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We define virtual braid groups of type B and construct a morphism from such a group to the group of isomorphism classes of some invertible complexes of bimodules up to homotopy.

Introduction

Our aim in this paper is two-fold: we first define a virtual braid group of type B n and next construct a weak categorification of this group.

Virtual knots and braids have been introduced by Kauffman in [START_REF] Kauffman | Virtual knot theory[END_REF]; they can be represented by planar diagrams that are like usual link or braid diagrams with one extra type of crossings, called virtual crossings. Such crossings appear for instance when one projects a generic link in a thickened surface onto a plane (see [START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF] or [START_REF] Kuperberg | What is a virtual link?[END_REF]).

The virtual braids with n strands form a group denoted VB n , which generalizes the usual Artin braid group B n . The group VB n has a presentation with 2(n -1) generators σ 1 , . . . , σ n-1 , ζ 1 , . . . , ζ n-1 , where σ 1 , . . . , σ n-1 satisfy the usual braid relations, ζ 1 , . . . , ζ n-1 satisfy the standard defining relations of the symmetric group S n , and the following "mixed relations" are satisfied

σ i ζ j = ζ j σ i , if |i -j| > 1,
and

σ i ζ i+1 ζ i = ζ i+1 ζ i σ i+1 , if 1 ≤ i ≤ n -2.
As is well known, the braid group B n can be generalized in the framework of Coxeter groups. Recall that given any Coxeter system (W, S) one defines a generalized braid group B W by taking the same generators s ∈ S and the same relations as for the Coxeter group W, except the relations s 2 = 1. When W is the symmetric group S n , i.e. of type A n-1 in the classification of Coxeter groups, then B W = B n .

A natural question is: can one similarly attach a generalized virtual group VB W to any Coxeter system (W, S)? The idea for defining such a group VB W would be, as in the type A case, to use two copies of the Date: 17.01.2011. 1 generating set S, and to require that the first copy satisfies the relations defining B W , the second one satisfies the relations defining W, and some mixed relations involving generators from the two copies of S are satisfied.

The problem is to come up with an appropriate and meaningful set of mixed relations. In this paper, we do not solve the problem in the general case, but we focus on the case of Coxeter groups of type B. We use a diagrammatic description of the generalized braid group B W of type B due to tom Dieck [tD94]; this description is in terms of symmetric braid diagrams. We define a generalized virtual braid group VB Bn of type B n by considering symmetric virtual braid diagrams up to some natural equivalence.

In a second part we "categorify" each newly-defined group VB Bn . Here we mean categorification in the weak sense of Rouquier, who actually proves a stronger version of this result in [START_REF] Rouquier | Categorification of sl2 and braid groups[END_REF]. More precisely, here to any word w in the generators of VB Bn we associate a bounded cochain complex F (w) of bimodules such that if two words w and w ′ represent the same element of VB Bn , then the corresponding cochain complexes F (w) and F (w ′ ) are homotopy equivalent. This leads to a morphism from the group VB Bn to the group of isomorphism classes of invertible complexes up to homotopy, which is not injective. We describe a part of its kernel. The bimodules used here have been introduced by Soergel, they have become important in the context of knot theory because they come up in the Khovanov-Rozansky link homology (see, e.g., [START_REF] Khovanov | Triply-graded link homology and Hochschild homology of Soergel bimodules[END_REF]). Our categorification extends Rouquier's weak categorification of generalized braid groups and our previous categorification [START_REF] Thiel | Categorification of the virtual braid groups[END_REF] of the virtual braid group VB n .

The paper is organized as follows. In Section 1 we recall the definition of the virtual braid groups VB n and of an invariant of virtual braids due to Manturov, which we see as a homomorphism of VB n into the automorphism group of a free group. In Section 2 we recall the definition of the generalized braid group of type B n and tom Dieck's graphical description in terms of symmetric braid diagrams.

We propose a definition of a generalized virtual braid group of type B n in Section 3. We show that each of its elements can be represented by a symmetric virtual braid diagram, but we do not prove the injectivity of this representation. Using Manturov's invariant, we show that certain relations do not hold in this group although they look natural.

Section 4 is devoted to the Soergel bimodules of type B n . In Section 5 we associate a cochain complex of bimodules to each generator of our virtual braid group of type B n , and we show that this leads to a categorification of this group in the weak sense of Rouquier.

Virtual braids

We first recall the definition of virtual braid groups and of Manturov's invariant for virtual braids.

