ t v(s) = ∂ t u(s). (46) 
As in the first step of the proof, a fixed-point argument ensures the existence of τ > 0 and a unique solution v to (46) on the interval [s, s + τ ]. Noticing that τ does not depend on s, we can choose s close to T * such that T * -s < τ . So, we can prolong the solution u after the time T * , which is a contradiction.

In the critical case, we cannot apply the previous argument because it is possible that the following concentration phenomenon holds:

lim sup t→T * ∇u(t) L 2 (R 2 ) = 1. (47) 
In fact, we shall show that (47) cannot hold in this case. To go to this end, we argue as in the proof of Theorem 1.12 in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF]. Firstly, since the first equation of the Cauchy problem (40) is invariant under time translation, we can assume that T * = 0 and that the initial time is t = -1. Similarly to [17, Proposition 4.2, Corollary 4.4], it follows that the maximal solution u satisfies lim sup

t→0 - ∇u(t) L 2 (R 2 ) = 1, (48) lim t→0 
- u(t) L 2 (R 2 ) = 0, ( 49 
) lim t→0 -|x-x * |≤-t |∇u(t, x)| 2 dx = 1, and (50) 
∀t < 0, |x-x * |≤-t e p (u)(t, x) dx = 1, (51) 
for some x * ∈ R 2 , where e p (u) denotes the energy density defined by

e p (u)(t, x) := (∂ t u) 2 + |∇u| 2 + 1 4π e 4πu 2 -1 - p k=2 (4π) k u 2k k! .
Without loss of generality, we can assume that x * = 0, then multiplying the equation of the problem (40) respectively by ∂ t u and u, we obtain formally

∂ t e p (u) -div x (2∂ t u∇u) = 0, (52) 
∂ t (u∂ t u) -div x (u∇u) + |∇u| 2 -|∂ t u| 2 + u 2 e 4πu 2 - p-1 k=1 (4π) k u 2k+2 k! = 0. ( 53 
)
Integrating the conservation laws (52) and (53) over the backward truncated cone

K T S := (t, x) ∈ R × R 2 such that S ≤ t ≤ T and |x| ≤ -t
for S < T < 0, we get

B(-T ) e p (u)(T, x) dx - B(-S) e p (u)(S, x) dx (54) = -1 √ 2 M T S ∂ t u x |x| + ∇u 2 + 1 4π e 4πu 2 -1 - p k=2 (4π) k u 2k k! dx dt , B(-T ) ∂ t u(T )u(T ) dx - B(-S) ∂ t u(S)u(S) dx + 1 √ 2 M T S ∂ t u + ∇u. x |x| u dx dt (55) + K T S |∇u| 2 -|∂ t u| 2 + u 2 e 4πu 2 - p-1 k=1 (4π) k u 2k+2 k! dx dt = 0,
where B(r) is the ball centered at 0 and of radius r and

M T S := (t, x) ∈ R × R 2 such that S ≤ t ≤ T and |x| = -t .
According to (51) and (54), we infer that

M T S ∂ t u x |x| + ∇u 2 + 1 4π e 4πu 2 -1 - p k=2 (4π) k u 2k k! dx dt = 0.
This implies, using (55) and Cauchy-Schwarz inequality, that

B(-T ) ∂ t u(T )u(T ) dx - B(-S) ∂ t u(S)u(S) dx (56) 
+ K T S |∇u| 2 -|∂ t u| 2 + u 2 e 4πu 2 - p-1 k=1 (4π) k u 2k+2 k! dx dt = 0,
By virtue of Identities (48) and (49) and the conservation law (41), it can be seen that

∂ t u(t) -→ t→0 0 in L 2 (R 2 ), (57) 
which ensures by Cauchy-Schwarz inequality that

B(-T ) ∂ t u(T )u(T ) dx → 0. ( 58 
)
Letting T → 0 in (56), we deduce from (58) and the fact that u 2 e 4πu 2 -

p-1 k=1 (4π) k u 2k+2 k! is positive - B(-S) ∂ t u(S)u(S) dx ≤ - K 0 S |∇u| 2 dx dt + K 0 S |∂ t u| 2 dx dt. (59) 
Multiplying Inequality (59) by the positive number -1 S , we infer that 

B(-S) ∂ t u(S) u(S) S dx ≤ 1 S K 0 S |∇u| 2 dx dt - 1 S K 0 S |∂ t u| 2 dx dt. (60 
∂ t u(S) u(S) S dx = 0. ( 63 
)
The identities (61), ( 62) and ( 63) yield a contradiction in view of (60). This achieves the proof of the global existence in the critical case.

