
HAL Id: hal-01271721
https://hal.science/hal-01271721

Submitted on 12 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distance Measure for Large Graphs based on Prime
Graphs

Sofiane Lagraa, Hamida Seba, Riadh Khennoufa, Abir Mbaya, Hamamache
Kheddouci

To cite this version:
Sofiane Lagraa, Hamida Seba, Riadh Khennoufa, Abir Mbaya, Hamamache Kheddouci. A Distance
Measure for Large Graphs based on Prime Graphs. Pattern Recognition, 2014, 47, 2014, pp.2993-3005.
�10.1016/j.patcog.2014.03.014�. �hal-01271721�

https://hal.science/hal-01271721
https://hal.archives-ouvertes.fr

A Distance Measure for Large Graphs based on Prime

Graphs

Sofiane Lagraa1∗, Hamida Seba1†, Riadh Khennoufa2,

Abir M’Baya1 and Hamamache Kheddouci1

1Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France
2Département INFO-Bourg, IUT Lyon1

Université Lyon 1, F-01000, France

Abstract

Graphs are universal modeling tools. They are used to represent objects and their

relationships in almost all domains: they are used to represent DNA, images, videos, social

networks, XML documents, etc. When objects are represented by graphs, the problem

of their comparison is a problem of comparing graphs. Comparing objects is a key task

in our daily life. It is the core of a search engine, the backbone of a mining tool, etc.

Nowadays, comparing objects faces the challenge of the large amount of data that this task

must deal with. Moreover, when graphs are used to model these objects, it is known that

graph comparison is very complex and computationally hard especially for large graphs.

So, research on simplifying graph comparison gained in interest and several solutions are

proposed. In this paper, we explore and evaluate a new solution for the comparison of large

graphs. Our approach relies on a compact encoding of graphs called prime graphs. Prime

graphs are smaller and simpler than the original ones but they retain the structure and

properties of the encoded graphs. We propose to approximate the similarity between two

graphs by comparing the corresponding prime graphs. Simulations results show that this

approach is effective for large graphs.

Keywords: Graph similarity, Graph decomposition, Quotient graph, Prime graph, Edit

distance, Graph probing.

∗Sofiane Lagraa is actually at TIMA, LIG, CNRS/Grenoble-INP/UJF
†Corresponding author. Email: hamida.seba@univ-lyon1.fr

1

1 Introduction

It is well established that graphs are an effective and major way of representing objects in various

domains and applications mainly those related to pattern recognition such as computer vision,

data mining, biology, etc. A graph G = (V,E) is a representation tool composed of a set of

vertices V and a set of edges E with the cardinalities |V (G)| = n and |E(G)| = m where n

is called the order of the graph and m its size. The set of edges E is a subset of V × V such

that (u, v) ∈ E means that vertices u and v are connected. Usually, a finite number of labels

are associated with vertices and edges. So, in the graph representation, the vertices represent

objects and the edges represent relations between these objects. The eventual labels represent

objects’ properties. When graphs are used to represent objects, the problem of comparing these

objects turns into determining the similarity between the corresponding graphs.

Comparing graphs with a low computational cost and a high degree of precision remains a

challenging issue despite years of investigations. Nowadays, with the big data challenge this

topic is essential more than ever.

Graph comparison approaches are generally classified into two categories: exact approaches and

inexact or fault-tolerant approaches. Exact approaches refer to the methods used to find out if

two graphs are the same. The common related problems include graph isomorphism, sub-graph

isomorphism and the maximum common subgraph [12, 16, 34, 58]. In these problems we look

generally for an exact mapping between the vertices and edges of a query graph and the vertices

and edges of a target graph.

Fault-tolerant graph comparison aims generally to compute a distance between the compared

graphs. This distance measures how much these graphs are similar and help to deal with noise

and distortion that are introduced during the process needed to model objects by graphs. The

different stages of image encoding is perhaps the most illustrative example of such noise that

graph comparison must deal with. Fault-tolerant graph comparison is also useful for search/rank

based applications where a distance between the compared objects is needed. In some appli-

cations, graph similarity measures are intended to compute relatively suboptimal distances [16]

that are compensated by a large reduction of the computational complexity of the comparison

process. Several graph similarity measures have been proposed in the literature and several ap-

proaches have been used including genetic algorithms [29,56], neural networks [37], the theory of

probability [15,41], clustering techniques [14,54], spectral methods [52,59], decision trees [35,36],

etc. We refer the reader to [11, 12, 16, 19] for more exhaustive surveys. We focus here mainly on

similarity measures that try to extend to graphs some of the properties defined in metric spaces.

Definition 1. A metric space is an ordered pair (M,d) where M is a set and d is a metric on

M , i.e., a function d :M ×M −→ R such that for any x, y ∈M , the following holds:

• d(x, y) ≥ 0 (non-negativity),

• d(x, y) = 0 iff x = y (uniqueness),

2

• d(x, y) = d(y, x) (symmetry) and

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Perhaps, the most referenced metric is edit distance which defines the similarity of graphs by

the minimum costing sequence of edit operations that convert one graph into the other [8, 53].

An edit operation is either an insertion, a suppression or a re-labeling of a vertex or an edge in

the graph. A cost function associates a cost to each edit operation. Figure 1 shows an example

of edit operations that are necessary to get the graph G2 from G1 with the suppression of two

edges and a vertex and the relabeling of two vertices.

aa a
ac

b

c c

bb

d

d

e

G1
G2

Figure 1: Example of edit operations.

Graph edit distance is a flexible graph similarity measure which is applicable to various kind

of graphs [3,8,43,51,53]. It also defines a common theoretical framework that allows comparing

different approaches of graph comparison. In fact, Bunke showed in [10] that under a particular

cost function, graph edit distance computation is equivalent to the maximum common subgraph

problem. In [7], the same author shows that the graph isomorphism and subgraph isomorphism

problems can be reduced to graph edit distance. However, computing graph edit distance suffers

from two main drawbacks:

1. A high computational complexity. The problem of computing graph edit distance is NP-

hard in general [63]. The most known method for computing the exact value of graph edit

distance is based on A∗ [26] which is a best first search algorithm where the search space

is organized as a tree. The root of the tree is the starting point of the algorithm. The

internal vertices correspond to partial solutions and leaves represent complete solutions.

2. The difficulty related to defining cost functions [45].

The first drawback motivated several approximating solutions to compute graph edit distance.

A comprehensive survey on graph edit distance and the approaches proposed to compute it

can be found in [21]. We focus here on three independent but similar works that approximate

the edit distance of two graphs by computing the edit distance between subgraphs of these

graphs [47, 49, 63]. In [63], the authors introduce an novel method to compute an upper and

lower bounds for the edit distance between two graphs in polynomial time. This method consists

to use star representations of graphs and edit distance between stars defined as follows:

3

Definition 2. [63] A star structure s is an attributed, single-level, rooted tree which can be

represented by a 3-tuple s = (r,L, ℓ), where r is the root vertex, L is the set of leaves and ℓ is a

labeling function. Edges exist between r and any vertex in L and no edge exists among vertices

in L.

Definition 3. [63] Given two star structures s1 and s2, the edit distance between s1 and s2

λ(s1, s2) = T (r1, r2) + d(L1,L2)

where

T (r1, r2) =

{

0 if ℓ(r1) = ℓ(r2),

1 otherwise.

d(L1,L2) = ||L1| − |L2||+M(L1,L2)

M(L1,L2) = max{|ΨL1
|, |ΨL2

|} − |ΨL1
∩ΨL2

|

ΨL is the multiset of vertex labels in L.

The authors define the distance between two multisets of star structures. Subsequently,

they define the mapping distance between two graphs based on the distance between their star

representations.

Similarly to the work of [63], the authors of [49] define a mapping distance between two graphs

based on the distance between their local structures. Each local structure contains a vertex and

its incident edges (i.e., a star structure without the leaves). In [47], the authors describe a more

general framework for this approach where the subgraphs are also stars. In this approach, the

authors consider edge labels and the distance between sub-graphs may be different from edit-

distance. This distance is given by the minimum-weight subgraph matching between the query

and target graphs with respect to a cost function.

