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New safety critical systems are about to appear in our everyday life: advanced robots able to interact with humans and perform tasks at home, in hospitals, or at work. A hazardous behavior of those systems, induced by failures or extreme environment conditions, may lead to catastrophic consequences. Well-known risk analysis methods used in other critical domains (e.g., avionics, nuclear, medical, transportation), have to be extended or adapted due to the non-deterministic behavior of those systems, evolving in unstructured environments. One major challenge is thus to develop methods that can be applied at the very beginning of the development process, to identify hazards induced by robot tasks and their interactions with humans. In this paper we present a method which is based on an adaptation of a hazard identification technique, HAZOP (Hazard Operability), coupled with a system description notation, UML (Unified Modeling Language). This systematic approach has been applied successfully in research projects, and is now applied by robot manufacturers. Some results of those studies are presented and discussed to explain the benefits and limits of our method.

Introduction

Besides the developments of well-known safety critical systems in aeronautics or transportation, new systems are about to appear in our everyday life: robots at home, at work, or in the hospitals [START_REF] Royakkers | A literature review on new robotics: Automation from love to war[END_REF]. Such systems, will interact with users, and execute tasks in the vicinity or even in physical contact with humans. Hence, a failure of such complex systems may lead to catastrophic consequences for users which is a major obstacle to their deployment in real life. Most safety analysis techniques coming from the dependability [START_REF] Avižienis | Basic concepts and taxonomy of dependable and secure computing[END_REF] or risk management (ISO31000, 2009) domains could be used for such systems, but some specificities of robots limit their efficiency. For instance, the fact that robots move in unstructured and unknown environments makes the verification and validation (mainly through testing) non sufficient (it is impossible to guarantee that all main scenarios have been tested); the presence of users and complex non deterministic software (with decisional mechanisms) limit the use of quantitative risk analysis techniques; classical hazard analysis techniques are also not adapted to the complexity of human-robot interactions. Little work has been done about risk analysis for such systems, although it is a major challenge for robot certification [START_REF] Mitka | Safety certification requirements for domestic robots[END_REF]. Many robotics studies about estimation and treatment of collision risks exist (many references presented by [START_REF] Haddadin | Towards Safe Robots[END_REF]), but few are on risk analysis methods [START_REF] Dogramadzi | Environmental hazard analysis -a variant of preliminary hazard analysis for autonomous mobile robots[END_REF]. The safety community has rarely addressed this issue, whereas we have been working on this for a decade [START_REF] Guiochet | Safety analysis of a medical robot for teleechography[END_REF][START_REF] Guiochet | Toward a human-centered UML for risk analysis -application to a medical robot[END_REF].

Some robot manufacturers use directives [START_REF] Ec | Council directive on machinery[END_REF]( /42/EC, 2006) ) or standards (ISO13849-1, 2006) dedicated to machines, but they are not completely applicable, particularly when there is a human-robot physical interaction. Generic standards like IEC61508-5 (2010), are also hardly applicable due to uncertainties in the robot behavior (in this standard, fault correction through artificial intelligence is not recommended for safety integrity level SIL2 to SIL4). More recently, the standard ISO10218-1 (2011) for industrial robots that might share their workspace with humans, has been completed by the ISO13482 (2014). It is also important to note that such standards, do not cover other application domain robots. For instance, in the medical field, there is no robotic-specific standard, and the robots are considered as active medical devices such as defined in the 93/42/EEC (1993), and covered by ISO/FDIS14971 (2006) for risk management. In all those standards, classic risk management and design recommendations are proposed, but no specific guidelines for risk analysis techniques are presented.

To cope with the previous issues, we suggest a hazard identification technique with the following objectives:

1. applicable from the very beginning of the development process 2. includes human activity as a source of hazard 3. provides guidance for analysts with list of guide words 4. focuses on operational hazards, i.e., hazards linked with the robot tasks and interactions

Among risk analysis techniques, the most widely used are Preliminary Hazard Analysis (PHA), Hazard Operability Analysis (HAZOP), Fault Tree Analysis (FTA), and Failure Mode, Effects, and Criticality Analysis (FMECA).

The two first may be applied as hazard analysis at the very early steps of a development process, whereas FTA and FMECA are more dedicated to advanced steps, focusing more on reliability aspects. Thus, we chose to base our method on HAZOP, and to combine it with the system modeling language UML (Unified Modeling Language). This method developed at LAAS [START_REF] Guiochet | Experience with modelbased user-centered risk assessment for service robots[END_REF][START_REF] Martin-Guillerez | UML-based method for risk analysis of human-robot interaction[END_REF][START_REF] Guiochet | Modelbased safety analysis of human-robot interactions: The MIRAS walking assistance robot[END_REF], has been successfully applied in several French and European projects (PHRIENDS, 2006(PHRIENDS, -2009;;SAPHARI, 2011SAPHARI, -2015;;MIRAS, 2009MIRAS, -2013) ) in collaboration with robot manufacturers (KUKA Robotics, AIRBUS Group and Robosoft). This paper synthesizes for the first time our work on HAZOP-UML, and proposes an analysis of the applications in these projects. The remainder of this paper is structured as follows. Section 2 provides background on UML and HAZOP. In Section 3, we present the HAZOP-UML method, and in Section 4, results of several experiments are analyzed and discussed. In Section 5, related work on model-based safety analysis is compared to our approach. We conclude in Section 6 by outlining the benefits and limits of HAZOP-UML, and listing some future directions.

