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Abstract—The calibration of classifiers is an important task
in information fusion. To compare or combine the outputs of
several classifiers, they need to be represented in a common
space. Probabilistic calibration methods transform the output of
a classifier into a posterior probability distribution. In this paper,
we introduce an evidential calibration method for multiclass
classification problems. Our approach uses an extension of
multinomial logistic regression to the theory of belief functions.
We demonstrate that the use of belief functions instead of
probability distributions is often beneficial. In particular, when
different classifiers are trained with unbalanced amount of
training data, the gain achieved by our evidential approach can
become significant. We applied our method to the calibration
of multiclass SVM classifiers which were constructed through a
“one-vs-all” framework. Experiments were conducted using six
different datasets from the UCI repository.

I. INTRODUCTION

Combining the outputs of multiple classifiers is an important
and challenging task in machine learning. In particular, it
becomes difficult when these classifiers return some pieces
of information that are not directly comparable. Calibration
consists in transforming the output of a classifier into a unique
representation. Calibration is usually considered within a prob-
abilistic framework by converting the output of a classifier into
a posterior probability distribution. Many existing methods are
designed to calibrate binary classifiers [1]–[3]. In particular,
the logistic regression-based method proposed by Platt [1] is
among the most commonly used ones. Recently, an extension
of this method to the evidential framework was proposed [4]. It
was shown that the use of belief functions instead probability
distributions can better model the uncertainty of the calibration
process.

In a multiclass classification context, calibration is usu-
ally done through a binary decomposition framework. The
classification problem is first converted into multiple binary
subproblems. The “one-vs-one” [5] and “one-vs-all” [3] are
the two mostly used strategies. Once all binary classifiers
are calibrated, their outputs are combined into a multiclass
probability distribution. Several studies [5], [6] analyzed the
combination of pairwise calibrated classifiers within the “one-
vs-one” framework. In this context, it has been shown that
using more general representations such as belief functions [7],

[8] or imprecise probabilities [9] gives better results compared
to traditional probabilistic methods.

In this paper, we consider that a multiclass classifier returns
a set of scores where each of them represents the support
for one of the potential class label. Classifiers built from a
“one-vs-all” framework naturally satisfy this constraint. The
aim of the calibration is then to transform these scores into
a probability distribution or belief function. More specifically,
we will extend the probabilistic calibration method proposed
by Milgram et al. [10] to the evidential framework.

The rest of the paper is organized as follows. In Sec-
tion II, we provide an introduction to the theory of belief
functions covering both prediction and statistical inference.
Next, a probabilistic multiclass calibration method based on
multinomial logistic regression is presented in Section III. This
calibration method is then extended to the evidential frame-
work in Section IV. Experimental results on the calibration of
SVM classifiers are shown in Section V. Finally, Section VI
concludes this paper.

II. THEORY OF BELIEF FUNCTIONS

The theory of belief functions, also known as the Dempster-
Shafer theory [11] or evidence theory, is a generalization of
the theory of probability. It is closely linked to other theories
such as random sets [12] or imprecise probabilities [13]. In
this section, we introduce some basic notions of the theory of
belief functions for both prediction and statistical inference.

A. Predictive belief functions

Let x ∈ X be an observed instance of an object of unknown
class y ∈ Ω, where Ω = {ω1, . . . , ωK} is called the frame of
discernment. The knowledge about y induced by x can be
represented by a mass function mΩ

x : 2Ω → [0, 1] verifying∑
A⊆Ω

mΩ
x (A) = 1, mΩ

x (∅) = 0. (1)

The quantity mΩ
x (A), for a given subset A ⊆ Ω, represents

the belief committed exactly to the hypothesis y ∈ A. A set
A ⊆ Ω such that mΩ

x (A) 6= 0 is said to be a focal element of
mΩ

x .



