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ON FOURIER TIME-SPLITTING METHODS FOR NONLINEAR
SCHRODINGER EQUATIONS IN THE SEMI-CLASSICAL
LIMIT II. ANALYTIC REGULARITY

REMI CARLES AND CLEMENT GALLO

ABSTRACT. We consider the time discretization based on Lie-Trotter splitting,
for the nonlinear Schrédinger equation, in the semi-classical limit, with initial
data under the form of WKB states. We show that both the exact and the
numerical solutions keep a WKB structure, on a time interval independent of
the Planck constant. We prove error estimates, which show that the quadratic
observables can be computed with a time step independent of the Planck con-
stant. The functional framework is based on time-dependent analytic spaces,
in order to overcome a previously encountered loss of regularity phenomenon.

1. INTRODUCTION

This paper is devoted to the analysis of the numerical approximation of the
solution to

2
(1.1) iedut + %Aua = MNf|uf,  (t,x) € [0,T] x RY,

in the semi-classical limit € — 0. The nonlinearity is smooth and real-valued: A € R
and o € N. The initial data that we consider are BKW states:

(1.2) uf (0, ) = ag(z)e'?@/e = g (x),

where ¢o : R? — R is a real-valued phase, and ag : R — C is a possibly complex-
valued amplitude. An important feature of such initial data is that in the context of
the semi-classical limit for (IT]), they yield solution which are in L (R?) uniformly
in €, at least on some time interval [0, T'] for some T' > 0 independent of €. Also, not
that even if ¢9 = 0 (no rapid oscillation initially), for 7 > 0 arbitrarily small and
independent of e, u®(7) takes the form of a WKB state as in (I.2) with amplitude
and phase solving ([2:2)—(2.3) below (see [6]). Note that even if ¢g = 0, the coupling
shows that ¢* becomes non-trivial instantaneously.

We consider more precisely the time discretization for (II)) based on Fourier
time splitting. We denote by X! the map v°(0,-) — v°(t,-), where
2

. 3
(1.3) ie0pv® + 3Avs =0.
We also denote by Y the map w®(0,-) — w(t,-), where
(1.4) iedw® = Nw®|* w®.
This work was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and

BECASIM (ANR-12-MONU-0007-04).
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We consider the Lie-Trotter type splitting operator

(1.5) Zt=Y!XL

The Lie-Trotter operator X!Y! could be handled in the same fashion. The advan-
tage of splitting methods is that they involve sub-equations which are simpler to

solve than the initial equation. In our case, (3] is solved explicitly by using the
Fourier transform, defined by

~ 1 .
_ —ix-§
96) = oy [, i)
since it becomes an ordinary differential equation
2
(1.6) ie0 0" — %|§|2@€ — 0,

hence

- 1 2

Xtv(g) = e =H10(g).
Also, since A € R, in ([I4]) the modulus of w® does not depend on time, hence
(1.7) Yiw(z) = w(:t)e_i’\ﬁ‘w(m)‘%.

€

In the case € = 1, several results exist to prove that the Lie-Trotter time splitting
is of order one, and the Strang splitting of order two ([5, [I7]). The drawback of
these proofs is that they rely on uniform Sobolev bounds for the exact solution, of
the form u € L>([0,T]; H*(R?)), for s > 2. However, in the framework of (ILI]),
these norms are not uniformly bounded as € — 0, in the sense that we rather have
[|uf(t)|| s = %, due to the oscillatory nature of u®.

In the case of a linear potential (|u|?? is replaced by a known function of z in
(1), error estimates are given in [3]; see also [I1] [12]. In the nonlinear case, error
estimates are established in [7], but for other nonlinearities than in (II)—(T2). The
proof there requires either to consider a weakly nonlinear regime, that is (1)) is
replaced by

2
iedu + %Aua = AP, (t,x) € [0,T] x RY,

with the same initial data (2], or to replace the nonlinearity in (II) with a
smoothing nonlinearity of Poisson type. We recall in Section 2l why these assump-
tions are made in [7]. The goal of this paper is to prove error estimates which
are similar to those established in [7], but for (LI)-(I2). Before stating our main
result, we introduce a few notations. The Fourier transform is normalized as

f(&) = W /Rd e f () da.

A tempered distribution f is in H*(R%) if £ — (£)® f(€) belongs to L2(R%), where
(€ = v1+IE?
Theorem 1.1. Suppose that d,c € N, d,oc > 1, and A € R. Let ¢g, ag such that
s n ~
@ (1860 + lan(©) ) de < o,
R

for some 6 > 0, and u§ given by [[L2). There exist T,eg,co > 0 and (Ck)ren such
that for all € € (0,e¢], the following holds:
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1. (CI)-(C2) has a unique solution u® = Stu§ € C([0,T], H*®), where H® =
NserH?®. Moreover, there exist ¢¢ and a® with, for all k € N,
sup ([la®(t) | zre (ra) + 16° ()| 1rx (o)) < C,
te[0,T]
such that u (t,x) = a®(t,z)e'®” B2/ for all (t,z) € [0,T] x R%.
2. For all At € (0, co], for all n € N such that t, = nAt € [0,T], there exist ¢5, and
ab, with, for oll k € N,

llag, |l e (ray + 11951 ey < Ck,

such that (ZEAt)" (aoei%/é‘) — aflei‘i’n/g,
3. For all At € (0,co], for all n € N such that nAt € [0,T], the following error
estimate holds:

llaz, — a®(tn)ll gr + (|05, — &% (tn) | g < CRAL

Ezample 1.2. The assumptions of Theorem [[]] are satisfied as soon as ¢o and g
are compactly supported, or in the case of Gaussian functions, typically.