Background

Unified Modeling Language

UML (Unified Modeling Language) is a graphical notation, widely used in software and system engineering domains to support early steps of the development process. Its specification is available on the Object Management Group UML page1 . The current version (UML 2), has thirteen diagrams, that could be classified in static diagrams (e.g., class diagram) and dynamic diagrams (e.g., use case, sequence and state machine diagrams). UML is a language, and not a method, as it is not specified in which chronological order each diagram must be used. But, use cases and sequence diagrams are typically used at the beginning of any project development. State machine diagrams are also widely used in reactive systems as robot controllers. Hence, we will present those three diagrams, focusing only in the elements we will use for our approach. One main pitfall using this language is to mix different levels of details in the same diagram. For instance, mixing some high level specifications with implementation constraints on the same diagram is error prone and also not recommended for the safety analysis. This is why we also put forward in this paper some modeling rules to avoid this pitfall and to guide the analysts.

As a running example, we will use some models of the case study MIRAS (2009)(2010)(2011)(2012)(2013), an assistive robot presented Figure 1, for standing up, sitting down and walking, and also capable of health-state monitoring of the patients. It is designed to be used in elderly care centers by people suffering from gait and orientation problems where a classic wheeled walker (or "rollator"), is not sufficient for patient autonomy. The robotic rollator is composed of a mobile base and a moving handlebar.

Use case diagrams. This diagram is the basic requirement UML model, presenting the system to analyse, the actors communicating with it, and the objectives for the use of the system: the use cases. The example of Figure 2 only presents a subset of the complete use case diagram (15 use cases), and the two involved actors. In this diagram, the proposed services are to help the patient to stand up (UC02), deambulate (UC01), and sit down (UC03). The system is also able to detect physiological issues and trigger an alarm (patient heartbeat and fatigue, in UC08). We also represent that the system offers the profile learning facility (UC10). In some projects using UML the mechanical part of a robot is represented as a UML actor, and the system boundary (the box around use cases) defines the robot controller (including software and hardware). We do not recommend using such an approach to perform the hazard identification, indeed, the complete system has to be studied as a whole. This diagram provides an expressive and simple mean to communicate between developers, analysts and users. This graphical representation is always completed with a textual description as in Figure 3. Important information such pre and post conditions, and non-functional requirements are included. Use case diagram only represents functional requirements. Textual description of the normal, alternative and exception flows may also be presented with sequence diagrams as presented hereafter.

In the UML OMG standard, some relations may exist between use cases (mainly the relations extend and include) but we recommend not to use them, as they often lead to misunderstandings and to an unclear application of the HAZOP-UML method. In order to prepare the HAZOP-UML study, an extract from the use case textual description should be done, with only the pre and post conditions, and also the invariants coming from safety properties in the "Non functional requirements" category. An example of such a table is given in Figure 4 for the UC02 of the MIRAS running example. Sequence diagrams. Figure 5 shows a sequence diagram, describing a possible scenario, which is actually an instance of an UML use case. This diagram shows a nominal scenario for the UC02. Other scenarios are possible for the UC02, like alternative flow of events (e.g., the patient releases the handles while she is standing up). This second scenario will be represented with another sequence diagram (not presented here). The expressiveness of such diagram is well adapted to represent human-robot interactions, and have proven to be useful while discussing with other stakeholders who are not experts in this language (doctors, mechanical engineers, etc.). All messages exchanged between actors and the system are represented along their lifelines.

In our case three types of messages are used:

• indirect interaction through robot teach pendant (hardware or software interfaces)

• cognitive interaction, e.g., gesture or voice/audio signals are exchanged

• physical interaction, direct contact between physical structure of the robot and the user

In the example of Figure 5, the messages are all physical contacts, so we did not add this information which can be done using a UML annotation. In UML, a sequence diagram is a representation of an Interaction, where actors and the system (Lifeline), send some Message that might have Arguments and Constraints. Here the message 2:initiateStandingUp is sent to the robot with a force exerced on the handles. As the time increases from top to bottom, each message has a sending and receiving occurrence event. It is also possible to represent on a message a guard condition for its execution (e.g., [end of course] of message 4). We recommend not to use the UML2 fragments (loops, alternatives, etc.) but to rather use several diagrams to represent alternatives flows for instance. We also recommend to draw a system sequence diagram, i.e., representing only the actors and the system, and not the internal objects of the system.

State machines. These deterministic automata diagrams are based on the statecharts proposed by [START_REF] Harel | Statecharts: A visual formalism for complex systems[END_REF]. A state machine is given for all the objects with a dynamic behavior. An example is given in Figure 6 where the considered object is the MIRAS robot controller. A transition is represented with an arrow between a start state and a destination state, and can have the following facultative form of event [guard] / action(), where: • event is the trigger element of the transition, which could be:

signal event: asynchronous external event (e.g., button pressed, voice command)

call event: reception of an operation called by another object of the system change event: a change of a boolean variable based on the estimation of a system variable temporal event (after or when): expired duration after(<duration>), or absolute time when(date=<date>)

• guard is a condition estimated only if the event occurs

• action is a list of actions performed instantly when the transition is triggered

In this method we use state diagrams to specify at the beginning of a project, the different operational modes of the robot. This diagram is also useful for the detailed design and implementation of the robot controller, which is out of the scope of this paper.

HAZOP

HAZOP (HAZard OPerability) is a collaborative hazard identification technique, developed in the 70's, and is widely used in the process industries. It is now standardized by the standard IEC61882 (2001). Its success mainly lies in its simplicity and the possibility to apply it at the very beginning of the development process. It is also adaptable to the formalism used to describe a system as presented in the standard DefStan00-58 (2000). HAZOP does not consider failure modes as FMECA, but potential deviations of the main parameters of the process. For each part of the system, the identification of the deviation is systematically done with the conjunction of:

• system parameters, e.g., in the case of an industrial process : temperature, pressure, flow, etc.

