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Abstract

In the theory of differential geometry, surface normal, as a first order sur-

face differential quantity, determines the orientation of a surface at each

point and contains informative local surface shape information. To fully

exploit this kind of information for 3D face identification, this paper propos-

es a novel highly discriminative facial shape descriptor, namely Multi-Scale

and Multi-Component Local Normal Patterns (MSMC-LNP). Given a well-

aligned and preprocessed facial range image, three components of normal

vectors are first estimated, leading to three normal images. Then, each nor-
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mal image is encoded locally to Local Normal binary Patterns (LNP) at

different scales. To utilize spatial information of facial shape, each normal

image is divided into several patches, and their LNP histograms are comput-

ed and concatenated according to facial configuration. Finally, each original

facial surface is represented by a set of LNP histograms including both glob-

al and local cues. Moreover, to resist the facial expression variations, we

propose to learn the weight of each local patch under a given encoding s-

cale and normal component. Based on the learned weights and the weighted

LNP histograms, we reformulate a Weighted Sparse Representation-based

Classifier (W-SRC). Extensive experiments were carried out on the FRGC

v2.0, Bosphorus, BU-3DFE and 3D-TEC databases, enclosing 3D face data

captured under various sensors with different resolutions and depicting in

particular different challenges with respect to facial expressions. The pro-

posed approach achieves competitive rank-one identification rates over these

datasets despite their heterogeneous nature, and demonstrates thereby its

effectiveness and its robustness.

Keywords: facial surface normal, local normal patterns (LNP), weighted

sparse representation, 3D face recognition, identical twins

1. Introduction

Biometry systems are dedicated for identifying human beings from their

own unique hard or soft physiological attributes such as iris, face, fingerprint,

hand palm, hand vessel, gait, gender, etc. Among these attributes, face has

proved to be one of the most popular and promising biometric modalities

mainly due to the nature of human perception and the non-intrusiveness of
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face data acquisition. Although intensity image based 2D face recognition

(FR) systems have provided solutions to achieve high performance under

constrained conditions, the variations, especially caused by illumination and

pose, are still its big block [1]. The advent of 3D sensors, in providing

geometrical information of facial surfaces, has opened a new avenue to handle

these unsolved issues in 2D. As such, 3D face recognition (FR) has attracted

increasing attention in recent years [2, 3].

1.1. Related work

A typical 3D FR algorithm comprises the following major components

although they are strongly interwoven each other [? ]: 3D face landmarking,

3D face registration, the extraction of facial features along with the design

of a matching scheme which closely depends upon the chosen facial features.

Automatic 3D face landmarking is to automatically locate some key facial

fiducial points, e.g., nose tip, inner eye corners, etc., which are instrumental

for face cropping, face alignment and pose normalization. The most challeng-

ing issue of automatic landmarking is to tolerate the disturbance caused by

arbitrary variations of facial expression, pose, or occlusion [4], and existing

landmarking techniques are mainly based on the analysis of facial surface

curvatures, shape index values, the facial symmetry central profile or depth

information [5, 6, 7]. 3D face registration is to align 3D face scans on a com-

mon coordinate system so that the matching of facial features can be carried

out in a consistent way. Popular methods for the registration of 3D face scans

are ICP-based which consists of minimizing in an iterative way the distance

of two 3D point clouds [8, 9] although they are generally computationally

expensive. The extraction of facial features is to generate a feature vector
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which should comprehensively describe each 3D face scan for the latter stage

of matching. As all human faces are similar each other in terms of configura-

tion whereas a 3D face scan accurately captures the geometrical shape of the

underlying 3D facial surface, thereby making it likely more sensitive to facial

expressions, the design of a discriminating facial feature which stays robust

to facial expressions is a critical issue in 3D FR. A number of approaches

has been proposed in the literature, including facial curves [10], geometry

and normal maps [11], tensor based representations [12], iso-geodesic stripes

[13], Multi-Scale Local Binary Pattern (MS-LBP) Depth maps and Shape In-

dex (SI) maps [14], Multi-Scale extended Local Binary Pattern (MS-eLBP)

maps [15] etc. Other essays try to explicitly account for facial expression

variations. An original tentative was made by Bronstein et al. [16] who

assumed that facial expressions can be modeled as isometries of the facial

surface and proposed a facial expression invariant canonical form. However,

their assumption proves to be inexact, especially in the presence of exagger-

ated facial expression [? ]. A far more popular approach observes that facial

expressions introduce facial distortions but there are still relatively stable

facial regions, e.g., forehead, nose region, from which expression robust fea-

tures can be extracted [? ] [? ]. Chang et al. [17] selected three regions

around the nose for 3D face matching whereas Faltemier et al. [? ] extended

the later number to 28 small regions on the face. However, automatic detec-

tion and segmentation of facial surface into rigid and mimic regions is still

problematic [? ] [? ].

The overwhelming majority of 3D FR algorithms proposed thus far in

the literature is evaluated on the FRGC v2.0 dataset [2] which has become
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de facto the standard benchmark for 3D FR algorithms. Very high per-

formance, up to 99% rank-one recognition rate [18], was reported on that

dataset. However, although FRGC v2.0, with its 4007 3D face scans from

466 subjects, is the most comprehensive 3D face dataset so far known in the

literature, all the scans were captured in frontal position under controlled

lighting conditions, depicting only neutral and smiling facial expressions. 3D

face scans captured from uncooperative subjects in real-life applications can

feature other challenges, i.e. missing data due to arbitrary pose, external

occlusions, and other types of facial expressions, being subtle or exaggerat-

ed. As a result, 3D FR algorithms with high performance on FRGV v2.0

can vastly degrade under other settings. The recent experiments carried out

on the 3D Twins Expression Challenge (3D-TEC) database [19, 20] is quite

illustrative from this point of view. 3D-TEC stages a scenario of distinguish-

ing 107 sets of identical twins through 3D face scans, each subject depicting

a neutral and a smiling facial expressions. This is a very challenging scenario

for 3D FR systems because of the strong similarities between the 3D facial

surfaces of twins in addition to the traditional interference factors like facial

expression variations. Vijayan et al. [19] evaluated the performance of four

state-of-the-art 3D FR algorithms on the 3D-TEC dataset. They found that

some algorithms performed very well on FRGC v2.0 but vastly degrade on

3D-TEC, especially in the cases combining factors related to facial similarity

and the variations of facial expressions. Their results show that benchmark-

ing 3D FR algorithms on FRGC v2.0 is certainly necessary but not sufficient

to evaluate their performance and robustness with respect to the challenges

of real-life applications, including in particular facial expressions which de-
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pict not only smiling expressions but uncountable other facial expressions,

leading to subtle, moderate and exaggerated facial surface deformations.