Note that the first two points of the theorem imply that the functions a and ¢ are
not rapidly oscillatory: the oscillatory nature of both the exact and the numerical
solutions is encoded in the exponential which relates the functions a and ¢ to w.

We readily infer error estimates for the wave function and for quadratic observ-
ables,

Position density: p°(t,z) = |[u®(t,z)|.
Current density: J*(¢,x) = e Im (T (¢, z) Vu© (¢, z)) .
Corollary 1.3. Under the assumptions of Theorem [, there exist T > 0, g > 0

and C, ¢ independent of € € (0,eq] such that for all At € (0,co], for alln € N such
that nAt € [0,T], and for all € € (0,&9],

At
Rd) < 0?7

~ 19 ()2

th (6(Z?t)"u8V(Z€At)"u8) — JE(t)

H(Z?t)nug - Si”“?)”p(

CAt,

I8y s

<
L1(R4)NLoS (RY)

< CAL.
L1(R)NLo (RY)

This result is in agreement with the numerical experiments presented in [4]: to
simulate the wave function w®, the time step must satisfy At = o(e), while to
observe the quadratic observables, At = o(1) can be chosen independent of ¢.

2. OVERVIEW OF THE PROOF

We present the general strategy for the proof of Theorem [[T] in the case of a
more general nonlinearity,

2
(2.1) iedpu® + %Au‘S = f (Ju®?) s,

with f real-valued. For initial data of the form (L2]), it has been noticed in [7]
that the numerical discretization preserves such a structure, in the sense that the
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numerical solution satisfies the point 2. in Theorem [T} Indeed, the exact solution
can be represented as u = a®e’®” /¢, where a° and ¢° are given by

1
09 + §|V¢‘f|2 + f (la°?) =0,
(2:2) 1 1€
0ra® + Vo¢© - Va© + §a5A¢E = EAaE,

with initial data

(23) (th:O = ¢o, a|€t:0 = ao-

The main feature of this representation is that even though they must be expected
to depend on ¢, a® and ¢° are bounded in Sobolev spaces uniformly in € € (0, 1] on
some time interval [0, T] for some T independent of ¢.

The idea of representing the solution u® under this form goes back to E. Grenier
[15]. The main features of ([2.2)) is that the left hand side defines a symmetrizable
hyperbolic system under the assumption f’ > 0, and the right hand side is skew
adjoint (hence plays no role at the level of energy estimates). Note that in the case
of (), this forces A > 0 and o = 1 (cubic defocusing nonlinearity). For a nonlocal
nonlinearity, f(Ju|?) = K * |u|?, the approach of Grenier can easily be adapted if
K decays at least like |¢|~2 for large |€| (see e.g. [7]). The approach of Grenier has
also been generalized to more general nonlinearities: see [I} [10] for the defocusing
case, and [I9] for the focusing case. However, we do not use these results, as we
now discuss.

Indeed, the splitting scheme for ([2.I) amounts to some splitting technique on
[22). Suppose that one solves the linear equation ([3)) with initial data v*(0) =
ape’®/¢. Then the solution v° can be written as v®(t) = a®(t)e'?)/¢ with a° and
¢ given by

Ot + %|V¢|2 =0, ¢ji=0 = ¢o,
(2.4)

1
oa® +V¢-Va® + §aEA¢ = i%AaS, aTt:O = ag.

Similarly, the solution to (IL4) with initial data w®(0) = age’®*/¢ can be written as
we(t) = a(t)e’*®/e with a and ¢ given by

{ at¢ + f(|a’|2) = 05 (b\t:O = ¢05

2.5
(25) 0ia =0, ap—o = ao.

So computing the numerical solution amounts to solving successively (Z4]) and (23]),
which turns out to be a splitting scheme on ([2:2). We denote by X! : (¢o,a0) —
(¢(t,-),a(t,-)) the flow for (Z4) and by V! : (¢o,a0) — (¢(t,-),a(t,-)) the flow for
[23). The Lie-Trotter splitting operator we consider for (Z2)) is then

(2.6) EY

Now in the case of a cubic defocusing nonlinearity (which enters the framework
of [15]), we face a loss of regularity issue. Indeed, the reason why (2.2)) is convenient
lies first in the structure of the left hand side, which enjoys symmetry properties:
the splitting leading to (2.4)—(23) ruins this property. Suppose for instance that
at time t = 0, ¢g € H*(RY) and ag € H*(RY), for large s and k. In ([2.4)), the first
equation propagates the H® regularity on a small time interval, provided s is large.
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The second equation shows that a® cannot be more regular than H*~2, due to the
last term of the left hand side. Now if we start with ¢g € H® and ap € H*"? in
@38) (with f(]a|?) = |a|? for a cubic defocusing nonlinearity), we see that ¢ € H*~2
(provided s—2 > d/2), and that no better regularity must be expected. So after one
iteration of the operator Z!, ¢ has lost two levels of regularity. When iterating Z
with a small time step At, this loss becomes fatal. This is why in [7], it is assumed
that either f is smoothing (to regain at least two levels of regularity) or that a
factor e is present in front of f, so that (2.1) is altered to

0t =0, ¢ji=0 = b0,
da = —if(lal*)a, aj—o = ao.

The main technical originality of this paper is based on the remark that if instead of
working in Sobolev spaces, one works in time dependent analytic spaces, it is possible
to control the loss of regularity. Such an idea goes back to [13], to solve ([Z2]). The
fact that we consider decreasing time dependent weight to measure the analytic
regularity is strongly inspired by the analysis of J. Ginibre and G. Velo in the
context of long range scattering for Hartree equations [I4], and is also reminiscent
of the functional framework used by J.Y. Chemin for the Navier-Stokes equation
[9) and developed by C. Mouhot and C. Villani to prove Landau damping [18].

