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Natural deduction calculi and sequent

calculi for counterfactual logics

Abstract

In this paper we present labelled sequent calculi and labelled natural de-
duction calculi for the counterfactual logics CK + {ID, MP}. As for
the sequent calculi we prove, in a semantic manner, that the cut-rule is
admissible. As for the natural deduction calculi we prove, in a purely
syntactic way, the normalization theorem. Finally, we demonstrate that
both calculi are sound and complete with respect to Nute semantics [12]
and that the natural deduction calculi can be effectively transformed into
the sequent calculi.

1 Introduction

Conditional sentences are sentences of the form “if A, then C” and they are a
central topic in logic and philosophy of logic. Standardly, one can distinguish
between two types of conditional: indicative conditionals, i.e. conditionals of
the form “if John strikes the match, it will light”, and counterfactual (or strict)
conditionals, i.e. conditionals of the form “if John had struck the match, it
would have lit”. The main difference between the two types of conditional
consists in the fact that, while in counterfactual conditionals the antecedent is
supposed to be false, in indicative conditionals it can either be true or false. In
this paper we will only focus on counterfactual conditionals, see [4, 11].

Though often criticized, the standard interpretation of indicative condition-
als is the material one: a conditional sentence is true if, and only if, either the
antecedent is false or the consequent is true. If one tries to apply the material
interpretation to counterfactual conditionals, since their antecedent is taken to
be false, one gets the conclusion that all counterfactuals are trivially true and
this is of course inadequate. For this reason other semantics interpretations of
counterfactuals have been proposed.

Amongst them (e.g. [7, 8]) the possible worlds semantics interpretation
stands out [10, 12, 20]. The intuitive idea of such semantical approach is the
following. Consider the sentence “if John had struck the match, it would have
lit.” In the actual world John did not strike the match. Consider then the
possible world(s), which is (are) the most similar to the actual one, where John
actually stroke the match. If in that world(s), the match had lit, than the
counterfactual is true in the actual world. In other terms, since counterfactual
sentences talk about unrealized possibilities, in order to check whether they are
true in the actual world, one needs to go to the possible world(s) where they
actually took place and explore their consequences.

There are several ways in which such an intuitive idea has been rendered.
Amongst them, the most famous ones are Stalnaker’s approach [20], Lewis’s
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approach [10] and Nute’s approach [12]. The main differences amongst them
are the following: Stalnaker’s approach involves a set of possible words plus an
accessibility relation and a selection function; Lewis’s approach is based on the
so-called system of spheres; finally, Nute’s approach only comprehends a set of
possible worlds and a selection function. In this paper we will only take into
account Nute semantics and certain systems that such semantics characterize,
namely the systems CK + {ID, MP}.

From a proof-theoretical point of view, little work has been done for the
systems CK + {ID, MP}. On the sequent calculi side,1 the only works we are
aware of are those of Olivetti, Pozzato and Schwind [14] and Alenda, Olivetti,
Pozzato [1]. More precisely, in Olivetti, Pozzato and Schwind [14] sequent calculi
for counterfactual logics based on Nute semantics are constructed by means of
labelled formulas of the form x : A and xRAy; in Alenda, Olivetti, Pozzato [1]
sequent calculi for the same logics are constructed by means of deep-inferences
or tree-hypersequents, see [16, 17]. On the natural deduction side, there is, as
far as we know, no result to mention.2

Given this situation the main contributions of the paper are the following.
First of all, we introduce labelled sequent calculi for the systems CK + {ID,
MP}, that serve as a base to develop related labelled natural deduction calculi
for the same systems. These natural deduction calculi fill (at least partially)
the gap in the literature previously mentioned. As for the sequent calculi, we
propose a semantic proof of completeness, from which it follows, as corollary, the
admissibility of the cut-rule. The completeness proof is original and, given the
presence of Nute’s normality condition, not trivial. As for the natural deduction
calculi we adapt the proof of syntactic cut-elimination elaborated by [1] for tree-
hypersequents to the case of derivations in natural deduction calculi. We end
the paper by showing that we can effectively transform natural deduction calculi
for CK + {ID, MP} into sequent calculi for CK + {ID, MP}.