1.2. Motivations and Our Solutions

This paper focuses on the issues iii and iv, i.e. exploring a discriminative

facial surface representation and an expression-robust method to handle ex-

pression variations. To address the former issue, we propose a novel facial

shape descriptor, named Multi-Scale and Multi-Component Local Normal

Patterns (MSMC-LNP), which represents the local facial shape by encoding

their three normal components: x, y, and z as binary patterns in a multi-

scale way respectively. An original facial surface can be then represented as

a certain number of local normal patterns based maps or histograms of Local

Normal Patterns (LNP).

As we know, surface curvatures [6, 23, 24] and shape index values [14, 25,

26] have been widely investigated for facial surface representation and char-

acterization. However, the surface normal, which determines (at each point)

the orientation of a facial surface, has not been well explored for 3D face

representation 1. To the best of our knowledge, Abate et al. [27, 28, 29, 30]

introduced normal maps to describe facial surfaces. But this direct use of

normal information in the holistic way did not achieve satisfying results.

Gokbert et al. [31] used surface normal variance at each pixel location as a

distance measure between face images and report a rank-one score of 87.8%

1Note that, recently, normal constraint based surface registration for 3D face recogni-

tion methods such as [21, 22] have achieved very high performance. In this paper we stress

the normal based facial representation.
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on the whole FRGC v2.0 database, while this performance vastly degrades

on the 3D-TEC database [19]. Kakadiaris et al. [11] proposed to extract

wavelet coefficients from normal and geometry maps for the computation of

similarity, and reported a rank one recognition rate of 97% on the FRGC

v2.0 database; however, the wavelet transform along with the fitting of the

annotated deformable model is quite computationally expensive. Inspired

by the competitive performance and computational efficiency of local binary

patterns (LBP) for texture classification and 2D face recognition [32, 33], we

propose to encode surface normal information, namely x, y, and z component

normal images, in a local manner to generate histograms of LNP, similar to

the way that LBP does for texture image description. The idea behind it

lies in that different facial shapes can be described by different LNP under

given encoding scales and normal components, which makes LNP a very dis-

criminative descriptor to recognize 3D faces and even to distinguish identical

twins.

To pursue expression-robust 3D face recognition, some works proposed

to choose rigid facial regions such as the nose and forehead regions [8, 17]

since they are expected to remain stable in occurrence of facial expressions.

However, the useful information conveyed in non-rigid facial areas is ignored.

Some other methods tried to model a virtual face to improve the discrimina-

tion of non-rigid regions by distorting the shape of entire face region, but it

also changed the rigid parts, leading to the loss in discriminative power [16].

All the above facts demonstrate that it is not so straightforward to segment

rigid facial parts from non-rigid ones, and non-rigid areas still contain useful

information which is important for face recognition.
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In our view, a better alternative to solve this problem is to find the aver-

age quantification weights for all facial regions or facial physical components

such as eyes, nose, mouth, etc. according to their importance in 3D face

recognition. This kind of quantification weights of local patches for 2D face

recognition has been investigated in several works [33, 34, 35] (see Fig. 1 (a)

and (b) for an example). However, to the best of our knowledge, the cor-

responding weights and the effects for expression-robust 3D face recognition

has not been well stressed. As shown in Fig. 1 (c) and (d), in this paper,

we will show that the weights for 3D face are largely different from the ones

of 2D face, especially in the regions of nose and mouth. These weights can

be learned from a given training set in the training phase (see Fig. 2). The

learned patch weights then can be used to build the weighted sparse rep-

resentation model and compute the weighted reconstruction errors, namely

Weighted Sparse Representation-based Classifier (W-SRC).

(a)                                 (b)                                (c)                                (d)

Figure 1: Illustration of patch weights for 2D and 3D face recognitions: (a-b) a 2D face

image and its corresponding patch weights [33]; (c-d) a 3D face depth image and its

corresponding patch weights learned by our method. All images are split to 6 × 6 local

patches. Darker patches indicate lower weights, while brighter ones indicate higher weights.

The major contributions of this paper can be summarized as follows:
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1. We propose a new 3D facial representation based on Multi-Scale and

Multi-Component Local Normal Patterns (MSMC-LNP) for facial shape de-

scription. MSMC-LNP describes the micro-structure of facial normal in-

formation in multiple scales and multiple normal component channels. An

important conclusion obtained in this paper is: LNP based facial represen-

tation is more discriminative than both the raw normal information and the

encoded range image, i.e., Local Shape binary Patterns (LSP) [36] (see Tab.

3). We also illustrate that the fusion of both multiple scales and multiple

components is a help way to improve final performance and demonstrate

its competency on 3D face identification as well as the challenging issue of

recognizing identical twins.

2. By learning strategy, we find that the importance of local patches of

3D facial surfaces is quite different from that of 2D based ones, especially

in the nose region. Given a training database, the patch weights associated

with different facial regions, encoding scales, and normal components can

be achieved by normalizing the patch scores, which computed by running

the sparse representation-based classifier (SRC) over MSMC-LNP features

of local patches. Combining with the learned patch weights and the MSMC-

LNP feature, we build the weighted sparse representation-based classifier.

Our experimental results demonstrate that W-SRC is quite efficient to resist

the variations of facial expressions even for that of identical twins.

This paper is an extension of our preliminary work in [37]. The main ex-

tensions can be highlighted as follows. First, we reformulated the weighted

sparse representation-based classifier (W-SRC) in this paper. Then, we eval-

uated the robustness of the proposed system to different expression intensity
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levels using the BU-3DFE database, as well as to the combination of six pro-

totypical expressions and action units using the Bosphrous database. Finally,

we validate the discriminative power of the proposed approach in the chal-

lenging issue of distinguishing identical twins using the 3D-TEC database.

The rest of the paper is organized as follows. The framework overview

of the proposed system is presented in Section 2. Section 3 introduces the

proposed Local Normal Patterns (LNP) based facial descriptor. Section 4

describes the weighted sparse representation-based classifier. In section 5,

we show experimental and algorithmic settings as well as the results. Section

6 concludes the paper.

2. Overview of the Proposed Approach

As illustrated in Fig. 2, the framework of the proposed approach consists

of two phases: i.e. the training phase and the testing phase. Before the

training and testing phases, each raw face scan is preprocessed to be a range

image with a predefined size, including spike and noise removing, holes fill-

ing, nose tip localization, face cropping and alignment. The training process

is carried out to learn the quantitative weights of facial physical components

using a predefined training set. It includes three procedures: feature extrac-

tion, identification and score normalization within different patches. Their

descriptions are as follows:

(1) Patch feature extraction. This procedure consists of three steps: (a)

facial normal estimation; (b) facial normal encoding; (c) facial normal repre-

sentation. Specifically, given a raw 3D facial scan, we first launch the prepro-

cessing pipeline (see Sec. 5.2) to normalize the range image to an m× n× 3
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Figure 2: Overview of the proposed approach.

matrix (i.e., x, y and z coordinates). Based on the range image, we estimate

its three normal components (x, y, and z) by local plane fitting method (see

Sec. 3.1). For each normal component map, we roughly split it to several

local patches (e.g. 3×3); then each of these local patches is encoded as LNP

with multiple scales, giving birth to multi-scale and multi-component local

normal patterns (MSMC-LNP) to describe each patch.