The main technical tools needed here are presented in Section[Bl Thanks to these
tools, we can prove that both the theoretical and the numerical solutions remains
analytic in a suitable sense on some time interval [0, T] with T' > 0 independent of
e (Sections @ and [H]).

The next key estimate is the local error estimate, presented in Section @ It is
based on the general formula established in [I2]. As noticed in [7], we must apply
this formula to the system (2.4)—(2.3]) and not only to (L3)—-(L4).

With these propagating estimates and the local error estimate, the proof of The-
orem [I1] follows from the trick known as Lady Windermere’s fan. Note however
that because of the nonlinear context, where global bounds for the numerical solu-
tions are not known a priori, the argument requires some extra care. We rely on
the induction technique introduced in [I6], which is sufficiently robust to be readily
adapted to our case, as in [7].

3. TECHNICAL BACKGROUND

We recall here some of the technical tools introduced in [I4]. We state the main
properties established there concerning time dependent Gevrey spaces, and simplify
as much as possible the framework, in view of the present context.

For 0 < v <1 and p > 0, we introduce the exponential weight

w(§) = exp (pmax(L, [£])"),
which is equivalent to exp(p (€)”). Define u~ and u by:

w<(§) = a(f)l\g\q, 0> (§) = ﬁ(§)1\£\>1-
For k,¢ € R and 0 < £ < d/2, the following families of norms are defined in [14]:

= (lela(©a € + Iw©ac(©l3) ",
6> (IIE (- @1 + el =w(©d<(@)1:) "
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The first norm is well suited to estimate amplitudes, and the second is adapted
to phases. As suggested by the above notations, the indices will be different for
amplitudes and phases. This can be related to the fact that in the hydrodynamical
setting with A > 0, (222) with € = 0 is a hyperbolic system in the unknown (V¢, a),
and not in (¢, a). Indeed, eventually there will be a shift of one index between the
norm in ¢ and the norm in a (see Lemma B3 and Proposition E1] below).

In the properties related to these norms which will be used in this paper, the
value of £~ is irrelevant. Therefore, we set /- = 0, and consider only one family of
norms: for £ > 0, we set

My, ={v € L*RY), [[¢llpg < o0},
where [|¢][3, = 1€ (€)I|72 + 14(€)d<(E) 172 ~ /R O O ()P de.

Remark 3.1. The above definition is slightly different from the standard definition
for Gevrey spaces, since low frequencies are smoothed out in the definition of the
weight w: max(1,[¢]) (or (£)) in w is usually replaced with |¢].

Note that the following estimate is a straightforward consequence of this defini-
tion: for any oo € N, £ > 0,
(3.1) 10%%llaeg, < lleriar, Voo € HgHeL.
P P
Also, in view of the standard Sobolev embedding,
[l Loe ey < ClY | 1o (mys
valid for s > d/2, we have
(32) 191 oo (ray < Cll9llaes,

with the same constant C' independent of p > 0.

The above notation may seem rather heavy: it is chosen so because the weight
p will depend on time, as we now discuss. For a time-dependent p, we have:

d :
(33) 013y = 201612 v+ 2R (9, Det) s

Even though p depends on time, we will consider below “continuous” Hf; valued
functions. We mean functions that belong to

C(I,H:) == {¢ € C(I,L?) such that wy € C(I,Hf) = C(I, H")}

for some interval I.
To fix the technical framework once and for all, we recall another important
result from [I4]. Consider the system

1
06 + 5IVo[* + ARe (|V|"~"az) =0,
2
(3.4) 1
0:a+Vo-Va+ 5@A¢ =0,

for some time interval I, and 0 < p < d. Lemma 3.5 from [I4], which uses (83) as
well as rather involved estimates, implies that under the assumptions
(>d2+1—v, k>v/2, L>2k+1—v,
k>l+p—d+l—v, 2k>0+p—d+1—v+d/2
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any solution of [B4) on I, such that (¢,a) € C(I, HE x HE)NLE (I, Hﬁ+1+y/2 y
H§+V/2), satisfies

BN s = 20000 s vra| < C (181 cvrvorallOllpgi + Nallygsswralldll ooy )

Oulall3y, — 20010l s ra| < C (ol rerollBllygses + lallgererallgll ez lalng )

In the case of a cubic nonlinearity, we want to set © = d. Therefore, the above
algebraic conditions

{>k+1—v and k>2/(+1—-v

imply v > 1, hence v = 1 and k = ¢. In view of this remark, we suppose from now
on v = 1, that is, we consider analytic functions (see [I4]).

Since we consider only analytic functions, we borrow from [14] the only inequal-
ities that we will really use, which appear in [I4, Lemma 3.4]:

Lemma 3.2. Let m > 0. Then,
1. Fork+s>m+d/24+2, and k,s > m+1,

Vo - Vallsm < Cllollg llallze-
2. Fork+s>m+2+d/2, k=2m and s >m+2,
[aAd[l3er < Clldllasllalle-
3. For s > d/2,

(3.5) lentallaeg < C (Inllgp Ibaling + 61l 02 ey ) -
The various constants C are independent of p.
We infer the important lemma:
Lemma 3.3. Set v =1, and let 0 € N, A € R, £ > d/2, and I be some time
interval. Let (@,b) € C(I, H5T xHE)NLE (I, ’Hﬁ+3/2 xHﬁH/Q). Then any solution

loc

(¢,a%) € O, HEM x HEY N L2 (1, My ™ x HyT ) to

loc

1
Od+ =V -Vo+Ab[*? =0,
2
(3.6) 1 i€
Oa® + Vo - Va® + EaSAcp = 5Aa€,

satisfies

91912, = 201912,

< C(||¢Iliﬁ+s/zllwllﬂgﬂ F0llyyerarzllllyyerarallllge

1Bl 129l vara B3 )