3.3.3. Scattering. Our concern now is to prove that, in the subcritical and critical cases, the solution of the equation (40) approaches a solution of a free wave equation when the time goes to infinity. Using the fact that

|F p (u)| ≤ |F 2 (u)|, ∀p ≥ 2, ( 64 
)
we can apply the arguments used in [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF]. More precisely, in the subcritical case the key point consists to prove that there exists an increasing function C : [0, 1[-→ [0, ∞[ such that for any 0 ≤ E < 1, any global solution u of the Cauchy problem (40

) with E p (u) ≤ E satisfies u X(R) ≤ C(E), (65) 
where

X(R) = L 8 (R, L 16 (R 2 )
). Now, denoting by

E * := sup{0 ≤ E < 1; sup Ep(u)≤E u X(R) < ∞},
and arguing as in [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF]Lemma 4.1], we can show that Inequality (65) is satisfied if E p (u) is small, which implies that E * > 0. Now our goal is to prove that E * = 1. To do so, let us proceed by contradiction and assume that E * < 1. Then, for any E ∈]E * , 1[ and any n > 0, there exists a global solution u to (40) such that E p (u) ≤ E and u X(R) > n. By time translation, one can reduce to

u X(]0,∞[) > n 2 . ( 66 
)
Along the same lines as the proof of Proposition 5.1 in [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF], we can show taking advantage of (64) that if E is close enough to E * , then n cannot be arbitrarily large which yields a contradiction and ends the proof of the result in the subcritical case.

The proof of the scattering in the critical case is done as in Section 6 in [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF] once we observed Inequality (64). It is based on the notion of concentration radius r (t) introduced in [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF].

Remark 3.5. Lower order nonlinear terms become more difficult when we look for global decay properties of the solutions. In [START_REF] Ibrahim | Scattering for the two-dimentional energycritical wave equation[END_REF], the authors avoid this problem by subtracting the cubic part from the nonlinearity F p (u) for p = 1, which is the lower critical power for the scattering problem in R 2 .

3.4. Qualitative study. In this section we shall investigate the feature of solutions of the two-dimensional nonlinear Klein-Gordon equation (40) taking into account the different regimes. As in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], the approach that we adopt here is the one introduced by P. Gérard in [START_REF] Gérard | Oscillations and concentration effects in semilinear dispersive wave equations[END_REF] which consists in comparing the evolution of oscillations and concentration effects displayed by sequences of solutions of the nonlinear Klein-Gordon equation ( 40) and solutions of the linear Klein-Gordon equation

v + v = 0. ( 67 
)
More precisely, let (ϕ n , ψ n ) be a sequence of data in H 1 × L 2 supported in some fixed ball and satisfying

ϕ n 0 in H 1 , ψ n 0 in L 2 , (68) such that E n p ≤ 1, n ∈ N (69) 
where E n p stands for the energy of (ϕ n , ψ n ) given by

E n p = ψ n 2 L 2 + ∇ϕ n 2 L 2 + 1 4π e 4πϕ 2 n -1 - p k=2 (4π) k k! ϕ 2k n L 1 ,
and let us consider (u n ) and (v n ) the sequences of finite energy solutions of ( 40) and ( 67)

such that (u n , ∂ t u n )(0) = (v n , ∂ t v n )(0) = (ϕ n , ψ n ).
Arguing as in [START_REF] Gérard | Oscillations and concentration effects in semilinear dispersive wave equations[END_REF], the notion of linearizability is defined as follows: Definition 3.6. Let T be a positive time. We shall say that the sequence