The paper is organized in the following way. Section 2 will serve to introduce
in detail Nute semantics, the systems CK + {ID, MP} and the general idea of the
labels that we want to use to build sequent calculi and natural deduction calculi
for the systems CK + {ID, MP}. In Section 3 we will introduce the calculi
GCK* and we will explore some of their properties. Section 4 will be dedicated
to the semantic proof of soundness and completeness of GCK* with respect to
Nute semantics. In Section 5 we will introduce the natural deduction calculi
NCK* and we will prove some of their properties; in Section 6 we will show that
in these calculi derivations normalize. Section 7 will be dedicated to the proof
of the adequateness of natural deduction calculi NCK* via a comparison with
sequent calculi GCK*; finally, Section 8 will serve to draw some conclusions
and to depict some lines of future research.

1A labelled tableaux system based on Nute semantics has been proposed by [2]. Sequent
calculi for conditional logics characterized by Stalnaker semantics and Lewis semantics have
been proposed by, amongst others, [5, 6, 13, 15].

2Natural deduction calculi for conditional logics characterized by Stalnaker semantics have
been proposed by [21]; see also [9].
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2 Nute semantics, the corresponding Hilbert sys-
tems and the general idea for their proof the-
ory

We start this section by introducing the language L> that extends the lan-
guage of classical logic by means of the operator >. The operator > denotes
counterfactual conditional.

Definition 2.1. The language L> is composed of:

- propositional atoms (PA): p, q, r . . .

- the connectives: ¬, ∧, → and >

- the parentheses (, )

The connectives ∨ and ↔ are defined classically as usual. The symbol ⊥ is
defined as A ∧ ¬A for any formula A.

Definition 2.2. The set of formulas FA of the language L> is given by the
rule:

p | ¬A | A ∧B | A→ B | A > B

We now introduce Nute models. Nute models are basically Kripke models
where the accessibility relation is substituted by a selection function.

Definition 2.3. A Nute-model M is a triple (W, f, v), based on the frame F =
(W, f), where:

- W is non empty set of possible worlds,

- f is the so-called selection function:

f : W x FA→ 2W

- v is the evaluation function:

v : W x PA→ {1, 0}

Definition 2.4. The satisfability relation is defined in the following inductive
way:

- i |=M p iff v(i, p) = 1,

- i |=M ¬A iff i 2M A,

- i |=M A ∧B iff i |=M A and i |=M B

- i |=M A→ B iff if i |=M A, then i |=M B
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Figure 1: Extensions of the Hilbert system CK
Name Axiom Semantic Frame Property

ID A > A ∀i∀j(j ∈ f(i, A) → j |=M A)

MP (A > B) → (A → B) ∀i(i |=M A → i ∈ f(i, A))

CEM (A > B) ∨ (A > ¬B) |f(i, A)| 6 1

∀i∀j(j ∈ f(i, A) → j |=M B) and

CSO ((A > B) ∧ (B > A)) → ((A > C) → (B > C)) ∀i∀j(j ∈ f(i, B) → j |=M A) implies

f(i, A) = f(i, B)

- i |=M A > B iff ∀j(j ∈ f(i, A)→ j |=M B)

The first four items of the satisfability relation are standard; we then dwell
on the last one, which concerns counterfactual conditionals. A world i satisfies
a conditional of the form A > B if, and only if, in all worlds j, which are the
most similar to i with respect to A, B is satisfied. The satisfability relation
satisfies the following condition, which is usually called normality condition:

if A↔ C is valid in the class of Nute frames, then f(i, A) = f(i, C)

The semantics above characterizes the basic conditional system CK, which
is composed of:

- all tautologies of classical propositional logic,

- Modus Ponens,

- (RCEA)

A↔ B
(A > C)↔ (B > C)

- (RCK)

(A1 ∧ · · · ∧An)→ B

(C > A1 ∧ · · · ∧ C > An)→ (C > B)

Other systems are obtained by adding to the system CK the axioms which
are shown in Figure 1. In this paper we will only deal with the following three
extensions of the system CK: CK+ID, CK+MP and CK+ID+MP. With the
notation CK* we will refer to the Hilbert systems CK, CK+ID, CK+MP and
CK+ID+MP.
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As it is clear from Definition 2.3, Nute semantics is a very simple semantics
only composed by a set of possible worlds and a selection function. Another
equivalent way of understanding Nute semantics is to see it as composed of
worlds that can either be considered as worlds tout court or they can be viewed
as worlds selected by a selection function. This last distinction lead us to the
idea of creating a similar distinction amongst formulas to be used in the proof
theory for the systems characterized by Nute semantics. We can indeed think
of dealing not only with formulas of the language L>, i.e. formulas tout court,
but also with labelled formulas, i.e. formulas of the type