DUl 1By, — 200012 ev172] < C 101 eersalllyes + 0% gl e g )

where C is independent of € and p.
Proof. In view of (B3] and (B.0), we have
Ol @ll5 e = 20018115 002 = —Re (@, Vip - Vo) gyen = 2ARe (@, [B*7 )y s -
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Cauchy-Schwarz inequality yields
(0, Vi - V)| < 9llyyero2lIV - VOl errso.
Inequality .3 with m = ¢+ 1/2 and s = ¢ yields

IV Vollyern < C (190l I96las + I Vlagg 1Vl 0112

(3.7)
C (Il ygsor21Blggen + Il 9l yerore)

where we have used (B). The term involving b can be treated similarly. Indeed,
using (B3] on the one hand with m = £+ 1/2 and s = ¢ and on the other hand
with m = ¢ = s, we can prove by induction on ¢ that

20—1
(38) B lpgevsra < B bl s
hence the first inequality for Lemma
For the second inequality,
Ol 3 — 2P0 112 = ~2Re (0%, Vi Va)yyy — Re (0, 0y
+eRe (a®,iAa) 5 -
P

Remark that

g g _

Re (a%,iAa >H£ =0,
so the Laplacian term is not present in energy estimates, which are therefore inde-
pendent of . Like before, Cauchy-Schwarz inequality yields
(0, Vi Vg | < 0 lygersalVep - Vs
The last term is estimated thanks to the first point in Lemma 3.2 with
1 1
m 5’ + 5’ S +

Similarly,
0%, 0 Ay | < lla yenaralla AplLye e,
and the last term is estimated thanks to the second point in Lemma [3.2] with
1 3
=l—=, k=/{ =0+ .
" 2 S0y
The lemma follows easily. O

4. A FUNDAMENTAL ESTIMATE

In the framework of Theorem [[T] the initial datum u‘t 0= = age'/¢ belongs to

H® | so the existence of T° > 0 (depending a priori on €), and of a unique solution
u® € C([0,T¢], H*®) to (LI)-(T2), stems from standard theory (see e.g. [8]). The
fact that the existence time may be chosen independent of e, along with the rest of
the first point of Theorem [T stems from Proposition [£1] below.

For a decreasing function p, we introduce the norm defined by

4 Bl = max (s W 2 [ OO ).

<s<t
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Proposition 4.1. Let A€ R, £ > d/2+ 1, My > 0 and (¢o, a0) € Hf\}'ol X ’H,fwo.
1. There exists M > 1 such that if T < My/M and p(t) = My — Mt, 22)-23)
has a unique solution

(¢%,a%) € C([0,T], HET! x HE) N L2([0,T], H53/2 x HEFL/2),
with

@D WM < 2ol + ool NalEr < 2laoly, -

2. If R> 0 and (¢o,ao), (o, bo) € ML x My, . with
IPollgyerr + llaollaes, < B, lleollyers + llbollag, < B,

there exists K = K(R) such that if M is chosen sufficiently large such that according
to the first part of the proposition, 22)-23) has solutions (¢°,a®) and (¢, b%) on
[0,T] corresponding respectively to the initial data (¢po,ao) and (o, bo) (with the
same choice of p and the same assumption T < My/M ), then

ll9° = ¢ Nevrz+lla = 0 ler < K (ldo — @ollpesr + lao = bollye, ) -
0 0

Remark 4.2. The proof yields a rather implicit dependence of M upon M, and
(o, ap). As a consequence, it is not clear how to choose the best possible T', even
for initial data whose Fourier transform is compactly supported. For our present
concern, the important information is that we get some positive T" independent of
E.

Proof. To construct the solution, we resume the standard scheme from hyperbolic
symmetric systems (see e.g. [2]), that is, we consider the iterative scheme defined
by

1
43) 0udfa1 + 5V5 - V5 + (151 =0, 65110 = o,
' 1 ie
a5y + V5 - Vai,, + §a§+1A¢§ = EAajﬂ, 511 j4=0 = G0,

with f(Ja|?) = Aa|??, initialized with (6§, a§)(t) = (¢o,ao). For functions at the
level of regularity of the norm (@) with ¢ > d/2, the above scheme is well defined:
if @5 lle+1,7+lallle,r is finite, then @5, ; and a5, are well-defined. Indeed, in the
first equation, ¢, solves a linear transport equation with smooth coeflicients, and
the second equation is equivalent to the linear Schrodinger equation

2

. g 1 ibE
10541 + EAUJE»H =— (8@; + 5|V¢§|2> V541, ”g€‘+1\t:0 = qge'® (0)/¢,

through the relation v5,, = a +1ei¢’§/ ¢. This is a linear Schrodinger equation with
a smooth and bounded external time-dependent potential, for which the existence
of an L2-solution is granted.

The proof of the first part of the proposition goes in two steps: first, we prove
that the sequence (|95 [|e+1,7+la5lle,r)j>0 is bounded for some T' > 0 sufficiently
small, but independent of €. Then we show that up to decreasing T', the series

> (16511 = & llesr,r+llas = a5ller)

Jj=20
is converging. Note that unlike in the case of hyperbolic symmetric systems in
Sobolev spaces, the regularity is the same at the two steps of the proof (in Sobolev
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spaces, the standard proof involves first a bound in the large norm, then convergence
in the small norm).