Let mΩ
1 and mΩ

2 be two mass functions, generated by
two independent pieces of evidence x1 and x2. They can be
combined by Dempster’s rule of combination yielding a new
mass function mΩ

1,2 defined as

mΩ
1,2(∅) = 0, mΩ

1,2(A) =
1

1− κ
∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), (2)

where
κ =

∑
B∩C=∅

mΩ
1 (B)mΩ

2 (C) (3)

measures the amount of conflict between the two mass func-
tions.

The information encoded by mΩ
x can also be equivalently

represented by a belief function or a plausibility function,
defined, respectively, as

BelΩx (A) =
∑
B⊆A

mΩ
x (B), P lΩx (A) =

∑
B∩A6=∅

mΩ
x (B), (4)

for all A ⊆ Ω. The degree of belief BelΩx (A) represents the
amount of evidence strictly supporting the hypothesis y ∈ A,
while the plausibility PlΩx (A) = 1−BelΩx

(
A
)

is the amount
of evidence not contradicting it.

There exist a number of strategies to predict a class label
from a mass function [14]. In this paper, we will use the
optimistic decision rule which consists in selecting the sin-
gleton with maximum plausibility. The predicted label y∗ is
thus given by

y∗ = arg max
ω∈Ω

plΩx (ω), (5)

where plΩx : Ω→ [0, 1] is the contour function associated with
mΩ

x and defined as its plausibility on singletons

plΩx (ω) = PlΩx ({ω}), ∀ω ∈ Ω. (6)

The decision led by the optimistic rule given several contour
functions can be computed in time linear in both the number
of sources and the number of classes. Given two contour
functions plΩ1 and plΩ2 , their combined contour function plΩ1,2
verifies

plΩ1,2(ω) ∝ plΩ1 (ω)plΩ2 (ω), ∀ω ∈ Ω. (7)

In contrast, computing the combination of two mass functions
needs a time exponential in the number of classes. It can be-
come computationally intractable when the number of classes
or the number of mass functions to combine becomes large.

B. Statistical inference

For statistical inference, Shafer [11] proposed to construct
a belief function from the likelihood function. Recently
Denœux [15], [16] further justified this approach. Let X ∈ X
be some observable data that are generated from a density
function fθ(x) where θ ∈ Θ is an unknown parameter.
Given the outcome x of a random experiment, information
about θ can be inferred. Shafer [11] proposed to build a
belief function BelΘx from the likelihood function. From the

realization X = x, the likelihood function Lx : θ 7→ fθ(x) is
normalized to yield the following contour function:

plΘx (θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
, ∀θ ∈ Θ. (8)

The consonant plausibility function associated to this contour
function is

PlΘx (A) = sup
θ∈A

plΘx (θ), ∀A ⊆ Ω. (9)

The focal sets of BelΘx are defined as

Γx(γ) = {θ ∈ Θ | plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (10)

The random sets formalism [12] is often used to represent
belief functions over a continuous space. Given the Lebesgue
measure λ on [0, 1] and the multi-valued mapping Γx :
[0, 1]→ 2Θ, we have

BelΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ⊆ A}) , (11a)

PlΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ∩A 6= ∅}) , (11b)

for all A ⊆ Θ.

C. Forecasting

Suppose now that we have some knowledge about the
parameter θ ∈ Θ after observing some training data x. The
goal is now to make a prediction from this knowledge as
in [17]. The forecasting problem consists in making some
predictions about some random quantity Y ∈ Y whose
conditional distribution gx,θ(y) given X = x depends on θ.
A belief function on Y can be derived from the sampling
model proposed by Dempster [18]. For some unobserved
auxiliary variable Z ∈ Z with known probability distribution
µ independent of θ, we define a function ϕ : Θ× Z → Y so
that

Y = ϕ(θ, Z). (12)

A multi-valued mapping Γ′x : [0, 1] × Z → 2Y is defined by
composing Γx with ϕ

Γ′x : [0, 1]× Z → 2Y

(γ, z) 7→ ϕ(Γx(γ), z).
(13)

A belief function on Y can then be derived from the product
measure λ⊗µ on [0, 1]×Z and the multi-valued mapping Γ′x

BelYx(A) = (λ⊗ µ) ({(γ, z) | ϕ (Γx (γ) , z) ⊆ A}) , (14a)

PlYx(A) = (λ⊗ µ) ({(γ, z) | ϕ (Γx (γ) , z) ∩A 6= ∅}) ,
(14b)

for all A ⊆ Y.