1.1. The virtual braid groups. Let n be an integer ≥ 2. Following [START_REF] Manturov | Knot theory[END_REF], [START_REF] Vershinin | On homology of virtual braids and Burau representation[END_REF], we define the virtual braid group VB n as the group generated by σ 1 , . . . , σ n-1 and ζ 1 , . . . , ζ n-1 , and the following relations

σ i σ j = σ j σ i , if |i -j| > 1,
(1.1) The generator σ i can be represented by the usual braid diagram with a single positive crossing between the ith and the i + 1st strand; see Figure 1, whereas the generator ζ i is represented by the virtual braid diagram with a single virtual crossing between the ith and the i + 1st strand; see Figure 2.

σ i σ i+1 σ i = σ i+1 σ i σ i+1 , if 1 ≤ i ≤ n -2, (1.2) ζ i ζ j = ζ j ζ i , if |i -j| > 1, (1.3) ζ i ζ i+1 ζ i = ζ i+1 ζ i ζ i+1 , if 1 ≤ i ≤ n -2, (1.4) ζ 2 i = 1, if 1 ≤ i ≤ n -1, (1.5) σ i ζ j = ζ j σ i , if |i -j| > 1, (1.6) σ i ζ i+1 ζ i = ζ i+1 ζ i σ i+1 , if 1 ≤ i ≤ n -2. ( 1 
1 i-1 i i+1 i+2 n Figure 1. The braid diagram σ i 1 i-1 i i+1 i+2 n Figure 2. The braid diagram ζ i
We use the following convention: if D (resp. D ′ ) is a virtual braid diagram representing an element β (resp. β ′ ) of VB n , then the product ββ ′ is represented by the diagram obtained by putting D ′ on top of D and gluing the lower endpoints of D ′ to the upper endpoints of D.

Relations (1.1), (1.3), (1.6) mean that we consider these planar diagrams up to planar isotopy preserving the crossings. Relation (1.2) illustrates the classical Reidemeister III move for ordinary braid diagrams.

Relations (1.4) and (1.5) mean that we consider the virtual braid diagrams up to the virtual Reidemeister II-III moves depicted in Figure 3. Relation (1.7) is a graphical transcription of the mixed Reidemeister move The braid group B n is obtained by dropping the generators ζ 1 , . . . , ζ n-1 . There is a natural homomorphism B n → VB n obtained by considering each braid diagram as a virtual braid diagram without virtual crossings. 1.2. Manturov's invariant. Manturov [START_REF] Manturov | On the recognition of virtual braids[END_REF] constructed an invariant of virtual braids, which he conjectured to be complete. Since we will be using it in Proposition 3.4, we have to recall its definition. We use the version that appeared in the review [START_REF] Izmestiev | Review of "On the recognition of virtual braids[END_REF].

In this version, Manturov's invariant can be seen as a group homomorphism f : VB n → Aut(F n+1 ), where F n+1 is the free group on n + 1 generators a 1 , . . . , a n , t. The homomorphism f is defined by the following formulas:

f (σ i )(a j ) =      a j+1 if j = i, a -1 j a j-1 a j if j = i + 1, a j otherwise, f (ζ i )(a j ) =      ta j+1 t -1 if j = i, t -1 a j-1 t if j = i + 1, a j otherwise,
and

f (σ i )(t) = f (ζ i )(t) = t for all i = 1, . . . , n -1.
Observe that this invariant specializes when t = 1 to an invariant constructed in [START_REF] Fenn | The braid-permutation group[END_REF] for welded braids; see also [START_REF] Vershinin | On homology of virtual braids and Burau representation[END_REF].

Braid groups of type B and symmetric braid diagrams

Let n be a positive integer. Consider the Coxeter group associated to the Dynkin diagram of type B n ; see [START_REF] Humphreys | Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics[END_REF].

We denote the associated generalized braid group by B Bn . It has a presentation with n generators s 0 , s 1 , . . . , s n-1 , and three families of relations

s i s j = s j s i , if |i -j| > 1,
(2.1)

s i s i+1 s i = s i+1 s i s i+1 , if 1 ≤ i ≤ n -2, (2.2) s 0 s 1 s 0 s 1 = s 1 s 0 s 1 s 0 . (2.3)
In [tD94] tom Dieck gave a diagrammatic description of B Bn in terms of symmetric braid diagrams with 2n strands.

