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Abstract. We consider a Brownian motion with drift in the quarter plane with orthogonal
reflection on the axes. The Laplace transform of its stationary distribution satisfies a functional
equation, which is reminiscent from equations arising in the enumeration of (discrete) quadrant
walks. We develop a Tutte’s invariant approach to this continuous setting, and we obtain an
explicit formula for the Laplace transform in terms of generalized Chebyshev polynomials.

1. Introduction and main results

1.1. Reflected Brownian motion in the quadrant. The object of study here is the reflected
Brownian motion with drift in the quarter plane

Z(t) = Z0 +W (t) + µt+RL(t), ∀t > 0, (1)

associated to the triplet (Σ, µ,R), composed of a non-singular covariance matrix, a drift and a
reflection matrix, see Figure 1:

Σ =

(
σ11 σ21
σ12 σ22

)
, µ =

(
µ1
µ2

)
, R = (R1, R2) =

(
r11 r21
r12 r22

)
.

In Equation (1), Z0 is any initial point in R2
+, the process (W (t))t>0 is an unconstrained planar

Brownian motion starting from the origin, and for i = 1, 2, Li(t) is a continuous non-decreasing
process, that increases only at time t such that Zi(t) = 0, namely

∫ t
0 1{Zi(s) 6=0}dL

i(s) = 0, for all
t > 0. The columns R1 and R2 represent the directions in which the Brownian motion is pushed
when the axes are reached.

Figure 1. Drift µ and reflection vectors R1 and R2 in non-orthogonal and or-
thogonal cases
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The reflected Brownian motion (Z(t))t>0 associated with (Σ, µ,R) is well defined [18, 24], and
is a fondamental stochastic process, from many respects. There is a large literature on reflected
Brownian motion in quadrants (and also in orthants, generalization to higher dimension of the
quadrant). First, it serves as an approximation of large queuing networks [14, 1]; this was the
initial motivation for its study. In the same vein, it is the continuous counterpart of (random)
walks in the quarter plane, which is an important combinatorial and probabilistic object, see
[3, 2]. In other directions, it is studied for its Lyapunov functions [12], cone points of Brownian
motion [20], intertwining relations and crossing probabilities [11], and of particular interest for
us, for its recurrence or transience [19]. Its stationary distribution exists and is unique if and
only if the following (geometric) conditions are satisfied:

r11 > 0, r22 > 0, r11r22 − r12r21 > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0. (2)

Moreover, the asymptotics of the stationary distribution (when it exists) is now well known, see
[16, 7, 15].

There exist, however, very few results giving an exact expression for the stationary distribution,
and the main contribution of this paper is precisely to propose a method (based on boundary
value problems) for deriving an explicit formula for the (Laplace transform of the) stationary
distribution. Our study constitutes one of the first attempts to apply these techniques to reflected
Brownian motion, after [14] (with the identity covariance matrix Σ) and [1] (with a diffusion
having a quite special behavior on the boundary). We also refer to [4] for the analysis of reflected
Brownian motion in bounded domains by complex analysis techniques.

1.2. Laplace transform of the stationary distribution. Under assumption (2), that we
shall do throughout the manuscript, the stationary distribution is absolutely continuous w.r.t.
the Lebesgue measure, see [18, 5]. We denote its density by π(x) = π(x1, x2). Let the moment
generating function (or Laplace transform) of π be defined by

ϕ(θ) = Eπ[e〈θ|Z〉] =

∫∫
R2
+

e〈θ|x〉π(x)dx.

The above integral converges at least for θ = (θ1, θ2) ∈ C2 such that < θ1 6 0 and < θ2 6 0. We
further define two finite boundary measures ν1 and ν2 with support on the axes, by the mean of
the formula

νi(B) = Eπ
[ ∫ 1

0
1{Z(t)∈B}dL

i(t)

]
.

The measure νi is continuous w.r.t. the Lebesgue measure [18], and may be viewed as the bound-
ary invariant measure. We define their moment generating function by

ϕ2(θ1) =

∫
R+

eθ1x1ν2(x1)dx1, ϕ1(θ2) =

∫
R+

eθ2x2ν1(x2)dx2.

The functions ϕ1 and ϕ2 exist a priori for values of the argument with non-positive real parts.
There is a functional equation between the Laplace transforms ϕ, ϕ1 and ϕ2, see (5) in Section 2,
which is reminiscent of the functional equation counting (discrete) quadrant walks [3, 2].