III. PROBABILISTIC MULTICLASS CALIBRATION

Consider a multiclass classification problem with K classes
and let Y = {1, . . . ,K} be the set of all possible class labels.
Let C be a multiclass classifier trained to classify any instance
of a feature space X. Given a test data x ∈ X with unknown
label y ∈ Y, the classifier returns a vector of scores s =
C(x) ∈ RK . The score s[k] represents the amount of support
for the hypothesis y = k, for all k ∈ {1, . . . ,K}. In particular,
the label predicted by C is given by y∗ = arg maxk s[k].

The aim of probabilistic calibration is to transform the
vector of scores s ∈ RK into a probability distribution
p ∈ P(Y) defined over Y. The softmax function is commonly
used for that purpose. In the general case of multinomial
logistic regression, p is defined through a softmax function
g defined as

p = g(s,θ) = [g1(s,θ), . . . , gK(s,θ)]>, (15)

where

gk(s,θ) =
exp(s>θk)∑K
j=1 exp(s>θj)

, ∀k ∈ {1, . . . ,K}. (16)

The vector s ∈ RK+1 is the vector s concatenated with a
constant value 1. The parameter θ = [θ1, . . . ,θK ] ∈ RK+1×K

is unknown and needs to be estimated.
In a calibration context, several assumptions can be used in

order to simplify the logistic regression problem. In equation
(16), the quantity exp(s>θk) measures the support of the
hypothesis y = k, the denominator being only a normalization
factor. It would be reasonable to assume, as in [10], that
this quantity only depends on the value of s[k] which also
encodes the support of the same hypothesis. This implies that
the parameter θ can be written as

θ =


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 . . . 0 aK
b1 b2 · · · bK

 , (17)

which yields

gk(s,θ) =
exp(aks[k] + bk)∑K
j=1 exp(ajs[j] + bj)

, ∀k ∈ {1, . . . ,K}. (18)

One can further impose that the calibration process should not
change the ordering of the scores, i.e.,

s[i] ≥ s[j]⇔ gi(s,θ) ≥ gj(s,θ), ∀i, j ∈ {1, . . . ,K}, (19)

which leads to

a1 = a2 = . . . = aK ≥ 0 (20a)
and b1 = b2 = . . . = bK . (20b)

These equality constraints yield the following one-parameter
functions:

gk(s, θ) =
exp(θs[k])∑K
j=1 exp(θs[j])

, ∀k ∈ {1, . . . ,K}, (21)

with θ taking value in Θ = [0,+∞[.
The parameter θ ∈ Θ can be estimated given some

training data. Let X = {(x1, y1), (x2, y2), . . . , (xn, yn)} be
a set of n training data with (xi, yi) ∈ X × Y and S =
{(s1, y1), (s2, y2), . . . , (sn, yn)} be its associated set of scores
where si = C(xi). The optimal value of θ is determined by
maximizing the likelihood function on the training set which
is defined as follows:

LS(θ) =

n∏
i=1

(
K∏
k=1

pi[yk]tik

)
, (22)

where

pi = g(si,θ) and tik =

{
1 if yi = k,
0 otherwise. (23)

Maximizing the likelihood function (22) is equivalent to
minimizing the negative log-likelihood function defined as

− log(LS(θ)) = −
n∑
i=1

(
K∑
k=1

tik log(pi[yk])

)
, (24a)

= −
n∑
i=1

K∑
k=1

tikθsi[k] (24b)

