
HAL Id: hal-01271568
https://hal.science/hal-01271568v1

Submitted on 9 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault tolerant planning: towards dependable
autonomous robots

Benjamin Lussier, Jérémie Guiochet, Félix Ingrand, Marc-Olivier Killijian,
David Powell

To cite this version:
Benjamin Lussier, Jérémie Guiochet, Félix Ingrand, Marc-Olivier Killijian, David Powell. Fault toler-
ant planning: towards dependable autonomous robots. [Research Report] Rapport LAAS n° 16046,
LAAS-CNRS. 2015. �hal-01271568�

https://hal.science/hal-01271568v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Fault tolerant planning: towards dependable
autonomous robots

Benjamin Lussier · Jeremie Guiochet ·
Felix Ingrand · Marc-Olivier Killijian ·
David Powell

Received: date / Accepted: date

Abstract Complex autonomous robots such as autonomous vehicles or robotic
guides are critical systems because their failures could have catastrophic and
costly consequences on themselves and their immediate environment, including
users and bystanders. Moreover, verification and validation of these systems,
that includes decisional software, is a difficult and complex task, requiring high
expertise. In practice, despite recent advances in formal verification techniques
and intensive testing for autonomous vehicles, it is still not possible to guar-
antee elimination of all residual development faults. Another way to enhance
the confidence placed in such software, is to consider tolerance mechanisms
with regards to these faults. This article proposes such an approach for tem-
poral planners which are a major class of decisional software components in
complex autonomous systems. The proposed fault tolerance mechanisms focus
on residual development faults in planning models and heuristics. They use
four complementary detection mechanisms to detect planning errors. Recovery
from possible errors is achieved using redundant diversified planning models.
We present an implementation of the proposed architecture on an existing
autonomous robot software architecture. We also describe a validation frame-
work used to evaluate the cost and efficacy of the fault tolerance mechanisms
using real robot software on simulated robot hardware, and fault injection in
the declarative planning models. In this framework, the proposed fault toler-
ant mechanisms are shown to greatly improve the system reliability with no
significant impact on performance.

Keywords Fault Tolerant Planner · Fault injection · Plan execution ·
Autonomous Robots

B. Lussier
Université Technologique de Compiègne, Paris, France
E-mail: benjamin.lussier@utc.fr

J. Guiochet · F. Ingrand · M.-O. Killijian · D. Powell
LAAS-CNRS, Université de Toulouse, France E-mail: {name.firstname}@laas.fr

2 Benjamin Lussier et al.

Mathematics Subject Classification (2000) 68
Categories (1)(2)

1 Introduction

Autonomous systems cover a large range of functionalities and complexities,
from robotic pets to space rovers and satellites, including museum tour guides,
autonomous vehicles and next generation of ambient intelligent systems for as-
sisting people [20]. Despite successes in autonomous navigation, exemplified
by Mars rovers and the clearing of the DARPA Grand Challenge [28] and
DARPA Urban Challenge [34], and more recently by the Google and Delphi
experiment cars, fully autonomous systems are not yet accepted for real-life
applications. Such systems should be able to choose and execute high-level
actions without any human supervision, in practice using planners as a cen-
tral decisional mechanism. However, one of the major stumbling blocks is the
difficulty of verifying and validating the behavior of such decisional software
in an open, unstructured and dynamic environment. One way to increase the
confidence that can be placed in planners despite imperfect verification and
validation is to consider a tolerance approach with regard to residual devel-
opment faults (such as design faults and programming faults). We investigate
such an approach in this paper, focussing on faults in the planner’s declara-
tive planning models. To the best of our knowledge, very little work has been
published on such an approach whereas we have shown in [22][23] that such
mechanisms can really improve the level of confidence that can be placed in
an autonomous system. Possible reasons for this limited use may result from
the following points :

– fault tolerant mechanisms must be implemented through redundancy in a
context with limited resources (space, power, etc.)

– fault tolerance mechanisms proposed in control engineering are efficient for
dealing with sensor or actuator faults, but they generally do not consider
faults related to decisional levels.

The main contribution of this paper is to present a fault tolerant archi-
tecture targeting software faults in planners, extendable to most decisional
mechanisms, and to validate it through fault injection experiments.

The paper is structured as follows. Section 2 introduces basic concepts of
dependability, robust planning, and current means for increase confidence in
planers. In Section 3, we present a framework for developing planners that are
able to tolerate development faults in their application-dependent knowledge,
and an implementation example on an existing robot architecture. An exper-
imental framework is proposed in Section 4 for evaluating the efficacy of the
proposed fault-tolerance mechanisms. Section 5 presents our evaluation results
and discusses the relevance of planning model diversification in our applica-
tion. Finally, Section 6 concludes and suggests future research directions.

Fault tolerant planning: towards dependable autonomous robots 3

2 Background

2.1 Dependability concepts

Dependability is defined as [3] the ability to deliver service that can justifiably
be trusted. Dependability encompasses many attributes, such as reliability.
In this paper, we focus on safety and availability, respectively the absence of
catastrophic consequences on the user and the environment, and the readiness
for correct service. Dependability’s threats are failures, error and faults. A
service failure happens when delivered service deviates from correct service.
An error is a deviation in the system’s state. Errors can propagate though the
system and may ultimately lead to a failure. Finally, a fault is the adjudged
or hypothesized cause of an error. A fault is active when it causes an error,
otherwise it is dormant. In this paper, we focus on development faults in
planners, such as design faults (an incorrect planning model, improperly used
heuristics, etc.) or programming faults (programming mistakes in the inference
mechanism, faulty variable values, etc.).

To avoid service failures that are more frequent and more severe than is
acceptable, dependability proposes four means:

– fault prevention : to prevent the occurrence or introduction of faults (tech-
niques coming from system engineering and good practices)

– fault removal : to reduce the number and severity of faults (mainly valida-
tion and verification techniques)

– fault forecasting : to estimate the present number, the future incidence,
and the likely consequences of faults (risk analysis methods)

– fault tolerance : to avoid service failures in the presence of faults (redun-
dancy, error detections, etc.).

The proposed approach in this paper is based on the very well known
fault-tolerant software method called Recovery Block [32]. It implements error
detection and system recovery to avoid system failures. The Recovery Block
pattern, as presented in [2], includes N diverse, independent, and functionally
equivalent software modules called “versions” from the same initial specifica-
tion. These diverse blocks are usually obtained using different programming
languages, compilers, etc. and developed by different teams These blocks are
classified into primary and N − 1 secondary versions. The primary version
(Block) is executed first and submitted to an error detection test. If an error
is detected, a secondary alternate version (Recovery Block) is executed and
tested. This last step is repeated until either one alternate passes is tested
error-free, or all alternates are exhausted and an overall system failure is re-
ported. Complementary to verification and testing, this technique is the only
known approach to improve trust in the behavior of a critical system regard-
ing residual development faults. For example, diversification is used in software
components of the Airbus A320, and in hardware and software components of
the Boeing B777.

4 Benjamin Lussier et al.

2.2 Robust planning in robotics

On-line real-time planning is essential for any system that claims to be au-
tonomous and able to fulfill its goals in an unpredictable open environment.
Planning is the activity of producing a plan to reach a goal from a given state
(e.g., the mission goals for the upcoming day of an exploration rover), using
a given planning model. Planning can be implemented in several ways but, in
practice, two approaches predominate:

– Search in a state space manipulates a graph of actions and states. It ex-
plores different action sequences from an initial state to choose the most
suitable one to achieve given goals.

– Search in plan space manipulates a graph of incomplete plans. It starts
with an empty plan containing the initial state and the final state (the
planner’s objectives), then considers ways to refine it by adding possible
and useful actions until the search comes up with a complete plan that
satisfies the planner goals. Unlike the search in a state space, actions are
not added sequentially to the plan: the first action added to the empty plan
may be the second to be executed. CSP (Constraint Satisfaction Problem)
solving is an iterative algorithm commonly used in this approach, assigning
successively possible values to each of the system variables and verifying
that constraints between the variables remain satisfied.

In both cases, the planner typically consists of two parts: (a) a declarative
planning model describing the system, the objects it can interact with, the
system’s possible actions and the associated constraints, and (b) a planning
search engine that can reason on the planning model and produce a plan of
actions enabling goals to be reached. A planner typically need two inputs: the
current state of the system (position, sensors and actuators status, etc.) and its
mission objectives (goals). The planning model is specific to the application,
while the planning engine may be independent from the application. However
planning model and search engine are often tightly linked by heuristics, that
are included within the model to guide the search of the engine. Moreover, the
planning model must be written in a way exploitable by the planning engine,
and is usually not easily translated to another engine, nor easily understood
by human developers or testers.