Aj : B

which stands for: let j be one of the worlds selected by the selection function
f(i, A), then B is true in that world j. Another example of a labelled formula
is the following one:

Cz;Aj : B

let z be one of the worlds selected by the selection function f(i, C) and j one
of the worlds selected by the selection function f(z,A), then B is true in that
world j. Yet a final example is the following one:

Cz;Aj ;Dk : B

let z be one of the worlds selected by the selection function f(i, C), j one of
the worlds selected by the selection function f(z,A), and k one of the worlds
selected by the selection function f(j,D), then B is true in that world k.

The general idea here is to work with formulas of the language L> which
are linked by a colon to sequences of formulas of L> indexed with the letters
i, j, k . . . . The formulas of the sequence together with their indexes denote the
worlds selected by the selection function of a Nute model. When the sequence is
empty, the labelled formula becomes a formula belonging to FA (see Definition
2.2) and corresponds to a world of a Nute model which has not been selected
by a selection function. Let us express this idea in a more precise way.

Definition 2.5. Let G,H, . . . be sequences of formulas of L> separated by a
semicolon and indexed in the following way:

A1
j ;B

2
z ; . . . ;Ent

where the upper index indicates the position of the formula in the sequence,
while the lower index is just a letter. G,H, . . . could also be empty sequences.

Definition 2.6. From now on we will only work with labelled formulas. A
labelled formula is an object of the following form:

G : A

where G is a sequence of the type described above and A is a formula of L>.
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By means of labelled formulas we are going to construct sequent calculi and
natural deduction calculi for the systems CK*.

3 Sequent Calculi

We will use this section for introducing labelled sequent calculi for the systems
CK*. We will then prove that in these calculi several structural rules are (height-
preserving) admissible and that logical rules are height-preserving invertible.

Definition 3.1. Let M and N be finite multisets of labelled formulas, then a
sequent is an object of the following form: M ⇒ N .

Definition 3.2. We extend the satisfability relation (see Definition 2.4) to
labelled formulas and sequents in the following way:

i |=M B1
j ;G : A iff ∀j(j ∈ f(i, B)→ j |=M G : A)

i |=M M ⇒ N iff i |=M

∧
M →

∨
N

We are going to use the following syntactic notations which will prove
useful for formulating the rules of our calculi.

- Given a set of labelled formulas M and a labelled formula G : A, with
the notation [Bnj ]M we display all the labels of the form Bj at the level n
that occur in M ; with the notation [Bnj ]G : A we display the label of the
form Bj at the level n that occur in G.

- Given a set of labelled formulas M , we will use the notation B1
j ; [M ] to

indicate that each formula G : A belonging to M has been changed into
the formula B1

j ;G′ : A, where G′ is obtained from G by adding 1 to each
upper index of G.

The sequent calculus GCK is composed by the axioms and rules of Figure
2. First of all, let us make some remarks on the counterfactual logical rules of
this calculus. The first remark concerns the rule > L. The repetition of the
principal formula A > B in the premise of the rule only serves to make the
rule invertible. This is analogous to the repetition of the formula ∀xα(x) in the
premise of the rule which introduces the symbol ∀ on the left side of the sequent
in some versions of the sequent calculus for first-order classical logic. Note also
that the rule > L carries the proviso that the label Cnj should already occur in
M or in N . This condition is essential to ensure the analyticity of the calculus
(and thus also proof-search termination). The last remark concerns the rules
> L and > R. It is easy to understand these rules if we read them in semantics
terms. In this perspective, the rule > R says, if read bottom up, that, if the
formula A > B is false at a world i, then there exists a world j selected by
the selection function f(i, A) where the formula B is false; on the other hand,
the rule > L tells us, if read bottom-up, that, if the formula A > B is true
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Figure 2: Axioms and rules of the calculus GCK