+

n∑
i=1

log

 K∑
j=1

exp (θsi[j])

 K∑
k=1

tik

 (24c)

which is a one-dimensional convex function. Minimizing (24)
can thus be done using a simple iterative optimization algo-
rithm. When the training data can be perfectly classified by C,
minimizing (24) will lead to an infinitely large value of θ. To
avoid this situation, we propose to use an out-of-sample data
model similar to the one introduced by Platt [1] for the binary
case. Given that yi = k∗, the coefficient tik is replaced by

t′ik =

{
nk∗+1
nk∗+K if k = k∗,

1
nk∗+K otherwise,

(25)

where nk∗ is the total number of training data of label k∗.
Using this new formulation, the parameter θ̂ ∈ Θ maximizing
the likelihood function (22) becomes unique and finite.

As reported by Xu et al. [4], the uncertainty of the estimated
parameter θ̂ is not taken into account in probabilistic calibra-
tion methods. In particular, the quality of the calibration is
highly dependent of the number of training data. In Figure 1,
we show the normalized likelihood function computed for the
calibration of a multiclass SVM classifier trained on the Satim-
age dataset from the UCI repository [19]. When the number
of training data increases, the estimated parameter becomes
more accurate. By extending the probabilistic approach to the
evidential framework, we aim at taking into account the whole
shape of the likelihood function.

IV. EVIDENTIAL MULTINOMIAL CALIBRATION

The calibration method presented in the previous section can
be extended to the evidential framework through three steps.
First, the knowledge about the parameter θ ∈ Θ is encoded by
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Fig. 1. Normalized likelihood function for different sample sizes.

a belief function constructed from the likelihood function (22).
Then, the unknown label associated to an observation is mod-
eled by an auxiliary variable with known distribution. Finally,
the information about θ is used to construct a predictive belief
function.

A. Likelihood-based belief function

As explained in Section II-B, a belief function over the pa-
rameter θ ∈ Θ can be constructed from the relative likelihood
function. From the training data S, we can build the following
contour function:

plΘS (θ) =
LS(θ)

LS(θ̂)
, ∀θ ∈ Θ. (26)

A belief function BelΘS and a plausibility function PlΘS can
be derived from this contour function as explained in Sec-
tion II-B. In our particular case, the contour function plΘS
is unimodal, therefore the level sets of the belief function
BelΘS are closed intervals. For a given level γ ∈ [0, 1], the
corresponding focal set ΓS(γ) can be written as

ΓS(γ) = {θ ∈ Θ | plΘS (θ) ≥ γ} = [θ, θ]. (27)

In Figure 2, the blue curve represents the contour function
and the red segment corresponds to the focal set at the level
γ. This example was computed when calibrating an SVM
classifier trained using the Satimage dataset. In practice, there
is often no closed form expression of ΓS(γ). However, given
the unimodal shape of the contour function, a simple numerical
approach using dichotomy is efficient enough to approximate
ΓS(γ). Details of this numerical approximation are given in
Algorithm 1.

B. Multinomial distribution model

In the case of a multiclass classification problem with K
classes, the unknown label y of an observation can be seen as
the realisation of a random variable Y with a K-categories
multinomial distribution. Let p = (p1, p2, . . . , pK) be the
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Fig. 2. For a level γ ∈ [0, 1], the associated level set is an interval [θ, θ].

Algorithm 1 Level set approximation by dichotomy
Require: contour function plΘS , level γ, error tolerance ε
/* Lower bound computation */
a← 0, b← θ̂, c← (a+ b)/2
while |plΘS (c)− γ| > ε/2 do

if plΘS (c) > γ then b← c else a← c end if
c← (a+ b)/2

end while
θ ← c
/* Upper bound computation */
a← θ̂, b← 2θ̂, c = (a+ b)/2
while plΘS (b) > γ do b← 2b end while
while |plΘS (c)− γ| > ε/2 do

if plΘS (c) > γ then a← c else b← c end if
c← (a+ b)/2

end while
θ ← c
return ΓS(γ) ≈ [θ, θ]

parameter of this distribution, i.e., P(Y = k) = pk, for all
k ∈ {1, . . . ,K}. Let Z be a random variable which has a
uniform distribution in the interval [0, 1]. The random variable
Y can be generated from p and Z by the function ϕ defined
as