The robustness of a planner, that is its ability to achieve the system’s
assigned goals despite adverse situations (lighting conditions, unexpected ob-
stacles, etc.), may be attained through either implicit or explicit handling of
adverse situations [24].

Robustness through implicit handling of adverse situations is typically
achieved by commitment strategy: planners seek to produce flexible plans that
contain as much latitude and adaptability as possible [14,29]. The plan pro-
duced is in fact a family of plans consistent with the constraints of the system.
Inflexible plans, where all actions parameters are defined in advance, including
the start and end dates of each action [10], need to rely heavily on adapta-

Fault tolerant planning: towards dependable autonomous robots 5

tion capabilities at lower system layers to tolerate small discrepancies in plan
execution.

Robustness through explicit handling of adverse situations, i.e., when ac-
tions of the current plan fail, may be achieved through two strategies:

– Re-planning , which consists in developing a new plan from the current
system state and still unresolved goals. Depending on the planning model
complexity, replanning may be significantly time costly. Other system ac-
tivities are thus generally halted during replanning.

– Plan repair , which attempts to reduce the time lost in re-planning by
salvaging parts of the previous failed plan, and executing them while the
rest of the plan is being repaired. However, if reducing the salvaged plan
conflicts with unresolved goals, plan repair is stopped and re-planning is
initiated.

Note however that such approaches do not cover residual faults in the
planning engine nor in the planning models.

2.3 Dependable robot planners

Dependability in planners have been mostly achieved using fault removal
(static verification and testing) in the domain of task planning in robotics.
Nevertheless, as presented in [27], the classic issues faced by verification and
testing in control systems, are exacerbated for autonomous systems:

– execution contexts in autonomous systems are neither controllable nor com-
pletely known; even worse, consequences of the system actions are often
uncertain.

– integrated planning mechanisms have to be validated in a complete archi-
tecture, since they aim to enhance functionalities of the lower levels through
high-level abstractions and actions. Integrated tests are thus necessary very
early in the development cycle.

– the oracle problem1 is particularly difficult since (a) equally correct plans
may be completely different, (b) non-deterministic action outcomes and
temporal uncertainties can cause otherwise correct plans to sometimes fail
when executed, and (c) unforeseen adverse environmental situations may
completely prevent any plan from achieving all its goals (for example, cliffs,
or some other feature of the local terrain, may make a position goal un-
reachable).

Despite those issues, some work concentrated efforts on the verification of
the planner engine using static verifier [6], or a model checking [16] in the
Deep-Space One spacecraft. But the trickiest part of planner software is most
certainly the planning model itself, since it changes from one application to
another and dictates in fine what plans are produced. Typically, a planning

1 How to conclude on correctness of a program’s outputs to selected test inputs?

6 Benjamin Lussier et al.

model and the associated application-specific search heuristics are constructed
and refined incrementally and empirically, by testing them against a graded
set of challenges [15]. However, a small change to either can have surprisingly
dramatic changes in the planner’s behavior, both in terms of accuracy and
performance.

One way to validate a planning model is to define an oracle as a set of
constraints that characterizes a correct plan: plans satisfying the constraints
are deemed correct. Such a technique was used for thorough testing of the
RAX planner during the NASA Deep Space One project [4], and is supported
by the VAL validation tool [17]. However, extensive collaboration of appli-
cation and planner experts is often necessary to generate the correct set of
constraints. Moreover, when the plans produced by the planner are checked
against the same constraints as those included in the planning model, this
approach only provides confidence about the planning engine and not the
application-specific planning model. Some work [19,30] has attempted to val-
idate application-specific models by means of model-checking, which usually
implies a manual conversion of the model into the syntax accepted by the
model checker. This requires an intimate knowledge of the model checker and
it is thus usually carried externally by a formal method expert, rather than
by the system designer. However, some recent research has studied how this
model transformation can be automated [7].

To the best of our knowledge, even if fault tolerance is common in real-time
control systems [36] and has been applied to robotic software components [35]
and mechanical parts [33], not much work has been done on the tolerance of
development faults in planners or other decisional mechanisms. Some methods
to detect errors during plan execution are studied in robotics (like monitoring
plan execution [5,31,26]), but they do not focus on faults in the planner itself.
Even for global approaches like in [11,25], the error detection is not actually
focusing on development faults in the planner.

One exception is [9], which proposes a measure for planner software reliabil-
ity and compares theoretical results to experimental ones, showing a necessary
compromise between temporal failures (related to tractability of decisional
mechanisms) and value failures (related to correctness of decisional mecha-
nisms). Later work [8] addresses this compromise through a fault-tolerance
approach based on concurrent use of planners with diversified heuristics: a
quick but dirty heuristic is used when a slower but more focused heuristic fails
to deliver a plan in time. To our knowledge, no other fault tolerance mecha-
nisms have been proposed in this domain. It is our opinion, however, that such
mechanisms are a useful complement to verification and testing for planners
embedded within critical autonomous systems.

Fault tolerant planning: towards dependable autonomous robots 7

3 An approach of fault tolerant planning: FTPlan

This section presents our approach using diversity to tolerate development
faults in planning models and heuristics. We first introduce the general prin-
ciples of our approach, before giving an implementation example.

As previously states, we focus in this paper on development faults in plan-
ners, such as design faults (an incorrect model, improperly used heuristics,
etc.) or programming faults (programming mistakes in the inference mecha-
nism, faulty variable values, etc.).

3.1 General principles

In this section, we propose a fault tolerant planner architecture based on the
Recovery Block pattern introduced in Section 2.1. It uses only two diverse
blocks, with an additional component, called FTPlan, in charge of detecting
errors and performing the recovery. We first introduce this FTPlan component,
then detail its error detection mechanisms. Finally, we propose two policies for
system recovery: sequential and concurrent.

3.1.1 FTplan component

From a dependability point of view, the fault-tolerance mechanisms have to be
as independent as possible from the planners. This is why we propose to handle
both the detection and recovery mechanisms, and the services necessary for
their implementation, in a middleware level component called FTplan, stand-
ing for Fault-Tolerant PLANner coordinator . This component has to integrate
the fault tolerance mechanisms into the autonomous system architecture. This
implies essentially communication, synchronization and coordination between
the error detection mechanisms and the redundant planners.

FTplan is intended to allow tolerance of development faults in planners
(and particularly in planning models). FTplan itself is not fault-tolerant, but
being much simpler than the planners it coordinates, classic verification and
testing (such as formal method or exhaustive testing) can be applied to check
that it is fault-free.

3.1.2 Error detection

Implementing error detection for decisional mechanisms in general, and plan-
ners in particular, is complex [24]. There are often many different valid plans,
which can be quite dissimilar. Therefore, error detection by comparison of
redundantly-produced plans is not a viable option. Thus, we must implement
error detection by independent means. Here, we propose four complementary
error detection mechanisms:

1. A watchdog timer can be used to detect when the search process is too slow
or when a critical failure such as a deadlock occurs. Timing errors detected

8 Benjamin Lussier et al.

in this way can be due to faults in the planning model, in its search engine,
or ineffectiveness of the search heuristics.

2. A plan analyzer (i.e., an on-line plan oracle) can apply an acceptance test
to the produced plan to check that it satisfies a number of constraints and
properties. This set of constraints and properties can be obtained from the
system specification and from domain expertise but it must be independent
with respect to the planning model. A plan analyzer is able to detect errors
due to faults in the planning model or heuristics, and in the planner itself.

3. A plan failure detector is a classic mechanism used in robotics for execution
control. Failure of an action which is part of the plan, may be due to an
unresolvable adverse environmental situation, or may indicate errors in the
plan due to faults in the knowledge or in the planning engine. Usually, when
such an action failure is raised, the planning engine tries to repair the plan.
When this is not possible, it raises a plan failure. We can use these plan
failure reports for detection purposes.

4. An on-line goal checker verifies whether goals are reached while the plan is
executed. A plan can be declared as (partially) failed if every action of the
plan has been carried out but not all goals have been achieved. The on-line
goal checker can resubmit unfulfilled goals to the planner at the start of
the next replanning.

Note that both watchdog timer and plan analyzer detect errors during planning
and thus before plan execution, while the plan failure detector and the on-line
goal checker monitor the plan execution itself.

3.1.3 System recovery

We propose two recovery mechanisms, both using different planners based on
diverse knowledge. The first one applies a sequential planning policy whereas
the second one uses a parallel policy.