(2) Patch-based identification. Given a patch, an encoding scale, and

a normal component, the corresponding LNP is extracted and fed into the

sparse representation-based classifier (SRC) to generate a rank-one recogni-

tion rate using the training set.

(3) Patch score normalization. The patch scores, i.e. rank-one recogni-

tion rates, of different encoding scales and normal components are further

normalized as the corresponding patch weights. The importance of facial

physical regions can thus be measured by those quantitative patch weights.
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During the testing phase, given a split range image in the testing set,

we first compute MSMC-LNP features over all the patches as procedure (1)

in the training phase. The global MSMC-LNP features are then obtained

by simply stacking all these patch based MSMC-LNP features according to

the holistic configuration of facial surfaces (see Sec. 3.3). Based on the

patch weights learned in the training phase, weighted sparse representation

is formulated as seeking the sparse solution of the sum of the weighted patch

based sparse representation (as (13) in Sec. 4). Then, W-SRC carries out face

identification by finding the minimal weighted reconstruction residuals. (see

(14) in Sec. 4). The final similarity measurement of MSMC-LNP computed

by score level fusion of three encoding scales and three normal components

is used for decision making.

3. Local Normal Patterns (LNP) based Facial Descriptor

3.1. Facial Normal Estimation

Recall that in order to highlight local variations of facial surfaces, we

do analysis based on their normal information instead of the original point-

cloud or range images. Existing normal estimation methods can be roughly

classified into optimization based methods (i.e., local fitting methods) and

averaging methods [38].

The basic idea of optimization based ones is: 1) the normal vector of one

point can be calculated by the normal vector of a plane or quadratic surface

which it belongs to. 2) the formulate of plane or surface can be estimated

by fitting its local neighboring points. 3) the fitting problem then can be

solved by minimizing a cost functional penalizing a certain criteria, e.g. the
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Figure 3: Illustration of two approaches for normal estimation: (a) a plane is fitted to a

vertex p and its neighbors; (b) the normal vectors of triangles in one-ring of p are averaged.

distance of points to a local plane (see Fig. 3 (a)). While the averaging

methods estimate the normal vector of one point by computing the weighted

average of the normal vectors of the triangles in its one-ring neighbors, and

the weight is equal to the inverse ratio of the areas or the surrounding angles

of the triangles in its one-ring neighbors (see Fig. 3 (b)).

The optimization-based methods can be applied to 3D point-clouds and

triangular meshes while the averaging methods can only work on triangular

meshes. Both types of methods are competent for normal calculation in our

system; however, considering the diversity in data formats of the existing

databases, we make use of the former one.

Given a range image based face model represented by an m×n×3 matrix

as follows,

P = [pij(x, y, z)]m×n = [pijk]m×n×{x,y,z}, (1)

where pij(x, y, z) = (pijx, pijy, pijz)
T , (1 ≤ i ≤ m, 1 ≤ j ≤ n, i, j ∈ Z) repre-

sents the 3D coordinates of the point pij. Let its unit normal vector matrix
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(m× n× 3) be

N(P) = [n(pij(x, y, z))]m×n = [nijk]m×n×{x,y,z}, (2)

where n(pij(x, y, z)) = (nijx, nijy, nijz)
T , (1 ≤ i ≤ m, 1 ≤ j ≤ n, i, j ∈ Z)

denotes the unit normal vector of pij. As described in [39], the normal vec-

tor N(P) of range image P can be estimated by using local plane fitting

method. That is to say, for each point pij ∈ P, its normal vector n(pij) can

be estimated as the normal vector of the following local fitted plane:

Sij : nijxqijx + nijyqijy + nijzqijz = d, (3)

where (qijx, qijy, qijz)
T represents any point within the local neighborhood (5×

5 window is used in our paper) of point pij and d = nijxpijx+nijypijy+nijzpijz.

To simplify, each normal component in equation (2) can be represented by

an m× n matrix:

N(P) =


N(X) = [nx

ij]m×n,

N(Y) = [ny
ij]m×n,

N(Z) = [nz
ij]m×n.

(4)

where ‖(nx
ij, n

y
ij, n

z
ij)

T‖2 = 1.

Fig. 4 shows one example of the three normal component matrices (im-

ages) estimated from a given range image. The range image is sampled

from the 3D-TEC database. From the figure, intuitively, we can see that

normal component images contain more informative geometric information

than their corresponding range image. For example, the geometric informa-

tion around the eyes, mouth and forehead regions are highlighted.
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(a)                                 (b)                                (c)                              (d)

Figure 4: Illustration of facial normal estimation: (a) the original range image, (b-d) its

normal images of component x, y and z (the sample comes from the 3D-TEC dataset).

3.2. Facial Normal Encoding

Inspired by the discriminative power and computational simplicity of LBP

for 2D texture description, we encode each normal component, x, y, and z

respectively as local normal patterns (LNP). Thanks to the matrix form of

these normal components in equation (4), we can encode and characterize

each of them using the similar way of feature extraction as to 2D texture

images. Based on this kind of matrix form of normal representation, it is

convenient for us to locate the neighborhood of each normal component of any

point pij for the following encoding step, and the neighborhood of 3D point

Q(pij) can be located in the same way as pixels in 2D images. Specifically,

the value of every point in each normal component is compared with its

neighbors in a pre-defined neighborhood. A local neighborhood is defined as

a set of sampling points evenly spaced on a circle which is centered at the

pixel to be labeled, and the sampling points that do not fall within the pixels

are interpolated using bilinear interpolation, thus allowing for any radius

and any number of sampling points in the neighborhood. Fig. 5 shows two

examples of the neighborhood of LNP, where the notation Qn,m denotes a
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neighborhood of m sampling points on a circle of radius of n.

(a) (b)

Figure 5: Examples of the neighborhood of LNP: (a) Q1,8 and (b) Q2,16.

After subtracting the central pixel value, the resulting strictly negative

values are encoded with 0 and the others with 1; a binary number is thus

obtained by concatenating all these binary codes in a clockwise direction

starting from the top-left one and its corresponding decimal value is used for

labeling. The derived binary numbers are referred to as local normal patterns

(LNP). Formally, given a point pij, its normal component noted as nk
ij(0),

the derived LNP decimal value is:

LNP (Qn,m(pij)) =
m−1∑
q=1

t(nk
ij(q)− nk

ij(0))2q, (5)

where t(x) = 1, if x ≥ 0 and t(x) = 0, if x < 0.