(u n ) is lineariz- able on [0, T ], if sup t∈[0,T ] E c (u n -v n , t) -→ 0 as n → ∞,
where E c (w, t) denotes the kinetic energy defined by:

E c (w, t) = R 2 |∂ t w| 2 + |∇ x w| 2 + |w| 2 (t, x) dx.
For any time slab I ⊂ R, we shall denote v ST(I) := sup

(q,r) admissible v L q (I;B 1 r,2 (R 2 )) .
By interpolation argument, this Strichartz norm is equivalent to

v L ∞ (I;H 1 (R 2 )) + v L 4 (I;B 1 8/3,2 (R 2 )) . As B 1 r,2 (R 2 ) → L p (R 2 ) for all r ≤ p < ∞ (and r ≤ p ≤ ∞ if r > 2), it follows that v L q (I;L p ) v ST(I) , 1 q + 2 p ≤ 1 . (70) 
As in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], in the subcritical case, i.e lim sup n→∞ E n p < 1, the nonlinearity does not induce any effect on the behavior of the solutions. But, in the critical case i.e lim sup n→∞ E n p = 1, it turns out that a nonlinear effect can be produced. More precisely, we have the following result: (

) If lim sup n→∞ E n p = 1, the sequence (u n ) is linearizable on [0, T ] provided that the sequence (v n ) satisfies lim sup n→∞ v n L ∞ ([0,T ];L Φp ) < 1 √ 4π • 2 
Proof. The proof of Theorem 3.7 is similar to the one of Theorem 3.3 and 3.5 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF].

Denoting by w n = u n -v n , it is clear that w n is the solution of the nonlinear wave equation w n + w n = -F p (u n ) with null Cauchy data. Under energy estimate, we obtain

w n T F p (u n ) L 1 ([0,T ],L 2 (R 2 )) ,
where w n 2 T def = sup t∈[0,T ] E c (w n , t). Therefore, it suffices to prove in the subcritical and critical cases that

F p (u n ) L 1 ([0,T ],L 2 (R 2 )) -→ 0 as n → ∞. ( 72 
) Let us begin by the subcritical case. Our goal is to prove that the nonlinear term does not affect the behavior of the solutions. By hypothesis, there exists some nonnegative real ρ such that lim sup n→∞ E n p = 1 -ρ. The main point for the proof is based on the following lemma, the proof of which is similar to the proof of Lemma 3.16 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] once we observed that

|F p (u)| ≤ |F 1 (u)|, ∀p ≥ 1.
Lemma 3.8. For every T > 0 and E 0 p < 1, there exists a constant C(T, E 0 p ), such that every solution u of the nonlinear Klein-Gordon equation (40

) of energy E p (u) ≤ E 0 p , satisfies u L 4 ([0,T ];C 1/4 ) ≤ C(T, E 0 p ). ( 73 
)
Now to establish (72), it suffices to prove that the sequence (F p (u n )) is bounded in L 1+ ([0, T ], L 2+ (R 2 )) for some nonnegative and converges to 0 in measure in [0, T ]×R 2 . This can done exactly as in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] using the fact that |F

p (u n )| ≤ |F 1 (u n )|.
Let us now prove (72) in the critical case. For that purpose, let T > 0 and assume that

L := lim sup n→∞ v n L ∞ ([0,T ];L Φp ) < 1 √ 4π • (74) 
Applying Taylor's formula, we obtain

F p (u n ) = F p (v n + w n ) = F p (v n ) + F p (v n ) w n + 1 2 F p (v n + θ n w n ) w 2 n ,
for some 0 ≤ θ n ≤ 1. Strichartz estimates (43) yield

w n ST([0,T ]) I n + J n + K n ,
where

I n = F p (v n ) L 1 ([0,T ];L 2 (R 2 )) , J n = F p (v n ) w n L 1 ([0,T ];L 2 (R 2 ))
, and

K n = F p (v n + θ n w n ) w 2 n L 1 ([0,T ];L 2 (R 2 )) .
As in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], we have The proof uses in a crucial way the rearrangement of functions (for a complete presentation and more details, we refer the reader to [START_REF] Moser | A sharp form of an inequality of N. Trudinger[END_REF]). By virtue of density arguments and the fact that for any function f ∈ H 1 (R 2 ) and f * the rearrangement of f, we have The existence of a real number t 0 such that w(t 0 ) = 0 ensures that the set {t ∈ R, w(t) ≤ 1} is non empty. Then