With the first mechanism, the planners are executed sequentially, one after
another. The principle is given in Fig. 1. Basically, each time an error is de-
tected, we switch to another planner until all goals have been reached or until
all planners fail one after another when starting from the same initial system
state. In the latter case, no models allow the planner to tackle the planning
problem successfully: an exception must be raised to inform the operator of
mission failure and to allow the system to be put into a safe state (line 29).
When all planners have been used but some goals are still unsatisfied, we re-
vert to the initial set of planners (while block: line 4 to 32). This algorithm
illustrates the use of the four detection mechanisms presented in Section 3.1.2:
watchdog timer (lines 9 and 25), plan analyzer (line 14), plan failure detector
(line 16 and 18), on-line goal checker (lines 4, 6 and 17).

Until all goals have been achieved, the proposed algorithm reuses planners
that have previously been detected as failed (line 5). This makes sense for two
different reasons: (a) a perfectly correct plan can fail during execution due to
an adverse environmental situation, and (b) some planners, even faulty, can

Fault tolerant planning: towards dependable autonomous robots 9

1. begin mission
2. exec_failure ← NULL;
3. failed_planners ← ∅;
4. while (attainable_goals 6= ∅)
5. candidates ← planners;
6. while (candidates 6= ∅ & attainable_goals 6= ∅)
7. choose k such as (k ∈ candidates)

& (k /∈ failed_planners)
& ((k 6= exec_failure)
| (k ∪ failed_planners = candidates));

8. candidates ← candidates \ k;
9. init_watchdog(max_duration);
10. send(plan_request) to k;
11. wait % for either of these two events
12. 2 receive (plan_found) from k
13. stop_watchdog();
14. if analyze(plan)=OK then
15. failed_planners ← ∅;
16. res_exec ← k.execute_plan();
17. update(attainable_goals);
18. if res_exec 6= OK then
19. exec_failure ← k;
20. end if

% if the plan fails, then
% attainable_goals != empty and the
% online goal checker will loop line 3 or 5

21. else
22. log(k.invalid_plan);
23. failed_planners ← failed_planners ∪ k;
24. end if
25. 2 watchdog timeout
26. failed_planners ← failed_planners ∪ k;
27. end wait
28. if failed_planners = planners then
29. raise exception ‘no valid plan found in time’;

% no remaining planner,
% the mission has failed

30. end if
31. end while
32. end while
33. end mission

Fig. 1 Sequential Planning Policy

still be efficient for some settings since the situation that activated the fault
may have disappeared.

It is worth noting that the choice of the planners, and the order in which
they are used, is arbitrary in this particular example (line 7): we only chose to
exclude the last planner that led to an execution failure. However, the choice
of the planner could take advantage of application-specific knowledge about
the most appropriate planner for the current situation or knowledge about
recently observed failure rates of the planners.

With the second recovery mechanism, presented in Fig. 2, the planners
are executed concurrently. After the concurrent planning, one of the produced
plans is chosen (the first plan produced in the given algorithm), then validated
by the plan analyzer. If no error is found, other plannings are suspended and
the chosen plan is executed. If an error is detected by the plan analyzer (thus
before plan execution), another plan is selected and analyzed, until either a

10 Benjamin Lussier et al.

plan is found without detected errors, or there are no more candidate planners,
or the watchdog timer limit activates. In the latter cases, as for the sequential
planning, an exception must be raised to inform the operator of mission failure
and to allow the system to be put into a safe state (lines 25 and 29). Although
the system is supposed to be autonomous, if all decisional mechanisms are
found failing, we can not rely on them any longer and the system must be
stopped from executing his mission to avoid possible catastrophic failures.

The main differences with respect to the sequential planning policy are
that: (a) the plan request message is sent to every planning candidate (line
6), (b) when a correct plan is found, the other planners are requested to stop
planning (line 14), and (c) a watchdog timeout means that all the planners
have failed (line 28). This second technique is more appropriate when the user
believe that the some of the diversified planners may not be able to find a
solution to the problem (which is NP-complete problem), while others could
(for example thanks to diversified heuristics). Note that the computational
overhead of executing multiple planners simultaneously my be mitigated by
executing each planner on a different processor in multi-core computers.

In the given algorithm, the choice of planner order is implicit: the first
planner obtaining a plan is chosen. However, this could lead to the repeated
selection of the same faulty but rapid planner. Some additional mechanism
is thus required to circumvent this problem. We have chosen in this example
to withdraw the planner selected during the previous round from the set of
candidates for the current round, as its plan has led the system to an execution
failure (line 4). Note that as each planner use different planning model (and
possibly planning engine), each model possibly more efficient in some situations
than others, we have no guarantee that the same planner will be the first one
every time.

3.2 Implementation on a real robot

We present in this section an implementation of the previously proposed se-
quential planning policy in the LAAS hierarchical software architecture for
autonomous systems.

3.2.1 LAAS architecture

The LAAS architecture [1,21] has been successfully applied to several mobile
robots, some of which have performed missions in real situations (human in-
teraction or exploration). It is composed of three main layers as presented in
Fig. 3.

The functional layer is composed of a set of automatically generatedGenoM
modules, each of them offering a set of services, which perform computation
(e.g., trajectory movement calculation) or communication with physical de-
vices (sensors and actuators). A service request gives rise to the execution of

Fault tolerant planning: towards dependable autonomous robots 11

1. begin mission
2. exec_failure ← NULL;
3. while (attainable_goals 6= ∅)
4. candidates ← planners \ exec_failure;
5. init_watchdog(max_duration);
6. send(plan_request) to candidates;
7. while (candidates 6= ∅)
8. wait % for either of these two events
9. 2 receive (plan) from k ∈ candidates
10. candidates ← candidates \ k;
11. pause_watchdog();
12. if analyze(plan)=OK then
13. stop_watchdog();
14. send (cancel_planning) to candidates;
15. candidates ← ∅;
16. res_exec ← k.execute_plan();
17. update(attainable_goals);
18. if res_exec 6= OK then
19. exec_failure ← k;
20. end if

% if the plan fails, then
% attainable_goals != empty and
% the online goal checker will loop to line 3

21. else
22. resume_watchdog;
23. log(k.invalid_plan);
24. if (candidates = ∅)
25. raise exception ‘no valid plan found in time’;

% no remaining planner,
% the mission has failed

26. end if
27. end if
28. 2 watchdog_timeout
29. raise exception ‘no valid plan found in time’;

% no remaining planner,
% the mission has failed

30. end wait
31. end while
32. end while
33. end mission

Fig. 2 Concurrent Planning Policy

an elementary action, the success or failure of which is reported to the re-
quester, along with other action-specific information. Data exchange between
modules is performed through the use of “posters”, each of which is a shared
memory space attached to a module, and readable by the others.

The procedural executive OpenPRS (Open Procedural Reasoning System),
is in charge of decomposing and refining plan actions into lower-level actions
executable by functional components, and coordinating their execution. This
component links the decisional component (IxTeT) and the functional layer.
During execution, OpenPRS reports any action failures to the planner, in
order to re-plan or repair the plan. As several IxTeT actions can be performed
concurrently, it has also to schedule sequences of refined actions.

IxTeT (IndeXed TimE Table) [14] is a temporal constraint planner, com-
bining high-level actions to build plans. It uses CSP to search in plan space,
as presented in Section 2.2. Its deliberations are based on piecewise constant
functions called attributes that represent the evolution of the system state, of

12 Benjamin Lussier et al.

N

S

EW

 Planner

(IxTeT)

Procedural Executive

(OpenPRS)

Environment

Functional

modules

(GenoM)

Physical layer

Fig. 3 The LAAS architecture

1. task TAKE_PHOTO(?x, ?y)(t _start, t_end) {
2. ?x in [-oo,+oo]; ?y in [-oo,+oo];
3. hold(POS_X():?x, (t_start, t_end));
4. hold(POS_Y():?y, (t_start, t_end));
5. hold(POS _CAMERA():down,(t_start, t_end));
6. event(IMAGE(?x, ?y):(to_do,done),t_end);
7. use(CAMERA():1, (t_start, t_end));
8. (t_start - t_end) in [10,60];
9. }nonPreemptive

Fig. 4 An Action in the IxTeT Formalism

its resources, and of its environment. The different actions are described in
a planning model file as a set of constraints either on the system attributes
(e.g., robot position, energy consumption, and environment evolution) or on
temporal and numerical variables (e.g., action duration). A valid plan is a
partially-ordered set of possibly concurrent, non-conflicting actions that to-
gether achieve the system goals.