LNP (Qn,m) encodes local normal variations of each normal component

as decimal values, denoted as e([nk
ij]m×n), k ∈ {x, y, z}. See Fig. 6 for one ex-

ample of LNP (Q1,8) on three facial normal components of the same subject.
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(a)                       (b)                     (c)                     (d)                     (e)                      (f)

Figure 6: Illustration of facial normal encoding: (a) to (c), normal images of component

x, y and z; (d) to (e), their corresponding LNP maps using the neighborhood Q1,8.

LNP extracts the differential structure at point level. In order to describe

a local shape region, histogram statistic is introduced as facial feature vector.

For a given normal component k ∈ {x, y, z}, the histogram of encoded normal

component e([nk
ij]m×n) can be defined as:

H =
∑
i,j

I{e([nk
ij]m×n) = r}, r = 0, . . . , R− 1, (6)

where R is the encoded decimal number; for Q1,8, R = 28 = 256. I{A} =

1, if A is true, else I{A} = 0. This histogram contains the local micro-patterns

of normal component over the whole face model.

3.3. Facial Normal Representation

To utilize spatial information of facial shape, each facial normal compo-

nent, x, y, and z, can be further divided into several patches, from which

LNP histograms H are extracted and then concatenated by facial configu-

ration to form a global histogram G to represent the encoded facial normal

feature (see Fig. 7). Finally, the original facial surface is described by three

global feature histograms Gx, Gy, and Gz at a given encoding scale.
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Figure 7: Illustration of facial normal representation: histogram of LNP.

4. Weighted Sparse Representation-based Classifier

In this section, we first introduce 3D face subspace based sparse rep-

resentation model and its corresponding SRC. Then, we formulate the 3D

face subspace and patch weight based weighted sparse representation model

and its corresponding W-SRC. The effect of W-SRC will be proved in the

following section.

4.1. 3D Face Subspace and Sparse Representation-based Classifier

Based on 2D face subspace model, a well-aligned frontal face image under

different lighting conditions and various facial expressions, lies close to a spe-

cial low-dimensional linear subspace spanned by sufficient training samples

from the same subject. Wright et al. [40] proposed a sparse representa-

tion model and its corresponding SRC for robust 2D face recognition. In

3D case, we assume that a well-aligned frontal 3D face scan under different

facial expressions approximately lies close to a special low-dimensional linear
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subspace spanned by sufficient training 3D face scans from the same subject.

We call this assumption as 3D face subspace model. Formally, it can be

formulated as the following equation,

y ≈ α1v1 + α2v2 + ...+ αnvn, (7)

That is, given ni training samples of i-th subject, [vi,1, vi,2, . . . , vi,ni
] ∈ Rm×ni ,

according to (7), any test sample y ∈ Rm of i-th subject can be represented

as:

yi ≈ αi,1vi,1 + αi,2vi,2 + ...+ αi,ni
vi,ni

, (8)

where αi,j ∈ R, j = 1, 2, . . . , ni.

Note that, there is only one training sample of each subject (i.e. the

gallery) according to the experimental setting of the state-of-the-art 3D face

recognition. Meanwhile, without occlusion, the only difference between two

frontal well-aligned 3D face scans from the same subject is the local shape

distortion caused by expression variations. This problem of insufficient train-

ing samples plus the shape distortion caused by expression variations intro-

duces a new model error term, denoted as εi ∈ Rm. Thus, model (8) can be

modified as:

yi ≈ αi,1vi,1 = αi,1vi,1 + εi, (9)

where yi ∈ Rm, vi,1 ∈ Rm and αi,1 ∈ R represent a probe face, a gallery face

from the same subject and their linear scalar factor respectively.

Based on model (9), sparse representation model and its corresponding

SRC for 3D face recognition can be modeled as follows. Considering the

whole gallery set with n 3D faces, each of which belongs to one subject, we
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define the dictionary as D
.
= [v1, v2, . . . , vn] ∈ Rm×n. Then for any probe

y ∈ Rm, we have

y = Dx+ ε, (10)

where x = [0, . . . , 0, αj, 0, . . . , 0]T ∈ Rn is the coefficient vector whose entries

are zero except the one associated with the j-subject. Sparse coefficients x

in (10) can be solved by the following l0 minimization problem:

x̂ = arg min
x
‖x‖0 s.t. ‖y −Dx‖2 ≤ ‖ε‖2, (11)

In practice, we employ Orthogonal Matching Pursuit (OMP) [41] algo-

rithm to solve (11) and compute the reconstruction residuals:

ri(y) = ‖y −Dδi(x̂)‖2, i = 1, 2, . . . , n. (12)

where δi is a characteristic function which selects coefficient associated with

the i-th gallery. Finally, the index of minimal ri(y) corresponds to the iden-

tity of y.

4.2. Weighted Sparse Representation-based Classifier

Assume each face scan is divided into K different patches, denote wk as

the learned weight for patch k, according to the MATLAB convention:

[x1;x2]
.
=

x1
x2


the feature vector vi can be rewritten as

vi = [vi1; vi2; . . . ; vik; . . . ; viK ],
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where vik ∈ R(m/K)×1, dictionary D can be denoted as

D = [D1;D2; . . . ;Dk; . . . ;DK ],

where Dk = [v1,k, v2,k, . . . , vi,k, . . . , vn,k], and probe y can be denoted as

y = [y1; y2; . . . ; yk; . . . ; yK ],

where yk ∈ R(m/K)×1, k = 1, 2, . . . , K.

Then, Eq. (11) can be rewritten as the following weighted sparse repre-

sentation model:

x̂ = arg min
x
‖x‖0 s.t.

K∑
k=1

wk‖yk −Dkx‖2 ≤ ‖ε‖2, (13)

The corresponding weighted reconstruction residuals

ri(y) =
K∑
k=1

wk‖yk −Dkδi(x̂)‖2, i = 1, 2, . . . , n. (14)

To solve equation (13), we notice that it equals to solve

x̂ = arg min
x
‖x‖0 s.t.

K∑
k=1

‖wkyk − wkDkx‖22 ≤ ‖ε‖22, (15)

We denote

W (D) = [w1D1;w2D2; . . . ;wKDK ],

and

W (y) = [w1y1;w2y2; . . . ;wKyK ].