1.3. Main result. We derive an explicit expression for ϕ1, and therefore also for ϕ2 and ϕ,
by the functional equation (5), in the particular case where R is the identity matrix, which
means that the reflections are orthogonal (Figure 1, right). Define the generalized Chebyshev
polynomial by (for a > 0)

Ta(x) = cos(a arccos(x)) =
1

2

{(
x+

√
x2 − 1

)a
+
(
x−

√
x2 − 1

)a}
.

It admits an analytic continuation on C\ (−∞,−1), and even on C is a is a non-negative integer.
We also need to introduce

θ±2 =
(µ1σ12 − µ2σ11)±

√
(µ1σ12 − µ2σ11)2 + µ21 det Σ

det Σ
(3)
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(notice that the sign of θ±2 is ±, see Figure 3), as well as the angle (related to the correlation
coefficient of the Brownian motion (W (t))t>0)

β = arccos− σ12√
σ11σ22

. (4)

Theorem 1. Let R be the identity matrix in (1). The Laplace transform ϕ1 is equal to

ϕ1(θ2) =
−µ1w′(0)

w(θ2)− w(0)
θ2,

where the function w can be expressed in terms of the generalized Chebyshev polynomial Tπ
β
as

follows:

w(θ2) = Tπ
β

(
− 2θ2 − (θ+2 + θ−2 )

θ+2 − θ
−
2

)
.

Accordingly, ϕ1 can be continued meromorphically on the cut plane C \ (θ+2 ,∞).

There exists, of course, an analogous expression for ϕ2(θ1), and the functional equation (5)
finally gives a simple explicit formula for the bivariate Laplace transform ϕ.

Let us now give some comments around Theorem 1.
• It connects two a priori unrelated objects: the stationary distribution of reflected Brown-
ian motion in the quadrant and a particular special function, viz, a generalized Chebyshev
polynomial (which is a hypergeometric function). The expression that we obtain is quite
tractable: as an example, we will recover the well-known case of one-dimensional reflected
Brownian motion (Section 3.5).
• To prove Theorem 1, we apply a constructive (and combinatorial in nature) variation
of the boundary value method of [13], recently introduced in [2] as Tutte’s invariant
approach [23], see our Section 3. This paper is one of the first attempts to apply boundary
value techniques to (continuous) diffusions in the quadrant, after [14] (which concerns
very particular cases of the covariance matrix, essentially the identity matrix) and [1] (on
diffusions with completely different behavior on the boundary).
• The recent paper [15] obtains the exact asymptotic behavior of the stationary distribution
along any direction in the quadrant. The constant in that asymptotics involves both
functions ϕ1 and ϕ2 (see [15]), and can thus be made explicit with our Theorem 1.
• Theorem 1 is well suited for asymptotic analysis: we shall derive the asymptotics of the
stationary distribution along the axes, by using classical arguments from the singularity
analysis of Laplace transforms (see the reference book [10]). See our Section 4.
• Theorem 1 implies that the Laplace transform is algebraic if and only if a certain group
(to be properly introduced later on) is finite, see Section 5.3. This result has an analogue
in the discrete setting, see [3]. In the same vein, the authors of [9] give necessary and
sufficient conditions for the stationary density of two-dimensional reflected Brownian
motion with negative drift in a wedge to have the form of a sum of exponentials. The
intersection with our results is the polynomial case π

β ∈ Z.
Though being self-contained (this is one of the reasons why we focus on the case of orthogonal

reflections), this paper is part of a larger project, dealing with any reflection matrix R (as in
Figure 1, left).

Acknowledgements. We thank Mireille Bousquet-Mélou, Irina Kurkova and Marni Mishna
for interesting discussions. We acknowledge support from the projet-région MADACA and from
Simon Fraser University.

2. Analytic preliminaries and continuation of the Laplace transforms

In this section we state the key functional equation (a kernel equation, see Section 2.1), which
is the starting point of our entire analysis. We study the kernel (a second degree polynomial
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in two variables) in Section 2.2. Finally, we continue the Laplace transforms to larger domains
(Section 2.3), which will be used in Section 3 to state a boundary value problem (BVP).

2.1. Functional equation. We have the following key functional equation between the Laplace
transforms:

− γ(θ)ϕ(θ) = γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1), (5)

where 
γ(θ) = 1

2〈θ|σθ〉+ 〈θ|µ〉 = 1
2(σ11θ

2
1 + σ22θ

2
2 + 2σ12θ1θ2) + µ1θ1 + µ2θ2,

γ1(θ) = 〈R1|θ〉 = r11θ1 + r21θ2,

γ2(θ) = 〈R2|θ〉 = r12θ1 + r22θ2.

By definition of the Laplace transforms, this equation holds at least for any θ = (θ1, θ2) with
< θ1 6 0 and < θ2 6 0.