Constraints (C) are defined using:

– classical mathematical operators for temporal and numerical variables (V),
– the consume, produce and use predicates for consumption, production or

usage of a system resource,
– the hold (H) and event (E) predicates for the other system attributes. The

hold predicate represents persistence of an attribute value over a given
period of time (e.g., hold(robot, position, (start,end))), whereas the event
predicate represents an instantaneous change of value (e.g., event(photo,
(to_do, done), time)).

Actions are modeled through IxTeT tasks. Fig. 4 gives the example of
a high-level action that can be used to photograph a scientific object in an
exploratory mission. Line 1 declares the task and its numerical and temporal
parameters: x and y are the Cartesian coordinates of the scientific object to be
photographed, while t_start and t_end are temporal constraints representing
respectively the starting and ending time of the task. Lines 3 to 5 define the

Fault tolerant planning: towards dependable autonomous robots 13

Fault Tolerant Planner

FTPlan

Watchdog
Plan

failure
detector

Online
goal

checker

Planner
(IxTeT)

Planner
(IxTeT)

Planning
Model1

Planning
Model2

Procedural Executive
(OpenPRS)

Goals

Fig. 5 Fault tolerant planner

constraints on the system attributes required for all the task duration: lines 3
and 4 stipulate that the robot position must not change while taking a picture,
whereas line 5 requires that the camera points down to the object that needs to
be photographed. Line 6 marks the photo as successfully taken when the task
terminates. Line 7 presents an example of resource management: the resource
CAMERA is used for the duration of the task. Line 8 presents an example of
constraints on temporal values by specifying the possible duration of the task
(from ten to sixty seconds). Finally, line 9 closes the task definition and states
that executions of the task cannot be preempted.

3.2.2 Fault tolerant planner implementation

The fault tolerance principles presented in Section 3.1 have been implemented
in a fault tolerant planner component as presented in Fig. 5. This component
replaces the original component “Planner” presented in Fig. 3. The FTplan
component is in charge of communicating with OpenPRS as the original plan-
ner does. To be consistent with the current implementation, FTplan uses the
same technologies as OpenPRS and IxTeT for communication.

The current version of FTplan implements the sequential redundant plan-
ner coordination algorithm presented earlier (Section 3.1, Fig. 1) with two
IxTeT planners. Currently, the plan analysis function is empty (it always re-
turns true) so error detection relies solely on just three of the mechanisms
introduced earlier: watchdog timer, plan failure detection, and on-line goal
checker.

Fig. 6 presents an example of a fault tolerance scenario using the sequential
policy: a first plan is produced and executed using the planner, but an action
failure is detected during execution. To simplify the diagram, the plan failure
detector service is represented with the message “executionFailure". The first
planner is then re-initialized while the second one is asked for a new plan from
the current situation. However this planning lasts too long (a model fault
may have caused the planner to freeze) so the watchdog times out, FTplan

14 Benjamin Lussier et al.

plan()
start()

stop()

create()

create()
:watchdog

:FTplan

:IxTeT1

:IxTeT2

create()

create()

start()

timeout

start()

stop()

executionSuccess

execute(thePlan)

thePlan

plan()

create()

kill()

stop()

plan()

kill()

executionFailure

execute(thePlan)

thePlan()

:IxTeT2

:IxTeT1

Fig. 6 A fault tolerance scenario with the sequential planning policy

reinitializes the second planner before switching back to the first planner and
asking for a new plan. The plan is then produced and successfully executed.

3.2.3 Model diversification

In our implementation, two different planning models are used with the IxTeT
planning engine. The first model (which we will call Model1) was originally
developed to validate implementation of the LAAS architecture (and particu-
larly the IxTeT component) on a real robot. It is the result of iterative efforts
from a different team of researchers. It contains actions needed for a space
exploration rover, such as moving to a designated position, photographing
objects, and communicating with an orbiter.

A second variant (called Model2) for the same target application has been
developed by a different team. Diversification with respect toModel1 has been
also forced through specific design choices. For example, robot position is de-

Fault tolerant planning: towards dependable autonomous robots 15

(V : variable ; C : constraint ; E : event ; H : hold)

Model1 Model2
V C E H V C E H

init. move 2 1 2 2 2 1 1 1
init. camera 2 1 2 2 3 2 2 1
move camera 4 4 2 2 6 5 4 3
take photo 5 4 2 4 4 3 1 4
communicate 3 2 2 3 4 3 1 3
move 19 32 6 5 8 19-45 4 5

- - - - 8 67-116 5 5

Table 1 Syntactical Comparison between Model1 and Model2

fined using Cartesian coordinates in Model1 whereas Model2 uses a symbolic
representation, thus implementing fundamentally different algorithms to those
of the Cartesian one. Overall, numerous modifications were carried out, such
as pruning redundant system attributes and constraints, or “merging” comple-
mentary attributes (e.g., a system position attribute can be combined with a
moving/still boolean attribute to give a single attribute that gives the system
position when it is motionless, or else the value MOVING).

Table 1 presents the syntactical content of each action of the two planning
models, showing substantial content differences between the two models. It
describes in particular the numbers of variables (V), numerical constraints
(C), and event (E) and hold (H) assertions for each action presented in section
3.2.1.

4 Framework for Validation

Our validation framework relies on fault injection at the decisional layer of
a full stack of robot controller software, and simulation of robot hardware.
Only the robot hardware is simulated, all the software components otherwise
execute and interact in real time, in the same way as on a real robot. Although
the considered robot controller software stack has been extensively used in
demonstrations of a real robot, we preferred to resort to simulation because
the behavior of a real robot may become hazardous when we inject faults and
it could cause damage to itself or its direct surroundings. A second reason is
that numerous repetitive experiments on real robots would be both expensive
and hard to automate.

Fault injection is used since it is the only way to test the proposed fault
tolerance mechanisms with respect to their specific inputs, i.e., faults in plan-
ning knowledge. In the absence of any data regarding real faults in declarative
models, there is no other practical choice than to rely on mutations2, which
have been found to efficiently simulate real faults in imperative languages [13].

We present in this section the framework that has been used to validate
the proposed fault tolerant mechanisms: its software architecture, the workload
and faultload generated as experiment inputs, the data recorded for each basic

2 A mutation is a syntactic modification of an existing program.

16 Benjamin Lussier et al.

Functionnal layer
(GenoM modules)

Camera Platine NDD Antenna

Aspect

SICK

POM

RFLEX

Fault tolerant planner
(FTPlan, IxTeT)

Procedural Executive
(OpenPRS)

Pocosim

Gazebo World
description

LAAS
architecture

Simulation
Environment

Fig. 7 Simulation environment

experiment and, based on that data, the measurements that represent the
output of each set of experiments.

4.1 Testing software architecture

The whole simulation environment is represented in Fig. 7. It incorporates
three elements: an open source robot simulator named Gazebo, an interface
library named Pocosim, and the components of the LAAS architecture already
presented in Section 3.2.1.

The robot simulator Gazebo3 is used to simulate the physical world and the
actions of a mobile robot in that world. It generates realistic sensor feedback
and physically plausible interactions between objects through a simulation of
rigid-body physics in three dimensions.

The Pocosim library [18] is a software bridge between the simulated robot
executed on Gazebo and the software commands generated by the GenoM
modules.

Our target autonomous system is an existing ATRV (All Terrain Robotic
Vehicle) robot commercialized by iRobot, and employs GenoM software mod-
ules interfaced with the Gazebo simulated hardware (see Figure 8). The upper

3 The player/stage project, http://playerstage.sourceforge.net

Fault tolerant planning: towards dependable autonomous robots 17

Fig. 8 LAAS-CNRS Dala robot with an ATRV base

layer of the LAAS architecture executes as presented in the previous section.
The functional layer consists of eight GenoM modules that can be categorized
into three groups:

– The SICK and RFLEXmodules both control hardware components through
the Pocosim library: SICK controls a laser sensor whereas RFLEX controls
wheel motions and an odometer.

– NDD, ASPECT and POM are software modules that use SICK and RFLEX
to implement navigation and obstacle avoidance. POM establishes position
data of the robot according to the odometer and other possible localization
mechanisms. ASPECT uses this position and feedback from SICK to cre-
ate a map of the robot’s immediate surroundings, which is used by NDD
to generate navigation commands using a nearness diagram algorithm.

– PLATINE, ANTENNA and CAMERA control hardware components that
are not simulated by Gazebo but by software simulation in the GenoM
modules themselves (respectively, a camera orientation device, a commu-
nication antenna, and two cameras).

4.2 Workload

Autonomous systems move in unpredictable, open and unknown environments.
They do not know a priori the obstacles (static or dynamic) that they will en-
counter, the terrain configuration, the available roads, the presence of external
perturbations (weather, lack of brightness, etc.).