Then equation (15) equals to

x̂ = arg min
x
‖x‖0 s.t. ‖W (y)−W (D)x‖22 ≤ ‖ε‖22. (16)
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Eq. (16) can be solved by the OMP [41] algorithm. Once we achieve the

sparse representation coefficient x̂ of Eq. (16), weighted reconstruction resid-

uals in Eq. (14) can be computed. Then the minimal ri(y) can be used to

determine the identity of y. We call this sparse representation-based classi-

fier enhanced by spatial weights as Weighted Sparse Representation-based

Classifier (W-SRC) in the subsequent.

5. Experimental Settings and Results

5.1. Databases and Preprocessing

In our experiments, three databases, namely FRGC v1.0 [2], BU-3DFE

[42] and Bosphorus [43], are used as training sets to learn the patch weights

respectively, while four databases, the BU-3DFE, Bosphorus, FRGC v2.0 [2]

and 3D-TEC [20] are used as testing sets for cross database validation and

evaluation. Raw samples from each of these databases are displayed in Fig.

8 and the database introductions are briefly given as follows.

(a)                (b)                  (c)               (d)              (e)

Figure 8: Illustrate of the raw samples of the five databases: (a) FRGC v1.0, (b) FRGC

v2.0, (c) Bosphorus, (d) BU-3DFE, (e) 3D-TEC.

• FRGC v1.0: The FRGC v1.0 database (Spring2003) consists of 943

textured 3D face models of 275 subjects with the neutral expression.
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The hardware used to acquire these range images is a Minolta Vivid

900 (MV 900) laser range scanner, with a resolution of 640× 480.

• FRGC v2.0: The FRGC v2.0 database (Fall2003 and Spring2004) is

made up of 4007 textured 3D face models of 466 subjects with different

facial expressions. The same hardware as FRGCv1.0 is used for data

acquisition, and the resolution of each range image is also 640× 480.

• BU-3DFE: The BU-3DFE database contains 100 subjects (56 females

and 44 males), ranging age from 18 to 70 years old, with a variety of

ethnic ancestries. Each subject performs seven expressions. Except

neutral, each of the six prototypic expressions (happiness, disgust, fear,

angry, surprise, and sadness) includes four levels of intensity. Therefore,

there are 25 instant models for each subject, resulting in a total of 2,500

3D facial models. The 3D models are captured with a 3D face imaging

system named 3DMD digitizer. Each model is saved as a polygonal

mesh with a resolution ranging from 20,000 to 35,000 polygons.

• Bosphorus: The Bosphorus database contains 4666 textured 3D face

models of 105 subjects in various facial expressions, action units, poses

and occlusions. The 3D models are acquired with a device named

Inspeck Mega Capturor II (IMC II). Each model is saved as a range

image with a resolution of 1, 600× 1, 200.

• 3D-TEC: The 3D-TEC database consists of 106 pairs of identical

twins and a set of triplets, totalizing 214 subjects. Each subject con-

tains two scans: one neutral scan and one smile scan. More details can

be found in [19].
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All scans of FRGC v1.0, FRGC v2.0, and 3D-TEC databases are pre-

processed by using the 3D Face Models Preprocessing Tool 2 developed by

Szeptycki et al. [5]. The preprocessing pipeline contains: spike and noise re-

moving, holes filling, nose tip localization and face cropping. As introduced

in [5], a decision-based median filtering technique is used to remove spikes,

and the holes are detected by searching vertexes having less than 8 neigh-

bors, and filled by fitting square surfaces. And then, we perform curvature

analysis-based coarse search and generic face model-based fine search steps

to locate the nose tips (for 3D-TEC, the manually labeled nose tips provided

by the database are used). Finally, each scan is cropped by a sphere centering

at nose tip and with a radius of 90 mm. The polygon surface scans in BU-

3DFE are first preprocessed as discrete manifold triangular meshes and then

project as range images by interpolation algorithm. Then, we also perform

nose tip localization and face cropping steps for all the scans of BU-3DFE

and Bosphrous databases by using the same tool. Then, for each of the five

databases, we select a face scan with neutral expression and frontal pose to

be a reference model, and all the other face scans are aligned to the reference

model using the Iterative Closest Point (ICP) [44] algorithm, See Fig. 9 for

some examples of the preprocessed face models.

5.2. Experimental Settings

To comprehensively evaluate the proposed approach, six experiments are

designed. 1) The discriminative power of the proposed LNP descriptor; 2)

The effectiveness of SRC; 3) The patch weights learning and the effectiveness

2http://pszeptycki.com/tool.html
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Figure 9: Illustration of the preprocessed face models: first row: models of one subject

with different facial expressions (BU-3DFE); second and third rows: models of one subject

with different facial expressions and action units (Bosphorus); forth row: models of one

subject with different facial expressions (FRGC v2.0); last row: two pairs of identical twin

models with neutral and simile expressions (3D-TEC).
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of W-SRC; 4) The robustness analysis of facial expression variations; 5) The

performance of distinguishing identical twins; 6) The comparison with the

state-of-the-art.

The experimental settings are as follows: for the FRGC v1.0 and FRGC

v2.0 databases, the first scans of each subject are used to make a gallery

set and the remaining 3D face scans are treated as probes; for the BU-

3DFE database, the neutral scans are used to make a gallery set and the

remaining scans are treated as the probe set. For the Bosphorus database,

since expression-robust 3D face recognition is stressed in this paper, we select

the first neutral scans to make a gallery set, and the remaining scans with

frontal pose and without occlusions to be a probe set. Table 1 shows the

summary of these protocols, and presents the sizes of gallery sets and probe

sets of these four databases.

Table 1: Experimental settings of FRGC v1.0, BU-3DFE, Bosphorus, and FRGC v2.0

databases (O/R means Occlusion and Rotation).

Database Gallery Probe

FRGC v1.0 first scans (267) remaining (571)

FRGC v2.0 first scans (466) remaining (3541)

BU-3DFE neutral scans (100) remaining (2400)

Bosphorus first neutral scans (105) without O/R (1797)

The gallery and probe scans used for 3D-TEC database is based on the

standard protocol shown in Table 2 [19]. One person in each pair of twins

is arbitrarily labeled as Twin A and the other as Twin B, and four Cases

are considered. In Case I, all the images in the gallery set possess a smiling
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expression while all the images in the probe set have a neutral expression.

Case II reverses these roles of Case I. In Case III, Twin A smiling and Twin B

neutral make up of the gallery set; while Twin A neutral and Twin B smiling

as probes compose the probe set. Case IV reverses these roles of Case III. As

pointed out in [19], theoretically the main challenge would be to distinguish

between the probe image and the image of his/her twin in the gallery. Case

III and IV are more difficult than Cases I and II since the expression of the

probe face is different from his/her image in the gallery but is the same as

the image of his/her twin in the gallery.

Table 2: Experimental setting of 3D-TEC database: “A Smile, B Neutral” means that the

set contains all images with Twin A smiling and Twin B neutral [19].