Axioms

G : p,M ⇒ N,G : p

Propositional Logical Rules

M ⇒ N, G : A

G : ¬A, M ⇒ N
¬L

G : A, M ⇒ N

M ⇒ N, G : ¬A
¬R

G : A, G : B, M ⇒ N

G : A ∧B, M ⇒ N
∧L

M ⇒ N, G : A M ⇒ N, G : B

M ⇒ N, G : A ∧B
∧R

M ⇒ N, G : A G : B, M ⇒ N

G : A → B, M ⇒ N
→L

G : A, M ⇒ N, G : B

M ⇒ N, G : A → B
→R

Counterfactuals Logical Rules

G : A > B, G; Cn
j : B, M ⇒ N ⇒ A ↔ C

G : A > B, M ⇒ N
>L

M ⇒ N,G;Anj : B
M ⇒ N,G : A > B

>R

In the rule > R, read bottom-up, the label An
j is new.

In the rule > L, read bottom-up, the label Cn
j already occurs in M or N

at a world i, then the formula B is true, not only in any world z selected by
the selection function f(i, A), but also in any world j selected by the selection
function f(i, C), for any formula C such that A↔ C is valid in Nute semantics.
In other words, while the rule > R reflects the left to right direction of the
satisfability relation (see Definition 2.4) for the counterfactual connective, the
rule > L not only reflects the right to left direction of the satisfability relation,
but it also internalizes the normality condition proper of the selection function
of Nute models.

In order to obtain the calculi for the extensions of the system CK, we will
consider the rules id and mp of Figure 3. Note that each of these rules reflects
at the proof-theoretic level the semantic condition associated with the axiom
ID and the axiom MP, respectively. The sequent calculi for the systems CK*
will be the calculi GCK+id, GCK+mp and GCK+id+mp. From now on these
calculi, together with the calculus GCK, will be called GCK*.

Definition 3.3. We associate to each derivation d in GCK* a natural number
h(d) (the height). Intuitively, the height corresponds to the length of the longest
branch in a derivation d, minus one. For the standard definition of the height
of a derivation see [22].
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Figure 3: ID and MP extensions of the calculus GCK

G; An
j : A, M ⇒ N

M ⇒ N
id

G : A > B, M ⇒ N, G : A G : A > B, G : B, M ⇒ N

G : A > B, M ⇒ N
mp

Definition 3.4. d `mX M ⇒ N means that d is a derivation of M ⇒ N in a
calculus X ∈ GCK* with h(d) ≤ m. We write `〈m〉 M ⇒ N for: there exists a
derivation d such that d `m M ⇒ N in GCK*.

Lemma 3.5. Sequents of the form G : A,M ⇒ N,G : A, with A an arbitrary
formula, are derivable in GCK*.

Proof. By straightforward induction on G:A.

Lemma 3.6. The rule of substitution:

M ⇒ N

[Ani /A
n
j ]M ⇒ N [Ani /A

n
j ] sub

is height-preserving admissible in GCK*.3

Proof. By induction on the height of the derivation of the premise. If the premise
is an axiom, then so is the conclusion. If the premise is inferred by a rule R,
which is either one of the propositional logical rules or one of the rules > L,
id, mp, then we apply the inductive hypothesis to the premise and then apply
R again. If the premise is inferred by the rule > R, we consider the following
more peculiar case:

〈m−1〉M ⇒ N,G;Anj : B
〈m〉M ⇒ N,G : A > B

>R
4 

〈m−1〉M ⇒ N,G;Ank : B
〈m−1〉[Ani /A

n
j ]M ⇒ N [Ani /A

n
j ], G;Ank : B

〈m〉[Ani /A
n
j ]M ⇒ N [Ani /A

n
j ], G : A > B

>R

h.i.

Lemma 3.7. The rule:

M ⇒ N

C1
k ; [M ]⇒ C1

k ; [N ] +

3In accordance with the syntactic notation introduced previously, [An
i /An

j ]M ([An
i /An

j ]N)

stands for: substitute all the labels of the form Aj that occur in M (N) at the level n with
labels of the form Ai.

4The symbol  means: the premise of the right side is obtained by induction hypothesis
on the premise of the left side.
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is height-preserving admissible in GCK*.

