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. Our proof is based on Weyl asymptotic law for the eigenvalues of the Laplace operator, Sobolev imbedding and some assumption on decay of correlation for the underlying flow.

Introduction

Let (M, g) be a d-dimensional compact Riemannian manifold without boundary. The Riemannian metric g yields a volume measure on M denoted by vol M , a Laplace operator denoted by ∆ and a covariant derivative denoted by ∇. Moreover it also yields a notion of divergence for C 1 -vector fields (see [START_REF] Chavel | Eigen-Values in Riemannian Geometry[END_REF] for an introduction to those notions). For a divergence free vector field u and some A ∈ R we consider the solution φ A (t) of the parabolic partial differential equation (1.1)

d dt φ A (t) = Au • ∇φ A (t) + ∆φ A (t), φ A (0) = φ 0 .
We are interested in the asymptotic behavior of the solutions φ A (t) when φ 0 satisfies M φ 0 dvol M = 0. It is well known that φ A (t) ≤ K A e -ρ A t φ 0 , where ρ A is the spectral gap of the operator L A = ∆ + Au • ∇ and K A is some positive constant. Here and in the following we note • the usual L 2 -norm on M with respect to vol M . Therefore, if A is fixed then φ A (t) → 0 as t → ∞. A natural question is to study what happens if the times t is fixed and A tends to infinity. Franke, Hwang, Pai and Sheu proved in [START_REF] Franke | The behavior of the spectral gap under growing drift[END_REF] that

lim |A|→∞ ρ A = inf 1 2 |∇φ| 2 dvol M , φ = 1, φ is eigenfunction of u • ∇ in H 1 .
It follows that ρ A diverges to infinity as |A| → ∞, if and only if, the anti-symmetric operator u • ∇ has no eigenfunctions satisfying H 1 -regularity. However, we do not have any control on K A as |A| → ∞. Constantin, Kiselev, Ryzhik and Zlatoš proved in [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF], that when t is fixed φ A (t) → 0 as |A| → ∞, if and only if, u • ∇ has no eigenfunction in H 1 . They call vectorfields u having this property relaxation enhancing. In particular, this property is satisfied when the volume preserving flow (Φ t ) t∈R which is generated by the evolution equation d dt Φ t (x) = u(Φ t (x)), Φ 0 (x) = x is weakly mixing (see [START_REF] Walters | An Introduction to Ergodic Theory[END_REF] for a definition). In this article we will make the following decay of correlation assumption on the flow (Φ t ) t∈R : Assumption 1.1 (Decay of correlation). We suppose that for some κ > 0, there exist two positive constants C 1 , C 2 such that for all f 1 , f 2 ∈ C κ (M) and all t > 0, we have

| f 1 , f 2 • Φ t -f 1 , 1 1, f 2 | ≤ C 1 e -C2t f 1 C κ f 2 C κ .
Results on decay of correlation for Anosov flows on compact manifolds where proved for κ = 5 by Dolgopyat in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]. Our main result in this paper is as follows:

Theorem 1.2. Let (φ A (t)) t≥0 be the solution of (1.1) with φ 0 = 1. If (Φ t ) t∈R satisfies Assumption 1.1, then for any t > 0 there exist three constants A t , Θ t , Ξ > 0 such that

φ A (t) < exp -Θ t (ln(ΞA)) 2 3d+2κ+2
for all A > A t . Theorem 1.2 provides an answer to the question how close the diffusion is to its equilibrium as A grows. It thus determines the speed of the relaxation phenomenon. The essential ingredients for the proof are Assumption 1.1 and Weyl asymptotic law on the eigenvalues of the Laplace operator. The constant Θ t and A t depend on the constants in those statements and will be made explicit in the the proof of the main result. In particular those constants become more explicit if we consider the problem on the torus T 2 = [0, 1] 2 (see in Section 4).