The main idea is to use an identity called basic adjoint relationship (first proved in [17] in some
particular cases, and then extended in [6]), which characterizes the stationary distribution. (It is
the continuous analogue of the equation πQ = 0, with π the stationary distribution of a recurrent
continuous-time Markov chain having infinitesimal generator matrix Q.) This basic adjoint
relationship connects the stationary distribution π and the corresponding boundary measures ν1
and ν2. We refer to [14, 7] for the details.

2.2. Kernel. By definition, the kernel of Equation (5) is the polynomial

γ(θ1, θ2) =
1

2
(σ11θ

2
1 + 2σ12θ1θ2 + σ22θ

2
2) + µ1θ1 + µ2θ2.

It can be alternatively written as

γ(θ1, θ2) = ã(θ2)θ
2
1 + b̃(θ2)θ1 + c̃(θ2) = a(θ1)θ

2
2 + b(θ1)θ2 + c(θ1),

where {
ã(θ2) = 1

2σ11, b̃(θ2) = σ12θ2 + µ1, c̃(θ2) = 1
2σ22θ

2
2 + µ2θ2,

a(θ1) = 1
2σ22, b(θ1) = σ12θ1 + µ2, c(θ1) = 1

2σ11θ
2
1 + µ1θ1.

(6)

The equation γ(θ1, θ2) = 0 defines a two-valued algebraic function Θ1(θ2) such that γ(Θ1(θ2), θ2) =
0, and similarly Θ2(θ1) such that γ(θ1,Θ2(θ1)) = 0. Their expressions are given by

Θ±1 (θ2) =
−b̃(θ2)±

√
d̃(θ2)

2ã(θ2)
, Θ±2 (θ1) =

−b(θ1)±
√
d(θ1)

2a(θ1)
,

where d̃ and d are the discriminants of the kernel:{
d̃(θ2) = θ22(σ212 − σ11σ22) + 2θ2(µ1σ12 − µ2σ11) + µ21,

d(θ1) = θ21(σ212 − σ11σ22) + 2θ1(µ2σ12 − µ1σ22) + µ22.

The polynomials d̃ and d have two zeros, real and of opposite signs, they are denoted by θ±2 and
θ±1 , respectively: θ

±
2 is introduced in (3) and

θ±1 =
(µ2σ12 − µ1σ22)±

√
(µ2σ12 − µ1σ22)2 + µ22 det Σ

det Σ
.

Equivalently, θ±1 and θ±2 are the branch points of the algebraic functions Θ2 and Θ1.
Finally, notice that d is positive on (θ−1 , θ

+
1 ) and negative on R \ [θ−1 , θ

+
1 ]. Accordingly, the

branches Θ±2 take real and complex conjugate values on these sets, respectively. A similar
statement holds for Θ±1 .
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2.3. Continuation of the Laplace transforms. In Section 3 we shall state a boundary con-
dition for the functions ϕ1 and ϕ2, on curves which lie outside their natural domains of definition
(the half-plane with negative real-part). We therefore need to continue these functions, which is
done in the result hereafter.

Lemma 2. We can continue meromorphically ϕ1(θ2) to the open and simply connected set

{θ2 ∈ C : < θ2 6 0 or <Θ−1 (θ2) < 0}, (7)

by setting
ϕ1(θ2) =

γ2
γ1

(Θ−1 (θ2), θ2)ϕ2(Θ
−
1 (θ2)).

Lemma 2 is immediate (one can find a refined version of it in [15]). A similar statement holds
for the Laplace transform ϕ1. Anticipating slightly, we notice that the domain in (7) contains
the domain GR in Figure 2.

3. Statement of the BVP

3.1. An important hyperbola. For further use, we need to introduce the curve

R = {θ2 ∈ C : γ(θ1, θ2) = 0 and θ1 ∈ (−∞, θ−1 )} = Θ±2 ((−∞, θ−1 )). (8)

By the results of Section 2.2, d is negative on the interval (−∞, θ−1 ), and thus the curve R is
symmetrical w.r.t. the real axis, see Figure 2. Furthermore, it has a simple structure, as shown
by the following elementary result, taken from [1, Lemma 9]:

Lemma 3. The curve R in (8) is a (branch of a) hyperbola, given by the equation

σ22(σ
2
12 − σ11σ22)x2 + σ212σ22y

2 − 2σ22(σ11µ2 − σ12µ1)x = µ2(σ11µ2 − 2σ12µ1). (9)

Proof. We saw in Section 2.2 that whenever θ1 ∈ (−∞, θ−1 ), the branches Θ+
2 (θ1) and Θ−2 (θ1)

are complex conjugate. Define x and y by Θ+
2 (θ1) = x+ iy. Then from the identities

Θ+
2 + Θ−2 = − b(θ1)

a(θ1)
= −2

σ12θ1 + µ2
σ22

= 2x and Θ+
2 ·Θ

−
2 =

c(θ1)

a(θ1)
=
σ11θ

2
1 + 2µ1θ1
σ22

= x2 + y2,

we obtain that x and y are real solutions of (9). �

We shall denote by GR the open domain of C bounded by R and containing 0, see Figure 3.
Obviously GR, the closure of GR, is equal to GR ∪R.