Our workload mimics the possible activity of a space rover. The system
is required to achieve three subsets of goals during a mission: take science
photos at specific locations (in any order), communicate with an orbiter during
specified visibility windows, and be back at the initial position at the end of
the mission.

To partially address the fact that the robot must operate in an open un-
known environment, we need to confront the system with several different
missions, in several different “worlds”. Each mission encompasses the number
and location of photos to be taken, and the number and occurrence times of

18 Benjamin Lussier et al.

orbiter visibility windows. Each world is a set of static obstacles unknown to
the robot. These unknown obstacles stress the robot’s navigation and obsta-
cle avoidance mechanism (see Section 4.1). At the plan execution level, the
unknown obstacles create uncertainty as regards the outcome of action execu-
tions, and can possibly prevent the robot from achieving some of its goals.

We implemented four missions and four worlds, thus applying sixteen ex-
ecution contexts to each fault situation. The missions and worlds are defined
with respect to 12m x 12m environment. The initial position of the robot is set
equal to the center of this square, at coordinates (0,0). Missions are referenced
as gradually more difficult M1 to M4 (Fig. 9): M1 consists in three photos
in nearby locations and two communication goals (shown as shaded intervals
on the mission time axis), whereas M4 consists in four communications goals
and five far apart photo locations. The maximum duration of a mission is 800
seconds, during which it is physically possible to achieve all the objectives.
Worlds are referenced as W1 to W4 (Fig. 10). W1 is an empty world with no
obstacles to hinder plan execution, while W2 and W3 contain small cylindrical
obstacles that are avoidable by our robot navigation and obstacle avoidance
mechanism. However, W4 includes larger rectangular obstacles that may be
impossible for the navigation module to circumnavigate, and thus susceptible
to irremediably block the robot path.

The experiments are inherently non-deterministic, due to asynchrony of
the various robot subsystems and in the underlying operating systems. Task
scheduling differences between similar experiments may degrade into task fail-
ures and possibly unsatisfied goals, even in the absence of faults. To address
this non-determinacy, we execute each basic experiment three times, leading
to a total of 48 experiments per fault scenario (3 executions ∗ 4 missions ∗ 4
worlds). Ideally More repetition would be needed for statistical inference on
the basic experiments, but this would have led to a total number of experi-
ments higher than that which could have been carried out with our available
resources (including initialization and data processing, each basic experiment
lasts about 20 minutes).

4.3 Faultload

To assess performance and efficacy of the proposed fault tolerance mechanisms,
we inject faults in a planning model by random mutation of the model source
code (i.e., in Model1 of Fig. 5).

From a syntactical analysis of the IxTeT formalism, five types of possible
mutations were identified:

i) Substitution of numerical values: each numerical value is exchanged with
members of a set of real numbers that encompasses (a) all numerical vari-
ables in all the tasks of the model, (b) a set of specific values (such as 0, 1
or -1), and (c) a set of randomly-selected values.

Fault tolerant planning: towards dependable autonomous robots 19

−6

0

6

−6 0 6 −6 0 6
−6

0

6

6

0

−6
−6 0 6

6

0

−6
−6 0 6

y (m)

x (m)

y (m) y (m)

x (m)

x (m)

y (m)

x (m)

0 800 8000400 400

Mission 1 Mission 2

t (s) t (s)

8008000 0 400400

initial position

photo to be taken

Mission 3 Mission 4

t (s) t (s)

for communication
visibility window

Fig. 9 The Set of Missions: M1 to M4

ii) Substitution of variables: since the scope of a variable is limited to the
task where it is defined, numerical (resp. temporal) variables are exchanged
successively with all numerical (resp. temporal) variables of the same task.

iii) Substitution of attribute values: in the IxTeT formalism, attributes are the
different variables that together describe the system state. Attribute values
in the model are exchanged with other possible values in the range of the
attribute.

iv) Substitution of language operators: in addition to classic numerical op-
erators on temporal and numerical values, the IxTeT formalism employs
specific operators, such as “nonPreemptive” (that indicates that a task can-
not be interrupted by the executive).

v) Removal of a constraint relation: a randomly selected constraint on at-
tributes or variables is removed from the model.

Substitution mutations were automatically generated using the SESAME
tool [12]. This tool generates a database of possible mutants based on the orig-
inal source code and a manually generated file called the mutation table, which
describes all the feasible substitutions. Fig. 11 presents a simple example of a
mutation table: each instance of the strings -oo, 60 and 1 in the code source
will be successively replaced by the strings -1, 4 and 26.3, each substitution
generating a particular mutant; each instance of the strings in the set {?obj,
?x, ?y} will be successively replaced by the other strings in the same set; etc.

Each possible mutant is first compiled off-line, and only added to the
database when its compilation does not result in an error, and when its bi-

20 Benjamin Lussier et al.

−6

0

6

−6 0 6 −6 0 6
−6

0

6

6

0

−6
−6 0 6

6

0

−6
−6 0 6

x (m)x (m)

y (m) y (m)

Obstacles

x (m)x (m)

y (m)y (m)

Environment 1 Environment 2

Environment 4Environment 3

Fig. 10 The Set of Worlds: W1 to W4

% substitution of numerical values
{“-oo”, “60”, “1”} → {“-1”, “-4”, “26.3”}

% substitution of variables
{“?obj”, “?x”, “?y”}
{“?t_start”, “?t_end”}

% substitution of attribute values
{“downward”, “straight”, “other”}
{“none”, “done”, “doing”}

% substitution of language operators
{“nonPreemptive”, “latePreemptive”} → {“ “}
{“contingent”} → {“ “}

Fig. 11 Mutation Table Example

nary is not identical to that of the non-mutated source code. All in all, more
than 1000 mutants were thus automatically generated from the 300 lines plan-
ning model. To improve representativeness of injected faults, we also chose to
discard mutants where no plan is found in any mission (we consider that mod-
els that systematically fail would easily be detected during the development
phase).

Finally, to augment the number of relevant experiments, mutant selection
was carried out in two phases: (1) a random selection either from the whole
database or from a specific type of mutation, (2) a simple manual analy-

Fault tolerant planning: towards dependable autonomous robots 21

sis aimed at eliminating mutants that are trivially equivalent to the original
model.

4.4 Recorded data and measurements

Numerous log files are generated by a single experiment: simulated data from
Gazebo (including robot position and hardware module activity); output mes-
sages from GenoM modules, the OpenPRS procedural executive and FTplan;
requests and reports sent and received by each planner, as well as outputs of
the planning process. For each basic experiment, these uncompressed text files
require from 4 to 16 Mb; the 48 experiments characterizing one mutant require
nearly 320 Mb.

Condensing this amount of data into significant relevant measures is prob-
lematic. Moreover, contrary to more classic mutation experiments, the result
of an experiment cannot be easily dichotomized as either failed or successful.
As previously mentioned, an autonomous system is confronted with partially
unknown environments and situations, and some of its goals may be difficult
or even impossible to achieve in some contexts. Thus, assessment of the re-
sults of a mission must be graded into more than just two levels. Additionally,
detection of equivalent mutants is becoming more complex due to the non-
deterministic execution context of autonomous systems.

To address these issues, we chose to categorize the quality of the result of
an experiment according to: (a) mission dependability, defined in terms of the
goals that have been successfully achieved (or alternatively, through the inverse
notion of mission un-dependability), (b) mission performance indicators such
as the mission execution time and the distance covered by the robot to achieve
its goals, and (c) internal measures of planning behavior.

Considering the sets of missionsM given to the system, worldsW in which
it evolved and faults F injected into the system, mission un-dependability for
an elementary experiment is given by:

– ϕp(M,W,F), the average proportion of unachieved photo goals,
– ϕc(M,W,F), the average proportion of unachieved communication goals,
– ϕr(M,W,F), the average proportion of unachieved returns to the initial

position,
– µ(M,W,F), the average proportion of failed missions, where a mission is

pessimistically defined as failed if any goal (photo, communication, return)
is not achieved.

For example, ϕp(M3,W4, 39) represents the mean proportion of failed pho-
tos for the mission M3, in the world W4, with the injected fault 39, aver-
aged over the several elementary experiments (currently three) carried out
with each injected fault. We defineM∗ = {M1,M2,M3,M4} (and, similarly,
W∗ = {W1,W2,W3,W4}), such that ϕp(M∗,W4, ∅) represents the mean
proportion of failed photos for all four missions in world W4, with no injected
faults; it characterizes twelve elementary experiments.