Proof. By induction on the height of the derivation of the premise. If the premise
is an axiom, then so is the conclusion. If the premise is inferred by a proposi-
tional logical rule, then the inference is clearly preserved. We give an example
using the logical rule ¬R:

〈m−1〉G : A,M ⇒ N
〈m〉M ⇒ N,G : ¬A ¬R  

〈m−1〉C1
k ;G′ : A,C1

k ; [M ]⇒ C1
k ; [N ]

〈m〉C1
k ; [M ]⇒ C1

k ; [N ], C1
k ;G′ : ¬A ¬R

If the premise is inferred by one of the counterfactuals rules, then the inference
is preserved. We give an example using the rule > R:

〈m−1〉M ⇒ N,G;Anj : B
〈m〉M ⇒ N,G : A > B

>R  
〈m−1〉C1

k ; [M ]⇒ C1
k ; [N ], C1

k ;G′;An+1
j : B

〈m〉C1
k ; [M ]⇒ C1

k ; [N ], C1
k ;G′ : A > B

>R

If the premise is inferred by the rules id or mp, then the procedure is analogous
to the one of the cases above: we apply the inductive hypothesis on their premise
and then we apply id or mp.

Lemma 3.8. The rule of weakening:

M ⇒ N

M,P ⇒ N,Q
W

is height-preserving admissible in GCK*.

Proof. By straightforward induction on the height of the derivation of the
premise. In case the last applied rule is > R, there might be a clash of variables.
If so, we first use the rule sub, which is height-preserving admissible, and then
we apply the inductive hypothesis.

Lemma 3.9. The propositional logical rules, the counterfactual rules and the
rules id and mp are height-preserving invertible.

Proof. The proof proceeds by induction on the height of the derivation of the
premise of the rule considered. The cases of the propositional logical rules are
dealt with in the classical way. The only differences - the fact that we are dealing
with labelled formulas and the cases where the last applied rule is one of the
rules > R, > L, id or mp - are dealt with easily.

The rules > L, id and mp are trivially height-preserving invertible since both
their premises are obtained by weakening from their respective conclusions, and
weakening is height-preserving admissible.

We show in detail the invertibility of the rule > R. If M ⇒ N,G : A > B
is an axiom, then so is M ⇒ N,G;Anj : B. If M ⇒ N,G : A > B has been
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obtained by a propositional logical rule R, we apply the inductive hypothesis
on the premise(s), M ′ ⇒ N ′, G : A > B (M ′′ ⇒ N ′′, G : A > B) and we obtain
derivation(s), of height m − 1, of M ′ ⇒ N ′, G;Anj : B (M ′′ ⇒ N ′′, G;Anj : B).
By applying the ruleR, we obtain a derivation of height m ofM ⇒ N,G;Anj : B.
If M ⇒ N,G : A > B is of the form H : D > C,M ′ ⇒ N,G : A > B, then
it may have been obtained by either the counterfactual rule > L or by the rule
mp. Since the procedure is the same in both cases, we just analyze the case
of the rule > L; the case of the rule mp can be dealt with analogously. We
apply the inductive hypothesis on H : D > C,H;Ekz : C,M ′ ⇒ N,G : A > B
and we obtain a derivation of height m − 1 of H : D > C,H;Ekz : C,M ′ ⇒
N,G;Anj : B. By applying the rule > L, we obtain a derivation of height m of
H : D > C,M ′ ⇒ N,G;Anj : B. If M ⇒ N,G : A > B has been obtained by
the rule id or by the rule > R (in case of the rule > R, the labelled formula
G : A > B is not the principal formula), then the procedure is analogous to
the cases above. Finally, if M ⇒ N,G : A > B has been obtained by the
counterfactual rule > R and G : A > B is the principal formula, the premise of
the last step gives the conclusion.

Lemma 3.10. The rules of contraction:

G : A,G : A,M ⇒ N

G : A,M ⇒ N
CL

M ⇒ N,G : A,G : A
M ⇒ N,G : A CR

are height-preserving admissible in GCK*.

Proof. By induction on the height of the derivation of the premise M ⇒ N,G :
A,G : A (G : A,G : A,M ⇒ N). We only analyze the case of the rule CR. The
case of the rule CL is symmetric.