First step: the sequence is bounded. By integration, Lemma [3.3] yields, for a
decreasing p(t) and T > 0 to be chosen later,

165 salenr < Wolgs +C [ T OGO 65 Oty
P
1
/ ol |||¢J+1<t>||ﬁi(+5/2||¢§<t>||%/z||¢§+1<t>||%dt
1
Ola§ @)l 5417219511 () [ 1ye+0/2 |05 (E )||2‘7 ldf
|p(t () p(t)

a5l < IIaollﬂe +O/ Ip(t )|||a§+1(t)llitz+u2ll¢5()Ilﬂmdt
0 |P()| p(t)

T
1 .
4 C [l 41 () g 21050 a5 Ol

Holder and Cauchy-Schwarz inequalities yield

|||¢ +1|||£+1 T ||¢0|| e+1) +C ( sup (t )|)|||¢ +1|||e+1 T|||¢8|||é+1 T

<t<T |p

1 2
e < sup W) 165 o e zllas 129,

0<t<T
a a +C — e
il e < laolly, +C s o Ylesll e

Recall that My > 0 is given. Take ¢ € Hf\}:}, ap € ’H,fwo and set p(t) = My — Mt.
Under the condition

C 1
(4.49) Sl e <
the previous inequalities imply
C2
|||¢ Iz < llgoll, it am 5 llas e

“MeSaliir < ol

Let us now choose M = |p(t)| is sufficiently large such that (£4) holds for j = 0

and such that
202 M
onlEs + 5z (3106l ) < o

202 20
Vel (5) <l

Note that in view of [@I), for all ' < My/M (so that p remains positive on [0,T7]),

T
llagl? 7 = max <Ilaollifv,ov / (€)% M ©ldn(¢) /0 2M (€) e-QM“@dtd&) = llaoll3y,, -



SPLITTING FOR NLS IN THE SEMI-CLASSICAL LIMIT 11

and similarly
g5 lI7: 1,7 = lldoll3,e
Mo
so that our constraint on M only depends on [|@ol|,e+1 and [lagll3, . Then, for
Mo 0

T < My/M, the above inequalities yield, by induction, for all j > 1
£ 20 2 2 4o
N5z 1.2 < 2l d0ll3, it m ||ao||He < 2l|goll3zp1 + llaoll3g, -
a5 117 7 < ||ao||He

Second step: the sequence converges. For j > 1, consider the difference of
two successive iterates: in the case of the phase, we have

(51 — ¢5) + (W V¢S — Vo5_1 - Ves) + f(la5?) — f(la5_,*) =0,

along with zero inltlal data. Inserting the term |V¢§|2, and denoting by (5¢§ 11 =
@541 — ¢S, we can rewrite the above equation as

oG + 5 (W)E Vog51 + V5 - Ve5) + f(la5?) — f(la5_1[*) = 0.

B3) yields, along with Cauchy-Schwarz inequality as in the first step of the proof
of Proposition [Tt

196 181 < [ 196512 O[5 - 905l
T

b [ 1865 1Ol V55 - V5 et
0

T
2 [ 18651 Oy 11051 = Fl0a5a Pl

The first two terms are estimated thanks to the last point in Lemma B2l as in (87).
Since f(]z|?) is a polynomial in (2, %), the last point of Lemma 3.2 yields

1£(1a52) = F(1a5-s)llyerre < © (lla512572 + llas -y 125,72)

x (a5 g + a5 llag ) 1605 1 yevrn + (a5 lyernso + la5—yllyeerso ) 1905 e )

We conclude:

_K
166541112 < 57 (95121 0G5 1241, 2+ 05 11E )

where K stems from the ﬁrst step. For M sufficiently large,

2K
1665+ M1, < 7 (1665121, 2+ 1905 112,) -

Similarly, da5,, solves

1 1 €
8t5a§+1 + V¢§ . V(SajH + V5¢§ . Vaj + §6a§+1A¢§ + §a§A5¢§ = Z§A5a§+1

The last term is skew-symmetric, and thus does not appear in energy estimates.
Resuming the same estimates as in the proof of Lemma [3.3] we come up with:

K
1512z < 37 (N0a5allE 2+ N0G5 N 1 o+ lI0a5 117 r)
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hence
2K

6051112 < 57 (95111 o+ 005117 2)

up to increasing M (hence decreasing T'). For M possibly even larger, we infer that

the series

> (16541 = G5ller,r+lla5 .y — a5ller)

j=0
converges geometrically. Uniqueness is a direct consequence of the estimates used
in this second step. (£.2)) is obtained by letting j go to infinity in the estimates at
the end of the first step.

The Lipschitzean property of the flow follows from calculations similar to those
of the second step of the proof. O

5. BOUNDS ON THE NUMERICAL SOLUTION

Proposition 5.1. Let A € R, 0 € N, and let (¢°, a®) be the solution of either of the
systems 22), @A), or ZH), with the notation f(|z|?) = A|z|??. Let s > d/2+1,
w>0, and £ > s. Suppose that (¢°,a%) satisfies

(6, 0°) € C([0, T), M3+ x 1),
where p(t) = Mo — Mt and 0 <T < My/M, with

up [|¢%(¢) [+ + sup |la®(t)[|#e,, < g
T] P te[0,T]

s
telo, p(t)
Then, up to increasing M (and decreasing T ),
£ g £ g
9= @)l + NlaOllaee ) < NSOy + 10 (O)llggg, » - V€0, T]-
Note that the assumption carries over a regularity at level s > d/2 + 1, while

the conclusion addresses the regularity at level ¢ > s: the above proposition may
be viewed as a tame estimate result.