• guide words like: No, More, Less or Reverse

The role of the guide word is to stimulate imaginative ideas and initiate discussions. A proposed list of guide words is given in Figure 7. For instance, we can have the following conjunctions (e.g., for a chemical process): • Temperature ⊗ More → Temperature too high

• Flow ⊗ Reverse → Product flow reversal
For each deviation, the procedure is then to investigate causes, consequences and protection, and produce document usually in a table form (similar to FMECA), with columns like: Guide word, Element, Deviation, Possible causes, Consequences, Safeguards, Comments, Actions required, etc. Even though the HAZOP method has proved to be efficient, the results may be questionable when the boundary of the study is too vast or not well defined, or when the guide words are either too numerous or too limited for the analysis to be relevant. Another limitation is that there is no systematic method to adapt the guide words to the considered domain, so adaptation depends on the expertise of the initiators of the method. Additionally, the HAZOP method needs the allocation of human resources and suffers from combinatorial explosion when too many deviations are considered or when the analysts go into too much details. Hence, the success of a HAZOP study depends greatly on the ability of the analyst and the interactions between team members. The choice of the considered "system parameters", is of high importance, because all the study relies on it. The HAZOP-UML method proposed in this paper is aimed at providing more guidance to analysts to identify which parameters they have to consider.

HAZOP-UML

One main issue when applying HAZOP is to identify the system parameters. We propose to use UML to partition and describe the system. The considered parameters will be then some elements of the UML diagrams. In this section we will give guidelines to identify those parameters, and the associated guide words to identify possible deviations. This work is the result of several applications and refinement, and may also be completed or modified by the analysts. Even if our objective is to propose a systematic approach, it is important to note that HAZOP-UML does not identify all hazards. First because no single hazard identification technique is actually capable of finding all the hazards [START_REF] Cantrell | Finding all the hazards how do we know we are done? Professional Safety[END_REF], and also because we will focus on the identification of the operational hazards, i.e., hazards linked to the human-robot interactions, through dynamic models of the system.

As already presented, we propose to focus on the three main dynamic UML diagrams: use case, sequence and state diagrams. For those diagrams, some generic deviations are presented in Section 3.1. The whole process is then introduced in Section 3.2, and Section 3.3 presents a prototype of a tool for HAZOP-UML.

Guide words

Instead of using the term "parameter" usually used in HAZOP studies, entities and attributes of UML elements are introduced in this section. Then for each element, a generic interpretation for a deviation is proposed. This analysis is based on the UML metamodel (OMG-UML2, 2007). The selected UML entities are : use case, message, state machine.

Guide words for use cases

Figure 8 presents an extract from the UML metamodel, focusing on a use case. The UML class diagram notation is used to represent this metamodel. This diagram specifies that a use case may be composed of 0 to several (noted as "*") Behaviors. Indeed, a use case is usually composed of a nominal behavior (or nominal scenario), and several exceptions. Each Behavior may have 0 to several Constraints, which are pre and post conditions. As introduced in section 2.1, we add to this metamodel one constraint to the Behavior of a UseCase: the invariant. Indeed, when an analyst studies all possible deviations, we would argue that the non-functional requirements, which may be safety invariants (e.g., robot velocity should not exceed 20cm/s) have to be taken into account. We should then consider that the attributes of a use case are: preconditions, postconditions, and invariants, which are all UML Constraints. For this reason, we apply the classical HAZOP guide words to the concept of constraint in a generic way and formulate an interpretation to guide the analyst. The result of this work is given in Table 1. Only six guide words were interpreted, we also remove many redundancies in the interpretation. Let consider the example of use case UC02 ("standing up operation") described in Figure 4. The precondition "The robot is in front of the patient" combined with the guide word "No", leads to the following scenario: the pa- tient tries to standup while the robot is not properly positioned. This might induce excessive effort for the patient and a fall which is catastrophic in our case study. If we consider this use case, with 9 conditions and 6 guide words, this leads to 54 possible deviations. Moreover, the interpretation of a guide word may change from an analyst to another. Nevertheless, the objective is to eventually identify all hazards, and the original guide word used for the identification is of no real importance.

Guide words for sequence diagrams

Sequence diagrams are one of the graphical representation of the Interaction UML concept. It is composed of Lifelines exchanging Messages. This is represented in the simplified metamodel in Figure 9. This metamodel extracted from OMG-UML2 (2007) has very little differences with the version (OMG-UML2, 2011), so we kept this representation which is simpler, and expressive enough for its use in HAZOP-UML. Based on this metamodel, we define five attributes for the Message:

1. General Ordering: the general order of the messages within the interaction 2. Send/receive event timing: event related to the clock time 3. Lifelines: send and receiving lifelines of a message 4. Interaction Constraint: guard condition on a message 5. Message argument: parameters of a message Other elements of the metamodel have not been considered, as we did not find any possible deviation or we intentionally avoid to consider them because they would have produced redundant possible deviations (interested reader may find more about UML interaction fragments in OMG-UML2 (2011). The resulting table for the generic deviations and their interpretation is given in Table 2. In tOMG-UML2 (2011) the following explanation is given: "A GeneralOrdering represents a binary relation between two OccurrenceSpecifications, to describe that one OccurrenceSpecification must occur before the other in a valid trace. This mechanism provides the ability to define partial orders of OccurrenceSpecifications that may otherwise not have a specified order." This could be interpreted as the fact that in some diagrams a GeneralOrdering relation can be added as a constraint. But in a sequence diagram, the physical position of the message already specifies an order for a valid trace. Hence, in our approach, we will interpret a sequence diagram as a valid trace, i.e., with a valid specified ordering of the message. This trace is descriptive (and not prescriptive like the state machine), but changing the ordering may lead to hazardous interactions.