Fix a vertical line {0} × R in the plane R 2 . Consider the reflection in this vertical line. It acts on the underlying graph of a braid diagram. It lifts to a reflection on braid diagrams by imposing that the sign of the crossings is preserved. (Observe that if one identifies the plane R 2 with {0} × R 2 ⊂ R 3 , this reflection can be viewed as a rotation of angle π around the vertical axis {0} 2 × R.) A symmetric braid diagram with 2n strands is a planar braid diagram with 2n strands that is invariant under this reflection. To make things precise, we assume that the upper (resp. lower) endpoints of each symmetric braid diagram with 2n strands are the points {-n . . . , -1, 1, . . . , n} × {1} (resp. the points {-n . . . , -1, 1, . . . , n} × {0}). We consider the symmetric braid diagrams with 2n strands up to planar isotopy preserving the crossings, and up to the classical Reidemeister II-III moves, as depicted in Figure 5. We stress the fact that neither the isotopies nor the Reidemeister moves have to be preserved under the reflection.

Figure 5. Classical Reidemeister II-III moves

The equivalence classes of symmetric braid diagrams with 2n strands form a group, which tom Dieck [tD94] proved to be isomorphic to the generalized braid group B Bn of type B n . In this isomorphism, the generator s 0 is represented by the symmetric braid diagram with one positive crossing, as in Figure 6, and each remaining generator s 1 , . . . , s n-1 by the symmetric braid diagram with two symmetric positive crossings, as in Figure 7. From now on, we will identify each generator s i of B Bn with the corresponding symmetric braid. In terms of symmetric braid diagrams, we see that Relation (2.1) holds because the symmetric braid diagrams corresponding to each term of the relation are isotopic. Similarly, the equality in Relation (2.2) can be proven diagramatically using Reidemeister III move. As for Relation (2.3), it can Forgetting the symmetry condition yields an embedding of B Bn into the group B 2n of usual braids with 2n strands. Before we give a precise formula for this embedding, let us shift the indices of the 2n -1 generators σ i of B 2n by -n; in this way the indexing set for the generators becomes the set {-n + 1, . . . , n -1}. The re-indexed generators satisfy the same braid relations (1.1) and (1.2). We then define an embedding of B Bn into the group B 2n by sending s 0 to σ 0 , and each remaining s i to σ -i σ i = σ i σ -i (i = 1, . . . , n -1).

1 2 n -1 -2 -n
1 i-1 i i+1 i+2 n -1 -i+1 -i -i-1 -i-2 -n

Symmetric virtual braids

We now define a group VB Bn , which will be our generalized virtual braid group of type B n .

Definition 3.1. The group VB Bn has the following presentation: it is generated by 2n generators s 0 , s 1 , . . . , s n-1 and z 0 , z 1 , . . . , z n-1 , where s 0 , s 1 , . . ., s n-1 satisfy Relations (2.1), (2.2), (2.3), z 1 , . . . , z n-1 satisfy the relations

z i z j = z j z i , if |i -j| > 1,
(3.1)

z i z i+1 z i = z i+1 z i z i+1 , if 1 ≤ i ≤ n -2, (3.2) z 0 z 1 z 0 z 1 = z 1 z 0 z 1 z 0 , (3.3) z 2 i = 1, if 0 ≤ i ≤ n -1, ( 3 
.4) and the following "mixed relations" are satisfied

s i z j = z j s i , if |i -j| > 1,
(3.5)

s i z i+1 z i = z i+1 z i s i+1 , if 1 ≤ i ≤ n -2, (3.6) s 0 z 1 z 0 z 1 = z 1 z 0 z 1 s 0 , (3.7) z 0 s 1 z 0 z 1 = z 1 z 0 s 1 z 0 , (3.8) s 0 z 1 s 0 z 1 = z 1 s 0 z 1 s 0 . (3.9)
By analogy with tom Dieck's graphical description, we want to represent elements of VB Bn by symmetric virtual braid diagrams with 2n strands. These are planar virtual braid diagrams with 2n strands, as defined in Section 1.1, that are symmetric under the reflection in the vertical line {0} × R. The reflection is supposed to preserve the virtual crossings as well as the positive (resp. the negative) crossings. We consider the symmetric virtual braid diagrams with 2n strands up to planar isotopy preserving the crossings, up to the classical Reidemeister II-III moves of Figure 5, up to the virtual Reidemeister II-III moves of Figure 3, and up to the mixed Reidemeister move of Figure 4.

We represent the generators s 0 , s 1 , . . . , s n-1 by the symmetric braid diagrams of Section 2. The generator z 0 is sent to the symmetric virtual braid diagram with a single virtual crossing, as in Figure 9. Each remaining generator z 1 , . . . , z n-1 is sent to a symmetric virtual braid diagram with two symmetric virtual crossings as in Figure 10.