A relatively resembling distance, that does not use edit operations, is also defined in [28]

where a different representation of the star structure is used. In this similarity measure, the

star structure is called node signature and is represented by a vector containing the label of

the vertex, its degree, and the set of labels of its incident edges. A distance between two node

signatures is also defined and the distance between two graphs is then defined as an assignment

problem in the matrix containing the distances between nodes signatures of the two compared

graphs.

In [62], the authors present an extension of the similarity measure defined in [63] that ensures

a better execution time. In this solution, the obtained subgraphs may be stars or bi-stars and

are obtained by a graph coloring algorithm. However, this algorithm can be used only for trees.

In [64], the authors point-out the redundancy and the fixed-size of the substructures used in

the aforementioned methods and propose a new approach that use variable-size non-overlapping

substructures.

To overcome the second drawback and avoid the definition of edit costs, similarity measures

4

that do not use edit operations are also proposed. In [9], the authors propose a graph distance

measure that is based on the maximal common subgraph of two graphs and prove that it is a

metric, i.e., the measure satisfies the four properties of a usual metric namely: non-negativity,

uniqueness, symmetry and triangle inequality. However, computing the maximal common sub-

graph of two graphs has a high computational complexity [9]. For this reason, Raymond et

al. [48] propose a modified version of the measure defined in [9] where an initial screening process

determines whether it is possible for the measure of similarity between the two graphs to exceed a

minimum threshold for which it is acceptable to compute the maximum common subgraph. This

screening process is based on computing graph invariants. Graph invariants have been efficiently

used to solve the graph comparison problem in general and the graph isomorphism problem in

particular. They are used for example in Nauty [34] which is one of the most efficient algorithm

for graph and subgraph isomorphism testing. A vertex invariant, for example, is a number i(v)

assigned to a vertex v such that if there is an isomorphism that maps v to v′ then i(v) = i(v′).

Examples of invariants are the degree of a vertex, the number of cliques of size k that contain

the vertex, the number of vertices at a given distance from the vertex, etc. Graph invariants are

also the basis of graph probing [31] where a distance between two graphs is defined as the norm

of their probes. Each graph probe is a vector of graph invariants.

In [60], the distance metric based on the maximum common subgraph defined in [9] is extended

by a proposal to define the problem size with the union of the two compared graphs rather than

the larger of the two graphs used in [9].

In [61], the authors show that we can evaluate graph distance with a high degree of precision

by considering complex graph sub-structures in the distance. In fact, in some applications such

as analysis of protein interaction graphs, some sub-structures of these graphs represent certain

functional modules of cells or organisms. Hence, comparing these graphs in terms of substruc-

ture information is biologically meaningful [61]. The authors defined a new metric based on the

concept of Structure Abundance Vector. Each element of a Structure Abundance Vector of a

graph G contains the size of an occurrence of a predefined sub-structure in G. The Structure

Abundance Vector is a generalization of the concept of graph invariants.

More recently, kernel based similarity measures are also proposed [5,12,22,27,42,44]. The main

idea is also to define similarity of graphs based on the similarity of substructures of these graphs.

In this work, we investigate a novel approach for comparing graphs. We propose a new

distance measure to approximate the similarity between graphs. The key idea of our approach is

simplifying the processing of large graphs by using a compact encoding of the graphs obtained

by modular decomposition. Modular decomposition is a way of representing graphs that allows

to encapsulate the contents of the graph into simpler graphs that are prime graphs. This means

that they can not be further compacted by the use of modular decomposition. An earlier work

that uses modular decomposition to compare graphs is described in [1]. However the approach

does not use prime graphs. It focuses mainly on re-defining the concept of module or meaningful

5

substructure in the context of business process graphs. In the next section of this paper, we

present the definition of modular decomposition and prime graphs. We also present the basic

notations used throughout the paper. In Section 3, we define the prime graph based distance

and describe how to compute it. Then, in Section 4, we analyze the proposed approach and

show that this distance is a pseudo-metric. Section 5 investigates the application of this distance

by performing comprehensive experimental studies over various datasets. Section 6 brings our

remarks concluding the paper.

2 Preliminaries

In this section, we present the main concepts we use to define our similarity measure: quotient

graphs, prime graphs and modular decomposition. We will use the notations summarized in

Table 1 in the remaining of the paper.

Table 1: Notation
Symbol Description
G(V,E) undirected unlabeled graph with V its vertex set and E its edge set
G = (V,E, f) undirected vertex labeled graph, f is a labeling function
V (G) vertex set of the graph G

E(G) edge set of the graph G

G the complement of the graph G
deg(v) degree of vertex v
∆(G) the greatest vertex degree in graph G

G[X] the subgraph of G induced by the set of vertices X
P(G) prime graph of G

‖T‖1 L1-norm of vector T .

2.1 Modular Decomposition and Quotient Graphs

Graph decomposition refers generally to a kind of graph representations that aim to highlight

regular or meaningful structures within the graph such as cycles, cliques, etc. Graph decom-

positions give a readable view of the structure of a graph and it can help to solve efficiently

complex problems on graphs. Modular decomposition is one of the most known graph decompo-

sitions [24]. It was introduced by Gallai [20] to solve optimization problems. It was also used to

recognize some graph classes [38, 39, 55]. For a survey of applications of modular decomposition

see [18, 20, 38]. Modular decomposition generates a representation of a graph that highlights

groups of vertices that have the same neighbors outside the group. These subsets of vertices are

called modules.

Definition 4. A module of a graph G = (V,E) is a set M ⊆ V of vertices where all vertices in

M have the same neighbors in V�M .

The empty set, the singletons, and the vertex set V (G) satisfy the definition of a module,

they are called trivial modules. A graph that has only trivial modules is called a prime graph.

Figure 2 illustrates an example of a graph and its modules.

6

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

a

b

c

d

e

f

g
h

i
j

k

l m

Figure 2: A graph and its modules.

We distinguish two kind of modules [18, 38]:

• Weak module: A module is weak if its overlaps another module. A module M1 overlaps

another module M2 if M1 ∩M2 6= ∅, M1�M2 6= ∅ and M2�M1 6= ∅.

• Strong module: A module is strong if it does not overlap any other module. A strong

module can however contain other strong modules. A strong module that is not contained

by any other module is a maximal strong module.

The graph of Figure 2 contains only strong modules as all its modules do not overlap.

Two strong modules M1 and M2 are either adjacent or non adjacent [38]. M1 and M2 are

adjacent if every vertex of M1 is adjacent to every vertex of M2 and nonadjacent if no vertex of

M1 is adjacent to any vertex of M2 [38].

In Figure 2, modules {c, b} and {l,m} are nonadjacent while modules {c, b} and {d, e, f, g}

are adjacent.

We consider the partition P of the vertex set V of a graph G = (V,E) where the elements of

the partition are maximal strong modules. The relations of adjacency between the elements

of the partition P, i.e., strong modules, constitute a new graph, the quotient graph G/P, whose

vertices are the elements of the partition P. If P is a nontrivial modular partition, i.e. P 6= V and

P 6= {{x}, x ∈ V }, then G/P is a compact representation of all the edges that have endpoints

in different partition classes of P [38]. For each partition class X in P, the subgraph G[X]

induced by X is called a factor and gives a representation of all edges with both endpoints in

X . Therefore, the edges of G can be reconstructed given only the quotient graph G/P and its

factors [38]. The term prime graph comes from the fact that a prime graph has only trivial

quotients and factors [18].

The modular decomposition is a unique decomposition of the vertices of a graph into nested

strong modules [18]. A strong module M of G can take one of the following types:

7

• Prime: Both, G[M] and G[M] are connected.

• Series: All strong modules contained by M are adjacent to each other in G[M]. G[M] is

not connected.

• Parallel: All strong modules contained by M are non-adjacent to each other in G[M].

G[M] is not connected.