Guide words for state machines

The same approach was used for the state machines. This diagram can also be used for detailed system design, which may lead to a combinatory explosion for the HAZOP analysis. Hence, we reduced the number of concepts to a very simple version as presented in Figure 10. Note that we replaced in this model the original class Behavior by Action. Actually, in UML an action is the fundamental unit of behavior specification, which can be associated to a state or a transition. We only consider in this method the action on transitions, which is sufficient to express relevant behavior. Of course, our proposal could be extended to the complete state machine metamodel, to identify all possible deviation at design time, but this is out of the scope of our method.

According to this metamodel, the resulting table for possible deviations is given in Table 3. In order to provide more guidance, we also point out in this table if the transition is triggered or not for some deviations.

HAZOP-UML process and outputs

According to the previous tables, the process to perform HAZOP-UML is the following procedure: for each entity, for each attribute, for each guide The transition is triggered while the event does not occur Other than transition not triggered : the transition is not triggered when the event occurs transition triggered : the transition is triggered when another event occurs

Condition

No/none The condition is not evaluated and can have any value, the transition is triggered Other than transition not triggered : the condition is evaluated false whereas it is true, the transition is not triggered transition triggered : the condition is evaluated true whereas it is false, the transition is triggered

As well as

The condition is well evaluated but other unexpected conditions are true, the transition is triggered Part of Only a part of condition is correctly evaluated, the transition is triggered Early

The condition is evaluated sooner than required, the transition is triggered

Late

The condition is evaluated later than required, the transition is triggered

Action

No/none The transition is not triggered, there is no action

Other than

The transition is triggered but an action other than intended takes place

As well as

The transition is triggered, the action as well as an unexpected action take place

Part of The transition is triggered but only a part of action takes place Early

The transition is triggered but the action takes place sooner than correct synchronization with the environment

Late

The transition is triggered but the action takes place later than correct synchronization with the environment

More

The transitions is triggered but the result of the action, if quantifiable, is too high

Less

The transitions is triggered but the result of the action, if quantifiable, is too low words, identify one or several possible deviations and analyse it (them). A graphical view is given in Figure 11. The analysis of the deviation may include the identification of possible causes and consequences. Depending on the project, it is also possible to evaluate the risk (consequence of the deviation effect, and likelihood of the considered deviation). Nevertheless, this information is usually too complex or impossible to obtain. On the contrary, such analysis always includes identification of recommendations to treat the deviation or its causes or it consequences (prevention and protection means). To establish such a study, the columns of a table as in Figure 12 are given hereafter:

1. Entity: the UML element on which the deviation is applied (here UC02 is the same for all the table so it is in the head of the table) 2. Line number: for traceability (UCx.line number) 3. Attribute: the considered attribute (e.g., a use case precondition) 4. Guide word: the applied guide word 5. Deviation: the deviation resulting from the combination of the entity attribute and the guide word based on Tables 1, 2 and 3. 6. Use Case Effect: effect at the use case level. 7. Real World Effect: possible effect in the real world. 8. Severity: rating of effect of the worst case scenario in the real world. 9. Possible Causes: possible causes of the deviation (software, hardware, human, etc.). 10. Safety Recommendations for prevention or protection 11. Remarks: explanation of analysis, additional recommendations, etc. 12. Hazard Numbers: real world effects are identified as hazards and assigned a number, helping the users to navigate between results of the study and the HAZOP-UML tables.

In Figure 12 given example, a precondition of UC02 (previously presented in Figure 4) is analyzed using the guide words No and Other than. It leads to identify the hazard HN6 (Fall of the patient due to imbalance caused by the robot).

The resulting documents are the tables as the raw artefacts, but also:

• a concatenated list of identified hazards

• a list of hypotheses made to perform the analysis, which need to be confirmed by domain experts to validate the study

• a list of safety recommendations

All those documents reference each others using numbered labels for lines, hazards (HN), recommendations (Rec), and hypothesis. Examples of a hazard table and recommendation list are given in Figure 13 and Figure 14. As an example, recommendation Rec2 from Figure 14, covers hazards HN6 (fall of the patient), and has been formulated in the HAZOP table UC02 line 15 (UC02.15).

A tool for HAZOP-UML

To ease the analysis of complex systems, we developed a prototype of a tool to support the method. It helps to manage the combinatorial aspects of the HAZOP method by maintaining consistency between UML models and HAZOP tables and by providing document generation and management features. The tool is built as an Eclipse plugin (www.eclipse.org) using the Graphical Modelling Framework (GMF). In this tool presented in Figure 15, the analyst can draw UML use case and sequence diagrams. Using guide word templates, HAZOP tables are automatically generated, ready to be filled out by the analyst using choice lists.

The list of guide words, the list of columns and the list of severities are editable using the main project view. Using the template, the analyst can add a line in the table by selecting a message, and then select applicable deviations and fill in the corresponding columns. When completing the table, the recommendation list and corresponding hazards are automatically generated in the project view. The toolbox of the HAZOP guide words allows deviations to be added (for example, several deviations for the same keyword). Finally a report in HTML can be generated consisting of HAZOP tables, UML diagrams, and hazards, recommendations and hypotheses lists.

Experiments and results

This section provides results of the experimentation of HAZOP-UML on three robotic applications developed within the following projects:

• ANR-MIRAS (Multimodal Interactive Robot of Assistance in Strolling) (MIRAS, 2009(MIRAS, -2013) ) an assistive robot for standing up, sitting down and strolling already presented in Section 2.1.