Proof. First, remark that [|¢°(T)||s+1+|a(T)||s is a non-increasing function of M,
provided that the constraint T < My/M remains fulfilled.

Second, note that it suffices to establish the result in the case of ([Z2), since the
other systems contain fewer terms, and we will estimate each term present in ([2:2)).

The idea of the result is then to view ([B.3]) as a parabolic estimate, with diffusive
coefficient —p = M. Indeed, like in the proof of Lemma [3.3] we have

OO 2 11+ 2M N6 202 < CINOE Lyggvara (1905 - Vo ygpvore + 1P pgens )

010 g + 2M a3 ensn < Clla ygrnrs (V6% Valpgoars + A e-rr2)

We then invoke Lemma once more. Since the first two points in Lemma
involve the constraint k, s > m, we can rely only on (3X). We have

1967 - V6 lsevz < CIVE lyernss |9 g1 < CH lyggrars |67
since s > d/2 + 1. We have already used the estimate

12 ygerre < Clla® 37 s
so that Young inequality yields

O g+ 2MIS 02 < C (1 1277) (167 + 0 I21)
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Again, B3] yields
1V6° - Va2 < C (196 e /2l Valyyos + V6 s [V )

< C (16 Iyeerrollalloeg + 116l o ez
and

a2 8¢ lpye1r2 < C (1A yerrallallpgzr + 1865 sl /2

P

Q Q

< C (16 ggrorzllalineg + 197 gyl e )

We come up with
0 (116150 + lla® ey ) +2 (7112072 + 10212
<O+ 127Y) (16 2rors + lal2eras2 ) -
Choosing 2M > C (u + uz"fl) thus yields the result. O

We readily infer:

Corollary 5.2. Let ¢ > s > d/2+ 1, and 7 > 0. Suppose that the numerical

solution
¢ (6\ _ (%%
2:(02) = (&

£ 1>
s <
P 1962 [l + 2P a1, < m,

satisfies

where p(t) = My — Mt. Then, up to increasing M (and possibly decreasing ),

165 ey + Nals , < 165y + bl » ¥t € 0,7

6. LOCAL ERROR ESTIMATE

We resume the computations from [7], based on the general formula established
in [12]. For a possibly nonlinear operator A, we denote by £4 the associated flow:

OEa(t,v) = A(Ealt,v)); Ea(0,v) =w.

Theorem 6.1 (Theorem 1 from [12]). Suppose that F(u) = A(u) + B(u), and
denote by

S'(u) = Er (t,u) and Z'(u) = Ep (t,Ea(t, u))

the exact flow and the Lie-Trotter flow, respectively. Let L(t,u) = Z'(u) — S*(u).
We have the exact formula

t T1

£(t, ) :/ / 0aEr (t — 11, 27 (1)) aEis (11 — T2, Ea(71,10))
o Jo
X [B, A] (53 (Tz, 5,4 (Tl, u))) dngTl,

where [B, A](v) = B'(v)A(v) — A'(v)B(v).
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In the case of the Lie-Trotter splitting (L5 for equation (Il), we would have
€ v -

A=isA;s B(o) =—f([oP)v, f(v]*) = APpl*"; F(v) = A(v) + B(v),
where we have omitted the dependence upon e in the notations for the sake of
brevity.

However, as pointed out in [7], using the above result directly in terms of the

wave function u® does not seem convenient. In the context of WKB regime, we
rather consider the operators A and B defined by

(6.1) A (2) = (—ng)-Va_—%gVaﬂz(b—Fi%Aa) » B (i) N (—f((l)a|2)> '

We note that with this approach, neither A nor B is a linear operator.
Lemma 6.2. Let A and B defined by [@1). Their commutator is given by

4, B] ((b) _ <V¢ V[ (laf*) = div (|a|*V¢ + £ Im(aVa)) f’(|a|2)> '
’ a Va-Vf(la?) + aAf (Jal?)
As a consequence, if £ > d/2+3, p> 0, |||l e+1 < p, HaHﬂf; <, then there exists
C = C(p) independent of € € [0,1] such that ’

<<£> = [A, B] (¢) satisfies Hg)”%giz

a 18]l

C (8llyer + Nallse )

Cllalls -

NN

Proof. Like in [7], we have

2 () (?) = -V¢- Vo
a) \b —V¢-Vb— Ve -Va— 1bAd— 2alp+i5Ab)’

whereas unlike in [7], we consider a function f which is not necessarily linear, so
that the linearized operator of B is given by

I <i>> <<2>> _ (—ZRG(Eg)f’(Ial2)>
and thus

B (¢) (A <¢>) _ <(2Re(aVa-V¢) + |al*A¢ + ¢ Im(aAa)) f’(|a|2)> .

a a 0

The explicit formula for [A, B] follows as in [7]. The estimates then follow directly

from (3H) and BI). O

We have the explicit formula

B (el () (1)

and we readily infer

(6.3) 0sEn (t, (ﬁ)) <<§> _ (w - 20Atla§”Re<ab>> |

Finally, we compute that

(i) =2 (- (20)) ()
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solves the system

O + Vo - Vo +20Mal*’ > Re(ab) = 0; -0 = o,
(6.4) 1
b+ V6 Vb+ V- Va+ 5 (bAé +alp) = igAb; bji—o = bo,

where

(c) = (- ()

Lemma 6.3. Let { > d/2+ 1, s > £ and (po,bo) € H‘;\/J[rol X HYy, - Assume that

(¢,a) € C([0,T], H5T x H5)NLA([0,T7, HZ+3/2 X HZ+1/2). Then for M sufficiently
large and T < My/M, the solution to ([6.4]) satisfies

leollZ1 2 HIIBNE 7 < 4llwollFess + 4llboll3,e -
Mo Mo

Proof. The proof is quite similar to the one of Lemma [3.3] and Proposition 1l We
take the ’Hﬁ“ scalar product of the first equation in (€4 with ¢, and the Hf; scalar
product of the second one with b. We get