3.2. BVP for orthogonal reflections. In the case of orthogonal reflections, R is the identity
matrix in (1), and we have γ1(θ1, θ2) = θ1 and γ2(θ1, θ2) = θ2. We set

ψ1(θ2) =
1

θ2
ϕ1(θ2), ψ2(θ1) =

1

θ1
ϕ2(θ1). (10)

Proposition 4. The function ψ1 satisfies the following BVP:
(i) ψ1 is meromorphic on GR with a single pole at 0, of order 1 and residue ϕ1(0), and

vanishes at infinity,
(ii) ψ1 is continuous on GR \ {0} and

ψ1(θ2) = ψ1(θ2), ∀θ2 ∈ R. (11)

Proof. Using the formula (10), Point (i) is equivalent to proving that ϕ1 is analytic in GR and
is bounded at infinity. Both properties are obvious in the half-plane {θ2 ∈ C : < θ2 < 0}, thanks
to the definition of ϕ1 as a Laplace transform. In the domain of GR where < θ2 > 0, one can use
the continuation formula given in Lemma 2, and the conclusion follows.

Let us now prove (ii). Evaluating the (continued) functional equation (5) at (θ1,Θ
±
2 (θ1)), we

obtain
ψ1(Θ

±
2 (θ1)) + ψ2(θ1) = 0,
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Figure 2. The curve R in (8) is symmetric w.r.t. the horizontal axis, and GR is
the domain in green

which immediately implies that

ψ1(Θ
+
2 (θ1)) = ψ1(Θ

−
2 (θ1)). (12)

Choosing θ1 ∈ (−∞, θ−1 ), the two quantities Θ+
2 (θ1) and Θ−2 (θ1) are complex conjugate the one of

the other, see Section 2. Equation (12) can then be reformulated as (11), using the definition (8)
of the curve R. �

3.3. Conformal gluing function and invariant theorem. The BVP stated in Proposition 4
is called a homogeneous BVP with shift (the shift stands here for the complex conjugation, but
the theory applies to more general shifts, see [21]). Due to its particularly simple form, we can
solve it in an explicit way, using the two following steps:

• Using a certain conformal mapping (to be introduced below), we can construct a partic-
ular solution to the BVP of Proposition 4.
• The solution to the BVP of Proposition 4 is unique, see Lemma 5 below (taken from
Lemma 2 in [21, Section 10.2]). In other words, two different solutions must coincide,
and the explicit solution constructed above must be the function ψ1.

Lemma 5 (Invariant lemma). The problem of finding functions f such that
(i) f is analytic on GR and continuous on GR,
(ii) f satisfies the boundary condition (11),

does not have non-trivial solutions in the class of functions f vanishing at infinity.

To construct a particular solution to the BVP of Proposition 4, we shall use the function

w(θ2) = Tπ
β

(
− 2θ2 − (θ+2 + θ−2 )

θ+2 − θ
−
2

)
(13)

introduced in Theorem 1. Let us first establish some of its properties.

Lemma 6. The function w in (13) is such that:
(i) w is analytic on G, continuous in GR and unbounded at infinity,
(ii) w is injective on G (onto C \ (−i∞,−i]),
(iii) w(θ2) = w(θ2) for all θ2 ∈ R.
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The function w is called a conformal gluing function. The conformal property comes from (i)
and (ii), and the gluing from (iii): w glues together the upper and lower parts of the hyperbola R.
There are at least two ways for proving Lemma 6. First, it turns out that in the literature there
exist expressions for conformal gluing functions for relatively simple curves: circles, ellipses, and
also for hyperbolas, see [1, Equation (4.6)]. Following this way, we could obtain the expression
(13) for w given above and its different properties stated in Lemma 6. Instead, we would like to
use the Riemann sphere given by

{(θ1, θ2) ∈ C2 : γ(θ1, θ2) = 0}.

Indeed, as we shall see in Section 5, many (not to say all) technical aspects, in particular finding
the conformal mapping, happen to be quite simpler on that surface. The proof of Lemma 6 is
thus postponed to Section 5.