• FP6-PHRIENDS (Physical Human-Robot Interaction: depENDability and Safety) (PHRIENDS, 2006(PHRIENDS, -2009)). The system is a mobile robot with a manipulator arm. The considered environments are workshops and factories with human workers. Collaborative work between a human and a robot is possible (e.g., the robot can give an object to the human). The arm is the KUKA Light Weight Robot (LWR), a seven degrees of freedom arm which contains torque and motor position sensors. The mobile base is the KUKA omnirob product.

• FP7-SAPHARI (Safe and Autonomous Physical Human-Aware Robot Interaction) (SAPHARI, 2011(SAPHARI, -2015)). As in PHRIENDS, an Industrial coworker operates in a manufacturing setting accessible to human workers. The mobile manipulator may encounter humans while moving between the different workstations because the operation area is freely accessible to human workers. It takes and places part boxes on shelves, work stations, or on the robot base in order to convey them. The robot navigates autonomously in its operation area. When the robot encounters unexpected or difficult situations the worker might intervene and help by giving the robot direct haptic instructions.

For all three experiments, we followed the same procedure. We recruited analysts (an engineer for PHRIENDS, a postdoctoral for MIRAS, and a Phd student for SAPHARI), who were trained in our laboratory to HAZOP-UML. As a first step, they were in charge of modeling the UML diagrams, and validate them with robotic and domain experts (for instance in MIRAS, validation was also performed by doctors from the hospitals of the project). A second step was the deviation analysis performed only by the recruited analyst, followed by a revision by another member of our laboratory already trained to HAZOP-UML. Then, the resulting hazard and recommendation lists were discussed and validated by the robotic and domain experts. Quantitative data (e.g., working time or numbers of deviations) and qualitative data (e.g., traceability or modifiability) coming from these experiments are presented in this section, and structured according to the following properties:

• Applicability: we estimated the resources needed for the application of HAZOP-UML

• Guide words relevance: this is a critical point of the method as all the results will depend on the ability of those guide words to guide the analyst

• Validity: we compared results from a Preliminary Hazard Analysis to HAZOP-UML to assess its validity.

• Usability: some benefits and limits of HAZOP-UML while using it. 

HAZOP-UML applicability

Classic HAZOP is usually applied in collaborative workshops, involving many partners to maximize the chances of study completeness. On the contrary, HAZOP-UML can be applied by a single analyst and then validated by experts. This comes from the fact that the study is always based on a UML model, which has been done in collaboration with stakeholders (e.g., robotic engineers or medical staff). The fact that their knowledge has been captured by UML models, makes the safety analyst task more independent from domain experts. Of course, during the analysis several questions arise, and hypotheses need to be made to carry out the analysis. They need then to be validated by the experts (this is why we propose to produce a hypotheses list).

Considering that a single analyst can perform most of the work, we also evaluate the effort to perform the complete analysis. Numbers are given in Table 4 for the three robotic projects. The state-machine version of HAZOP-UML has only been applied to MIRAS and statistics are presented in Table 5.

For the three projects, the complexity was nearly the same (between 39 and 54 use case conditions, and 91 and 122 messages in sequence diagrams).

For each project one analyst has been recruited. Those three analysts were a post-doctoral, an engineer, and a Dr-engineer. "Analyzed deviations" stands for the number of deviations the analyst has considered, but only a part of them leads to an 'Interpreted deviations".

The resulting numbers show that no combinatory explosion happened, and less than 0.5 man-month was necessary for each study. Few iterations for table updates were needed (between 2 and 3). The presented tool in Section 3.3 was under development during those three projects, so we used a classic spreadsheet software with templates and macros. The cross checking between HAZOP tables and UML diagrams was then done by hand, which is clearly a limit that we want to reduce with our tool. Same conclusions drawn for the state machine study, which was only applied to the MIRAS project (Table 5). However, those three projects were successful regarding the applicability of our method.

HAZOP-UML guide words relevance

For all projects, statistics of guide word usage have been made. The results of PHRIENDS project are presented in Tables 6 and7. A first remark is that most of the guide words have been used by the analyst except in some special cases. The lifeline attribute is particularly useful when the robotic system is communicating with different actors (e.g., other robots), which was not the case in our project. The PHRIENDS UML diagrams also did not include any constraint on the messages, so the "Interaction constraints" guide words weren't used either in our case study. The guide word "Less than" (Message sent less often than intended) was also not used, as no constraint on frequency for messages was specified in the UML diagrams. The analyst also considered that "Part of" (only a part of a set of message is sent) was not relevant, because the level of description of UML diagram did not allow to consider parts of a message (as it may be the case with complex message sending with long protocol). Nevertheless, we chose to keep these guide words as in some special cases they would be applicable.

Another result, which is not presented here, is the redundancy of the hazards found, with different guide words. This is actually not an issue, because our main objective is to find a list of hazards, whatever guide word used to identify it. To determine if the guide words list is not limiting, we only rely on the results of the application on the three projects. A formal demonstration is actually impossible, and as already discussed, no single hazard identification technique is actually capable of finding all the hazards. We thus consider that in order to propose a systematic approach, the selected guide words are sufficient to identify all the major hazards.

HAZOP-UML validity

Table 8 presents two results for validity. First, this study shows that all hazards found during the PHA (Preliminary Hazard Analysis), done by collaborative workshop between a safety analyst and robotic experts, were also identified during HAZOP-UML (performed by the analyst), and that new hazards were also found. The fact that all scenarios of use were modeled in UML significantly improves the analysis. For instance, the hazard HN11 (Disturbance of medical staff during an intervention), was only identified during use case analysis, and never mentioned during the PHA, whereas it is highly relevant in case of emergency intervention.