1 2 n -1 -2 -n Figure 9. The symmetric virtual braid diagram z 0 1 i-1 i i+1 i+2 n -1 -i+1 -i -i-1 -i-2 -n Figure 10. The symmetric virtual braid diagram z i (i > 0)
Proposition 3.2. Considering symmetric braid diagrams as elements of VB 2n yields a well-defined group homomorphism j :

VB Bn → VB 2n defined by j(s 0 ) = σ 0 , j(z 0 ) = ζ 0 , (3.10) and j(s i ) = σ -i σ i = σ i σ -i , j(z i ) = ζ -i ζ i = ζ i ζ -i (3.11) for 1 ≤ i ≤ n -1.
Here again as in Section 2, we have shifted the index of the generators of the virtual braid group VB 2n by -n.

This shows that the relations defining the virtual braid group VB Bn of type B are adequate.

Remark 3.3. We do not claim that j : VB Bn → VB 2n is a monomorphism but we conjecture that it is. Should this hold, then we could claim that the defining relations are sufficient to define VB Bn as a subgroup of VB 2n .

Proof. Using the relations defining VB 2n (see Section 1.1), we now check that j(s 0 ), j(s 1 ), . . . , j(s n-1 ), j(z 0 ), j(z 1 ), . . ., j(z n-1 ) satisfy the defining relations of VB Bn .

Relations (2.1)-(2.3) and (3.1)-(3.6) are obviously satisfied.

A graphical proof of Relation (3.7) is given in Figure 11, where we use the virtual Reidemeister III move of Figure 3 We similarly obtain Relation (3.8) using four mixed Reidemeister moves, as in Figure 12. 

σ i ζ i = ζ i σ i and ζ i σ i+1 σ i = σ i+1 σ i ζ i+1 . (b) In VB Bn we have z 0 s 1 z 0 s 1 = s 1 z 0 s 1 z 0 .
Proof. (a) For each relation we will use Manturov's invariant f (see Section 1.2) to show that both sides of the relation do not have the same invariant. This will imply the desired inequality in VB n . For the leftmost relation, we have

f (ζ i σ i ) (a i ) = t -1 a i t and f (σ i ζ i ) (a i ) = ta -1 i+1 a i a i+1 t -1 , which are different.
For the righmost relation, we have

f (ζ i σ i+1 σ i ) :            t → t, a i → a i+2 , a i+1 → a -1 i+2 ta i+1 t -1 a i+2 , a i+2 → a -1 i+2 t -1 a i ta i+2 , a j → a j if j = i, i + 1, i + 2 and f (σ i+1 σ i ζ i+1 ) :            t → t, a i → a i+2 , a i+1 → ta -1 i+2 a i+1 a i+2 t -1 , a i+2 → t -1 a -1 i+2 a i a i+2 t, a j → a j if j = i, i + 1, i + 2. So f (ζ i σ i+1 σ i ) and f (σ i+1 σ i ζ i+1 ) are not equal in Aut (F n+1 ).
(b) We want to compare the two elements z 0 s 1 z 0 s 1 and s 1 z 0 s 1 z 0 of VB Bn . Their image in VB 2n under the homomorphism j are respectively the elements

ζ 0 σ -1 σ 1 ζ 0 σ -1 σ 1 and σ -1 σ 1 ζ 0 σ -1 σ 1 ζ 0 .
To them, we apply Manturov's invariant, the group homomorphism f : VB 2n → Aut(F 2n+1 ), where F 2n+1 is the free group on the generators a -n+1 , . . . , a -1 , a 0 , a 1 , . . . , a n , t, which is given by the same formulas as in Section 1.2.

A simple computation shows that

f (ζ 0 σ -1 σ 1 ζ 0 σ -1 σ 1 )(a 2 ) = a -1 2 t -1 a -1 0 ta 2 a -1 1 t -1 a -1 ta 1 a -1 2 t -1 a 0 ta 2 and f (σ -1 σ 1 ζ 0 σ -1 σ 1 ζ 0 )(a 2 ) = a -1 2 a -1 1 a 2 t -1 a -1 0 a -1 a 0 ta -1 2 a 1 a 2 , which are different.
Remarks 3.5.