If M ⇒ N,G : A,G : A is an axiom, so is M ⇒ N,G : A. If M ⇒ N,G :
A,G : A is the conclusion of a rule R which does not have either of the two
occurrences of the formula G : A as principal, we apply the inductive hypothesis
on the premise(s) M

′ ⇒ N
′
, G : A,G : A (M

′′ ⇒ N
′′
, G : A,G : A), obtaining

derivation(s) of height m − 1 of M
′ ⇒ N

′
, G : A (M

′′ ⇒ N
′′
, G : A). By

applying the rule R we obtain a derivation of height m of M ⇒ N,G : A.
M ⇒ N,G : A,G : A is the conclusion of a propositional logical rule or of

the rule > R and one of the two occurrences of the formula G : A is principal.
We analyze in detail the following three cases:

¬R:
〈m−1〉G : B,M ⇒ N,G : ¬B
〈m〉M ⇒ N,G : ¬B,G : ¬B ¬R

599K
〈m−1〉G : B,G : B,M ⇒ N
〈m−1〉G : B,M ⇒ N
〈m〉M ⇒ N,G : ¬B ¬R

i.h.

5The symbol 99K means: the premise of the right side is obtained by an application of
Lemma 3.9 on the premise of the left side.
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∧R:
〈m−1〉M ⇒ N,G : B,G : B ∧ C 〈m−1〉M ⇒ N,G : C,G : B ∧ C

〈m〉M ⇒ N,G : B ∧ C,G : B ∧ C ∧R 99K

〈m−1〉M ⇒ N,G : B,G : B
〈m−1〉M ⇒ N,G : B i.h

〈m−1〉M ⇒ N,G : C,G : C
〈m−1〉M ⇒ N,G : C i.h.

〈m〉M ⇒ N,G : B ∧ C ∧R

> R:
〈m−1〉M ⇒ N,G;Bni : C,G : B > C
〈m〉M ⇒ N,G : B > C,G : B > C

>R 99K

〈m−1〉M ⇒ N,G;Bni : C,G;Bnj : C
〈m−1〉M ⇒ N,G;Bni : C,G;Bni : C
〈m−1〉M ⇒ N,G;Bni : C
〈m〉M ⇒ N,G : B > C

>R

i.h.

sub

4 The Adequateness Theorem

In this section we prove that the sequent calculi GCK* are sound and complete
with respect to Nute semantics.

Let us denote with id and mp the semantic properties of Nute frames that
correspond to the axioms ID and MP, respectively. Let X ⊆ {id,mp}; C + X
will denote the class of Nute frames that satisfy the property(ies) denoted by
X.

Theorem 4.1. For all sequents M ⇒ N , if M ⇒ N is provable in a calculus
X ∈ GCK∗, then M ⇒ N is valid in the corresponding class of frame C + X,
X ∈ {id,mp}.

Proof. By induction on the derivation of the premise. The validity of the axiom
and of the propositional rules is proved in the usual way. We omit the proof of
the validity of the counterfactual rules, as well as that of the rules id and mp,
which is easy but quite tedious.

In order to prove completeness for the calculi GCK*, we will follow a stan-
dard technique (e.g. see [3, 19]) and work with different but equivalent calculi
that we are going to call (GCK∗)+ and which are defined as follows. For each
rule R of GCK*, we define a rule R+ which keeps the main formula from the
conclusion. For the rules > L and mp we have R = R+. For the other rules we
have
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G : ¬A, M ⇒ N, G : A

G : ¬A, M ⇒ N (¬L)+
G : A, M ⇒ N, G : ¬A

M ⇒ N, G : ¬A (¬R)+

G : A, G : B, G : A ∧B, M ⇒ N

G : A ∧B, M ⇒ N (∧L)+
M ⇒ N, G : A ∧B, G : A M ⇒ N, G : A ∧B, G : B

M ⇒ N, G : A ∧B (∧R)+

G : A → B, M ⇒ N, G : A G : B, G : A → B, M ⇒ N

G : A → B, M ⇒ N (→R)+
G : A, M ⇒ N, G : A → B, G : B

M ⇒ N, G : A → B (→L)+

M ⇒ N, G : A > B, G; An
j : B

M ⇒ N, G : A > B (>R)+
where the label Anj
is new, reading the
rule bottom-up.

Definition 4.2. The set sequent of the sequent M ⇒ N is the object P ⇒ Q,
where P and Q are the corresponding sets of the multisets M and N , respec-
tively. Clearly the set sequent of a sequent is still a sequent since a set is a
multiset.