The second analysis presented in this 

HN14

Injuries of the patient due to robot sudden movements while carrying the patient on its seat "" "" 3" ""

HN15

Fall of the patient from the robot seat 2" 10" 12" "" HN16

Frequent false positive alarms (false alarm) "" "" 3" ""

Table 8: Hazard list and occurrences in PHA and HAZOP-UML in MIRAS identified 11 and 13 times during use case and sequence diagrams analyses, has been identified 32 more times during state machine analysis. Nevertheless, we believe that state machine analysis is also interesting to identify more sources of deviations that could be used in other risk analysis methods, and also provide safety recommendations which are different from use cases and messages ones.

HAZOP-UML usability

A major advantage of HAZOP-UML lies in its simplicity. Indeed, UML models have been simplified to be easily understandable by non experts without reducing its expressiveness. HAZOP is also an intuitive method. Several engineers from different domains (electronics, computer science or risk management) have been trained to the method in few days. HAZOP-UML is completely integrated and consistent with the development process. Indeed, same UML diagrams were used in the projects, to define the scenarios. This helped us for each iteration in the development process to easily update the HAZOP tables. This traceability is an important issue in safety analysis methods, which are usually applied once due to the cost to apply them.

Among HAZOP-UML limitations, we remind that HAZOP-UML is focusing on operational hazards (linked with the robot tasks). We thus do not consider "machine" hazards already defined in many standards, like electrocution, explosion, etc. As already mentioned, this method should be completed by other hazard analysis techniques. A second limitation is the fact that the UML models and HAZOP tables do not explicitly mention the environment conditions of execution. For instance, a similar scenario but with high or low level of light might change the deviations and their consequences. It is still an open issue and an integration in the UML models would be an interesting direction. Last but not least, the HAZOP-UML has the same drawback as other risk analysis methods, which is a difficult determination and expression of the hazard because of the fuzziness of a hazard definition ("potential source of harm", from ISO/IEC-Guide51 (1999)) which may designate both a cause or a consequence. Three columns in the HAZOP table can represent a hazard: deviation, use case effect, real word effect. In many tables, we found that some real word effects were already mentioned as use case effects in other HAZOP table lines. We chose to reduce the number of hazards, taking into account only the "real word effect" as a hazard, but for some cases where it was obvious that the treatment would be completely different, we also took into account the deviation and use case effect. For instance, in Table 8, the hazard HN2 (Fall of patient due to imbalance not caused by the robot) and HN6 (Fall of the patient due to imbalance caused by the robot), lead both to the fall of the patient, but have been differentiated. Even if we provide a well guided method, extraction and formulation of hazards list require a high level of expertise from the safety analyst, in order to choose the right level of description of a hazard.

Related work on model-based hazard identification, tools and methods

This section presents related work, focusing on model-based safety analysis, and more particularly those using UML. The concept of "model-based" refers to the fact that a safety analysis technique (e.g., FTA) is based on an abstract representation of the studied system. This was already done at the very first hours of the risk analysis techniques using for instance block diagrams, or had-hoc representations. The quite recent model-based term, usually refers to the use of standardized models (like UML) and the possibility to have tools assisting analysts to produce automatic, or semi-automatic safety analysis based on a system model. Generally, model-based safety analyses focus on the following issues [START_REF] Blanquart | Survey of state of the art and of the practice in safety and diagnosability[END_REF]:

1. Fault propagation analysis (a) bottom-up: a fault effect on the system (b) top-down: induction of faults inducing an unwanted effect 2. Dependability (or safety) properties verification 3. Quantification of probability of unwanted events Many high-level modeling languages for safety analyses have been defined to cover those points. Just to cite some of them, HIPS-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) and its associated tool developed at Hull university2 , automatically generates fault trees and FMECA tables starting from system models (e.g., Simulink models). For each component, fault annotations are given, and the tool propagates those faults to build safety models (e.g., Fault trees). Altarica [START_REF] Boiteau | The AltaRica dataflow language in use: modeling of production availability of a multi-state system[END_REF][START_REF] Lipaczewski | Comparison of modeling formalisms for safety analyses: SAML and Al-taRica[END_REF] provides means for fault tree generation or properties verification from system and reliability models. Additionally, many European research projects addressed model-based safety analysis: ESACS (2001ESACS ( -2003) ) 3 in transportation domain, followed by ISAAC (2004ISAAC ( -2007) ) 4 in avionics, then CESAR (2009-2012)5 followed by CRYSTAL (2013-2017)6 for embedded systems. Previous techniques and works, usually rely on a precise description of the system behavior, which is usually not available at the beginning of a human-robot project.

The method put forward in this paper falls within the scope of fault propagation analysis, and can be described as a "middle-up approach", as we do not start from "faults" but from deviations. Our objective is then to identify hazards (and hazardous situations) during human-robot interaction. A very close work is advanced by [START_REF] Leveson | Engineering a Safer World, Systems Thinking Applied to Safety[END_REF], with a method called STPA (System Theoretic Process Analysis), which provides guidance to users combining guide words (like in HAZOP) and fault models, applied to models, based on a process/controller/actuator/sensor representation. Many recent applications of STPA can be found, e.g., in robotics [START_REF] Alemzadeh | Systemstheoretic safety assessment of robotic telesurgical system[END_REF], space [START_REF] Ishimatsu | Modeling and hazard analysis using STPA[END_REF], railway [START_REF] Thomas | Performing hazard analysis on complex, software and human-intensive systems[END_REF] or automotive [START_REF] Sulaman | Hazard analysis of collision avoidance system using stpa[END_REF]. One difference with our approach is that scenarios are actually not modeled in this approach. Users are represented as "controllers", which is not clear while describing human-robot interactions. STPA objective is also different in the way that it really focuses on the identification of cause-consequence chain, which is not the objective of HAZOP-UML (only find the hazards and hazardous situations). We also propose to use UML which is not the case in STPA. On the contrary, the work done in the CORAS project [START_REF] Coras | A platform for risk analysis of security critical systems. coras.sourceforge.net[END_REF][START_REF] Axel Gran | An approach for modelbased risk assessment[END_REF], is based on UML to analyse security. Even if we focus on safety, our objectives are the same. A major difference is that we strongly interconnect UML models and the risk analysis technique HAZOP, which was not addressed in CORAS.