6t||§0||§_[£+1 + 2M||90||§_[£+3/2 < CH‘PHHﬁH/z (||V¢ : V‘PHHfjl/? + [[]a*7~? Re(ab)||7_[f)+l/2> ,
3t||b||§{g + 2M||b||§_[£+1/2 < O||b||7‘lf,+l/2 (||V¢) . VbHHfflm + ||V - va,||Hf)—1/2

HIBAGge-172 + a8l o172 ) -

Then, the use of H) with m > d/2 and integration in time yield, with estimates
similar to those presented in the proof of Proposition 1]

o +200 [ o) Epsnatr < Dl
+0 [ Nt gy 0o gyt
+0 [ 1B s 6 g
+O [ ot gzl B2 1,

t
+C/ ()l gyev272 [10(T) |3 12 la(T) 137 d,
0 p(T) p(T) p(7)
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o). +2mﬁ/|w e < ol
<+<9y/’nb<r>nﬂetyzn¢<f>nﬂﬁtyznb<f>nHz¢;dr
+0 [ I s 6 g
+c/dwwm#ﬂmwwmﬂﬂmwwmwwwf

0 p(7) p(7) P(7)
t
—|—C’/ b(r a(T T m+1dT
1 gl o 16 s
t
+c/dwwmﬁﬂmwvm#4mwwmwme
0 p(T) p(T) p(T)
t
+CAHMﬂM$thM%mﬁMMm%ﬂT
t
+f{/|wmeHumameFumwvﬂmmﬂdf
0 p(7) p(7) P(7)

t
+C [ I eyl sl

We choose m = ¢ > d/2 4+ 1 in the estimate for ¢ and m = ¢ — 1 > d/2 in the
estimate for b. Denoting

1=l e+, 0+ alle,r
and

t
913 = [ 107 By, dr
0 p(T)
since the ’H,k norms are increasing with k£, Cauchy-Schwarz in time yields

le(®13, et 2MIQI gpperare < pollzes + Cllell aaygrora

20—1
H 20—1
<—f Oigzt ||<P(T)||Hf;(+;) + ullell paggerare + i 0271-1; 16(T) e, + 1 IIbIILMﬂ/z) ;

IIb(t)Iliz(t + 2M[b] 75 0102 < ||b0||3{§w() + Cullbl] 510172 %

1
(7 312, 10, + Wl + oo + 2 s (s )

M ogr<t 0Tt

Adding the last two inequalities, we deduce, for p < C,
2 2 2 2
[0 By + IO + 2Vl s + 2MIBI v < ol + ol
1
#0f (s Ny + s 1By |+ Mol gyars + M)

from which the inequality of the lemma easily follows provided M is sufficiently
large. (Il

We infer the WKB local error estimate:
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Theorem 6.4 (Local error estimate for WKB states). Let £ > d/2+ 5, My > 0,
M > 1, p(t) = My — Mt and x> 0. Let (¢o,a0) € ’Hf\)}ol x MY, such that

||¢0||H§;01 <po laollyg, < p

There exist C,co > 0 (depending on p) independent of € € (0,1] such that
o\ . ot [P0\ ot (Do) _ (¥E()
c <t, <a0 =z (M) - ()= (1),

[ () 5ge-3 + [|AZ()]| -0 < CE?, 0<t < co.
p(t) p(t)

satisfies

The above result obviously involves a loss of regularity, between the initial as-
sumptions and the conclusion. It is important to note that the local error estimate
is used only once in the final Lady Windermere’s fan argument presented in the
next section, so this loss is not a serious problem.

Proof. Let t € [0,¢p], and fix 7,72 such that 0 < 75 < 7 < t. Introduce the
following intermediary notations:

(o) =2 ( (&)
()=o) )
()=ma(d).  ()=aes(n-n(2)) (%)

Then in view of Theorem [6.1] we have

()~ [ 5 () ()

Since £ > d/2 + 1, Proposition .1l for A = 0 ensures that (¢1,a5) € ’Hf;z:_ll) X ’Hﬁ(n)

is well defined provided 7 < ¢o < My/M, with (according to (A2)) where we can
remove the [|aol3%  term because A = 0)
Mg

g
loulhss <2 Nl < 2

6.2) writes (¢5,a5) = (¢5 — AT2]a5|??,a) and thus ([B.5) yields (in the calculations
below, the constant C may depend on p and may change from line to line)

[65llae <20+ Cu* < Cp, lagllye, < 2,
p(T1) p(T1)
because ¢ > d/2. Similarly,
(6.5) 105115,
T1)
Next, since £ — 1 > d/2 + 3, Lemma [6.2] implies

<Cu, sl <2
p(T1)

||¢Z€’>||H[*3 < C/J,, ||G§HH2—4 < CM
p(T1) p(T1)
In view of (6.3]), we have

¢5 = 95 — 20\(11 — m)|ai[*"* Re (@ia3), af = a5,
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and therefore
(6.6) [95llye-3 < Cuy lagllye—s < Cu,
p(71) p(T1)

since £ — 3 > d/2 and thanks to (3.0]).
Finally, we prove that if £ > d/2 + 5, the ’Hﬁ(_t? X ’Hﬁ(_t‘)* norm of

(i) =2 (- () (Zf%)

is uniformly bounded in ¢, 71,72 aslong as 0 < 72 < 1y <t < T < My/M. For this
purpose, first note that since /—1 > d/2+1, it follows from (IE) and Proposition[4.]]
that we can choose M = M (p) sufficiently large such that if 0 < T — 7 < p(11)/M,

<¢> (1) =&r (T - T, (?f)) is such that
“ as
(¢) < C ([Th ],Hﬁ X Hf’_l) N L2 ([TluT]7Hf)+1/2 X Hf;_l/2> )

with

max< sup |o(r )||He , sup |la(r )H -1,
T1<TLT ) i <r<T r(7)

p(T

20 / 167y, 201 / la(r)2 e1/2d7>\ Oyt 12).