ϕ(p, Z) = k, with Pk−1 ≤ Z < Pk, (28)

where

Pk =

k∑
j=1

pj and P0 = 0. (29)



Indeed, it can easily be verified that for all k ∈ {1, . . . ,K}
we have

P(ϕ(p, Z) = k) = P(Pk−1 ≤ Z < Pk) (30a)
= P(Z < Pk)− P(Z < Pk−1) (30b)
= Pk − Pk−1 (30c)
= pk (30d)

C. Predictive belief functions

Let s be the vector of scores associated with an observa-
tion of unknown label y. The probability distribution of the
associated random variable Y is exactly determined by the
knowledge of the parameter θ ∈ Θ. The parameter p of the
multinomial distribution is given by p = g(s, θ). Given some
knowledge about θ, a predictive belief function can be built
as explained in Section II-C.

As we are using the optimistic decision rule, we do not need
to compute the complete predictive belief function BelYs . We
are only interested in the predictive contour function plYs which
is defined as follows:

plYs (j) = (λ⊗ µ)({(γ, z)|j ∈ ϕ(g(s,ΓS(γ)), z)}), (31)

for all j ∈ {1, . . . ,K}. The contour function plYs can be
approximated by Monte Carlo simulation. By drawing from
a uniform distribution M independent pairs (γi, Zi), i =
1, . . . ,M , the quantity plYs (j) can be approximated by

p̂l
Y
s (j) =

1

M
#{i ∈ {1, . . . ,M}|j ∈ ϕ(g(s,ΓS(γi)), Zi)},

(32)
where the operator # corresponds to the cardinality. For
each pair (γi, Zi) and all j ∈ {1, . . . ,K}, it is necessary to
test whether j ∈ ϕ(g(x,ΓS(γi)), Zi). By writing ΓS(γi) =
[θi, θi], we have the following equivalence:

j ∈ ϕ(g(x,ΓS(γi)), Zi) (33a)

⇔ ∃θ ∈ [θi, θi], ϕ(g(s, θ), Zi) = j (33b)

⇔ ∃θ ∈ [θi, θi], Gj−1(s, θ) ≤ Zi < Gj(s, θ), (33c)

where

Gj(s, θ) =

j∑
k=1

gk(s, θ) and G0(s, θ) = 0. (34)

Figure 3 illustrates the computation of (32). As in Figure 2,
this example was computed from the calibration of an SVM
classifier on the Satimage dataset which covers a set of six
classes. Given a pair (γ, Z) and its associated interval [θ, θ] =
ΓS(γ), the set ϕ(g(s,ΓS(γ)), Z) is determined by the regions
overlapped by Z. Within the gray area delimited by [θ, θ], we
can see that, for the given Z, only the three regions R4, R5 and
R6 are overlapped. Therefore, we have ϕ(g(s,ΓS(γ)), Z) =
{4, 5, 6}.
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Fig. 3. For a given multinomial distribution of parameter p = g(s, θ), the
value of ϕ(p, Z) is determined by the regions R1, . . . , R6. The region Rj

which is delimited by the curves Gj−1(s, θ) and Gj(s, θ) corresponds to
the class j.