• The inequalities of Proposition 3.4 (a) imply that, in VB Bn we have

s i z i = z i s i if 0 ≤ i ≤ n -1 and z i s i+1 s i = s i+1 s i z i+1 if 1 ≤ i ≤ n -1.
• The second inequality of Proposition 3.4 (a) means that the mixed Reidemeister move of Figure 14, involving one virtual crossing and two positive crossings, is not allowed. Specializing at t = 1 one observes that

f (ζ i σ i+1 σ i ) and f (σ i+1 σ i ζ i+1 ) become equal in Aut (F n ). Adding the re- lation ζ i σ i+1 σ i = σ i+1 σ i ζ i+1
to the presentation of VB n , one precisely obtain a presentation of the group of welded braids with n strands defined in [START_REF] Fenn | The braid-permutation group[END_REF]. Generalities. We consider some bimodules which have been introduced by Soergel [START_REF] Soergel | The combinatorics of Harish-Chandra bimodules[END_REF], [START_REF] Soergel | Gradings on representation categories[END_REF], [START_REF] Soergel | Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen[END_REF] in the general context of Coxeter groups.

Let (W, S) be a Coxeter system with generating set S = {s 0 , . . . , s n-1 } of cardinality n. As usual, we denote the order of st, where s, t ∈ S, by m(s, t) and we set s i , s j = -cos π m(s i , s j ) ∈ R .

Let R = R[X 0 , . . . , X n-1 ] be a real polynomial algebra in n indeterminates X 0 , . . . , X n-1 .

For i = 0, 1, . . . , n -1 we define an algebra automorphism α i of R by

α i (X j ) = X j -2 s i , s j X i
for all j = 0, 1, . . . , n -1. It is easy to check that α i is an involution and that there is a unique action of W on R by algebra automorphisms such that

s i (P ) = α i (P )
for all i = 0, 1, . . . , n -1 and P ∈ R.

For any w ∈ W we consider the following objects: (a) the subalgebra R w of elements of R fixed by w;

(b) the R-bimodule B w = R ⊗ R w R;
(c) the R-bimodule R w , which coincides with R as a left R-module whereas a ∈ R acts on R w on the right by multiplication by w(a).

Remarks 4.1.

• To avoid confusion, let us point out that:

-among these bimodules, the only ones which are commonly called Soergel bimodules are the bimodules B s for s ∈ S, -for an arbitrary w ∈ W, Soergel uses the notation B w for different bimodules than us (some indecomposables) that we will not consider here.

• The bimodules R w already appeared in Soergel's work and they turned out to be important in the study of Soergel bimodules.

We introduce a grading on the algebra R by setting deg(X k ) = 2 for all k = 0, . . . , n -1. It induces a grading on the bimodules we consider. We will indicate a shift of the grading by curly brackets: if M = i∈Z M i is a Z-graded bimodule and p an integer, then the Z-graded bimodule M {p} is defined by M {p} i = M i-p for all i ∈ Z.

In the sequel we will systematically identify any bimodule

R w ⊗ R B w ′ (resp. B w ⊗ R B w ′ ) with R w ⊗ R w ′ R (resp. R ⊗ R w R ⊗ R w ′ R) since R w ⊗ R B w ′ = R w ⊗ R R ⊗ R w ′ R ∼ = R w ⊗ R w ′ R and B w ⊗ R B w ′ = R ⊗ R w R ⊗ R R ⊗ R w ′ R ∼ = R ⊗ R w R ⊗ R w ′ R.
The following lemma is straightforward. It will be used repeatedly in Section 5.2. Lemma 4.2. For all w, w ′ ∈ W, there are isomorphisms of R-bimodules 

R w ⊗ R R w ′ ∼ = -→ R ww ′
R w ⊗ R B w ′ ∼ = -→ B ww ′ w -1 ⊗ R R w sending a ⊗ b to a ⊗ w(b) (a, b ∈ R).

4.2.

The type B n . When the Coxeter system (W, S) is of type B n , then

s i , s i = -cos (π) = 1 if i = 0, . . . , n -1, s i , s j = -cos (π/2) = 0 if |i -j| > 1, s i , s i+1 = -cos (π/3) = -1/2 if i = 1, . . . , n -2, s 0 , s 1 = -cos (π/4) = - √ 2/2.
See [START_REF] Humphreys | Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics[END_REF]. It follows that the automorphisms α 0 , α 1 , . . . , α n-1 act on the polynomial algebra R = R[X 0 , . . . , X n-1 ] by the formulas

α 0 :    X 0 → -X 0 , X 1 → X 1 + √ 2 X 0 , X i → X i if i > 1, α 1 :        X 0 → X 0 + √ 2 X 1 , X 1 → -X 1 , X 2 → X 1 + X 2 , X i → X i if i > 2. For 1 < j < n, we have α j :    X j → -X j , X i → X i + X j if i = j -1, j + 1, X i → X i if i = j -1, j, j + 1.
For future use, we shall need an explicit set of algebraically independent homogeneous generators for certain subalgebras R w of invariants. Using Chevalley's theorem (see [START_REF] Humphreys | Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics[END_REF]Chap. 3] or [START_REF] Tauvel | Lie algebras and algebraic groups[END_REF]Chap. 31] for more details), one can verify that