(Note that p(7) = p(11) — M (7 —71)). Then, thanks to (€8] and Lemma [6:3] since
t—4>d/24+1and s =¢— 12> {—4, choosing possibly M = M (u) even larger,

max (11652, a1 ) < Ci
p(t) p(t)
The theorem follows. O

Back to the wave functions, we obtain an estimate similar to the one presented
in [I2] Section 4.2.2]:

Corollary 6.5. Under the assumptions of Theorem[6.]], denoting

() =2 () () == ()

there exist C,co > 0 (depending on 1) independent of € € (0,1] such that

Proof. With the same notations as in Theorem [6.4] the Sobolev embedding of Hﬁa‘;
into L™ (£ > d/2 + 5) ensures

|a L <llas =@l

t2
gc—, 0<t§00.

GGl a (e | < on

ieiqbf/s —af (t)ei¢5(t) €

50 (ewg/s _ eiqsf(t)/a)

L2
1 Ct?
S ATz + 2 la* @l e 1Ol 2 < —
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This result will not be used in the sequel, but shows how a 1/e factor appears
when going back to the wave function, in agreement with the observations in [4].
The above computation also shows how to infer the first point in Corollary L3 from
Theorem [[11

7. LADY WINDERMERE’S FAN

Let My > 0, ¢ > d/2+ 5, and vy = (¢g,a0) € H“;l X ’wao. For the sake of
conciseness, we use the following notations: for ¢ > 0, n € N and At > 0,

v (1) = (¢°(1),a°(1)) = Steo, v, = (85, a5) = (Z2)" wo.
For p > 0 and v = (¢,a) € ’Hﬁ"’l X ’Hf;, we also denote
[vllp.e = 1@z + llallae -
According to Proposition ] if M > 0 is sufficiently large, T < My/M and p(t) =
My — Mt, 22)-(Z3) has a unique solution v* € C([0,T], H5™ x HY), with

sup v ()l p(0),¢ < R,
<t<T
where R = 2||vo|| My, ¢-

We recall the notation t, = nAt, and we set p, = p(t,). We now prove by
induction on n that there exists ¢y > 0 such that if At € (0, ¢g], for every n > 0
such that nAt < T, we have

(7.1) [onllon,e-a < R+,
(7.2) l[on, = v (tn)ll pn 0-a < VAL,
(7.3) [0nllpn.e < B/2,

for some d,y > 0 that will be given later. (Z.I)),-(T2),-(T3), obviously hold for
n = 0. Let n > 0 such that nAt < T and assume that (T1]);-(C2),-(C3); hold for
all j € {0,--- ,n—1}. Then, for all j € {0,--- ,n — 2}, (TI) 41 yields
At
(74) 1225951, ema = 154l g SRS
On the other hand, for j € {0,--- ,n — 2}, we also have
HsAt H HsAt € SAt s

< HSAt € SAt s

I ) e

+ R.

pir1,l—4 ‘ Hpj+1>f—4
() Hpﬁl,zfz;
From (Z.3);, ijTHpj)g_4 < R/2, whereas [[v(t;)],, ,_, < R by choice of R. Thus,
since £ — 4 > d/2 + 1, Proposition [£.1] and (IEI)J- imply (up to increasing M)

||SAt e ShtyE( H (R)YAL
Therefore, if ¢g > 0 is chosen sufficiently small such that K (R)yco < d, we have
(7.5) [S255]], s SRS,
and (T4), (ZH) and Proposition Bl ensure that for all j € {0,--- ,n — 2},

(829" s — (52" s2ug

; N R+5 ||ZAt E_SEAt EH

yg_4 pit1.—4"
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Moreover, the last estimate also holds for j = n—1 if K is replaced by 1. According
to (C3); and Theorem [6.4], we deduce that for all j € {0,---,n — 1},
(7.6)

(52077 28t — (271 sig

; < max(1, K (R + §))C(R/2) At

pn t—4

Piling up the last inequality for j € {0, - ,n — 1}, we conclude

n—1
11— 11—
0 = vt -t < 3 || (82" 28005 — (821)" 7T St
i=0

prsl—4
< nmax(1, K(R+ 6))C(R/2)At?
< max(1l, K(R+6))C(R/2)TAt,
which proves (T2),, with v = max(1, K(R + 0))C(R/2)T. Then, ((2)), yields
(77 Mvallone—a < llog, =0 @) llpne—a + 105 (En) o e-a < VAL + R.

Note that it does not prove (L)), yet, because the choice of § = yco may be
incompatible with the previous constraint K(R)yco < 6. However, (Z3),, follows
from (7)) and Corollary[5.2] once we have noticed that the proof of ([Z7) also works
if v2 = ZAtE_, is replaced by Zfvs_, (and t,, by t,,_1 +t), for any 0 < t < At,
so that

Z‘: (Z?t)n71 vo — S§+(n_1)AtvO

n—2 X .
— Bt - St 3 [SESSY)" Y s - st (5207 8]
j=0

Then, (1), follows from (73),, and any positive value for ¢ is admissible.
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