No. Gallery Probe

I A Smile, B Smile A Neutral, B Neutral

II A Neutral, B Neutral A Smile, B Smile

III A Smile, B Neutral A Neutral, B Smile

IV A Neutral, B Smile A Smile, B Neutral

Before encoding the normal information, three normal component matri-

ces or images [nx
ij]m×n, [ny

ij]m×n and [nz
ij]m×n are resized as 120× 96 respec-

tively. Each normal component matrix is divided into 10 × 8, 6 × 6 and 3 ×3

windows corresponding to local patches with sizes of 12 × 12, 20 × 16 and

40 × 32 respectively. Then, these three kinds of local patches corresponding

to three normal encoding scales: i.e., performing encoding operators Q1,8,

Q2,16, and Q3,24 on local patches with sizes of 12 × 12, 20 × 16 and 40 ×

32 respectively. Thus, for each normal component, we encode it with three
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different scales, achieving three histograms of local normal patterns (LNP).

Similar to LBP, in order to reduce the dimensionality of final facial features,

the uniform pattern strategy [32] is adopted to decrease the number of bins

in each local patch. Finally, from one original 3D face scan, we generate 9

histograms of local normal patterns (3 normal components and 3 encoding

scales) involving both local patch based and global features. Each histogram

representation of the whole face is fed into the classifier to achieve one sim-

ilarity score matrix. All the 9 similarity score matrices are then fused to

compute the final accuracy of MSMC-LNP. To solve (11) and (16), the Or-

thogonal Matching Pursuit (OMP) [41] algorithm with the sparse number L

= 30 of the sparse representation coefficient x̂ is used for all experiments.

5.3. Experimental Results

5.3.1. Experiment I: The discriminative power of local normal patterns

To highlight the discriminative power of the proposed LNP based facial

feature, we compare it with other two kinds of facial features: i) The original

normal information based facial features Nx, Ny and Nz, achieved simply

by stacking the columns of each normal component matrices nijx, nijy and

nijz respectively, and their fusion Nxyz. ii) Local Shape binary Patterns

(LSP), i.e. LBP histograms extracted directly on range images. For a fair

comparison, LNP descriptor used the same encoding parameter (i.e. Q2,16)

with LSP to extract the feature vector on each normal component, noted

as LNPx, LNPy and LNPz, and their fusion, i.e. Multi-Component Local

Normal Patterns (MC-LNP). All features were finally fed into SRC classifier.

Noted that in this work, the score-level fusion through a simple sum rule was

employed for combining different normal components and encoding scales.
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Table 3: Comparison of rank-one scores: original normal, LSP and LNP on the whole

FRGC v2.0 database.

Approaches Rank-one Scores

(1) Nx + SRC 67.83%

(2) Ny + SRC 65.62%

(3) Nz + SRC 71.63%

(4) Nxyz + SRC 73.19%

(5) LSP2,16 + SRC 82.07%

(6) LNPx(Q2,16) + SRC 87.01%

(7) LNPy(Q2,16) + SRC 86.13%

(8) LNPz(Q2,16) + SRC 88.43%

(9) MC-LNP(Q2,16) + SRC 92.60%

Tab. 3 reports the rank-one recognition rates on the whole FRGC v2.0

database. We can see that LNP performs much better (about 20% higher)

than the original normal feature. On the other side, without normal informa-

tion, the result based on LSP is about 5% lower than that of each encoded

normal component and 10% lower than their fusion, i.e. MC-LNP(Q2,16).

This experiment indicates that the encoded normal information (LNP) is

more discriminative not only than the original normal information, but also

than the encoded depth information (LSP).

5.3.2. Experiment II: The effectiveness of sparse representation classifier

For histogram based feature vector (e.g. LNP), Chi-Square distance is the

preferred similarity measurement [45]. Tab. 4 compares rank-one recognition
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rates achieved by SRC and Chi-Square distance based classifiers on the whole

FRGC v2.0 database. All the results are achieved by LNP using the same

encoding scale (i.e. Q2,16).

Table 4: Comparison of rank-one scores: Chi-Square vs. SRC on the whole FRGC v2.0

database.

Approaches Rank-one Scores

(1) LNPx(Q2,16) + Chi-Square 77.36%

(2) LNPx(Q2,16) + SRC 87.01%

(3) LNPy(Q2,16) + Chi-Square 77.87%

(4) LNPy(Q2,16) + SRC 86.13%

(5) LNPz(Q2,16) + Chi-Square 81.33%

(6) LNPz(Q2,16) + SRC 88.43%

(7) MC-LNP(Q2,16) + Chi-Square 82.64%

(8) MC-LNP(Q2,16) + SRC 92.60%

As it can be seen from Tab. 4, the rank-one scores of SRC using LNPx,

LNPy and LNPz as well as their fusion MC-LNP, with an average gain of 8

points, consistently outperform those of Chi-square distance-based classifier

using the same feature vectors. These results highlight the effectiveness of

SRC when using local normal patterns (LNP) based facial representation.

5.3.3. Experiment III: The patch weight learning and the effectiveness of W-

SRC

In this experiment, firstly, we describe the way to learn patch weights

and analyze the relative importance of facial physical components for face
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identification. Then, we compare the performance of W-SRC and SRC on

FRGC v2.0, Bosphorus, and BU-3DFE respectively. Three databases were

used for learning the patch weights: FRGC v1.0, BU-3DFE, and Bosphorus.

The experimental protocol introduced in Tab. 1 is used, and according to

the proposed framework, the patch weights are achieved by the following four

steps: 1) divide each normal component into local patches (10 × 8, 6 × 6, and

3 ×3 windows); 2) extract patch based MSMC-LNP features, three normal

components and three encoding scales (Q1,8, Q2,16, and Q3,24); 3) compute

patch based rank-one scores using SRC classifier on a given training database.

4) compute patch based weights by normalizing the patch based scores.

Fig. 10 shows the patch weights of three normal component images x,

y and z with three binary encoding scales Q1,8, Q2,16 and Q3,24. The patch

number respect to the three encoding scales are 10×8, 6×6 and 3×3. Bospho-

rus database is used for the training database. The weights are marked by

gray values where darker ones indicate lower weights while the brighter ones

indicate higher weights. We can see that the weight distribution patterns

are similar to each other among different normal components and different

encoding scales, which have largest weights near the nose regions, and larger

weights near the eyes, while smallest weights near the mouth regions and the

boundary parts. For more detail, take column (e) in Fig. 10 as an example.