22 Benjamin Lussier et al.

GazeboGazebo Gazebo

Three Systems to be Compared

Procedural Executive
(OpenPRS)

Functional Layer
(GenoM)

Ixtet1

Model2

Procedural Executive
(OpenPRS)

Functional Layer
(GenoM)

Ixtet1

Model1

Procedural Executive
(OpenPRS)

Functional Layer
(GenoM)

Ixtet Ixtet

FTplan

Model1 Model2

Robot 1 Robot 2 Robot 1/2

Introduction
Planning in

Autonomous Systems

Fault Tolerant

Planning

Validation

Experiments
Conclusion 26

Fig. 12 Experimental Systems: Robot1, Robot2 and Robot1/2

We define two measures to characterize the performance of the rover during
its mission:

– D(M,W,F), the average distance (in meters) covered by the rover,
– T (M,W,F), the average duration (in seconds) of rover activity, i.e., the

time at which it performed its last action.

Finally, to characterize the internal behavior of plan execution, we define:

– R(M,W,F), the average number of replannings during an experiment.

5 Results

Experiments were executed on i386 Linux-based systems with a 3.2 GHz CPU
and the Linux OS. We first study the performance cost of the proposed mech-
anisms, then give three examples of fault injection results, and finally present
global results of the fault injection campaign.

We particularly focus on three systems (Fig. 12): a non-redundant robot us-
ingModel1 (referred to as Robot1), another non-redundant robot usingModel2
(referred to as Robot2) and a diversely redundant robot using FTplan with
Model1 and Model2 (referred to as Robot1/2).

Two further systems are considered in Section 5.1 when analyzing the per-
formance impact of our mechanisms. Both implement a version of IxTeT with
no plan repair capability, thus leading to increased numbers of replannings
and model switches: Robot∗1 uses Model1, and Robot∗1/1 uses FTplan with the
same Model1 for both planners.

5.1 Fault-free performance

To determine the overhead of the proposed fault tolerance mechanisms, we first
concentrate on the supposed fault-free models Model1 and Model2. Fig. 13
shows bar-graphs of the observed mission un-dependability measures ϕp, ϕc,
ϕr, µ and the planning behavior measure R, for Robot1, Robot2 and Robot1/2

Fault tolerant planning: towards dependable autonomous robots 23

0% 50% 100%

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

ϕ
__

p(m ,w,Ø)
photo

0% 50% 100%

ϕ
__

c(m ,w,Ø)
comm.

0% 50% 100%

ϕ
__

h(m ,w,Ø)
return

0% 50% 100%

μ
_
(m ,w,Ø)
mission

0 1 2 3
R
_

(m ,w,Ø)

nb
replan.

Robot1Robot2Robot1/2

Fig. 13 Mission Undependability and Replannings without Injected Faults

in each of the sixteen mission-world pairs M1W1 to M4W4. Fig. 14 gives bar-
graphs of the observed performance measures D and T .

Note that results in W4 must be treated with caution: as previously ex-
plained, this world contains large obstacles that may cause navigational failures
and forever block the robot path, irrespectively of replanning or model switch-
ing. Since our work focuses on planning model faults rather than limitations
of functional modules, we consider that success in this world relies more on
serendipity in the choice of plan rather than correctness of the planning model.
It is however interesting to study the system reaction to unforeseen and unfor-
giving situations that possibly arise in an open and uncontrolled environment.
Note that these results show that different models give rise to different failure
behaviors: particularly in W4, the three systems fail differently.

W4 set aside, results are globally very good: Robot1 and Robot1/2 succeed
in all their goals, while Robot2 fails a few goals in M3, and all its return goals
in M4W1. These failures may be attributed to a larger set of constraints in
this model that may be costly in performance, and underestimated distance
declarations. The mean activity time T (M∗,W∗, ∅) is 404 seconds for Robot1,
376 seconds for Robot2, and 405 seconds for Robot1/2. Time performance-wise,
the three systems are thus roughly equivalent.

Although the results are mostly positive, showing that FTplan’s main exe-
cution loop does not severely decrease goal achievement or performance in the

24 Benjamin Lussier et al.

0 20 40 60 80

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

D
_

(m ,w,Ø) (m)
distance

0 200 400 600 800
T
_

(m ,w,Ø) (s)
time

Robot1Robot2Robot1/2

Fig. 14 Mission Performance without Injected Faults

chosen scenarios, they are still insufficient to assess the overhead of planner
switches as very few occurred in these fault-free experiments.

This overhead is further studied in experiments using Robot∗1 and Robot∗1/1.
These two systems use a planner without the optimizing functionality of plan
repair (presented in Section 2.2) and are thus particularly prone to time-costly
replannings: any failed action systematically leads to complete replanning,
with an additional model switch for Robot∗1/1. Model 1 was used as both al-
ternatives in Robot∗1/1 in order to focus on the cost of the coordination mech-
anisms rather than on actual recovery. Results are presented in Fig. 15 and
Fig. 16.

We effectively see that there are many more replannings (and thus model
switches) than in the previous experiments (note the change in scale for R).
The mean number of replannings per experiment is 8.3 for Robot∗1 compared
to 0.3 for Robot1, and 8.9 for Robot∗1/1 compared to 0.4 for Robot1/2. M1W2
appears as a singularity for Robot∗1/1: after a few minutes of execution, the
IxTeT planner finds no solution in its current situation. We believe that this
is due to an elusive bug in either the model, FTplan, or the IxTeT planner.
However, the same experiment with Robot∗1/2 (using diversification through the
first and second models, cf. Figs. 13- 14) gives successful missions, suggesting
that the bug lies in the no-plan-repair version of IxTeT that we developed
specifically for this experiment.

Fault tolerant planning: towards dependable autonomous robots 25

0% 50% 100%

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

ϕ
__

p(m,w,∅)
photo

0% 50% 100%

ϕ
__

c(m,w,∅)
comm.

0% 50% 100%

ϕ
__

h(m,w,∅)
return

0% 50% 100%

µ
_
(m,w,∅)
mission

0 10 20 30

R
_

(m,w,∅)

nb
replan.

Robot *1
Robot*1/1

Fig. 15 Mission Undependability and Replannings without Injected Faults and with No
Plan Repair

Apart from this singularity, Robot∗1/1 only fails more goals than Robot∗1
in the over-stressing W4 execution contexts, as well as the quite complex
mission-world pair M4W3. Setting aside W4 (and the M1W2 singularity), the
mean activity time T is 381 seconds for Robot∗1 and 431 seconds for Robot∗1/1,
indicating an overhead of 13%. Including W4, T is 456 seconds for Robot∗1
and 535 seconds for Robot∗1/1, indicating an overhead of 17%. We deem these
results to be quite acceptable considering the negative impact of discarding
plan repair.

5.2 Fault-tolerance efficacy

We present here results regarding Robot1 and Robot1/2, when the same faults
are injected in Model1 of both systems. We first begin with three mutation
examples, before detailing global results for the 28 mutants considered in our
experiment campaign.

5.2.1 Results for three specific mutations

Three examples of mutations are described here, to present the type of results
and behavior that occurred in our experiments. For a more compact display,
only mission undependability and planning behavior measures are represented.

26 Benjamin Lussier et al.

0 20 40 60 80

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

D
_

(m,w,∅) (m)

distance

0 200 400 600 800

T
_

(m,w,∅) (s)

time

Robot *1
Robot*1/1

Fig. 16 Mission Performance without Injected Faults and with No Plan Repair

Results for the first mutation, with identifier 39, are presented in Fig. 17.
This mutation causes an overly constrained robot position during a camera
shot. It thus results in the planner being unable to find plans for missions
where photographs have to be taken in positions that do not respect the overly-
restrictive constraint (this is the case for missions M2 and M4). This example
illustrates the significance of the mission-world pairs chosen as validation sce-
narios: many different missions need to be considered since faults can remain
inactivated in some missions. Since testing the practically infinite execution
context is well nigh impossible, this example also underlines the difficulty of
testing and thus the relevance of fault tolerance mechanisms to address resid-
ual faults in the deployed planning models.

Fig. 18 presents the results for mutation 589. The fault injected in this
mutation affects only the movement recovery action of the planning model.
Thus, contrary to the previous example, correct plans are established for all
missions. However, as soon as a movement action fails, the planner is unable
to find a plan allowing recovery of the movement, which causes failure of the
system. This is particularly obvious in the case of missions M1 and M3, where
short distances between photograph locations lead to a short temporal margin
for the movement action. As acceleration, deceleration and rotation are not
considered in the planning model, movements are susceptible to take longer
than estimated, and can thus be interrupted by the plan execution controller
and considered failed, necessitating a recovery action. In missions M2 and

Fault tolerant planning: towards dependable autonomous robots 27

0% 50% 100%

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

ϕ
__

p(m,w,39)
photo

0% 50% 100%

ϕ
__

c(m,w,39)
comm.