Let us try to clarify the idea of set sequent by means of an example. Suppose
A,A,B ⇒ C,D is the sequent M ⇒ N . Then A,B ⇒ C,D is the set sequent
P ⇒ Q.

Any rule R+ carries the proviso that for all of its premises the set sequent
is different from the set sequent of the conclusion.

Given a calculus X ∈ GCK*, the calculus (X)+ is obtained by replacing each
rule R of X by the corresponding rule (R)+. The calculi GCK* and (GCK*)+

happen to be equivalent. For now we prove the following.

Lemma 4.3. For all sequents M ⇒ N , for all X ∈ GCK∗ and all X+ ∈
(GCK∗)+,

if `X+ M ⇒ N then `X M ⇒ N

Proof. By straightforward induction on the height of derivations in (GCK∗)+,
using contraction.

Definition 4.4. A sequent is said to be finished if no rule R+ can be applied
to one of its labelled formulas.

Definition 4.5. We define a procedure prove(M ⇒ N , X+), which takes a
sequent M ⇒ N and a calculus X+ ∈ (GCK∗)+, and builds a derivation tree
for M ⇒ N by applying rules from that calculus to non-initial and unfinished
derivation leaves (i.e. leaves that do not have an axiomatic form and contain
formulas that one can apply rules of the calculi to) in a bottom-up fashion, as
follows:

13



1. keep applying all the rules of X+ which are not the rule (> R)+ as long
as possible;

2. wherever possible, apply the rule (> R)+ once.6

Repeat this operation until each non-initial derivation leaf of the sequent M ⇒
N is finished. If prove(M ⇒ N , X+) terminates and all derivation leaves are
initial then it succeeds; otherwise, i.e. if it terminates and there is a non initial
derivation leaf, it fails.

Lemma 4.6. For all calculi (GCK∗)+ and for all sequents M ⇒ N , the pro-
cedure prove(M ⇒ N,X+) always terminates.

Proof. Each of the rules R+ causes the set of the labelled formulas of the sequent
M ⇒ N to strictly grows. By the subformula property, only finitely many
labelled formulas can occur in a sequent, so the procedure terminates. Note
that both rules id and > L might be applied several times: the rule id will be
applied once for each new label introduced, the rule > L will be applied on each
labelled formula of the form G;Cn−1

z : A > B occurring on the left side of the
sequent as many times as there are labels Enj , such that E ↔ A. However, since
the number of labelled formulas and hence of their labels is finite, the rules id
and > L will only be applied a finite number of times.

In order to prove the completeness theorem for our (GCK∗)+ calculi, we
need the following two definitions.

Definition 4.7. Let f be a function in a Nute model, which, therefore, as-
sociates to each world and each formula a set of possible worlds. We indicate
with f id the function in a Nute model that satisfies the semantic condition id;
we indicate with fmp the function in a Nute model that satisfies the semantic
condition mp. f id+mp will denote the function in a Nute model that satisfies
both semantic conditions id and mp. Let X ⊆ {id,mp}, then fX is the function
that satisfies the property(ies) of X.

Definition 4.8. Let us consider the n labelled formulas that occur in a sequent
M ⇒ N . We divide these labelled formulas in sets S1, ..., Sm in the following
way. Each set Si, 1 ≤ i ≤ m, will contain all and only those labelled formulas
of M and N that share the same sequence of labels G. We call these sets label
sets.

Let Si be a label set. With S∗i we will indicate the set composed by those
formulas obtained by erasing from each labelled formula contained in Si its
label-sequence G. Sets as S∗i will be called label-free sets.

Theorem 4.9. For all X ⊆ {id,mp} and all sequents M ⇒ N , we have that

6Since the rule (> R)+ creates new labels, in order not to have loops, it should only be
applied once.
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(i) if M ⇒ N is valid with respect to a C+X-frame, then the sequent
calculus X ∈ GCK∗ that corresponds to the C+X-frame is such that `
M ⇒ N in X.

(ii) If prove(M ⇒ N, (X)+) fails, then M ⇒ N is not valid in the frame
that corresponds to the calculus (X)+.