R s 0 = R[ √ 2X 0 + 2X 1 , X 2 0 , X 2 , . . . , X n-1 ] , R s 1 s 0 s 1 = R[X 0 , X 1 + X 2 , X 1 ( √ 2X 0 + X 1 ), X 3 , . . . , X n-1 ] , R s 1 = R[2X 0 + √ 2X 1 , X 1 + 2X 2 , X 2 1 , X 3 , . . . , X n-1 ] and R s 0 s 1 s 0 = R[X 0 + √ 2X 2 , X 1 , X 0 (X 0 + √ 2X 1 ), X 3 , . . . , X n-1 ] .
5. Weak categorification of the virtual braid group of type B n 5.1. Rouquier's weak categorification of generalized braid groups.

We explain Rouquier's construction following [START_REF] Rouquier | Categorification of sl2 and braid groups[END_REF]. It works for any generalized braid group B W associated to a finite Coxeter group W.

To each braid generator s i ∈ B W we assign the cochain complex F (s i ) of graded R-bimodules

F (s i ) : 0 -→ R{2} rb i --→ B s i -→ 0 , (5.1) 
where B s i sits in cohomological degree 0. The degree-preserving R-bimodule morphism rb i sends any a ∈ R to aX i ⊗ 1 + a ⊗ X i ∈ B s i . To the inverse s -1 i of s i we assign the cochain complex F (s -1 i ) of graded R-bimodules

F (s -1 i ) : 0 -→ B s i {-2} br i --→ R{-2} -→ 0 , (5.2) 
where B s i {-2} sits in cohomological degree 0 and the degree-preserving Rbimodule morphism br i is given by multiplication; in other words, it sends a ⊗ b ∈ B s i to ab ∈ R.

To the unit element 1 ∈ B W we assign the trivial complex of graded R-bimodules

F (1) : 0 -→ R -→ 0 , (5.3) 
where R sits in cohomological degree 0. The complex F (1) is obviously a unit for the tensor product of complexes. Finally to any word w = s ε 1 i 1 . . . s ε k i k where ε 1 , . . . , ε k = ±1, we assign the complex of graded R-bimodules F (w) = F (s

ε 1 i 1 ) ⊗ R . . . ⊗ R F (s ε k i k ).
In this context, Rouquier established that if w and w ′ are words representing the same element of B W , then F (w) and F (w ′ ) are homotopy equivalent complexes of R-bimodules. This statement is what we mean by Rouquier's weak categorification of generalized braid groups and what we want, for the type B case, to generalize to virtual braids. But in fact, Rouquier enhanced the above result in [START_REF] Rouquier | Categorification of sl2 and braid groups[END_REF]. He also conjectured his categorification to be faithfull while it will not be true for our generalization to virtual braids; see Remarks 5.2. 5.2. Weak categorification of VB Bn . Our aim is to extend the construction of Rouquier detailed in the former section to the virtual braid group VB Bn of type B n defined in Section 3.

The cochain complexes associated to the generators s ±1 i of VB Bn are the ones defined by (5.1) and (5.2).

To the generator z i we assign the complex of graded R-bimodules concentrated in degree 0

F (z i ) : 0 -→ R s i -→ 0 .
(5.4)

To any word w in the generators s ±1 i and z i of VB Bn we assign the tensor product over R of the complexes associated to the generators involved in the expression of w.

We now state our main result. Relations (3.1)-(3.4) only involve the virtual generators z i . In view of the simple form of the complex F (z i ), the isomorphims of the corresponding complexes directly follow from the first isomorphism in Lemma 4.2.

Similarly, the isomorphism of complexes associated to Relations (3.5) and (3.6) can be constructed as performed in [START_REF] Thiel | Categorification of the virtual braid groups[END_REF] in the case of the categorification of the virtual braid group of type A.