So, strong modules allow a compact encoding of a graph by replacing each module by a unique

vertex. The quotient graph that results from recursively compacting all the strong modules is

a prime graph. We will denotes such graph by P(G) for a given graph G. Figure 3 details in

several steps how we get the final prime graph by compacting recursively the strong modules of

the graph of Figure 2.

a

b

c

d

e

f

g
h

i
j

k

l m

(a)

S(b,c)

a

d

e

f

g
h

i
j

k

l m

(b)

S(b,c)

a

Pr(d, e, f, g)

h
i

j

k

l m

(c)

S(b,c)

a

Pr(d, e, f, g)

h
i

j

k

P(l, m)

(d)

S(b,c)

a

Pr(d, e, f, g)

hS(i, j)

k

P(l, m)

(e)

S(b,c)

a

Pr(d, e, f, g)

h
P(S(i,j), k)

P(l, m)

(f)

Figure 3: The quotient graph obtained by compacting the strong modules of the graph G. S:
series module. P : parallel module. Pr: prime module.

We consider the graph that corresponds to the final quotient graph obtained by compacting

8

all the strong modules1 and we call this graph the prime graph. Each vertex of this graph is a

maximum strong module which may contain other nested strong modules.

Modular decomposition has been extensively studied by many authors [18, 20, 24, 38, 46].

Several algorithms that compute the modular decomposition of a graph are proposed in the

literature [25]. All existing algorithms aim to reduce the time complexity and find the simplest

way to obtain the modular decomposition of a graph. The first polynomial algorithm is due to

Cowan et al. [17] and runs in O(n4), where n is the number of vertices in the graph. Habib

and Maurer [23] proposed an O(n3) algorithm. Then, Muller and Spinard [40] proposed an

incremental O(n2) algorithm. Independently, Mc-Connell and Spinard [33], Cournier and Habib

[2] and Dahlhaus et al. [18] succeeded to obtain a linear algorithm in O(n +m) time, where n

is the number of vertices in the graph and m the number of edges. Finally, Habib et al. [13, 25]

developed a simpler linear time algorithm in O(n + m) . We refer the reader to [24, 46] for a

more detailed survey on modular decomposition algorithms and their algorithmic techniques. All

existing algorithms focus on computing the modular decomposition tree of a graph. This tree

represents how modules are nested in all the graph. So, we adapted the algorithm of [13, 25] to

extract the final quotient graph. This modification consists mainly in:

• Finding the adjacency relationships between the maximum strong modules

• Keeping track of the vertex labels because the modular decomposition algorithm doesn’t

deal with labels.

3 Graph Distance Measure based on the Prime Graph

Given two labeled graphs G1 and G2 and their respective prime graphs P(G1) and P(G2), we

aim to take a decision on the similarity between G1 and G2 by comparing their prime graphs.

There are at least two advantages for such approach. First, similarity is computed on simpler

graphs which reduces considerably the number of comparisons for large graphs. Second, the

detection of particular structures within the graph, i.e., the modules, may enhance the accuracy

of the comparison mainly for classification problems. We first obtain the prime graph by using a

modular decomposition algorithm then we use graph probing and star comparison to compute a

distance between these graphs. So, computing the similarity between two graphs G1 and G2 is

mapped to computing the similarity between their corresponding prime graphs P(G1) and P(G2).

We consider simple labeled graphs which do not contain self-loops, multi-edges and edge labels.

An undirected attributed graph, denoted by G can be represented by a 3-tuple G = (V,E, f)

where V is a finite set of vertices, E ⊆ V ×V is a set of vertex pairs and f is a function assigning

labels to vertices. As the vertices of a prime graph are maximum strong modules, we first define

the distance between two strong modules. Subsequently, we will define the distance between

1Note that, for some graphs, we can compact entirely the graph into a single node. In this case, we stop the
compacting process one step before the entire compacting of the graph to avoid obtaining a trivial module.

9

S(b,c)

0000 000 0

a

Pr(d, e, f, g)
h

P(S(i,j), k)

P(l, m)

Set of vertex labels

S P Pr a b c d e f g h i mj k l

1 0 1 1 10 0 0

m
b

c

probe vector of module P(S(i,j),k)

k

gj

d
e

f

l

i

Figure 4: Example of Probe Vector of a module.

stars of strong modules. After that, we will define the mapping distance between two prime

graphs based on their star representations. Finally, we will define the mapping distance between

two graphs based on the distance between their prime graphs.

As pointed-out in the previous section, we focus on maximum strong modules that ensure

the uniqueness of the prime graph. The structure inside a maximum strong module is encoded

by the type of the module and also the types of inner strong modules that are contained in it.

The type of a module is represented by a vertex labeled S (for a series module), P (for a parallel

module) and Pr for (for a prime module). So, to describe a module, we use a label-oriented

representation based on a probe vector. This means that we mainly represent vertices rather

than edges because the structure inside the modules, i.e. the adjacency relationships, is already

encoded in the labels S, P and Pr which characterize the modules.

Definition 5 (module probe vector). Let M be a module in the graph G and let A =

{lS, lP , lPr}
⋃

{l0, l1, l2, . . . , lα} denote an ordered finite set of vertex labels of P(G). M can be

described with a numerical vector of non negative integers VM = (aS , aP , aPr, a0, a1, a2, . . . , aα)

such that M contains exactly aS series modules , aP parallel modules , aPr prime modules and

ai vertices labeled li.

Figure 4 shows an example of a probe vector for one of the modules of our graph example

(i.e., graph of Figure 2).

We compute the distance between two probe vectors as follows:

Definition 6 (probe vector distance). Given two probe vectors V1 and V2, the distance between

V1 and V2 is given by:

γ(V1, V2) = max(‖V1‖1, ‖V2‖1)−
⌊‖V1+V2‖1−‖V1−V2‖1

2

⌋

γ(V1, V2) computes the number of edit operations needed to transform V1 into V2 by the

addition and the suppression of labels or by modifying labels (i.e, relabeling). It is equivalent to

M(L1,L2) in Definition 3.

10

According to this notation, a module structure which is encoded in the type of the module,

can be defined as follows:

Definition 7 (module structure). A Module structure TM can be represented by a 4-tuple

TM = (r, f,A, VM) where r is the type of the module, A is the set of labels, f a labeling function

and VM the probe vector of the module.

Then, we define the distance between two module structures as follows:

Definition 8 (module distance). Given two module structures TM1
= (r1, f1,A, VM1

) and

TM2
= (r2, f2,A, VM2

) then the distance between TM1
and TM2

is:

d(TM1
, TM2

) = ω(r1, r2) + γ(VM1
, VM2

).

where

ω(r1, r2) =

{

0 if r1 = r2,

1 otherwise.

γ(VM1
, VM2

) is given by Definition 6.

Every vertex vi in a prime graph P(G) has a corresponding star of modules S
P(G)
i defined

as S
P(G)
i = (rSi

, LSi
, fi) where rSi

is the module at the root of the star S
P(G)
i , LSi

is the set

of modules of the leaves of the star and fi is a labeling function. For a prime graph containing

k vertices, we have k stars of modules. Accordingly, a prime graph P(G) can be mapped to a

multiset of stars of modules denoted SM(P(G)). The distance between two stars of modules is

defined as follows:

Definition 9 (star of modules distance). Given two stars of modules S1 = (rS1
, LS1

, f1) and

S2 = (rS2
, LS2

, f2) then the distance between S1 and S2 is:

dSM
(S1, S2) = d(rS1

, rS2
) + ψ(LS1

, LS2
) + |∆(S1)−∆(S2)|.

where ψ(LS1
, LS2

) = γ(VS1
, VS2

) with VSi
a probe vector associated to LSi

and given by:

VSi
=

∑

VMt

Mt∈LSi

.

d(rS1
, rS2

) is calculated with Definition 8.

Definition 10 (graph distance). Given two prime graphs P(G1) and P(G2) of two graphs G1

and G2 with their multisets of star decompositions SM(P(G1)) = {S1, S2, . . . , S|V (P(G1))|} and

SM(P(G2)) = {S′
1, S

′
2, . . . , S|V (P(G2)|} respectively, then the distance between G1 and G2 is:

Pr_Dist(G1, G2) = min
h

∑

Si∈SM(P(G1)),h(Si)∈SM(P(G2))

dSM
(Si, h(Si)).

where

h : SM(P(G1)) → SM(P(G2)) is a bijection.

dSM
(Si, h(Si)) is calculated with Definition 9.