3.4. Proof of Theorem 1. We are now ready to prove our main result. Let us introduce the
function

f(θ2) = ψ1(θ2)− ϕ1(0)
w′(0)

w(θ2)− w(0)
.

The key point is that f satisfies the assumptions of Lemma 5.
The first item (i) of Lemma 5 holds by construction: the only possible pole of f is at 0 (ψ1

has a unique pole at 0, see Proposition 4, and since w is injective, see Lemma 6, the equation
w(θ2)−w(0) = 0 has only one solution, viz, θ2 = 0). However, a series expansion shows that the
residue of f at 0 is 0, in other words 0 is a removable singularity.

Point (ii) is also clear, since both ψ1 and w satisfy the boundary condition (11). Furthermore,
f vanishes at infinity, since on the one hand ψ1 does, and on the other hand w goes to infinity
at infinity. Using Lemma 5, we conclude that f = 0. It remains to show that ϕ1(0) = −µ1. For
this it is enough to evaluate the functional equation (5), first at θ2 = 0, and then at θ1 = 0.

3.5. Diagonal covariance. Assuming that the covariance matrix Σ is diagonal, we have β = π
2

in (4), and Tπ
β

= T2 is the second Chebyshev polynomial, given by T2(x) = 2x2−1. The formula
(13) for w together with the expression (3) of θ±2 yields

w(θ2)− w(0) =
8

µ21σ11σ22 + µ22σ
2
22

θ2

(
θ2 +

2µ2
σ22

)
.

The formula of Theorem 1 then gives

ϕ1(θ2) =
−µ1w′(0)

w(θ2)− w(0)
θ2 = −2µ1µ2

σ22

1

θ2 + 2µ2
σ22

,

and finally, after some elementary computations and the use of functional equation (5), we obtain

ϕ(θ) =
2µ1/σ11

(θ1 + 2µ1/σ11)

2µ2/σ22
(θ2 + 2µ2/σ22)

. (14)

By inversion of the Laplace transform, we reach the conclusion that

ν1(x2) =
2µ1µ2
σ22

e
2µ2
σ22

x2 , ν2(x1) =
2µ1µ2
σ11

e
2µ1
σ11

x1 , π(x1, x2) =
4µ1µ2
σ11σ22

e
2µ1
σ11

x1+
2µ2
σ22

x2 .

With orthogonal reflections and a diagonal covariance, the reflected Brownian motion in the
quarter plane is actually nothing else but the product of two one-dimensional reflected Brownian
motions (this is clearly suggested by the product form of the Laplace transform in (14)). This
happens to be in accordance with a direct study of the dimension one case. Let indeed

Xt = X0 +Wt + µt+ L0
t
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be a one-dimensional reflected Brownian motion with drift µ, where W is a Brownian motion of
variance σ > 0 and L0

t is the local time at 0. Applying Itô formula to (eθXt) and taking expected
value over the invariant measure π, we obtain, with ϕ(θ) = Eπ[eθX1 ],(σ

2
θ + µ

)
ϕ(θ) = −Eπ[L0

1].

Evaluating this identity at 0 and remembering that ϕ(0) = 1 we find Eπ[L0
1] = −µ, and then

ϕ(θ) =
2µ/σ

θ + 2µ/σ
,

which indeed coincides with (14).

3.6. Statement of the BVP in the general case. We would like to close Section 3 by stating
the BVP in the case of arbitrary reflections (non necessarily orthogonal).

Let us define for θ2 ∈ R

G(θ2) =
γ1
γ2

(Θ−1 (θ2), θ2)
γ2
γ1

(Θ−1 (θ2), θ2).

Using the same line of arguments as in the proof of Proposition 4, we obtain the following result:

Proposition 7. The function ϕ1 satisfies the following BVP:
(i) ϕ1 is meromorphic on GR with at most one pole p of order 1, and is bounded at infinity,
(ii) ϕ1 is continuous on GR \ {p} and

ϕ1(θ2) = G(θ2)ϕ1(θ2), ∀θ2 ∈ R. (15)

Due to the presence of the function G 6= 1 in (15), this BVP (still homogeneous with shift)
is more complicated than the one encountered in Proposition 4, and cannot be solved thanks to
an invariant lemma. Instead, the resolution is less combinatorial and fare more technical, and
the solution should be expressed in terms of Cauchy integrals and the conformal mapping w of
Lemma 6. This will be achieved in a future work.

From the viewpoint of the general BVP of Proposition 7, we thus solved in this note a case
where the variables θ1 and θ2 could be separated in the quantity (the right-hand side of the
functional equation (5))

γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1).