The rigid regions including nose, eyes and forehead totally possess about

56% importance of the whole face. While the mouth region has only about

2.8% importance. It is worth noting that facial cheek regions (in two sides),

which are usually considered as non-rigid regions, own about more than 20%

importance, showing that there also exists much identity related information
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(a)                (b)                  (c)                (d)                (ee)                 (f)                (g)   (h)                 (i)

Figure 10: Illustration of the patch weights learned from the Bosphorus database. Columns

(a-c), normal images x, y and z and their patch weights (10× 8 patches); columns (d-f),

normal images x, y and z and their patch weights (6× 6 patches); columns (g-i), normal

images x, y and z and their patch weights (3× 3 patches). Darker patches indicate lower

weights, while brighter ones indicate higher weights.

in non-rigid facial regions. Note that this kind of weight distribution pat-

terns are quite different from those of 2D face, especially in the nose region

as compared with Fig. 1 (b). The differences are probably caused by the

different data form between 2D and 3D faces; for example, the nose region

of the 2D image is easily influenced by the variations of illumination whilst

the one of the 3D face remains stable under expression variations.

To evaluate the effectiveness of W-SRC to facial expression variations, we

compare the performance of SRC and the W-SRC on FRGC v2.0, Bosphorus,

and BU-3DFE respectively (see Tab. 5, 6, and 7). The weights learned

from FRGC v1.0, BU-3DFE, and Bosphorus are denoted as F-W-SRC, BU-

W-SRC, and BO-W-SRC respectively. The local normal encoding operator

Q2,16 is used in all the three Tables.

Tab. 5 presents the rank-one scores on the FRGC v2.0 database using

SRC, F-W-SRC, BU-W-SRC, and BO-W-SRC. The results using the single

normal component LNPx(Q2,16), LNPy(Q2,16), and LNPz(Q2,16) and the one
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Table 5: Comparison of rank-one score improvements on the FRGC v 2.0 database: patch

weights are learned from FRGC v1.0, BU-3DFE, and Bosphorus respectively.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 87.01% 86.13% 88.43% 92.60%

F-W-SRC 86.63% 88.40% 88.65% 93.59%

BU-W-SRC 88.85% 88.54% 90.58% 94.50%

BO-W-SRC 88.62% 88.88% 90.41% 94.61%

of their fusion MC-LNP(Q2,16) are reported. We can see from Tab. 5 that the

performance of F-W-SRC is slightly better than SRC except LNPx(Q2,16).

The results of BU-W-SRC and BO-W-SRC are similar and both are improved

by 1.5% to 2% in comparison with SRC. These results suggest W-SRC along

with the weight learning strategy does provide more robustness to facial

expression variations than SRC.

Tab. 6 presents the rank-one scores on the BU-3DFE database using S-

RC and BO-W-SRC. We can see that the performance improvements based

on BO-W-SRC are largely different in the three normal components, with

-0.09%, 3.37% and 2.13% for LNPx, LNPy and LNPz respectively. These

results indicate that the facial surface deformations caused by facial expres-

sion variations are likely to decompose into different quantities over different

normal components. The improvement of the fusion result using MC-LNP

is about 2.5% which also proves the effectiveness of W-SRC handling facial

expression variations.
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Table 6: Comparison of rank-one score improvements on the BU-3DFE database: patch

weights are learned from Bosphorus.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 78.92% 80.92% 84.08% 88.25%

BO-W-SRC 78.83% 84.29% 86.21% 90.71%

Tab. 7 presents the rank-one scores on the Bosphorus database using

SRC and BU-W-SRC. We can see that BU-W-SRC largely improves the

performance for all three normal components, with 3.76%, 2.03% and 4.19%

for LNPx, LNPy, and LNPz respectively.

Table 7: Comparison of rank-one score improvements on the Bosphorus database: patch

weights are learned from BU-3DFE.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 83.12% 86.24% 84.91% 90.92%

BU-W-SRC 86.88% 88.27% 89.10% 93.21%

5.3.4. Experiment V: Comparison of the degradation influenced by facial ex-

pression variations

We first evaluate the degradation influenced by facial expression varia-

tions on the FRGC v2.0 database. According to the experimental protocol
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used in [12], [14] and [46], we split all probe faces into two subsets based

on their original expression labels. The first subset consists of only neutral

faces, while the second one is only made up of non-neutral faces. The per-

formance degradation, reflected by the difference between the accuracies of

subset I and II , is utilized to analyze the robustness to facial expression

variations. From Tab. 8, we can see that 6.6% drop is achieved based on the

proposed MSMC-LNP descriptor and SRC, and 3.8% drop is obtained by

using Bosphorus database as training set for W-SRC. Note that our perfor-

mance on subset I is a little worse than [12, 14, 46], while the degradations

are competitive to them.

Table 8: Comparing the degradations of rank-one scores influenced by facial expression

changes on the FRGC v 2.0 database (Subset I: neutral probes; Subset II: non-neutral

probes).

Sub. I Sub. II Degradation

(1) Mian et al. [12] 99.0% 86.7% 12.3%

(2) Huang et al. [14] 99.1% 92.5% 6.6%

(3) Huang et al. [46] 99.0% 94.9% 4.1%

(4) MSMC-LNP + SRC 97.1% 90.5% 6.6%

(5) MSMC-LNP + BO-W-SRC 98.0% 94.2% 3.8%

Since all the 2,400 non-neutral probe faces in the BU-3DFE database have

labels of expression intensity levels (increasing from level 1 to level 4), in this

experiment, we also evaluated the degradation influenced by the intensities

of facial expression variations on the BU-3DFE database. We divided all the
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probe faces into four subsets according to their labels of expression intensity.

Subset I, II, III, and IV are made up of the probe faces with the expression

intensity of level 1, level 2, level 3, and level 4 respectively, and each subset

consists of 600 probe faces with six prototypic expressions.

Table 9: Comparing the degradations of rank-one scores influenced by changing the facial

expression intensities on the BU-3DFE database.

Sub. I Sub. II Sub. III Sub. IV

MSMC-LNP + SRC 97.0% 94.0% 90.5% 80.5%

MSMC-LNP + BO-W-SRC 97.3% 95.0% 92.7% 83.8%

The performance is shown in Tab. 9. We can find out that the degrada-

tion from the lower level to higher level expression intensity becomes larger

and larger especially from Subset III to Subset IV. By using SRC, the degra-

dations are 3.0% from Subset I to Subset II, 3.5% from Subset II to Subset

III, and 10.0% from Subset III to Subset IV. By using BO-W-SRC, the degra-

dations are 2.3% from Subset I to Subset II, 2.3% from Subset II to Subset

III, and 8.9% from Subset III to Subset IV. All the three degradations using

BO-W-SRC are smaller than the ones using SRC, indicating the improved

robustness to expression changes of the weighted sparse representation strat-

egy.
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5.3.5. The performance of distinguishing identical twins across expression

variations

In this experiment, we evaluate the performance of our system to dis-

tinguish identical twins with a smile expression. We regard the SRC based

recognition rate as the baseline and compare it with W-SRC, where the patch

weights are learned from different training sets. Given that there are only

neutral and smile scans in the 3D-TEC dataset, we designed another spe-

cial training set based on the subset of Bosphrous dataset, i.e. 105 first

neutral scans as gallery and 105 happy scans as probe, the corresponding W-

SRC is denoted as BOS-W-SRC. All the rank-one scores achieved by using

MSMC-LNP feature as well as SRC, F-W-SRC, BU-W-SRC, BO-W-SRC,

and BOS-W-SRC classifiers are shown in Tab. 10.