11

Computing this distance is then equivalent to solve the assignment problem in the square

matrix max(|P(G1)|, |P(G2)|) × max(|P(G1)|, |P(G2)|) in which each element represents the

distance between the ith star in SM(P(G1)) and jth star in SM(P(G2)). To do so, we use the

Hungarian algorithm [30] to obtain the minimum cost in O(n3) time. Note that, in the case

where |P(G1)| 6= |P(G2)|, the square matrix is obtained by adding empty stars.

4 Complexity Analysis and Discussion

In the remaining sections, we will denote by Ex_Dist the distance obtained by the exact graph

edit distance computation based on the A∗ algorithm [26] and by St_Dist the distance obtained

by the approximate graph distance algorithm based on star assignment [63]. The proposed dis-

tance, denoted Pr_Dist is mainly compared to Ex_Dist and St_Dist.

The proposed approach involves three steps:

1. Building the prime graph: this needs O(n + m) time where n is the number of vertices

in the graph and m is the number of its edges. We use the modular decomposition algo-

rithm described in [13,25] and modified to extract the adjacency relationships between the

maximal strong modules from the tree generated by the algorithm.

2. Computing the distance between each pair of stars in the obtained prime graphs: we need

therefore O(k3) time steps where k is the number of vertices in the largest prime graph,

i.e., the number of maximal strong modules in the largest prime graph.

3. Solve the assignment problem by using the Hungarian algorithm [30] to obtain the minimum

cost in O(k3) time.

So, our algorithm runs in polynomial time and has a complexity of O(k3 + n +m) where k is

the number of vertices in the largest prime graph. In the worst case k = n which means that

the graph is not decomposable. In this case the algorithm is equivalent to the algorithm of [63]

as stated by the following Lemma.

Lemma 1. Let G1 and G2 be undirected attributed graphs. If G1 and G2 are not decomposable

then Pr_Dist(G1, G2) = St_Dist(G1, G2).

Proof. If G1 and G2 are not decomposable, we have G1 = P(G1) and G2 = P(G2). So, it suffices

to show that for two stars S1 and S2 ofG1 andG2 respectively, we have : dSM
(S1, S2) = λ(S1, S2).

λ is given by Definition 3.

dSM
(S1, S2) = d(rS1

, rS2
) + ψ(LS1

, LS2
) + |∆(S1) −∆(S2)|. As there are no modules, rS1

= r1

and rS2
= r2 with r1 and r2 the vertices at the roots of S1 and S2 respectively. So, d(rS1

, rS2
) =

ω(r1, r2) = T (r1, r2).

ψ(LS1
, LS2

) = γ(VS1
, VS2

) where VS1
gives the number of occurrences of each label in the leaves

12

of S1 and VS2
gives the number of occurrences of each label in the leaves of S2. So, ‖VS1

‖1 =

|L1|, ‖VS2
‖1 = |L2| and max{‖VS1

‖1, ‖VS2
‖1} −

⌊‖VS1
+VS2

‖1−‖VS1
−VS2

‖1

2

⌋

has the same result as

M(L1,L2). Consequently, dSM
(S1, S2) = λ(S1, S2).

Hence, when the two graphs are not decomposable Pr_Dist behaves similarly to St_Dist

when compared to Ex_Dist. The comparison between St_Dist and Ex_Dist is given by:

Theorem 1. [63] St_Dist(G1, G2) ≤ max{4,max{∆(G1),∆(G2)} + 1}Ex_Dist(G1, G2)

When at least one of the two graphs is decomposable, we have the following relation between

Pr_Dist, St_Dist and Ex_Dist:

Theorem 2. For any graphs G1 and G2, the following properties hold:

1. Pr_Dist(G1, G2) ≥ St_Dist(G1, G2) ≥ Ex_Dist(G1, G2)

2. Pr_Dist(G1, G2) ≤ (5 + 3max{∆(G1),∆(G2)})Ex_Dist(G1, G2)

Proof. We follow the same reasoning as in [63]. Let P = (p1, p2, · · · , pk) be a set of edit operations

transforming G1 to G2 in Ex_Dist. This means that there is a sequence of graphs G1 = h0 →

h1 → · · · → hk = G2, where hi−1 → hi indicates that hi is obtained by applying edit operation

pi on hi−1 for 1 ≤ i ≤ k. Assume there are k1 edge insertion/deletion operations, k2 vertex

insertion/deletion operations and k3 vertex relabeling operations in P with k1 + k2 + k3 = k. In

the following, we will analyze each kind of edit operations in detail.

• Vertex Insertion/Deletion: In the case of vertex insertion, since the newly inserted

vertex vi has no edges, Pr_Dist(hm, hm+1) = St_Dist(hm, hm+1) = 1. The same result

is obtained in case of deleting one isolated vertex.

• Edge Insertion/Deletion: For St_Dist, inserting an edge between two vertices vi and

vj in the graph hm affects the two stars rooted at vi and vj respectively. For both stars, a

new vertex and a new edge are inserted. So, St_Dist induces 4 edit operations [63].

For Pr_Dist, inserting an edge between two vertices vi and vj in the graph hm may induce

one of the following modifications of the stars and module structures:

– Modifying two simple stars (i.e., no module is affected): this case is similar to St_Dist

and induces 4 edit operations.

– Creating a new module or splitting up an existing module (see Figure 5): assume there

is a vertex vt in hm such that when inserting an edge between vi and vj , vi obtains the

same neighboring hood as vertex vt. The two vertices vi and vt form a new module M

in P(hm+1). Each star in P(hm) that has vi and vt in its leaves has now M as a leaf

in P(hm+1). This means that the number of labels in the leaves of each star increases

by 1 (i.e, the label that corresponds to the type of the module) but the degree of the

star decreases by 1. The star rooted at vj has 2 new labels in its leafs (vi and the

13

type of the module, i.e., 2 operations). Also, the star routed at vi and the star rooted

at vt are replaced by one star rooted at M that has 3 labels in the root. This is

equivalent to add 2 labels to the star rooted at vt (i.e., 2 operations) and to suppress

the star rooted at vi (i.e., 1 + 2 deg(vi)). So Pr_Dist induces 2 + 2 + 1 + 3 deg(vi)

edit operations. The same reasoning can be applied when the inserted edge splits up

an existing module.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

M

t

i

i

t

j
j

v

v

v

v
v

v

Figure 5: Edge insertion inducing a module creation.

– Modifying an existing module (see Figure 6): Let M be a module in P(hm) such that

when inserting an edge between vi and vj , vi obtains the same neighboring hood as a

vertex vt of M . Vertex vi joins the module M . In this case, the star rooted at M has

an additional label in the root. The stars that have vi as a leaf (so have also M as

a leaf) decrease their degree by 1 (i.e., deg(vi) edit operations) and we have one star

in less, the star rooted at vi ((i.e., 1 + 2 deg(vi)). This gives Pr_Dist(hm, hm+1) =

1 + 1 deg(vi) + 1 + 2 deg(vi). So, Pr_Dist(hm, hm+1) = 2 + 3 deg(vi) in this case.

The same reasoning can be applied when the inserted edge retrieves a vertex from an

existing module.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

M M

it

i

t

j j

v
v

v v

v

v

Figure 6: Edge insertion inducing a module modification.

Note that, in the case of modification of an existing module, we have deg(vi) > 0. So, in

both cases we have Pr_Dist(hm, hm+1) ≥ St_Dist(hm, hm+1).

• Vertex Relabeling: Assume a vertex vi’s label is changed from ℓ1 to ℓ2. In this case, the

star containing vi in its root and also all the stars containing vi in their leaves are affected.

14

Therefore, for one vertex relabeling, we have Pr_Dist(hm, hm+1) = St_Dist(hm, hm+1)

and both of them induce 1 + deg(vi)) edit operations.