Let us say a few words on another case (the only other case, in fact) where the variables can also
be separated, namely, when γ1 = γ2. In this case the reflections are parallel, and the function
ϕ1 (instead of ψ1) satisfies the BVP of Proposition 4, with no pole in GR. With Lemma 5, it has
to be a constant. In other words, there is no invariant measure, which is in accordance with the
fact that with parallel reflections the condition of ergodicity (2) is obviously not satisfied.

4. Singularity analysis

4.1. Statement of the result. In the literature, an important aspect of reflected Brownian
motion in the quarter plane (and more generally in orthants) is the asymptotics of its stationary
distribution, see indeed [7, 15] for the asymptotics of the interior measure, and [8] for the bound-
ary measures. With our Theorem 1 and a classical singularity analysis of Laplace transforms
(our main reference for this is the book [10]), we can easily obtain such asymptotic expansions.

Precisely, we identify three regimes, depending on the sign of Θ1(θ
+
2 ). The fact that the latter

quantity determines the asymptotics can be easily explained: as we shall see in Section 5, the
pole θ2 ∈ C \ [θ+2 ,∞) of ϕ1 that is the closest to the origin is (provided it exists) a solution to
Θ+

1 (θ2) = 0. The relative locations of Θ+
1 (θ2) and 0 will therefore decide which of that pole or

of the algebraic singularity θ+2 will be the first singularity of ϕ1.
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Define the constants

C1 =
−ϕ1(θ

+
2 )2πβ sin(πβπ)

(w(θ+2 )− w(0))
√
θ+2 − θ

−
2

, C2 =
−µ1w′(0)θ+2

√
θ+2 − θ

−
2

2πβ sin(πβπ)
. (16)

Proposition 8. As x2 →∞, the asymptotics of ν1(x2) is given by

ν1(x2) =



x2
− 3

2 e−θ
+
2 x2

(
−C1

2
√
π

+ o(1)

)
if Θ1(θ

+
2 ) < 0,

x2
− 1

2 e−θ
+
2 x2

(
C2√
π

+ o(1)

)
if Θ1(θ

+
2 ) = 0,

e
2
µ2
σ22

x2

(
w′(0)

w′(−2 µ2
σ22

)

2µ1µ2
σ22

+ o(1)

)
if Θ1(θ

+
2 ) > 0,

where the constants C1 and C2 are defined in (16).

Note that we refind (for the particular case of orthogonal reflections) the asymptotic result of
Dai and Miyazawa in [7, Theorem 6.1], with the additional information of the explicit expression
for the constants.

Note that β = π/k for k > 2 implies Θ1(θ
+
2 ) > 0 and that k cannot be 1 due to the condition

on Σ.

4.2. Proof of Proposition 8. Proposition 8 is an easy consequence of the singularity analysis
of ϕ1 and of classical transfer theorems, as [10, Theorem 37.1]. Due to the expression of ϕ1 in
Theorem 1, there are two sources of singularities: the singularities of w and the points θ2 where
the denominator w(θ2)− w(0) of ϕ1 vanishes.

Let us first study the singularities of w. In fact, the function w can not only be analytically
continued on GR as claimed in Lemma 6, but on the whole of the cut plane C\ [θ+2 ,∞). Further,
except if π/β ∈ Z, in which case w is a polynomial, w has an algebraic-type singularity at θ+2 ,
given by the following result:

Lemma 9. If π/β /∈ Z, ϕ1 has an algebraic-type singularity at θ+2 , in the neighborhood of which
it admits the expansion:

ϕ1(θ2) =

ϕ1(θ
+
2 ) + C1

√
θ+2 − θ2 +O(θ2 − θ+2 ) if w(θ+2 )− w(0) 6= 0,

C2√
θ+2 −θ2

+O(1) if w(θ+2 )− w(0) = 0,

where C1 and C2 are defined in (16).

Proof. Lemma 9 follows from doing an expansion of ϕ1 at θ+2 , using (the elementary) Lemma 10
below. �

Lemma 10. If a is an integer, the generalized Chebyshev polynomial Ta is the classical Chebyshev
polynomial. If not, Ta is not a polynomial, and admits an analytic extension on C \ (−∞,−1].
The point −1 is an algebraic-type singularity, and there is the expansion

Ta(x) = cos(aπ) + a
√

2 sin(aπ)
√
x+ 1 +O(x+ 1). (17)

Proof. The considerations on the algebraic nature of Ta are clear, and (17) comes from making
an expansion of Ta(x) = cos(a arccos(x)) in the neighborhood of −1. �

We now turn to the singularities introduced by the denominator of ϕ1; these singularities are
poles.