For some fixed real valued function U defined on R n , Hwang, Hwang-Ma and Sheu proved in [START_REF] Hwang | Accelerating diffusions[END_REF] that among the vectorfields satisfying div(ue -U ) = 0, the zero vectorfield yields the smallest spectral gap for the family of diffusion operators L u = ∆ -∇U • ∇ + u • ∇. This means that the convergence toward the equilibrium is slowest for the reversible diffusion generated by the self-adjoint operator L = ∆ -∇U • ∇. This has some consequence in Markov Monte Carlo Methods, where usually reversible diffusions are used to approximate a given probability distribution (see Geman, Hwang [START_REF] Geman | Diffusion for global optimization[END_REF]). It was then suggested in [START_REF] Hwang | Accelerating diffusions[END_REF] to perturb the self-adjoint generator by adding some antisymmetric operator. However, it is then important to measure the improvement made through this device. For this it might be important to understand the relaxation speed in the result of [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF]. Our result generalizes to diffusions generated by L u as long as the unperturbed self-adjoint operator L has discrete spectrum and as information on the asymptotics of its eigenvalues is available.

The paper is organized as follows. In Section 2, we present some known results on eigenvalue distributions, that will be needed in the proof of our main theorem. We also prove some result connected to RAGE theorem, which stands for Ruelle, Amrein, Georgescu and Enss (see [START_REF] Cycon | Schrödinger Operators[END_REF]). The Proposition 2.5 will play a central role in the proof of our main result, since it relates the convergence speed in RAGE theorem with the eigenvalues of the Laplacian and the decay of correlation assumption. Our main result, Theorem 3.1, is restated in an equivalent form and proved in Section 3. In the last section, we consider the relaxation speed on torus.

Preliminaries

On the compact manifold M the operator -∆ is a self-adjoint positive definite operator with discrete spectrum, which is composed of non-negative eigenvalues 0 < λ 1 ≤ λ 2 ≤ .... Let us denote by N (x) = λj ≤x 1 the number of eigenvalues, counted with multiplicity, smaller or equal to x. We need the following classical results. The detailed proofs can be found in the references.

Proposition 2.1 (Corollary 2.5 [START_REF] Duistermaat | The spectrum of positive elliptic operators and periodic bicharacteristics[END_REF]). As x → +∞, we have

(2.1) N (x) = (2π) -d ω d vol M (M)x d 2 + O(x d-1 2 ),
where ω d is the volume of the unit disk in R d .

For simplicity of notation, we will denote

Ω d := (2π) -d ω d vol M (M).
For more information on the O(x (d-1)/2 )-function, one can also consult [START_REF] Pham | Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres rélatifs au Laplacien[END_REF]. The following corollary is an immediat consequence.

Corollary 2.2. There exists a constant

C 3 > 0 such that for all x ≥ (2C 3 ) 2 /Ω 2 d , we have (2.2) Ω d 2 x d 2 ≤ Ω d -C 3 x -1 2 x d 2 ≤ N (x) ≤ Ω d + C 3 x -1 2 x d 2 ≤ 3 2 Ω d x d 2 .
Corollary 2.3. For any

x > max 1, (C3+1) 2 Ω 2 d , we have N (9x) -N (x) ≥ 1.
Proof. By Corollary 2.2, we have for all x > 1 with x >

(C 3 + 1) 2 /Ω 2 d , N (9x) -N (x) ≥ Ω d -C 3 (9x) -1 2 (9x) d 2 -Ω d + C 3 x -1 2 x d 2 = Ω d x d 2 (3 d -1) -C 3 x d-1 2 (3 d-1 + 1) ≥ x d-1 2 (3 d-1 + 1)(Ω d x 1 2 -C 3 ) ≥ 1.
We denote the eigenfunctions of the operator -∆ associated to the eigenvalues λ 1 , λ 2 , ... by ϕ 1 , ϕ 2 , .... They form some orthogonal base for the Hilbert space

H := f ∈ L 2 (M, vol M ) : M f dvol M = 0 .
Let us also denote by P N the orthogonal projection on the subspace spanned by the first N eigenvectors ϕ 1 , ϕ 2 , ..., ϕ N . The Sobolev space H m associated with -∆ is formed by all vectors ψ = ∞ j=1 c j ϕ j ∈ H satisfying

ψ 2 H m = ∞ j=1 λ m j |c j | 2 < ∞.
The relation between the norms . C κ and . H m is given through the following result.