Table 10: Comparison of the rank-one scores on 3D-TEC by using different training sets.

Algorithm Rank-one scores

I II III IV

MSMC-LNP + SRC 94.9% 96.3% 89.3% 88.3%

MSMC-LNP + F-W-SRC 93.5% 94.4% 88.8% 88.3%

MSMC-LNP + BU-W-SRC 93.9% 96.3% 90.7% 91.6%

MSMC-LNP + BO-W-SRC 94.4% 96.7% 90.7% 92.5%

MSMC-LNP + BOS-W-SRC 95.8% 96.7% 95.3% 95.3%

From Tab. 10, we can see that the performance improvements are very

limited for F-W-SRC, BU-W-SRC, and BO-W-SRC. The main reason is the

asymmetry of the training and testing data. The 3D-TEC dataset con-
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tains identical twin samples with neutral and smile expressions, while the

FRGC v1.0 database only includes neutral expression scans; BU-3DFE and

Bosphrous databases consist of the scans with different expression types.

The performance of BOS-W-SRC confirms this reason, i.e. when the sample

distributions of the training and testing sets are more similar to each other,

W-SRC will be more efficient, with 6% and 7% improvements for Cases III

and IV.

5.3.6. Experiment IV: Comparison with the state-of-the-art

To evaluation the performance of the proposed method. We display a

comprehensive comparisons of the rank-one recognition rates on the FRGC

v2.0, Bosphrous, BU-3DFE, and 3D-TEC databases. All results are shown

in Tab. 11, where we highlight our best results and the results which are

better than ours. From this table, we can find that:

(i) There are many results reported on the FRGC v2.0 database (here

we just list some of them), while a very limited results reported on the

other three databases. Note that the BU-3DFE and Bosphrous databases are

initially designed for 3D facial expression recognition. The samples display

informative expression and expression intensity variations. The performance

of existing 3D face recognition methods are not well evaluated on these two

databases. To the best of our knowledge, except our method, only (8-a) and

(8-b) report their results on all the four databases.

(ii) Similar to our method, facial normal information is also used in (4),

(7), (8-a) and (8-b). In (4), difference of normal maps is used as similarity

measurement, while a rank-one score of 92.2% is reported on a subset of

FRGC v2.0 (1024 samples) database; In (7), the authors use surface normal
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variance at each pixel location as a distance measure between face images

and report a rank-one score of 87.8% on the whole FRGC v2.0 database,

while this reasonable performance vastly degrades on the 3D-TEC database,

only around 60% rank-one scores are achieved. In (8-a) and (8-b), wavelet

coefficients are used as similarity measurement on both normal and geome-

try maps. Note that this method is the one of the best 3D face recognition

method in the literature, in which the authors use a very sophisticated face

registration (spin images and ICP) and fitting (Annotated Face Model) tech-

niques, and a Linear Discriminant Analysis (LDA) based feature selection

techniques in their following works [53, 54]. Compared with the proposed

method, they obtained a better results on all the four databases except the

Case III and Case IV over the 3D-TEC database.

(iii) Compared with the proposed method, methods (5-a), (5-b), (5-c)

and (6-b) perform better on the FRGC v2.0 database while worse on the 3D-

TEC database. the performance of method (10) is better on the Bosphrous

database while worse on the FRGC v2.0 database.

(iv) The performance of method (9) is better than our method on both

FRGC v2.0 and Bosphrous databases. And methods (3-d), (12) and (13)

perform better than our method on the FRGC v2.0 database. Other methods

not mentioned above perform worse than our method on the FRGC v2.0

database.

In conclusion, our method achieve a competitive rank-one scores on the

FRGC v2.0, Bosphrous, BU-3DFE and 3D-TEC databases.
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6. Conclusions and Future Works

This paper presented an expression-robust 3D face identification approach

based on the proposed novel 3D facial surface descriptor, i.e. Multi-Scale

and Multi-Component Local Normal Patterns (MSMC-LNP), and the dis-

played the effectiveness of patch-weight learning strategy for W-SRC. Our

experimental results indicate that: 1) LNP is much more discriminative than

both the original normal information and LSP. 2) Both multi-scale and multi-

component are efficient manners to improve the performance of LNP. 3) SRC

is more efficient than the Chi-square distance based classifier. 4) The impor-

tance of facial physical component for 3D face identification is quite different

from the one of 2D based, especially in the nose region. 5) Patch-weight

based W-SRC is very robust to facial expression variations, even for identi-

cal twins with expression changes, and large improvement can be achieved

if the distributions of training and testing sets are similar to each other.

6) Our system (i.e. MSMC-LNP + W-SRC) achieved competitive rank-one

recognition rates on the FRGC v2.0, Bosphrous, BU-3DFE, and 3D-TEC

databases.

In the further, we will focus on the following two aspects to improve

the proposed method. 1) In this paper, we only stressed the robustness of

the proposed face recognition method under expression variations. In more

real scenarios, 3D face scans captured in unconstrained environments can

depict not only facial expression variations but also arbitrary pose changes.

Moreover, they can also be severely altered by external occlusions, e.g., hand,

scarf, etc. In our further, we will evaluate the robustness of our method

under pose and occlusion variations. 2) In this paper, we only presented
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the identification results of the proposed method. Notice that there are few

works on the study of sparse representation-based classifier for 2D and 3D

face verifications. Reference [56] is perhaps the only work stressing this issue

for 2D face verification. In our further, we will study sparse representation-

based classifier for 3D face verification and report the verification results on

the FRGC v2.0, Bosphrous, BU-3DFE and 3D-TEC databases.
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[4] X. Zhao, E. Dellandréa, L. Chen, I. A. Kakadiaris, Accurate landmark-

ing of three-dimensional facial data in the presence of facial expressions

and occlusions using a three-dimensional statistical facial feature model,

IEEE Transactions on Systems, Man, and Cybernetics, Part B 41 (5)

(2011) 1417–1428.

[5] P. Szeptycki, M. Ardabilian, L. Chen, A coarse-to-fine curvature

42



analysis-based rotation invariant 3d face landmarking, in: Proc. IEEE

Int. Conf. Biometrics: Theory Applications and Systems, 2009.
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