Lemma 11. There are two cases concerning the poles of ϕ1 in the cut plane C \ [θ+2 ,∞):
• Θ1(θ

+
2 ) 6 0, then ϕ1 is analytic on C \ [θ+2 ,∞),
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• Θ1(θ
+
2 ) > 0, then ϕ1 is meromorphic on C \ [θ+2 ,∞), with poles on the segment [0, θ+2 ]

only. The closest pole to the origin is at −2 µ2
σ22

and has order one.

The proof of Lemma 11 is postponed to Section 5, since the tools that we shall introduce there
will simplify it. Then Proposition 8 is an easy consequence of Lemmas 9 and 11.

5. Riemann sphere and related facts

We have many objectives in this section, which all concern the set of zeros of the kernel

S = {(θ1, θ2) ∈ C2 : γ(θ1, θ2) = 0}.

We add some complexity here, by using the framework of Riemann surfaces. In return, many
technical aspects become more intrinsic and some key quantities admit nice and natural inter-
pretations. We first (Section 5.1) study the structure of S, as a Riemann surface. Then we find
a simple formula for the conformal mapping w (Section 5.2). We finally introduce the notion of
group of the model (Section 5.3), similar to the notion of group of the walk in the discrete setting
[22, 13, 3], and we prove that the algebraic nature of the solution is related to the finiteness of
this group.

5.1. Uniformisation. Due to the degree of the kernel γ, the surface S has genus 0 and is a
Riemann sphere C∪{∞}, see [15]. It thus admits a rational parametrization (or uniformisation)
{(θ1(s), θ2(s)) : s ∈ S}, given by

θ1(s) =
θ+1 + θ−1

2
+
θ+1 − θ

−
1

4

(
s+

1

s

)
,

θ2(s) =
θ+2 + θ−2

2
+
θ+2 − θ

−
2

4

(
s

eiβ
+
eiβ

s

)
,

(18)

with β as in (4). The equation γ(θ1(s), θ2(s)) = 0 is valid for any s ∈ S. We will often represent
a point s ∈ S by the pair of coordinates (θ1(s), θ2(s)).

Any point θ1 ∈ C has two images on S. More specifically, let s ∈ S be defined by θ1(s) = θ1.
Then the two points are given by (θ1(s), θ2(s)) and (θ1(s), θ2(1/s)). They are always different,
except if θ1 is a branch point θ±1 . Similarly, any θ2 ∈ C corresponds to two points on S, viz,
(θ1(s), θ2(s)) and (θ1(e

2iβ/s), θ2(s)).
Any point or domain of C can be represented on the Riemann sphere, and there is the following

correspondance (which is easily proved by using the formulas (18)), see Figure 3:
• The branch points θ±1 and θ±2 are located at ±1 and ±eiβ ;
• The point of coordinates (0, 0) is at s0, and ∞ is at 0 and ∞;
• The real points (θ1, θ2) ⊂ R2 such that γ(θ1, θ2) = 0 form the unit circle;
• The curve R is sent to (−∞, 0), and if θ2 ∈ R corresponds to s ∈ (−∞, 0), then θ2 ∈ R
corresponds to 1/s; the domain GR is the cone bounded by (0,−∞) and (0,−eiβ∞).

5.2. Conformal mapping. In this section, we first show how to obtain the expression (13) of
w in terms of generalized Chebyshev polynomials, and we prove Lemma 6. Let us first notice
that any function f(θ2) can be lifted in a function of F (s), by mean of the formula

F (s) = f(θ2(s)).

In particular,W (s) stands for the lifted conformal mapping w(θ2(s)). Reciprocally, for a function
F (s) to define a univalent function f(θ2), the condition F (s) = F (e2iβ/s) needs to hold, due to
the obvious identity θ2(s) = θ2(e

2iβ/s).

Proof of Lemma 6. We first translate onW the properties of Lemma 6 stated for w. First,W has
to be analytic in the open cone GR (in S, this is the cone delimitated by (0,−∞) and (0,−eiβ∞))
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Figure 3. The set S viewed as the Riemann sphere, we have represented impor-
tant points and curves on it.

and continuous on the closed cone GR except at 0, see (i). Second, W has to be injective on GR,
see (ii). Finally, the boundary condition (iii) has to be replaced by the pair of conditions{

W (s) = W (1/s), ∀s ∈ R,
W (s) = W (e2iβ/s), ∀s ∈ (0,−eiβ∞).