Proposition 2.4 (Sobolev imbedding [1]

). There exists a constant C 4 > 0 such that for all n ≥ 1

ϕ n C κ ≤ C 4 ϕ n H d 2 +κ+1 = C 4 λ d+2κ+2 4 n .
We now present the following proposition which is central for the proof of our main result. Proposition 2.5. Under Assumption 1.1 one has for any N, T > 0 and for any function f ∈ H with f = 1 that

1 T T 0 P N (f • Φ t ) 2 dt ≤ √ 2C 1 C 4 √ T C 2 N λ d+2κ+2 4 N .
Remark 2.6. The Proposition 2.5 gives an explicit expression for some constant in Lemma 3.2 from [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF]. This lemma states that for any N, ξ > 0 and any compact set K ⊂ {f ∈ H, f = 1}, there exists T (N, ξ, K) such that 1

T T 0 P N (f • Φ t ) 2 dt ≤
ξ for all T ≥ T (N, ξ, K) and all f ∈ K. According to Proposition 2.5 the explicit choice

T (N, ξ) = 2C 1 C 2 4 N 2 λ d+2κ+2 2 N ξ 2 C 2 implies 1 T T 0 P N (f • Φ t ) 2 dt ≤ ξ for all T ≥ T (N, ξ).
It therefore turns out that the constant in Lemma 3.2 from [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF] can be chosen not to depend on K.

Proof of Proposition 2.5. The proof follows the proof of RAGE theorem from the book of Cycon, Froese, Kirsch and Simon (see [START_REF] Cycon | Schrödinger Operators[END_REF]). We use our assumption on decay of correlation and the explicit expression for the projection operator P N to obtain an inequality from the proof presented there. For all f ∈ H we have the decomposition f = ∞ k=1 ϕ k , f ϕ k . By the above notation, we have

P N f = N k=1 ϕ k , f ϕ k . Let us define Q(T )f = 1 T T 0 (P N (f • Φ -t )) • Φ t dt. Thus we have Q(T )(f ) = N k=1 1 T T 0 ϕ k • Φ t , f ϕ k • Φ t dt,
and therefore

Q(T )Q(T )(f ) = N k=1 1 T T 0 ϕ k • Φ t , Q(T )(f ) ϕ k • Φ t dt = N k=1 N j=1 1 T 2 T 0 T 0 ϕ k • Φ t , ϕ j • Φ s ϕ j • Φ s , f ϕ k • Φ t dsdt.
It follows that

Q(T ) 2 ≤ N k=1 N j=1 1 T 2 T 0 T 0 | ϕ k • Φ t , ϕ j • Φ s | dsdt ϕ k ϕ j = N k=1 N j=1 1 T 2 T 0 T 0 | ϕ k , ϕ j • Φ s-t | dsdt. (2.3) By Assumption 1.1, there exist positive constants C 1 , C 2 such that (2.4) | ϕ k , ϕ j • Φ s-t | ≤ C 1 e -C2|s-t| ϕ k C κ ϕ j C κ .
By Proposition 2.4, for all n, we have

ϕ n C κ ≤ C 4 ϕ n H d 2 +κ+1 = C 4 λ d+2κ+2 4 n . (2.5)
From (2.3), (2.4) and (2.5) we obtain

Q(T ) 2 ≤ N k=1 N j=1 1 T 2 T 0 T 0 C 1 e -C2|s-t| C 2 4 λ d+2κ+2 4 k λ d+2κ+2 4 j dsdt = C 1 C 2 4 T 2 N k=1 λ d+2κ+2 4 k 2 T 0 T 0 e -C2|s-t| dsdt. (2.6)
Moreover, one has

T 0 T 0 e -C2|s-t| dsdt = 2 C 2 T + e -C2T -1 C 2 2 < 2T C 2 . (2.7) It is obvious that N k=1 λ d+2κ+2 4 k ≤ N λ d+2κ+2 4 N
. Combining with (2.6) and (2.7) we obtain

(2.8) Q(T ) 2 ≤ 2C 1 C 2 4 T C 2 N 2 λ d+2κ+2 2 N .
One has for all f with f 2 = 1,

1 T T 0 P N (f • Φ t ) 2 dt = 1 T T 0 f, (P N (f • Φ t )) • Φ -t dt = f, 1 T T 0 (P N (f • Φ t )) • Φ -t dt ≤ Q(T )f f ≤ Q(T ) .
Combination of (2.8) and (2.9) gives

1 T T 0 P N (f • Φ t ) 2 dt ≤ √ 2C 1 C 4 √ T C 2 N λ d+2κ+2 4 N .
We also need the following classical statement on the Lipshitz norm of the flow:

Proposition 2.7. For all t ∈ R one has that Φ t Lip ≤ e u Lip|t| .