TABLE I
DATASETS FROM THE UCI REPOSITORY

Dataset Number of classes Training size Testing size

Dna 3 1000 2186
Waveform 3 1000 4000
Satimage 6 1000 5435
Segment 7 1000 1310
Pendigits 10 1000 9992

USPS 10 1000 8292

V. EXPERIMENTAL EVALUATION

An experimental evaluation was conducted using six mul-
ticlass classification problems from the UCI repository [19].
For each of these datasets, the number of classes, the size of
the training set and the size of the testing set are detailed in
Table I. Similarly to [4], the calibration quality was evaluated
by combining ten classifiers using three different scenarios
as depicted in Figure 4. Let N be the total number of
training data and n1, . . . , n10 be the number of data used
to train each of the ten classifiers, respectively. In particular,
we have n1 + . . . + n10 = N . In the first scenario, the
training set was uniformly partitioned into ten subsets, i.e.,
n1 = . . . = n10 = N × 10%. In the second one, the
configuration was set to n1 = . . . = n5 = N × 15%
and n6 = . . . = n10 = N × 5%. Finally, in the third
scenario, the training set was partitioned using n1 = N×40%,
n2 = N × 20% and n3 = . . . = n10 = N × 5%.

For each of the ten subsets, we trained and calibrated
a multiclass SVM classifier. To get a vector of scores as
output, we chose to train the classifier through a one-vs-all
decomposition framework. Other multiclass SVM approaches
such as the one proposed by Crammer and Singer [20] could
also have been used. In [5], the authors used multiple cross-
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Fig. 4. Illustration of the three scenarios.

validation steps to set the parameters of the SVM and to
calibrate it. In order to avoid potential bias and over-fitting,
we adopted a more cautious approach. Each subset was further
partitioned into two sets of equal size, the first part served
as training data to learn the classifier while the second one
was used as a validation set for parameter estimation and
calibration.

To train the SVM classifiers, we used the LIBSVM li-
brary [21]. For the calibration, we used a quasi-Newton
approach to minimize the negative log-likelihood (24). We
used the implementation built within the function fminunc
of MATLAB. Finally, for the evidential part, the level sets of
BelΘS were approximated with an error tolerance ε = 10−5

while the Monte Carlo simulation was conducted with M =
10, 000.

The partitioning of the whole training set was itself gen-
erated randomly for 20 rounds. The average classification
accuracy as well as the 95% confidence interval are reported
in Table II. In our experiments, we compared the probabilistic
approach proposed by Milgram et al. [10] to our evidential
extension. We can see that for the Dna, Satimage, Segment and
USPS datasets, our evidential method performed significantly
better than the probabilistic one in all three scenarios. For the
Waveform and Pendigits datasets, the probabilistic approach
always performed better but was not significantly different
from the evidential method except for the third scenario of
the Pendigits dataset.

Except for the USPS dataset, the highest difference in
accuracy was always reached in the third scenario. Similarly
to results reported in [4], the evidential approach should be
preferred when the classifiers to combine are trained with
unbalanced amount of training data. However, in our case,
even when all the ten classifiers were trained with the same
number of data, the evidential calibration gave significantly
better results for four of the datasets.

For the evidential approach, we can see that the best results
were always obtained for the third scenario except for the
Dna dataset. The evidential method accounted for the higher
accuracy of the classifiers that were trained with a large
number of data. At the same time, it efficiently encoded the
higher uncertainty of those that were, in contrary, trained
with fewer data. In contrast, for the probabilistic calibration,
the results in the third scenario were always worse than in
the second one. This can be explained by the fact the eight
classifiers that were trained with very few data have the same

amount of influence as the other two. The source code of the
calibration method is available on the author’s website1.

VI. CONCLUSION

In this paper, we proposed an evidential multinomial logistic
regression for multiclass classifier calibration. The use of
belief functions can take into account the whole shape of the
likelihood function. Therefore the uncertainty of the calibra-
tion step is better handled within the evidential framework.

The method proposed in this paper was applied to the
calibration of SVM classifiers but it can also be applied to the
calibration of other multiclass classifiers. Several probabilistic
machine learning algorithms such as k-nearest-neighbors, de-
cision trees or neural networks can directly return a multiclass
probability distribution. Calibration of these types of classifiers
and comparison to their evidential versions will be investigated
in future work.
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