We are left with the mixed relations (3.7)-(3.9). Let us first deal with Relation (3.7). We have to prove that the complexes F (s 0 z 1 z 0 z 1 ) and F (z 1 z 0 z 1 s 0 ) are isomorphic. A simple computation shows that the complex F (z 1 z 0 z 1 s 0 ) is isomorphic to the following:

0 -→ R s 1 s 0 s 1 {2} d -→ R s 1 s 0 s 1 ⊗ R B s 0 -→ 0 , where d(a) = a (α 1 α 0 α 1 (X 0 ) ⊗ 1 + 1 ⊗ X 0 ) = a (X 0 ⊗ 1 + 1 ⊗ X 0 ) for all a ∈ R. The complex F (s 0 z 1 z 0 z 1 ) is isomorphic to 0 -→ R s 1 s 0 s 1 {2} d ′ -→ B s 0 ⊗ R R s 1 s 0 s 1 -→ 0 , where d ′ (a) = a (X 0 ⊗ 1 + 1 ⊗ X 0 )
for all a ∈ R. Lemma 4.2 provides an isomorphism

µ : R s 1 s 0 s 1 ⊗ R B s 0 ∼ = -→ B s 1 s 0 s 1 s 0 s 1 s 0 s 1 ⊗ R R s 1 s 0 s 1 ;
it is given by µ(a⊗b) = a⊗α 1 α 0 α 1 (b), where a, b ∈ R. Now by Relation (2.3) the latter bimodule is equal to B s 0 ⊗ R R s 1 s 0 s 1 . This allows us to build the Now, √ 2X 0 + 2X 1 + 2X 2 belongs to R s 0 ∩ R s 1 s 0 s 1 , so we get the expected equality

ϕ 1 ⊗ ( √ 2X 0 + 2X 1 ) ⊗ 1 = ( √ 2X 0 + 2X 1 ) ⊗ 1 ⊗ 1 .
For X 1 +X 2 , Equality (5.6) follows directly from the definition of ϕ; we have

ϕ 1 ⊗ (X 1 + X 2 ) ⊗ 1 = -X 2 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ (X 1 + X 2 ) + X 2 ⊗ 1 ⊗ 1 = 1 ⊗ 1 ⊗ (X 1 + X 2 ) .
The last element p ∈ R s 1 s 0 s 1 for which we have to check Equality (5.6) is p = X 1 √ 2X 0 + X 1 . By definition,

ϕ 1 ⊗ X 1 ( √ 2X 0 + X 1 ) ⊗ 1 = -X 2 ⊗ 1 ⊗ √ 2X 0 +1 ⊗ 1 ⊗ √ 2X 0 (X 1 + X 2 ) + X 2 2 ⊗ 1 ⊗ 1 -2X 2 ⊗ 1 ⊗ (X 1 + X 2 ) +1 ⊗ 1 ⊗ (X 1 + X 2 ) 2 = 1 ⊗ 1 ⊗ √ 2X 0 (X 1 + X 2 ) + (X 1 + X 2 ) 2 -X 2 ⊗ 1 ⊗ ( √ 2X 0 + 2X 1 + 2X 2 ) +X 2 2 ⊗ 1 ⊗ 1 .
Now remark that X 2 2 can be written as follows:

X 2 2 = X 1 ( √ 2X 0 + X 1 ) -(X 1 + X 2 ) 2 - √ 2X 0 (X 1 + X 2 ) + ( √ 2X 0 + 2X 1 + 2X 2 )X 2 .
One can check that both

X 1 ( √ 2X 0 + X 1 ) -(X 1 + X 2 ) 2 - √ 2X 0 (X 1 + X 2 )
and √ 2X 0 + 2X 1 + 2X 2 belong to R s 0 ∩ R s 1 s 0 s 1 . So replacing X 2 2 by its latter expression in the expression of ϕ 1 ⊗ X 1 ( √ 2X 0 + X 1 ) ⊗ 1 , we obtain what we expected, namely

ϕ 1 ⊗ X 1 ( √ 2X 0 + X 1 ) ⊗ 1 = 1 ⊗ 1 ⊗ X 1 ( √ 2X 0 + X 1 ) .
The existence of the bimodule isomorphism ϕ leads to an isomorphism between the complexes F (s 0 z 1 s 0 z 1 ) and F (z 1 s 0 z 1 s 0 ). In fact, F (s 0 z 1 s 0 z 1 ) is isomorphic to the complex B s 0 {2} proof of theorem 5.1, this enable us to construct an isomorphism between the complexes F (z 0 s 1 z 0 s 1 ) and F (s 1 z 0 s 1 z 0 ). • As in the type A case (treated in [START_REF] Thiel | Categorification of the virtual braid groups[END_REF]), the complexes F (s i z i ) and F (z i s i ) are isomorphic, which contrasts with the fact that the relation s i z i = z i s i does not hold in VB Bn .

• Although we do not manage to state here that j : VB Bn → VB 2n is injective, it would be interesting to know at least if, for any a ∈ ker(j), the complexes F (a) and F (1) are homotopy equivalent.