Consequently, we have the following inequalities:

• Pr_Dist(G1, G2) ≥ St_Dist(G1, G2) ≥ Ex_Dist(G1, G2), and

• Pr_Dist(G1, G2) ≤ max(4, 5 + 2 deg(vi), 2 + 3 deg(vi))k1 + k2 + (1 + deg(vi))k3

≤ (5 + 3max{∆(G1),∆(G2)}) k1 + k2 + (max{∆(G1),∆(G2)}+ 1) k3

≤ (5 + 3max{∆(G1),∆(G2)}) (k1 + k2 + k3)

≤ (5 + 3max{∆(G1),∆(G2)})Ex_Dist(G1, G2)

Theorem 3. For any graphs G1, G2 and G3, the following properties hold:

1. Pr_Dist(G1, G2) ≥ 0

2. Pr_Dist(G1, G2) = Pr_Dist(G2, G1)

3. Pr_Dist(G1, G2) ≤ Pr_Dist(G1, G3) + Pr_Dist(G2, G3)

Proof. Properties 1 and 2 follow directly from the uniqueness of the prime graphs obtained by the

relations of adjacency between maximum strong modules and from Definitions 5-10. We focus

here on the proof of the triangle inequality. The distance between two graphs is the minimum

cost between stars given by the assignment algorithm. This algorithm preserves the triangle

inequality, so we have to prove the triangle inequality between stars. Let S1, S2 and S3 three

stars of modules from P(G1), P(G2) and P(G3) respectively, we need to show that:

dSM
(S1, S2) ≤ dSM

(S1, S3) + dSM
(S3, S2)

with dSM
(Si, Sj) = d(rSi

, rSj
) +ψ(LSi

, LSj
)+ |∆(Si)−∆(Sj)| according to Definition 9. In this

equation, d(rSi
, rSj

) is equal to 0 or 1, |∆(Si) − ∆(Sj)| is the difference of degrees of the two

stars and ψ(LSi
, LSj

) is the number of edit operations that are needed to obtain the leaves of Si

from the leaves of Sj and vice versa. As, we consider vector of probes to represent the leaves, we

consider only edit operations on labels. Property 3 in Theorem 3 is equivalent to the following

inequality:

d(rS1
, rS2

) + ψ(LS1
, LS2

) + |∆(S1)−∆(S2)| ≤ d(rS1
, rS3

) + ψ(LS1
, LS3

) + |∆(S1)−∆(S3)|+

d(rS3
, rS2

) + ψ(LS3
, LS2

) + |∆(S3)−∆(S2)| (1)

15

For the notational convenience, let r12 = d(rS1
, rS2

), r13 = d(rS1
, rS3

), r32 = d(rS3
, rS2

), a12 =

|∆(S1) − ∆(S2)|, a13 = |∆(S1) − ∆(S3)| and a32 = |∆(S3) − ∆(S2)|. We also denote by m11,

m22, m33, m12, m13, m23 and m123 the different pieces of overlapping between the labels of LS1
,

LS2
and LS3

as depicted in Figure 7.

S

S
2

3

m m
m

m

m
m

m

11
12

22

23

123

13

33

S1

Figure 7: Overlapping between labels of LS1
, LS2

and LS3

Equation 1 is equivalent to:

r12+m11+m22+m13+m23+a12 ≤ r13+m11+m33+m12+m23+a13+r32+m22+m33+m13+m12+a32

(2)

which can be simplified to:

r12 + a12 ≤ r13 + r32 + a13 + a32 + 2(m33 +m12) (3)

We consider six cases according to the degrees of the stars:

• Case 1: ∆(S1) ≥ ∆(S2) ≥ ∆(S3). Here, we have a13 ≥ a13 ≥ 0 and a13 ≥ a23 ≥ 0. Then,

according to the value of r12, we have:

– r12 = 0, here Equation 3 holds whatever is in the value of its right part.

– r12 = 1, this means that r13 = 1 or r23 = 1 and consequently Equation 3 holds.

• Case 2: ∆(S1) ≥ ∆(S3) ≥ ∆(S2). Here, a12, a13 and a23 can be computed by:

a12 = m11 +m13 −m22 −m23

a13 = m11 +m12 −m33 −m23

a23 = m33 +m23 −m22 −m12

Equation 3 is simplified to: r12 ≤ r13 + r32 + 2(m33 +m12) which holds true.

The remaining four cases ∆(S2) ≥ ∆(S1) ≥ ∆(S3), ∆(S2) ≥ ∆(S3) ≥ ∆(S1), ∆(S3) ≥

∆(S1) ≥ ∆(S2) and ∆(S3) ≥ ∆(S2) ≥ ∆(S1) can be shown similarly.

Note that the prime graph based distance does not respect the uniqueness property and two

non isomorphic graphs G1 and G2 may verify Pr_Dist(G1, G2) = 0. So, the Prime graph based

distance for labeled undirected graphs is a pseudo-metric.

16

5 Evaluation

In this section, we evaluate how much our approach approximates the similarity between two

graphs and to which extent it can be used for pattern recognition and classification tasks. We

also evaluate its execution time performance. For modular decomposition, we use the algorithm

proposed in [13, 25] which is linear time. It generates the modular decomposition of a graph of

n vertices and m edges in O(n+m) time.

All experiments were conducted on a 2.80 GHz Intel(R) Core(TM) i7− 2640M 64 bits laptop

with 8 GB main memory running on Windows 7. All programs were implemented in C++. For

comparison, we use two reference distances. The optimal A∗ based algorithm of exact graph

edit distance computation [26] described in Section 1 and the approximate graph edit distance

algorithm proposed in [63] and also described in Section 1.

5.1 Datasets

We investigate the precision of our graph distance over several real datasets from the IAM graph

database repository2 for graph-based pattern recognition and machine learning [50] and the RI

database of biochemical data3 [4]. In Table 2 a summary of these graph data. Besides the size of

each dataset, its maximum number of vertices and edges and its average number of vertices and

edges, we also give the average and maximum reduction rates of the dataset. Given a graphG and

its prime graph P(G), the reduction rate RR of G is given by: RR(G) = |V (G)|−|V (P(G))|
|V (G)| · 100%.

It compares the number of vertices in P(G) in respect to G.

Table 2: Graph Dataset Characteristics
tr: size of the training set. va: size of the validation set. te: size of the test set. #classes: number of classes.

avg|V |: average number of vertices. avg|E|: average number of edges. max|V |: maximum number of vertices.
max|E|: maximum number of edges. avgRR(%) : average reduction rate of the dataset and maxRR(%) its maximum

reduction rate.
Dataset size(tr,va,te) #classes avg|V | avg|E| max|V | max|E| avgRR(%) maxRR(%)
AIDS 250,250,1500 2 15.69 16.19 95 103 53.219 94.199

Mutagenecity 1500,500,2337 2 30.32 30.78 417 112 20.833 97.559
GREC 286,286,528 22 11.51 11.93 24 29 32.267 91.669

Protein 200,200,200 6 32.63 62.14 126 149 16.860 95.349
Letter 6750 15 4.67 3.61 9 9 27.52 75
PPI 10 - 7828.9 107134.8 12578 332458 3.41 6.07

PDBS 30 - 7448.2 5628.9 33067 30773 63.28 88.52

1. The AIDS database (IAM database): The AIDS dataset consists of graphs representing

molecular compounds. This dataset consists of two classes (active, inactive), which repre-

sent molecules with activity against HIV or not. Graphs are constructed from the AIDS

Antiviral Screen Database of Active Compounds [50]. The molecules are converted into

graphs by representing atoms as vertices and the covalent bonds as edges [50]. Vertices are

labeled with the number of the corresponding chemical symbol and edges4 by the valence

2www.iam.unibe.ch/fki/databases/iam-graph-database
3http://ferrolab.dmi.unict.it/ri/ri.html#description
4Note that we have not used edge labels for all the datasets.

17

of the linkage. The resulting graphs are small and sparse. We use a training set and a

validation set of size 250 each, and a test set of size 1500. Thus, there are 2000 elements

totally (1600 inactive elements and 400 active elements).