∇f L 2 ≥ ∇f * L 2 , f L p = f * L p , f L φp = f * L φp ,
T 0 ∈] -∞, +∞].
Knowing that w is nonnegative and increasing function, we deduce that Thus, using the fact that for any ε > 0 and any s ≥ 0, we have

(1 + s 1 2 ) 2 ≤ (1 + ε)s + 1 + 1 ε = (1 + ε)s + C ε ,
we infer that for for any ε > 0 and all t ≥ T 0 

|w(t)| 2 ≤ (1 + ε)(t -T 0 ) + C ε . (76) 

1 2 .

 2 Indeed, for any profile ψ and real numbers s and t, we have by Cauchy-Schwarz inequality|ψ(s) -ψ(t)| = t s ψ (τ ) dτ ≤ ψ L 2 (R) |s -t| 1 2 .

lim sup n→∞ u n L φ 1 =

 1 φ 1 (|x|>R) = 0.

3. 3 . 1 .

 31 Local existence. Let us start by proving the local existence to the Cauchy problem (40). To do so, we use a standard fixed-point argument and introduce for any nonnegative time T the following space:

Theorem 3 . 7 . 1 )

 371 Let T be a strictly positive time. Then (If lim sup n→∞ E n p < 1, the sequence (u n ) is linearizable on [0, T ].

K n ≤ ε n w n 2 ST 4 .

 24 n ST ([0,T ]) , where ε n → 0. Besides, provided that lim sup n→∞ w n L ∞ ([0,T ];H 1 ) ≤ 1 -([0,T ]) , ε n → 0. Since w n ST ([0,T ]) I n + ε n w n 2 ST ([0,T ]) , wet obtain by bootstrap argument w n ST ([0,T ]) ε n ,which ends the proof of the result. Appendix: Proof of Proposition 1.2

1 2 2 . 2 eαβ

 122 one can reduce to the case of a nonnegative radially symmetric and non-increasing function u belonging to D(R 2 ). With this choice, let us introduce the function w(t) = (4π) u(|x|), where |x| = e -t It is then obvious that the functions w(t) and w (t) are nonnegative and satisfyR 2 |∇u(x)| 2 dx = +∞ -∞ |w (t)| 2 dt, R 2 |u(x)| 2p dx = 1 4 p π p-1 +∞ -∞ |w(t)| 2p e -t dt R α|u(x)| 2 -k |w(t)| 2k (4π) k k! e -t dt.So we are reduced to prove that for all β ∈ [0, 1[, there existsC β ≥ 0 so that k |w(t)| 2k k! e -t dt ≤ C(β, p) +∞ -∞ |w(t)| 2p e -t dt, ∀ β ∈ [0, 1[, when +∞ -∞ |w (t)| 2 dt ≤ 1.For that purpose, let us set T 0 = sup {t ∈ R, w(t) ≤ 1} .

wβ 0 w

 0 :] -∞, T 0 ] -→ [0, 1].Therefore, observing that e sc p s p e s for any nonnegative real s, we obtaink |w(t)| 2k k! e -t dt ≤ c p β p e β T 0 -∞ |w(t)| 2p e -t dt.To estimate the integral on [T 0 , +∞[, let us first notice that in view of the definition of T 0 , we have for all t ≥ T 0w(t) = w(T 0 ) + t T (τ )dτ≤ w(T 0 ) + (t -T 0 )

Now β being fixedeβ

  in [0, 1[, let us choose ε > 0 so that β(1 + ε) < 1. Then by virtue of (76) β|w(t)| 2 e -t dt ≤ e βCε-T 0 1 -β(1 + ε) k |w(t)| 2k k! e -t dt ≤ e βCε 1 -β(1 + ε)

  )| 2p e -t dt. Choosing C(β, p) = max c p e β β p , e βCε 1 -β(1 + ε)ends the proof of the proposition.