0% 50% 100%

ϕ
__

h(m,w,39)
return

0% 50% 100%

µ
_
(m,w,39)
mission

0 1 2 3 4

R
_

(m,w,39)

nb
replan.

Robot1Robot1/2

Fig. 17 Results for mutation 39

M4, movements cover greater distances, resulting in larger temporal margins
and thus fewer movement action failures. Robot1/2 tolerates this fault to some
extent: completely in mission M2 and partially in mission M4. The high failure
rate of mission M3 for Robot1/2 can be explained by a domino effect due to
communication goals being given priority over photography goals. When the
fault is activated due to a failed movement action, FTplan switches to Model2
and requests a plan. However, a communication goal is now so near that the
planner is unable to find a plan to achieve it, so it abandons goals of lesser
priority, but to no avail. This example leads to two important observations:

– First, testing with many different missions and worlds is once again under-
lined, as the fault is not activated in several scenarios.

– Second, testing must be carried out in an integrated system. Indeed, the
original plans produced by the planner are correct, as well as the lower
levels of the system. However, the planning model contains a serious fault
that can cause critical failure of the system in executions where recovery
is required.

The results of mutation 583 are presented in Fig. 19. It is the only case in
our 28 experiments where the fault intolerant Robot1 shows better results than
the fault tolerant Robot1/2, although we identified 8 other mutations where
results in both systems were similar (including five mutants suspected to be
equivalent to the original model). The injected fault causes the duration of the
robot movement to be underestimated in plans, resulting in execution errors

28 Benjamin Lussier et al.

0% 50% 100%

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

ϕ
__

p(m,w,589)
photo

0% 50% 100%

ϕ
__

c(m,w,589)
comm.

0% 50% 100%

ϕ
__

h(m,w,589)
return

0% 50% 100%

µ
_
(m,w,589)
mission

0 1 2 3

R
_

(m,w,589)

nb
replan.

Robot1Robot1/2

Fig. 18 Results for mutation 589

and replannings that lead to some goals being missed. Failures of Robot1/2 are
not directly linked to the injected fault, but rather to the use of the poorly
optimized second model. It uses more pessimistic time constraints than the
first model, thus giving up some goals, and causing failure of all photographs
in mission M4 through a similar domino effect to that presented in the previous
example.

5.2.2 Overall results for all mutations

To assess the overall efficacy of the proposed mechanisms and the FTplan
component, we injected 38 faults in our first model, leading to more than
3500 experiments and 1200 hours of testing. To be conservative, we discarded
10 mutants that were unable to find a plan for any of the four missions4.
We believe that five of the remaining mutants are equivalent to the fault-free
model. However, the non-deterministic nature of autonomous systems makes
it delicate to define objective equivalence criteria. We thus include the results
obtained with these five mutants, leading to a pessimistic estimation of the
improvement offered by FTplan.

Our experimental faultload (noted F∗) thus consists of 28 mutations, cor-
responding to: three substitutions of attribute values, six substitutions of

4 In these cases, Robot1 obviously fails every goal, while Robot1/2 gives the same results
as a fault-free Robot2: a perfect success rate for most of the missions.

Fault tolerant planning: towards dependable autonomous robots 29

0% 50% 100%

M1W1

W2

W3

W4

M2W1

W2

W3

W4

M3W1

W2

W3

W4

M4W1

W2

W3

W4

ϕ
__

p(m,w,583)
photo

0% 50% 100%

ϕ
__

c(m,w,583)
comm.

0% 50% 100%

ϕ
__

h(m,w,583)
return

0% 50% 100%

µ
_
(m,w,583)
mission

0 1.5 3 4.5

R
_

(m,w,583)

nb
replan.

Robot1Robot1/2

Fig. 19 Results for mutation 583

Table 2 Decrease of Goal Failure Proportions Using FTplan (missionsM∗, faults F∗)

photos comms returns missions
δϕp

δϕc
δϕr

δµ

W∗\W4 62% 70% 80% 41%
W∗ 50% 64% 58% 29%

variables, ten substitutions of numerical values, four substitutions of opera-
tors, and six removals of constraints. The mutants were executed on Robot1
and Robot1/2. The overall results of our fault injection campaign are pre-
sented in Fig. 20. The results are averaged over all four missions (set M∗ =
{M1,M2,M3,M4}) and all four worlds (set W∗ = {W1,W2,W3,W4}). Results
are also given when excluding the unforgiving world W4 (set W∗\W4). The
figure also recapitulates the results in the absence of faults (i.e., F = ∅)
(already presented in Fig. 13) which notably show that, even without in-
jected faults, Robot1 and Robot1/2 are unable to meet some goals in world
W4. Table 2 presents the improvement procured by FTplan measured in
terms of the percentage decrease of goal failure proportions, that is: δZ =
(Z(Robot1)−Z(Robot1/2))/Z(Robot1) with Z ∈ {ϕp, ϕc, ϕr, µ}.

These results show that, with the considered faultload:

– The redundant diversified models of the fault-tolerant Robot1/2 provide a
notable improvement to dependability in the presence of faults: in all cases,

30 Benjamin Lussier et al.

0% 50% 100%

W � \ W4

W �

ϕ
__

p(M* ,W,F)
photo

0% 50% 100%

ϕ
__

c(M* ,W,F)
comm.

0% 50% 100%

ϕ
__

h(M* ,W,F)
return

0% 50% 100%
μ
_
(M* ,W,F)
mission

Robot1 (F =Ø)
Robot1/2 (F =Ø)
Robot1 (F =F*)

Robot1/2 (F =F*)

Fig. 20 Impact of planner redundancy in presence of faults

the proportions of failed goals decrease compared to the non-redundant
Robot1.

– Even when considering the pessimistic measure of the proportion of failed
missions (recall that a mission is considered as failed even if only a single
elementary goal is not achieved), the improvement procured by redundant
diversified models is appreciable: 41% in worlds W1-W3, 29% when world
W4 is also considered.

Note, however, that in the presence of injected faults, the fault-tolerant
Robot1/2 is less successful than a single fault-free model (compareRobot1/2(F =
F∗) with Robot1(F = ∅) on Fig. 20). This apparent decrease in dependabil-
ity is explained by the fact that incorrect plans are only detected when their
execution has failed, possibly rendering one or more goals unachievable, de-
spite recovery. This underlines the importance of plan analysis procedures to
attempt to detect errors in plans before they are executed.

6 Conclusion and perspectives

Lack of dependability remains a severe impediment to the take-up and practi-
cal utilization of autonomous systems. At the software level, the dependability
of decisional mechanisms such as planners, which are essential for truly au-
tonomous operation, is particularly challenging. The difficulty of validating
such autonomy software makes it very difficult to provide safety and reliabil-
ity guarantees for autonomous systems.

In this paper, we focused on the reliability aspect of the problem, proposing
an innovative fault tolerance approach for temporal planners. The proposed
approach aims to complement verification and testing by providing tolerance
to residual design faults in coded domain-specific knowledge. To this end, we
advocate the use of diversified planning models and search heuristics. We pro-
posed a component providing error detection and recovery appropriate for
fault-tolerant planning, and implemented it in the LAAS architecture. This
component can use four detection mechanisms (watchdog timer, plan failure

Fault tolerant planning: towards dependable autonomous robots 31

detector, on-line goal checker and plan analyzer), and two recovery policies
(sequential planning and concurrent planning). Our current implementation
is that of sequential planning associated with the first three error detection
mechanisms. To assess the performance overhead and the efficacy of the pro-
posed mechanisms, we developed a validation framework that exercises the
software on a simulated robot platform, and carried out what we believe to be
the first ever mutation experiments on declarative models. These experiments
were conclusive in showing that the proposed mechanisms do not severely de-
grade the system performance in the chosen scenarios, yet usefully improve
the system behavior in the presence of model faults.

There are many directions for future research. First, implementation of a
plan analyzer should allow much better goal success levels to be achieved in
the presence of faults since it should increase error detection coverage and
provide lower latency. Implementation of the concurrent planning policy and
comparison with the sequential planning policy are also of interest. It would
also be worthwhile to assess the impact of diversification in planning heuristics
rather than just models, and study the possible benefits of using more than two
diversified versions. An interesting point would also be to keep traces of success
scores of the planners to define a preferred order for planners (e.g., invoke less
successful planners when the “best" planners have failed). In addition, the
statistical relevance of the results would benefit from many more experiments.
The use of a large computer grid would drastically improve the number of
experiments that could be executed in reasonable time and eliminate the need
for manual inspection to remove trivial mutants.