2. The Protein database(IAM database): The protein dataset consists of graphs representing

proteins originally used in [6]. The proteins database consists of six classes, which represent

proteins out of the six enzyme commission top level hierarchy (EC classes). The proteins

are converted into graphs [50] by representing the secondary structure elements of a protein

with vertices and edges of an attributed graph. Vertices are labeled with their amino acid

sequence (e.g. TFKEVVRLT). Every vertex is connected with an edge to its three nearest

neighbors in space. Edges are labeled with their type and the distance they represent in

angstroms. There are 600 proteins totally, 100 per class. We use a training, validation and

test sets of equal size (200).

3. The Mutagenicity database (IAM database): Mutagenicity is a kind of chemical com-

pounds. The molecules were converted into graphs [50] by representing atoms as vertices

and the covalent bonds as edges. Vertices are labeled with the number of the correspond-

ing chemical symbol and edges by the valence of the linkage. The mutagenicity dataset is

divided into two classes mutagen and nonmutagen. The dataset contains 4337 elements

totally (2401 mutagen elements and 1936 nonmutagen elements). We use a training set, a

validation set and a test set of equal size 300.

4. GREC database (IAM database): The GREC dataset consists of graphs representing sym-

bols from architectural and electronic drawings. Graphs are extracted from images by

tracing the lines from end to end and detecting intersections as well as corners [50]. End-

ing points, corners, intersections and circles are represented by vertices and labeled with a

two-dimensional attribute giving their position. The vertices are connected by undirected

edges which are labeled as "line" or "arc". An additional attribute specifies the angle with

respect to the horizontal direction or the diameter in case of arcs [50]. The obtained graphs

are uniformly distributed over 22 classes. The resulting set is split into a training and a

validation set of size 286 each, and a test set of size 528.

5. Letter database (IAM database): This graph dataset contains graphs that represent dis-

torted letter drawings [50]. Only the 15 capital letters of the Roman alphabet that consist

of straight lines (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z) are considered. For each

class, a prototype line drawing is manually constructed. These prototype drawings are

then converted into prototype graphs by representing lines by undirected edges and ending

points of lines by nodes. Each node is labeled with a two-dimensional attribute giving its

position relative to a reference coordinate system [50]. Edges are unlabeled. The graphs are

uniformly distributed over the 15 classes. Distortions are applied on the prototype graphs

with three different levels of strength, viz. low, medium and high. Hence, this dataset

contains 3 subsets: HIGH, MED and LOW with 2250 graphs in each set.

18

6. The PPI database (RI database): This dataset contains graphs describing the known and

predicted protein interactions. The graphs describe the following organisms: Mus muscu-

lus, Saccaromyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Takifugu

rubipres, Danio rerio, Xenopus tropicalis, Bos taurus,Rattus norvegicus, and Homo sapi-

ens. They are large graphs. The original version of the dataset have unique vertex labels

(protein IDs) [57]. We use the RI version which was randomly relabeled with 2048 labels.

Labels are assigned using a uniform distribution [4].

7. The PDBS database (RI Database): This dataset contains 30 graphs with data from DNA,

RNA, and proteins having up to 33067 vertices. The dataset mostly contains very large

graphs [4].

5.2 Results and Discussion

5.2.1 Comparison with the Exact Graph Edit Distance Algorithm

We first conducted experiments to compare our algorithm to the exact graph edit distance

computation based on the A∗ algorithm [26], denoted by Ex_Dist. We also compared our

algorithm to the approximate graph edit distance computation algorithm based on subgraph

assignment [28,47,49,63]. We implemented the solution of [63] denoted here by St_Dist mainly

because it does not use edge labels and consequently can be easily compared to the proposed

solution. We consider two metrics: runtime and also how the proposed distance behaves with

respect to the exact edit distance computation. For both metrics, we used the AIDS datasets

and considered only small graphs to avoid the time complexity related to the exact computation

of the graph edit distance. From the 2000 graphs of the AIDS dataset, we randomly selected 10

graphs each of which contains 10 vertices to form a target graph database. We also constructed

7 query groups: Q8,...,Q14 each of which contains 10 graphs. All the graphs of the same query

group Qi have the same number of vertices. The number of vertices in each graph of a query

group Qi is i. This means that the number of vertices of the query graphs varies from 8 to 14.

Figure 8 (a) shows the average runtime performance of the three distances. The X-axis shows

the number of vertices contained in the query graph and the Y -axis the average runtime, in

log scale, obtained over the query group of the corresponding graph size when compared to the

target graph database. This figure shows clearly that St_Dist and Pr_Dist are faster than

Ex_Dist. We can also see that Pr_Dist achieves a little bit better than St_Dist.

Then, we focused on how Pr_Dist behaves compared to the exact edit distance Ex_Dist

and to its approximation given by St_Dist. Figure 8 (b) shows the average value of the three

distances computed over each query group. We use the same AIDS dataset as for the evaluation

of the runtime. Based on this figure, we can see that Ex_Dist ≤ St_Dist ≤ Pr_Dist which

confirm our theoritical study. We can also see that both Pr_Dist and St_Dist follow the curve

of Ex_Dist in general.

19

 0.01

 0.1

 1

 10

 100

 1000

 8 9 10 11 12 13 14

A
v
e
r
a
g
e

R
u
n
t
i
m
e
(
s
e
c
)

Number of vertices in the Query Graph

Pr_Dist
St_Dist
Ex_Dist

(a) Runtime Vs number of vertices

 5

 10

 15

 20

 25

 30

 35

 40

 8 9 10 11 12 13 14

D
i
s
t
a
n
c
e

Number of vertices in the Query Graph

Pr_Dist
St_Dist
Ex_Dist

(b) Distance Vs number of vertices

Figure 8: Comparison with Ex_Dist

5.2.2 Scalability over Large Graphs

We evaluated the scalability of our approach in terms of the order of the graphs, i.e., the number

of vertices of the graphs. For this, we used two datasets: PDBS and PPI. Both datasets contain

large graphs with a significant difference in the reduction rate : 63.28% for PDBS and 3.41% for

PPI. For each dataset, we used all the the graphs that have a number of vertices lower than 12000

as the graph database and we varied the size of the graph query. Figure 9 shows the runtime for

calculating Pr_Dist and St_Dist between each query graph and the graph database for the two

datasets. The X-axis shows the number of vertices contained in the query graph and the Y -axis

the average runtime, in log scale, obtained over the target database. From this figure we can see

that Pr_Dist faster than St_Dist in the two datasets and that this difference of performance

is proportional to the compression rate. This is mainly due to the reduction but also to the fact

that St_Dist uses a time consuming algorithm to compute intersections between multisets. This

is avoided by Pr_Dist which is based on probes. We can also see that the runtime performance

of Pr_Dist is more important with the PDBS dataset than with the PPI dataset this is due to

the difference of reduction rate between the two datasets.

It is also worth noting that memory requirement is also important for large graphs. For the

PDBS dataset where some graphs exceed 33000 vertices St_Dist generates an Out of memory

exception with graphs larger than 12000 vertices while Pr_Dist processes all the graphs. In

fact, with an average reduction rate of 63.28%, the largest graph of the PDBS dataset, i.e. 33067

vertices, has a prime graph of at most 12142 vertices. We note also that the two algorithms use

the same data structures for graphs and use the same implementation of the Hungarian algorithm

and that the Out of memory exception generated by St_Dist is due to the Hungarian part of

the implementation.

Figure 10 shows the computed distance for Pr_Dist and St_Dist between each query graph

and the graph database for the two datasets. The X-axis shows the number of vertices contained

20

in the query graph (in log scale for PDBS dataset) and the Y -axis the average distance obtained

over the target database. From this figure we can see that Pr_Dist is an upper bound for

St_Dist. For the PPI dataset that has a small reduction rate the two distances are similar.

This confirm the result stated by Lemma 1.

 0.1

 1

 10

 100

 1000

 10000

 1000 6000 12000 18000 24000 30000 34000

R
u
n
t
i
m
e
(
s
e
c
)

Number of vertices in the Query Graph

Pr_Dist
St_Dist

(a) PDBS dataset: RR = 63.28%.