Figure 3 .

 3 Figure 3. Virtual Reidemeister moves
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 6 Figure 6. The symmetric braid diagram s 0

Figure 7 .

 7 Figure 7. The symmetric braid diagram s i (i > 0)

  twice and the mixed Reidemeister move of Figure4twice.

Figure 11 .

 11 Figure 11. A graphical proof of Relation (3.7)
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 12 Figure 12. A graphical proof of Relation (3.8)

Figure 13 .

 13 Figure13. A graphical proof of Relation (3.9)

Figure 14 .

 14 Figure 14. A forbidden Reidemeister move

  sending a ⊗ b to aw(b), and

  both generators σ i and ζ i . Elements of VB n can be represented by virtual braid diagrams with n strands. Such a diagram is a planar braid diagram with virtual crossings in addition to the usual positive and negative crossings.

	.7)
	Relations (1.1) and (1.2) are called braid relations and Relations (1.3)-(1.5)
	permutation relations. Relations (1.6) and (1.7) are called mixed relations
	because they involve

  Theorem 5.1. If w and w ′ are words representing the same element of VB Bn , then F (w) and F (w ′ ) are homotopy equivalent complexes of R-bimodules.Proof. It is enough to check that there are homotopy equivalences between the complexes associated to the pair of words appearing in each defining relation of VB Bn .The checking of this for Relations (2.1), (2.2), (2.3) is a consequence of Rouquier's work for generalized braid groups.
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following isomorphism of complexes between F (z 1 z 0 z 1 s 0 ) and F (s 0 z 1 z 0 z 1 ):

The vertical maps (and similarly their inverse) commute with the differentials. Indeed, for a ∈ R s 1 s 0 s 1 ,

Similar arguments allow us to construct an isomorphism of complexes between F (z 0 s 1 z 0 z 1 ) and F (z 1 z 0 s 1 z 0 ), which proves that (3.8) is satisfied on the level of complexes.

In order to handle Relation (3.9), the first step is to find an isomorphism between

Then using the generating set of R w for w ∈ {s 0 , s 1 s 0 s 1 } exhibited in Section 4.2, we can make an isomorphism of R-bimodules

The map ϕ is clearly surjective since any element of R can be written as a sum of products of elements of R s 0 and R s 1 s 0 s 0 . Let us prove that this isomorphism of R-bimodules is well-defined. We have to check that

(5.6)) for p equal to the generating elements of R s 0 (resp. of R s 1 s 0 s 1 ).

For p = X 0 (resp. p = X 2 ) Equality (5.6) (resp. Equality (5.5)) follows directly from the definition of ϕ. For p = X i with i > 2, Equalities (5.5) and (5.6) follow from the fact that

It remains to deal with the elements √ 2X 0 + 2X 1 and X 2 0 of R s 0 , and with the elements

whose differentials are obtained by composing the ones of F (s 0 z 1 s 0 z 1 ) with the isomorphism of Lemma 4.2. More precisely,

for all a, b, c ∈ R. Similarly, the complex F (z 1 s 0 z 1 s 0 ) is isomorphic to 

whose differentials are obtained by composing the ones of F (z 1 s 0 z 1 s 0 ) with the isomorphism of Lemma 4.2, namely

for all a, b, c ∈ R. We define an isomorphism between these two complexes using the identity map (up to a sign) for all factors outside of cohomological degree 0 and using ϕ in degree 0. This can be summarized by the following 

This morphism of complexes is well-defined: the identities commute with the differentials and for all a, b ∈ R,

Remarks 5.2.

• It is important to work in the homotopy category rather than in the derived category since the complexes F (s i ) and F (s -1 i ) are both quasi-isomorphic to F (z i ) while they are not homotopy equivalent to it.

• We observed in Proposition 3.4 that quite unexpectedly the relation z 0 s 1 z 0 s 1 = s 1 z 0 s 1 z 0 does not hold in VB Bn . Nevertheless the two complexes F (z 0 s 1 z 0 s 1 ) and F (s 1 z 0 s 1 z 0 ) are isomorphic.

The existence of an isomorphism between these complexes follows from the isomorphim of R-bimodules ψ : B s 1 ⊗ R B s 0 s 1 s 0 → B s 0 s 1 s 0 ⊗ R B s 1 .

The isomorphism ψ can be expressed in a similar way as the isomorphism ϕ : B s 0 ⊗ B s 1 s 0 s 1 → B s 1 s 0 s 1 ⊗ B s 0 . Then, just as in the last part of the