Proof. See [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF] p. 661.

Main result and proofs

Following the approach from [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF], we prefer to work with the rescaled solution φ A (t) = φ (t/ ), which satifies the following equation

(3.1) d ds φ (s) = (u • ∇ + ∆)φ (s), φ (0) = φ 0 .
The following theorem is then equivalent to our main result, Theorem 1.2. Theorem 3.1. Let (φ (s)) s≥0 be the solution of (3.1) with φ 0 = 1. For any τ > 0 there exit constants A τ , Θ τ and Ξ such that

φ τ < exp -Θ τ ln Ξ 1 2 3d+2κ+2 for all < 1 A τ .
Remark 3.2. Some explicit expression for the constants Θ τ and A τ is given later in Remark 3.3.

Proof. Since our proof relies strongly on the proof of Theorem 1.4 from the paper of Constantin, Kiselev, Ryzhik and Zlatoš (see [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF]) we have to introduce some of the concepts and notations, which are used there. They prove that, for any given τ and δ, there exists an 0 (δ) such that for all < 0 (δ), one has φ (τ / ) < δ.

Our purpose here is to explicit the constants involved in this statement; that means to better understand the relation between and δ when τ is fixed. We will produce some explicit function expl (δ) with expl (δ) < 0 (δ). It then follows that

φ expl (δ) (τ / expl (δ)) ≤ δ, for all δ.
The function expl (δ) has some explicit inverse function δ expl ( ) and it will then follow that φ (τ / ) < δ expl ( ), for all sufficiently small. We will first briefly explain how the constant (δ) is constructed in [START_REF] Constantin | Diffusion and mixing in fluid flow[END_REF]. Note that some of the constructions presented there are simplified by the fact that Assumption 1.1 rules out point spectrum for the operator u • ∇. They construct 0 (δ) as follows

0 (δ) = min τ 2τ 1 (δ) , 1 20λ N (δ) τ1(δ) 0 B 2 (t)dt 
, where λ N (δ) is a suitable eigenvalue λ N (δ) satifying e -λ N (δ) τ /80 < δ and with

B(t) = d 2 Φ t Lip , (see proofs of Theorem 1.2 in [3] and Theorem 2.2.2 in [12]).
Without loss of generality, we assume that λ N (δ)+1 > λ N (δ) . Moreover, τ 1 (δ) = T (N (δ), 1/20, K) where T (N, ξ, K) is a constant satisfying

1 T T 0 P N (f • Φ t ) 2 dt < ξ, for all T > T (N, ξ, K) and all f ∈ K,
where K is a suitably chosen compact subset of the set S := {f ∈ H : f = 1}. However we saw in Remark 2.6 that the constant T (N, ξ, K) can be chosen independent from K. We therefore drop the K in the notation.

If we can find explicit functions τ expl 1 (δ) and λ expl N (δ) satifying τ expl 1 (δ) > τ 1 (δ) and λ expl N (δ) > λ N (δ) then the following function will be an explicit lower bound for 0 (δ)

expl 0 (δ) := min    τ 2τ expl 1 (δ) , 1 20λ expl N (δ) τ expl 1 (δ) 0 B 2 (t)dt    .
We choose the function λ expl N (δ) := -720 ln(δ)/τ . From Corollary 2.3, we have

(3.2) N (λ expl N (δ)) -N -80 ln(δ) τ ≥ 1,
for all δ satisfying

(3.3) -80 ln(δ) τ > max 1, (C 3 + 1) 2 Ω 2 d .
This is equivalent to the existence of an eigenvalue λ N (δ) satisfying

(3.4) -80 ln(δ) τ < λ N (δ) < -720 ln(δ) τ = λ expl N (δ).
Since we assumed λ N (δ)+1 > λ N (δ) , we have by Corollary 2.2 that

N (δ) = N (λ N (δ) ) ≤ 3 2 Ω d λ d 2 N (δ)
for all δ satifying

(3.5) -80 ln(δ) τ ≥ (2C 3 ) 2 Ω 2 d .
From Remark 2.6, we obtain

τ 1 (δ) = T N (δ), 1 20 = 800C 1 C 2 4 N (δ) 2 λ d/2+κ+1 N (δ) C 2 ≤ 1800C 1 C 2 4 Ω 2 d λ 3d/2+κ+1 N (δ) C 2 ≤ C 5 -80 ln(δ) τ 3d/2+κ+1 =: τ expl 1 (δ)
where