 100

 1000

 10000

 5000 7000 9000 11000 13000

R
u
n
t
i
m
e
(
s
e
c
)

Number of vertices in the Query Graph

Pr_Dist
St_Dist

(b) PPI dataset: RR = 3.41%.

Figure 9: Scalability over Large Graphs: Runtime Performance

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1000 10000 100000

D
i
s
t
a
n
c
e

Number of vertices in the Query Graph

Pr_Dist
St_Dist

(a) PDBS dataset: RR = 63.28%.

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 5000 6000 7000 8000 9000 10000 11000 12000 13000

D
i
s
t
a
n
c
e

Number of vertices in the Query Graph

Pr_Dist
St_Dist

(b) PPI dataset: RR = 3.41%.

Figure 10: Scalability over Large Graphs: Computed Distance

5.2.3 Classification

We use the NN classifier to evaluate the quality of the proposed distance and we compared it

with St_Dist. Table 3 reports the average classification results obtained for each dataset over

the three subsets: Test, train and valid. From these results, we can see that Pr_Dist obtains

a better classification for the AIDS, GREC and Letter databases and not for Mutagenecity and

Protein databases. It seems that more the dataset is reducible more Pr_Dist is accurate. This

21

is clearly illustrated in Figure 11. In this figure, the X-axis shows the average reduction rate of

the datasets and the Y -axis the average classification obtained over the dataset. Figure 11(a)

shows clearly that the classification obtained by Pr_Dist increases with the average reduction

rate. It also shows that beyond 27% of reduction Pr_Dist achieves better than St_Dist. To

explain these results, we also investigated the impact of the distribution of the reduction over

the dataset. In fact, we remarked that when there is a large difference between the reduction

rates of the compared graphs, the computed distance tend to be biased by the important number

of empty stars needed by the assignment computation. In fact, even if the initial graphs have

the same number of vertices, their prime graphs may have very different number of vertices.

So, the distribution of the reduction over the dataset is to be considered to explain in which

cases Pr_Dist behaves better than St_Dist and in which cases it does not. We considered the

difference between the maximum reduction rate and the average reduction rate as a measure of

how homogenous is the reduction over a dataset and we plot the results obtained for classification

in function of this difference. Figure 11 (b) reports the obtained results. In this figure, the X-axis

shows the difference between the maximum and the average reduction rates of the datasets and

the Y -axis the average classification obtained over the dataset. It appears from Figure 11(b) that

more the reduction is homogenous over the dataset more Pr_Dist is accurate. Figure 11(b) also

shows that beyond a difference of reduction of 52%, Pr_Dist looses in accuracy.

Over all these results, we can conclude that Pr_Dist takes advantage from detecting partic-

ular structures in the compared graphs and enhance the accuracy of the classification. However,

when the compared graphs are not homogenously reduced, the detection of these particular

substructures is not benefic for the distance and Pr_Dist looses in accuracy.

Table 3: Classification
Dataset St_Dist Pr_Dist

AIDS 98.67 100
Mutagenecity 76 65

GREC 84 88.67
Protein 48.33 43.33

Letter 78.67 80.67

22

 40

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55

C
l
a
s
s
i
f
i
c
a
t
i
o
n

(
%
)

avgRR(%)

Pr_Dist
St_Dist

(a) Classification Vs Average Reduction Rate.

 40

 50

 60

 70

 80

 90

 100

 40 45 50 55 60 65 70 75 80

C
l
a
s
s
i
f
i
c
a
t
i
o
n

(
%
)

maxRR-avgRR

Pr_Dist
St_Dist

(b)Classification Vs MaxRR-AvgRR.

Figure 11: Impact of the reduction rate on Classification.

6 Conclusion

In this paper, we introduced an approximate approach for the similarity measure of large graphs

which is based on prime graphs. The key idea of the proposed method is to perform the com-

parison on simpler graphs without losing the structural information of original graphs in order

to enhance the time complexity. We provide an experimental evaluation over small and large

graphs. The obtained results show that our approach has an interesting runtime performance

and has a good scalability in terms of the number of vertices in the compared graphs. Classi-

fication results over several real datasets show that the accuracy of the approach is acceptable.

Moreover, we also showed that the proposed similarity takes advantage from detecting particular

structures in the compared graphs and enhance the accuracy of the classification. However, this

result is obtained when the compared graphs are decomposable, hence the need of thresholding

the compression of the compared graphs. According to the experiments, this threshold, given

by the average reduction rate, can be fixed to 27%. We also remark that the homogeneity of

the reduction over the dataset is an important factor to consider when using this method for

classification purposes.

As future work, several extensions and enhancements are possible. A non exhaustive list is:

• Use prime graphs or strong modules to compute footprints that may be used for indexing

in large graph databases.

• Use other methods to compare prime graphs. To compute our similarity measure, we cou-

pled the prime graphs with a subdivision into stars and we used probe vectors. However,

it may be interesting to investigate other ways to use prime graphs to compute a similarity

between graphs. Tree edit distance may provide better performance. Indeed, each vertex

of the prime graph is a maximum strong module which may contains other nested strong

modules. So, it can be represented by a tree. Internal vertices of the tree gives the type of

23

the modules nested in the maximum strong module and the leaves are the trivial modules,

i.e. the vertices of the original graph. Figure 12 illustrates the representation of the strong

modules within the final quotient graph of our graph example (graph used in Figures 2 and

3).

P

S

h

a

i j
k g

e

c

f

Prl
b

d

S
P

m

Figure 12: Tree representation of the maximal strong modules within the quotient graph.

• Consider a parallel version of the algorithm to enhance the processing of very large graphs.

• Extend the approach to directed graphs. Note that a modular decomposition algorithm

for directed graphs is proposed in [17, 32].

• Extend the approach to edge-labeled graphs. A solution is directly obtained by using a

second probe vector for the edge labels of each maximum strong module.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments on earlier

drafts of this paper.

References

[1] Sonia Abbas and Hamida Seba. A Module-based Approach for Structural Matching of

Process Models. In The 5th IEEE International Conference on Service Oriented Computing

& Applications (SOCA 2012), December 2012.

[2] A.Cournier and M.Habib. A new linear algorithm for modular decomposition. Lecture Notes

in Computer Science, 787:68–84, 1994.

24

[3] R. Ambauen, S. Fischer, and Horst Bunke. Graph edit distance with node splitting and

merging and its application to diatom identification. Graph Based Representations in Pat-

tern Recognition - GBR, pages 95–106, 2003.

[4] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro.

A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioin-

formatics, 14(Suppl 7)(S13), 2013.

[5] K. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In 5th Int. Conference

on Data Mining, pages 74–81, 2005.

[6] K. Borgwardt, C. Ong, S. Schönauer, S. Vishwanathan, A. Smola, and H.-P. Kriegel. Protein

function prediction via graph kernels. Bioinformatics, 21(1):47–56, 2005.

[7] H. Bunke. Error correcting graph matching: On the influence of the underlying cost function.

IEEE Trans. Pattern Anal. Mach. Intell., 21(9):917–922, 1999.

[8] H. Bunke and G. Allerman. Inexact graph matching for structural pattern recognition.

Pattern Recognition Letters - PRL, 1(4):245–253, 1983.

[9] H. Bunke and K. Shearer. A graph distance metric based on the maximal common subgraph.

Pattern Recognition Letters, 19(3-4):255–259, 1998.

[10] Horst Bunke. On a relation between graph edit distance and maximum common subgraph.

Pattern Recognition Letters, 18:689–694, 1997.

[11] Horst Bunke and Bruno T. Messmer. Recent Advances in Graph Matching. International

Journal of Pattern Recognition and Artificial Intelligence, 11:169–203, 1997.

[12] Horst Bunke and Kaspar Riesen. Recent advances in graph-based pattern recognition with

applications in document analysis. Pattern Recognition, 44:1057–1067, 2011.

[13] Christian Capelle, Michel Habib, and Fabien De Montgolfier. Graph decompositions and

factorizing permutations. Discrete Mathematics & Theoretical Computer Science - DMTCS,

5(1):55–70, 2002.