Our risk analysis approach is based on a re-interpretation of HAZOP guidewords in the context of some UML diagrams. A similar approach has been followed in some previous studies considering UML structural diagrams [START_REF] Hansen | HAZOP analysis of UML-based software architecture descriptions of safety-critical systems[END_REF][START_REF] Gorski | Development and validation of a HAZOPbased inspection of UML models[END_REF][START_REF] Jarzebowicz | Empirical evaluation of reading techniques for UML models inspection[END_REF] and dynamic diagrams [START_REF] Johannessen | Hazard analysis in object oriented design of dependable systems[END_REF][START_REF] Allenby | Deriving safety requirements using scenarios[END_REF][START_REF] Arlow | Safety specification of the active traffic management control system for english motorways[END_REF][START_REF] Iwu | Integrating safety and formal analyses using UML and PFS[END_REF][START_REF] Srivatanakul | Security analysis with deviational techniques[END_REF]. In all those papers, the guide words were quite reduced (e.g., only omission and commission) or the link with UML language elements was not fully explored. We actually extended the results of those studies, focusing only on use case, sequence and state machine diagrams, in order to explore deviations during operational life. We also paid a particular attention to the human errors expression and analysis in this method, which was absent from the previous papers.

Conclusion

We set forth a new method for the safety analysis of human-robot interaction called HAZOP-UML. To build this method we used the UML metamodel to identify the basic elements of three dynamic models. We then proposed three guide words tables for use cases, messages of sequence diagrams, and state machines. Those guide words tables help the safety analyst to imagine possible deviations for every elements of those dynamic models. Those deviations are then reported in HAZOP tables, where causes, consequences, and recommendations are formulated. This process produces lists of hazards, recommendations, and hypotheses.

This method has been applied successfully on several projects, and we present in this paper a general analysis of the benefits and the limits of the method. We particularly focus on the applicability and validity of the approach. Main advantages of HAZOP-UML are:

• simple (training and application)

• applicable at the first step of the development process

• limits the combinatory explosion • consistent with system models, and inherits of system modeling benefits: traceability and modifiability

• easily supported by a computer assisting tool Even if the models and HAZOP tables can be easily achieved, the main limit lies in the necessity of a high expertise to formulate hazards from HAZOP tables. It is up to the safety analyst to determine the right level of detail for the hazard identification. Additionally to the three projects presented in this paper, HAZOP-UML has also been used as a first step of a method to build independent safety monitors in the context of autonomous robots [START_REF] Machin | Specifying safety monitors for autonomous systems using model-checking[END_REF], and we also plan to use it as an entry point for defining virtual words for testing mobile robots in simulation. A future direction is the complete transfer to industry, which is already started in the project CPSELabs (2015)(2016)(2017)(2018).
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 4 Figure 4.4 -Le premier prototype (Robosoft) (à gauche) et le deuxième (ISIR)(à droite) extrait d'une table HAZOP telle que nous l'avons déployée est donné Figure 4.7. Cette étude a donné lieu à une liste de dangers présentée Figure 4.9, que l'on a extrait des tables HAZOP. Pour chaque danger nous avons également utilisé des références vers les lignes des tables HAZOP induisant le danger. Ce travail permet ainsi d'avoir une traçabilité entre les causes et les conséquences, et peut s'avérer très utile si l'on souhaite utiliser d'autres techniques d'analyse du risque comme les arbres de fautes ou une AMDEC par exemple. La liste est donnée ci-dessous : HN01 Posture incorrecte du patient pendant l'utilisation du robot (penché en avant ou en arrière) HN02 Chute du patient pendant l'utilisation du robot (comme pour un déambulateur classique), soit au sol, soit sur le robot lui-même HN03 Arrêt total du robot pendant l'utilisation (absence d'énergie), rendant impossible toute action du robot HN04 Chute du patient sans alarme ou avec alarme tardive HN05 Problème physiologique du patient sans alarme ou avec alarme tardive HN06 Chute du patient provoquée par le robot (mouvement non désiré du robot) HN07 Incident détecté mais défaut de passage en mode sûr ; le robot continue à se déplacer alors qu'il a un déséquilibre, une chute ou une fatigue du patient HN08 Le robot coince un membre du patient entre 2 parties du robot ou entre le robot et un objet fixe HN09 Collision entre le robot (ou partie du robot) et le patient
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 1 Figure 1: MIRAS robot prototype during clinical investigation

Figure 2 :

 2 Figure 2: Extract of MIRAS use case diagram from Guiochet et al. (2013)
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 4 Figure 4: UC02 use case textual description with pre,post conditions and invariant
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 56 Figure 5: Sequence diagram for the nominal scenario of UC01: Standing up operation
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 7 Figure 7: Guide words list adapted from IEC61882 (2001)
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 9 Figure 9: Reduced metamodel for interactions in UML (sequence diagrams) extracted from OMG-UML2 (2007)
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 11 Figure 11: HAZOP-UML process
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 12 Figure 12: HAZOP-UML Table extract

Use case textual description template Use case name UC02. Standing up operation Abstract The patient stands up with the help of the robot Precondition The

  