C 5 := 9 3d/2+κ+1 Ω 2 d 1800C 1 C 2 4 C 2 .
We define Moreover, we obtain with Proposition 2.7 that

τ expl 1 (δ) 0 B 2 (t)dt ≤ τ expl 1 (δ) 0 d 4 e 2 u Lipt dt < d 4 exp[2 u Lip τ expl 1 (δ)] 2 u Lip
and it then follows that 1

20λ expl N (δ) τ expl 1 (δ) 0 B 2 (t)dt > u Lip 10d 4 λ expl N (δ) exp[2 u Lip τ expl 1 (δ)] . Therefore, expl 1 (δ) < min    τ 2τ expl 1 (δ) , 1 20λ expl N (δ) τ expl 1 (δ) 0 B 2 (t)dt    = expl 0 (δ). From (3.3) we have λ expl N (δ) ≤ 9 C5 τ expl 1 (δ) and it follows that expl 1 (δ) ≥ C 5 u Lip 90d 4 τ expl 1 (δ) exp[2 u Lip τ expl 1 (δ)] (3.8) > C 5 u Lip 90d 4 exp[(1 + 2 u Lip )τ expl 1 (δ)] =: expl (δ)
where we used e x > x for x = τ expl 1 (δ) > 0. It follows from (3.8) that the inverse function is given by (3.9)

δ expl ( ) = exp - τ 80 1 C 5 (1 + 2 u Lip ) ln C 5 u Lip 90d 4 1 2 3d+2κ+2
.

The proof is complete with

Ξ := C 5 u Lip 90d 4 , Θ τ := τ 80 1 C 5 (1 + 2 u Lip ) 2 3d+2κ+2
and A τ in the following remark. 

(δ) τ ≥ max 1, (C 3 + 1) 2 Ω 2 d , ( 2C 
3 ) 2 Ω 2 d , 1 90d 4 τ It then follows that 1 expl (δ) = 90d 4 exp[(1 + 2 u Lip )τ expl 1 (δ)] C 5 u Lip = 90d 4 exp (1 + 2 u Lip )C 5 -80 ln(δ) τ 3d/2+κ+1 C 5 u Lip ≥ A τ with A τ := 90d 4 C 5 u Lip exp (1 + 2 u Lip )C 5 max 1, (C 3 + 1) 2 Ω 2 d , ( 2C 
3 ) 2 Ω 2 d , 1 90d 4 τ 3d/2+κ+1
. This condition ensures that C 5 u Lip /(90d 4 ) > 1 therefore the formula (3.9) is well defined.

the particular case of the torus

We consider the problem on the torus T 2 = [0, 1] 2 . In this case, we know exactly the eigenvalues of the Laplace operator. Therefore, Corollary 2.2 and Corollary 2.3 will be simplified by Corollary 4.1. Moreover, we can give the exact value for the constant C 4 in Proposition 2.4, this is provided by Proposition 4.2. The following are the details.

Corollary 4.1. In the case of torus T 2 = [0, 1] 2 , the number of eigenvalues of the Laplace operator -∆ smaller or equal to x is

N (x) = λ≤x 1 = # (m, n) ∈ Z 2 : m 2 + n 2 ≤ x 4π 2 .
It is easy to see that with all x > 0 we have N (x) ≤ ( √ x/π + 1) 2 , furthermore

N (( √ x + 2π) 2 ) -N (x) ≥ 1.
Proposition 4.2. For any eigenfunction ϕ n associated to the eigenvalue λ n and for any κ > 0, we get ϕ n C κ ≤ 2 κ/2 κλ κ/2 n . Proposition 2.5 is based on Propositon 2.4 which is improved for the case of the torus in Remark 2.6. If we use this in our proof then we get the following improved Proposition.

Proposition 4.3. For any N, T > 0 and for any function f with f = 1, we have

1 T T 0 P N (f • Φ t ) 2 dt ≤ √ 2C 1 √ T C 2 κ2 κ/2 N λ κ/2
N .

Then we have the concrete case of Theorem 1.2. 
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