References

1. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An Architecture for Au-
tonomy. International Journal of Robotics Research 17(4), 315–337 (1998)

2. Armoush, A.: Design patterns for safety-critical embedded systems. Ph.D. thesis, Em-
bedded Software Laboratory - RWTH Aachen University (2010)

3. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Computing
1(1), 11–33 (2004)

4. Bernard, D.E., Gamble, E.B., Rouquette, N.F., Smith, B., Tung, Y.W., Muscettola, N.,
Dorias, G.A., Kanefsky, B., Kurien, J., Millar, W., Nayal, P., Rajan, K., Taylor, W.:
Remote Agent Experiment DS1 Technology Validation Report. Ames Research Center
and JPL (2000)

5. Bouguerra, A., Karlsson, L., Saffiotti, A.: Monitoring the execution of robot plans using
semantic knowledge. Robotics and Autonomous Systems 56(11), 942 – 954 (2008)

6. Brat, G., Denney, E., Giannakopoulou, D., Frank, J., Jonsson, A.: Verification of Au-
tonomous Systems for Space Applications. In: IEEE Aerospace Conference 2006. Big
Sky, Montana (2006)

7. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and verifica-
tion issues in a timeline-based planning system. The Knowledge Engineering Review
25(Special Issue 03), 299–318 (2010)

8. Chen, I.R.: Effects of Parallel Planning on System Reliability of Real-Time Expert
Systems. IEEE Transactions on Reliability 46(1), 81–87 (1997)

9. Chen, I.R., Bastani, F.B., Tsao, T.W.: On the Reliability of AI Planning Software in
Real-Time Applications. IEEE Transactions on Knowledge and Data Engineering 7(1),
14–25 (1995)

32 Benjamin Lussier et al.

10. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davis, A.,
Mandl, D., Trout, B., Shulman, S., Boyer, D.: Using autonomy flight software to improve
science return on earth observing one. Journal of Aerospace Computing, Information,
and Communication 2(4), 196–216 (2005)

11. Crestani, D., Godary-Dejean, K., Lapierre, L.: Enhancing fault tolerance of autonomous
mobile robots. Robotics and Autonomous Systems 68(0), 140 – 155 (2015)

12. Crouzet, Y., Waeselynck, H., Lussier, B., Powell, D.: The SESAME Experience: from
Assembly Languages to Declarative Models. In: Proceedings of the 2nd Workshop on
Mutation Analysis. Raleigh, NC (2006)

13. Daran, M., Thévenod-Fosse, P.: Software Error Analysis: a Real Case Study Involving
Real Faults and Mutations. In: Proceedings of the 1996 ACM SIGSOFT International
Symposium on Software Testing and Analysis. San Diego, California (1996)

14. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner.
In: The Second Artificial Intelligence Planning Systems Conference, pp. 61–67. AAAI
Press, Chicago, IL, USA (1994)

15. Goldberg, A., Havelund, K., McGann, C.: Runtime Verification for Autonomous Space
Craft Software . In: IEEE Aerospace Conference 2005. Big Sky, Montana (2005)

16. Havelund, K., Lowry, M., Penix, J.: Formal Analysis of a Space Craft Controller using
SPIN. IEEE Transactions on Software Engineering 27(8), 749–765 (2001)

17. Howey, R., Long, D., Fox, M.: VAL: Automatic Plan Validation, Continuous Effects and
Mixed Initiative Planning using PDDL. In: ICTAI. Boca Raton, Florida (2004)

18. Joyeux, S., Lampe, A., Alami, R., Lacroix, S.: Simulation in the LAAS Architecture.
In: Software Development in Robotics Workshop, International Conference on Robotics
and Automation (ICRA05). Barcelona, Spain (2005)

19. Khatib, L., Muscettola, N., Havelund, K.: Mapping Temporal Planning Constraints into
Timed Automata. In: TIME, pp. 21–27. Cividale del Friuli, Italy (2001)

20. Lambèr, R., Rinie, v.E.: A literature review on new robotics: Automation from love to
war. International Journal of Social Robotics pp. 1–22 (2015)

21. Lemai, S., Ingrand, F.: Interleaving Temporal Planning and Execution in Robotics Do-
mains. In: The National Conference On Artificial Intelligence, pp. 617–622. San Jose,
California (2004)

22. Lussier, B., Gallien, M., Guiochet, J., Ingrand, F., Killijian, M.O., Powell, D.: Fault
Tolerant Planning for Critical Robots. In: Dependable Systems and Networks (DSN07).
Edinburgh, UK (2007)

23. Lussier, B., Gallien, M., Guiochet, J., Ingrand, F., Killijian, M.O., Powell, D.: Planning
with diversified models for fault-tolerant robots. In: Proc. of The International Con-
ference on Automated Planning and Scheduling (ICAPS07), Providence, Rhode Island,
USA, pp. 216–223 (2007)

24. Lussier, B., Lampe, A., Chatila, R., Ingrand, F., Killijian, M.O., Powell, D.: Fault
Tolerance in Autonomous Systems: How and How Much? In: Proceedings of the 4th
IARP/IEEE-RAS/EURON Joint Workshop on Technical Challenge for Dependable
Robots in Human Environments. Nagoya, Japan (2005)

25. Machin, M., Dufossé, F., Blanquart, J., Guiochet, J., Powell, D., Waeselynck, H.: Spec-
ifying safety monitors for autonomous systems using model-checking. In: B. Andrea,
D.G. Felicita (eds.) The 33rd International Conference on Computer Safety, Reliability
and Security (SAFECOMP2014), pp. 262–277. Springer International Publishing (2014)

26. Mendoza, J.P., Veloso, M., Simmons, R.: Mobile robot fault detection based on re-
dundant information statistics. In: Workshop at IROS’12 on "Safety in human-robot
coexistence and interaction: How can standardization and research benefit from each
other?", Vilamoura, Portugal (2012)

27. Menzies, T., Pecheur, C.: Verification and validation and artificial intelligence. Advances
in Computers 65, 153 – 201 (2005)

28. Monterlo, M., Thrun, S., Dahlkamp, H., Stavens, D., Strohband, S.: Winning the
DARPA Grand Challenge with an AI Robot. In: American Association of Artificial
Intelligence 2006 (AAAI06). Boston, MA (2006)

29. Muscettola, N., Dorais, G.A., Fry, C., Levinson, R., Plaunt, C.: IDEA: Planning at the
Core of Autonomous Reactive Agents. In: AIPS 2002 Workshop on On-line Planning
and Scheduling. Toulouse, France (2002)

Fault tolerant planning: towards dependable autonomous robots 33

30. Penix, J., Pecheur, C., Havelund, K.: Using Model Checking to Validate AI Planner
Domain Models. In: SEW. Greenbelt, Maryland (1998)

31. Pettersson, O.: Execution monitoring in robotics: A survey. Robotics and Autonomous
Systems 53(2), 73 – 88 (2005)

32. Randell, B.: System Structure for Software Fault Tolerance. IEEE Transactions on
Software Engineering 1, 220–232 (1975)

33. Sarkar, D., Dubey, S.K., Mahapatra, A., Roy, S.S.: Modeling and analysis of fault tol-
erant gait of a multi-legged robot moving on an inclined plane. Procedia Technology
14(0), 93 – 99 (2014)

34. Urmson, C., Anhalt, J., Bae, H., Bagnell, J.A., Baker, C.R., Bittner, R.E., Brown,
T., Clark, M.N., Darms, M., Demitrish, D., Dolan, J.M., Duggins, D., Ferguson , D.,
Galatali, T., Geyer, C.M., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T., Kolski,
S., Likhachev , M., Litkouhi, B., Kelly , A., McNaughton, M., Miller, N., Nickolaou,
J., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Sadekar, V., Salesky, B., Seo,
Y.W., Singh, S., Snider, J.M., Struble, J.C., Stentz, A., Taylor , M., Whittaker, W.R.L.,
Wolkowicki, Z., Zhang, W., Ziglar, J.: Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics Special Issue on the 2007 DARPA
Urban Challenge, Part I 25(8), 425–466 (2008)

35. Zaman, S., Steinbauer, G., Maurer, J., Lepej, P., Uran, S.: An integrated model-based
diagnosis and repair architecture for ROS-based robot systems. In: Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pp. 482–489 (2013)

36. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control sys-
tems. Annual Reviews in Control 32(2), 229 – 252 (2008)