	Use Case Name	[Name of the use case]
	Actors		[An actor is a person or other entity external to the system being
			specified who interacts with the system and performs use cases
			to accomplish tasks]
	Preconditions	[Activities that must take place, or any conditions that must be
			true, before the use case can be started]
	Normal	Description	[User actions and system responses that will take place during
	Flow		execution of the use case under normal, expected conditions.]
		Postconditions [State of the system at the conclusion of the use case execution
			with a normal flow (nominal)]
	Alternative flows and	[Major alternative flows or exceptions that may occur in the flow
	exceptions	of event]
	Non functional	[All non-functional requirement: e.g., dependability (safety,
	requirements	reliability, etc.), performance, ergonomic]
		Figure 3: patient is sitting down
			The robot is waiting for the standing up
			operation
			Battery charge is sufficient to do this task and to
			help the patient to sit down
			The robot is in front of the patient
		Postcondition The patient is standing up
			The robot is in admittance mode
		Invariant	The patient holds both handles of the robot
			The robot is in standing up mode
			Physiological parameters are acceptable

Table 1 :

 1 Guide words list and generic interpretation for use cases

				UseCase
				0..1
				*
				Behavior
			0..1		0..1
			+precondition	*	*	+postcondition
				Constraint
	Figure 8: Reduced concepts for specification of use cases
			Entity = Use Case
	Attribute	Guideword Interpretation	
		No/none		
	Preconditions/ Postconditions/ Invariants	Part of	The condition is partially evaluated Some conditions are missing
		Early	The condition is evaluated earlier than required for correct synchronization
			with the environment
		Late	The condition is evaluated later than required for correct synchronization with
			the environment

The condition is not evaluated and can have any value Other than The condition is evaluated true whereas it is false, or vice versa

As well as

The condition is correctly evaluated but other unexpected conditions are true

Table 2 :

 2 Guide words list and generic interpretation for sequence diagram messages

							Constraint
	Event	*	0..1	Transition		0..1	*
				*	*	0..1	*	Action
			+source	1	1	+target
				State		
	Figure 10: Adapted UML metamodel of state machine

Table 3 :

 3 Guide words list and generic interpretation for state machines

	Start		Select system entity		Select entity attribute		Apply a deviation attribute + guideword	Identify possible causes and consequences of deviation
								Evaluate the risk of the
								deviation effect
			yes		yes		yes	
								Formulate
	Stop	no	entities ? More	no	More attributes ?	no	More deviations to apply?	recommendations for prevention of deviation and protection against
								consequences

Table 4 :

 4 Statistics for the application of HAZOP-UML for the three projects

	PHRIENDS	MIRAS	SAPHARI
	Use cases	9	11	15
	Conditions	39	45	54
	Analyzed deviations	297	317	324
	Interpreted deviations	179	134	65
	Interpreted deviations with	120	72	50
	recommendation			
	Sequence diagrams	9	12	16
	Messages	91	52	122
	Analyzed deviations	1397	676	2196
	Interpreted deviations	589	163	87
	Interpreted deviations with	274	85	36
	recommendation			
	Number of hazards	21	16	28
			MIRAS	
	State Machine diagram	1	
	States		9	
	Transitions		19	
	Analyzed deviations	215	
	Interpreted deviations with	161	
	recommandation			

Table 5 :

 5 Statistics for the application of HAZOP-UML State-machine only to MIRAS

Table 6 :

 6 Sequence diagram guide words utility in PHRIENDS

  Table shows that use cases (UC) and messages (Seq) analysis are complementary, whereas state machine analysis has a redundant contribution for hazard identification. For instance, HN4 91 130

		Guidewords	6	29 (16 applicable)	22
		Analyzed deviations	297	1397	1694
		N/A deviations	118	808	926
		Interpreted deviations	179	589	768
	Use case attributes	Guidewords	Deviations	Interpretation
			No/none	42	39
			Other than	95	95
	Conditions (39)	As well as	41	23
	(pre/post/inv)	Part of	40	10
			Early	40	9
			Late	39	3
	Message attributes	Guidewords Deviations Interpretations
		No	91	75
		Other than	97	25
		As well as	91	13
		More than	91	7
	1. General Ordering	Less than	0	0
		Before	92	32
		After	91	15
		Part of	0	0
		Reverse	91	43
	2. Message	Early	91	28
	timing	Later	91	28
	3. Lifelines	Not applicable in our case study, which considers only a single robot (and a single
			human)	
	4. Interaction Constraint	No constraint were specified in the UML models
		No/None	91	59
		More	91	52
	5. Message arguments	Less As Well As	91 71	62 2
		Part of	95	31
		Other than	112	98

Table 7 :

 7 Use case guide words utility in PHRIENDS

					HAZOP-UML
	Num	Description	PHA	UC	Seq.	State Machine
	HN1	Incorrect posture of the patient during robot use	2"	4"	3"	4"
	HN2	Fall of patient due to imbalance not caused by the robot	""	29"	27"	30"
	HN3	Robot shutdown during its use	1"	2"	""	5"
	HN4	Patient falls without alarm or with a late alarm	""	11"	13"	32"
	HN5	Physiological problem of the patient without alarm or with a late alarm	""	15"	10"	""
	HN6	Fall of the patient due to imbalance caused by the robot	10"	51"	37"	10"
	HN7	Failure to switch to safe mode when a problem is detected. The robot keeps on moving	""	8"	""	""
	HN8	Robot parts catching patient or clothes	3"	5"	4"	""
	HN9	Collision between the robot (or robot part) and the patient	2"	14"	14"	""
	HN10	Collision between the robot and a person other than the patient	""	5"	14"	2"
	HN11	Disturbance of medical staff during an intervention	""	1"	""	""
	HN12	Patient loses his/her balance due to the robot (without falling)	11"	1"	70"	1"
	HN13	Robot manipulation causes patient fatigue	12"	1"	53"	21"
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