(19)

We easily come up with the (at this point: conjectured) formula

W (s) = − i
2

{
(−s)

π
β + (−s)−

π
β
}

= − i
2

{
e
π
β
log(−s)

+ e
−π
β
log(−s)}

, (20)

where we make use of the principal determination of the logarithm. (Since the conditions (19)
are invariant under multiplication by a constant, we can choose the constant in front of the
right-hand side of (20). We choose −i/2, so as to match the expression W (s) with w(θ2(s)), w
being as in Theorem 1.)

Let us briefly verify each property. First, the analyticity property (i) is clear from the prop-
erties of the logarithm. In order to show (ii), we first remark that W (s) = W (t) if and only if
for some k ∈ Z,

s = t±1e2ikβ. (21)

Since s and t both belong to the cone GR, we must have s = t, and therefore W is injective.
Finally, (iii) is clear from the construction of W .

To obtain the expression of w in terms of the generalized Chebyshev polynomial, we use the
fact that θ2(s) = θ2 yields the formula

s =
eiβ

θ+2 − θ
−
2

(
2θ2 − (θ+2 + θ−2 )± 2

√
(θ+2 − θ2)(θ

−
2 − θ2)

)
.

The proof is complete. �

Thanks to the expression (20) of W derived above, we can now prove Lemma 11, concerning
the (eventual) poles of ϕ1 in the cut plane C \ [θ+2 ,∞).
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Proof of Lemma 11. Using the expression of ϕ1 obtained in Theorem 1, we conclude that the
poles of ϕ1 must be located at points θ2 where w(θ2) = w(0). Using the function W in (20),
we reformulate the latter identity as W (s) = W (s0), see Figure 3, and thanks to (21) we obtain
s = (s0)

±1e2ikβ . The closest pole to the origin s0 is then 1/s0, which corresponds to the point

θ2 = −2
µ2
σ22

such that Θ+
1 (θ2) = 0, since θ1(s0) = θ1(1/s0) = 0. The sign of Θ1(θ

+
2 ) then determines if 1/s0

is before or after eiβ (which corresponds to θ+2 ) on the unit circle, see Figure 3. The conditions
given in terms of sign of Θ1(θ

+
2 ) follows. Finally, let us notice that w(θ+2 ) = w(0) if Θ1(θ

+
2 ) = 0

and that w(θ+2 ) 6= w(0) if Θ1(θ
+
2 ) < 0. �

5.3. Group of the model and nature of the solution. The notion of group of the model has
been introduced by Malyshev [22] in the context of random walks in the quarter plane. It turns
out to be an important characteristic of the model, in particular to decide whether generating
functions or Laplace transforms are algebraic or D-finite functions.

It can be introduced directly on the kernel γ: with the notation (6), this is the group 〈ζ, η〉
generated by ζ and η, given by

ζ(θ1, θ2) =

(
θ1,

c(θ1)

a(θ1)

1

θ2

)
, η(θ1, θ2) =

(
c̃(θ2)

ã(θ2)

1

θ1
, θ2

)
.

By construction, the generators satisfy γ(ζ(θ1, θ2)) = γ(η(θ1, θ2)) = 0 as soon as γ(θ1, θ2) = 0.
In other words, there are (covering) automorphisms of the surface S. Since ζ2 = η2 = 1, the
group 〈ζ, η〉 is a dihedral group, which is finite if and only if the element ζη (or ηζ) has finite
order.

With the above definition, it is not clear how to see if the group is finite, nor to see it this has
any implication on the problem. In fact, we have:

Proposition 12. The group 〈ζ, η〉 is finite if and only if π/β ∈ Q.

The proof of Proposition 12 is simple, once the elements ζ and η have been reformulated on
the sphere S:

ζ(s) =
1

s
, η(s) =

e2iβ

s
.

These transformations leave invariant θ1(s) and θ2(s), respectively, see (18). In particular, we
have the following result (consequence of the Lemma 14), which connects the nature of the
solution of the BVP to the finiteness of the group. Such a result holds for discrete walks, see
[3, 2].

Proposition 13. The solution ϕ1 given in Theorem 1 is algebraic if and only if the group 〈ζ, η〉
is finite.

The proof of Proposition 13 builds on the following elementary result:

Lemma 14. Let a > 0. The generalized Chebyshev polynomial Ta is
• rational if a ∈ Z,
• algebraic (and not polynomial) if a ∈ Q \ Z,
• not algebraic if a ∈ R \Q.

However, even in the non-algebraic case, the Chebyshev polynomial Ta always satisfies a linear
differential equation with coefficients in R, since it can be written as the particular hypergeometric
function 2F1([−a, a], [1/2], 1− x), where (with (A)k = A(A+ 1) · · · (A+ (k − 1)))

2F1([A,B], [C], t) =

∞∑
k=0

(A)k(B)k
(C)k

tk

n!
.
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