[14] Marco Carcassoni and Edwin R. Hancock. Weighted graph-matching using modal clusters.

pages 142–151, 2001.

[15] William J. Christmas, Josef Kittler, and Maria Petrou. Structural matching in computer

vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine

Intelligence - TPAMI, 17(8):749–764, 1995.

[16] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty Years of Graph

Matching in Pattern Recognition. International Journal of Pattern Recognition and Artifi-

cial Intelligence, 18:265–298, 2004.

25

[17] D.D. Cowan, I.O. James, and R.G. Stanton. Graph decomposition for undirected graphs.

3rd S-E Conf. on Combinatorics, Graph Theory and Computing, pages 281–290, 1972.

[18] E. Dahlhaus, J. Gustedt, and R. McConnell. Efficient and practical modular decomposition.

In eighth annual ACM-SIAM symposium on Discrete algorithms, pages 26–35, 1997.

[19] Brian Gallagher. Matching Structure and Semantics: A Survey on Graph-Based Pattern

Matching. PhD thesis, 1939.

[20] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18:25–66, 1967.

[21] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern Analysis

Applications, 13:113–129, 2010.

[22] T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient

alternatives. In Springer, editor, Annual Conf. Computational Learning Theory, pages 129–

143, 2003.

[23] M. Habib and M.C. Maurer. On the x-joint decomposition for undirected graphs. Discrete

Applied Mathematics, 3:198–207, 1979.

[24] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition.

Computer Science Review, 4(1):41–59, 2010.

[25] Michel Habib, Fabien De Montgolfier, and Christophe Paul. A simple linear-time modular

decomposition algorithm for graphs. Scandinavian Workshop on Algorithm Theory - SWAT,

pages 187–198, 2004.

[26] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determi-

nation of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,

4:100–107, 1968.

[27] D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-

10, University of California, Santa Cruz, 1999.

[28] S. Jouili and S. Tabbone. Attributed graph matching using local descriptions. In ACIVS

2009, LNCS 5807, pages 89–99, 2009.

[29] K. G. Khoo and P. N. Suganthan. Multiple relational graphs mapping using genetic algo-

rithms. pages 727–737, 2001.

[30] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2:83–97, 1955.

[31] Daniel P. Lopresti and Gordon T. Wilfong. Comparing Semi-Structured Documents via

Graph Probing. In Workshop on Multimedia Information Systems, pages 41–50, 2001.

26

[32] Ross M. Mcconnell and Fabien De Montgolfier. Linear-time modular decomposition of

directed graphs. Discrete Applied Mathematics, 145:198–209, 2005.

[33] R.M. McConnelle and J. Spinard. Linear time modular decomposition and efficient transitive

orientation of comparability graphs. In 5th ACM-SIAM Symp, pages 536–545, 1994.

[34] B. McKay. Practical graph isomorphism. Congress Numerantium, 87:30–45, 1981.

[35] B. Messmer. Efficient Graph Matching Algorithms for Preprocessed Model Graphs. PhD

thesis, University of Bern, Switzerland, 1995.

[36] Bruno T. Messmer and Horst Bunke. A decision tree approach to graph and subgraph

isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence

- TPAMI, 32(12):1979–1998, 1999.

[37] Alessio Micheli. Neural network for graphs : A contextual constructive approach. IEEE

Transactions on Neural Networks, 20(3):498–511, 2009.

[38] R.H. Möhring. Algorithmic aspect of the substitution decomposition in optimization over

relation, set system and boolean function. Ann. Operations Research, 4:195–225, 1985.

[39] R.H. Möhring. Algorithmic aspects of comparability graphs and interval graphs. I. Rival.

Graphs and Order (D. Reidel), pages 41–101, 1985.

[40] John H. Muller and Jeremy Spinrad. Incremental modular decomposition. Journal of The

ACM - JACM, 36(1):1–19, 1989.

[41] Richard Myers, Richard C. Wilson, and Edwin R. Hancock. Bayesian graph edit distance.

IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAMI, 22(6):628–635,

2000.

[42] M. Neuhaus and H. Bunke. A convolution edit kernel for error-tolerant graph matching. In

IEEE international conference on pattern recognition, Hong Kong, pages 220–223, 2006.

[43] Michel Neuhaus and Horst Bunke. An Error-Tolerant Approximate Matching Algorithm for

Attributed Planar Graphs and Its Application to Fingerprint Classification. In International

Workshop on Structural and Syntactic Pattern Recognition, pages 180–189, 2004.

[44] Michel Neuhaus and Horst Bunke. A Random Walk Kernel Derived from Graph Edit

Distance. In International Workshop on Structural and Syntactic Pattern Recognition, pages

191–199, 2006.

[45] Michel Neuhaus and Horst Bunke. Automatic learning of cost functions for graph edit

distance. Information Sciences, 177:239–247, 2007.

27

[46] Ruzayn Quaddoura and Khalid Mansour. Classical graphs decomposition and their to-

tally 2010 decomposable graphs. International Journal of Computer Science and Network

Security, 10:1240–1250, 2010.

[47] Romain Raveaux, Jean-Christophe Burie, and Jean-Marc Ogier. A graph matching method

and a graph matching distance based on subgraph assignments. Pattern Recognition Letters,

31:394–406, 2010.

[48] John W. Raymond, Eleanor J. Gardiner, and Peter Willett. RASCAL: Calculation of Graph

Similarity using Maximum Common Edge Subgraphs. The Computer Journal, 45:631–644,

2002.

[49] K. Riesen and H. Bunke. Approximate graph edit distance computation by means of bipar-

tite graph matching. Image and Vision Computing, 27:950–959, 2009.

[50] Kaspar Riesen and Horst Bunke. IAM Graph Database Repository for Graph Based Pattern

Recognition and Machine Learning. 2008.

[51] Antonio Robles-kelly and Edwin R. Hancock. Graph Edit Distance from Spectral Seriation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:365–378, 2005.

[52] Antonio Robles-kelly and Edwin R. Hancock. A riemannian approach to graph embedding.

Pattern Recognition -PR, 40(3):1042–1056, 2007.

[53] A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs for pattern

recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 13(3):353–363,

1983.

[54] Alberto Sanfeliu, René Alquézar, and Francesc Serratosa. Clustering of attributed graphs

and unsupervised synthesis of function-described graphs. volume 2, pages 6022–6025, 2000.

[55] J. P Spinrad. Efficient Graph Representation. American Mathematical Society, 2003.

[56] Ponnuthurai N. Suganthan. Structural pattern recognition using genetic algorithms. Pattern

Recognition - PR, 35(9):1883–1893, 2002.

[57] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks,

M. Stark, J. Muller, P. Bork, L. Jensen, and C. Von Mering. The string database in 2011:

functional interaction networks of proteins, globally integrated and scored. Nucleic Acids

Res, 39:D561–D568, 2011.

[58] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, 23(1):31–42, January

1976.

[59] Shinji Umeyama. An eigen decomposition approach to wighted graph mathcing problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAMI, 10(5):695–703,

1988.

28

[60] W.D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray. Graph distances using graph union.

Pattern Recognition Letters, 22(6-7):701 – 704, 2001.

[61] Yanghua Xiao, Hua Dong, Wentao Wu, Momiao Xiong, Wei Wang, and Baile Shi. Structure-

based graph distance measures of high degree of precision. Pattern Recognition, 41:3547–

3561, 2008.

[62] Said Yahiaoui, Mohammed Haddad, Brice Effantin, and Hamamache Kheddouci. Coloring

based approach for matching unrooted and/or unordered trees. Pattern Recognition Letters,

34(6):686 – 695, 2013.

[63] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Com-

paring stars: On approximating graph edit distance. Proceedings of The Vldb Endowment -

PVLDB, 2(1):25–36, 2009.

[64] Xiang Zhao, Chuan Xiao, Xuemin Lin, Qing Liu, and Wenjie Zhang. A Partition-Based

Approach to Structure Similarity Search. Proceedings of The Vldb Endowment - PVLDB,

7:169–180, 2014.

29