Proof. The contrapositive of (i) follows from (ii). If 0 M ⇒ N in a calculus
X ∈ GCK∗, then by Lemma 4.3, also 0 M ⇒ N in the corresponding calculus
(X)+ ∈ (GCK∗)+; thus, in particular, prove(M ⇒ N , (X)+) cannot yield a
derivation and by Lemma 4.6 has to fail. For (ii), we define a model M on a C
+ X-frame, for X ⊆ {id,mp}, for which we prove that it is a countermodel for
M ⇒ N .

Let P ⇒ Q be a non-initial sequent obtained by the procedure prove(M ⇒
N , (X)+). Let S1, . . . , Sm be the label sets that can be obtained from P ⇒ Q
and S∗1 , . . . , S

∗
m the corresponding label-free sets. W = {S∗1 , . . . , S∗m}. The

function fX is explicitly defined by the labels contained in S1, . . . , Sm. We
define v in the following way

v(S∗i , p) =


1 : p occurs in a label formula G : p such that G : p ∈ Si

and occurs on the left side of the sequent P ⇒ Q
0 : p occurs in a label formula G : p such that G : p ∈ Si

and occurs on the right side of the sequent P ⇒ Q

Since the sequent P ⇒ Q is non-initial, this choice can be coherently made. We
thus have M = 〈W, fX , v〉.

Claim 1. For all S∗i , S∗j ∈ W such that S∗j ∈ f(S∗i , A), for some A, and for all
labelled formulas of the form G : B > C, such that they occur on the left side
of the sequent P ⇒ Q and |= B ↔ A is valid in Nute semantics, we have that,
if B > C ∈ S∗i , then C ∈ S∗j .

By the > L rule we have that C is in all S∗j such that S∗j ∈ f(S∗i , A), for all A
such that B ↔ A is a validity.

Claim 2. For all S∗i ∈ W and for all labelled formulas of the form G : B > C,
such that they occur on the left side of the sequent P ⇒ Q, we have that,
whenever mp ∈ X in fX , if B > C ∈ S∗i , then B or C ∈ S∗i as well.

The application of the rule mp easily allows to verify Claim 2.

Claim 3. For all S∗i ∈ W , we have:

- for all A ∈ S∗i such that G : A occur on the left side of the sequent P ⇒ Q,
S∗i |=M G : A

- for all A ∈ S∗i such that G : A occur on the right side of the sequent
P ⇒ Q, S∗i 2M G : A

15



By induction on the complexity of the formula G : A. Concerning propositional
atoms, it follows from the definition of the valuation function, and the fact that
P ⇒ Q is not an initial sequent. Concerning the propositional connectives, it is
clear from the shape of the (¬)+, the (∧)+ and (→)+ rules. If G : A = G : B > C
and it occurs on the right side of the sequent, then by the (> R)+ rule, we have
at least one S∗z ∈ fX(B,S∗k) with C ∈ S∗z . By the inductive hypothesis, we
have S∗z 2M C and thus S∗k 2M B > C; hence S∗i 2M G : B > C. If G : A =
G : B > C and it occurs on the left side of the sequent, then:

(i) by Claim 1, we have C ∈ S∗z for all S∗z ∈ fX(D,S∗k), for any D such that
B ↔ D is valid in Nute semantics. Since B ↔ B is a validity, then C ∈
S∗z for all S∗z ∈ fX(B,S∗k). Thus, by the inductive hypothesis, we have
S∗z |=M C.

(ii) by Claim 2, we have B or C ∈ S∗k . Thus, by the inductive hypothesis, we
have S∗k 2M B or S∗k |=M C, which is to say: if S∗k |=M B, then S∗k |=M C.

By (i) and (ii) we can infer S∗k |=M B > C. Hence we have S∗i |=M G : B >
C.

Claim 4. The selection function fX of the model M = 〈W, fX , v〉 satisfies the
normality condition.

Suppose that the selection function fX of the model M = 〈W, fX , v〉 does not
satisfy the normality condition. This means that there exist a formula A and a
formula C such that A↔ C is valid in Nute semantics but fX(i, A) 6= fX(i, C).
The fact that fX(i, A) 6= fX(i, C) in the model M implies that there exist two
worlds S∗i , S∗j ∈ W and a formula of the form C > B such that: (i) S∗j ∈
f(S∗i , A), (ii) C > B belongs to S∗i and G : C > B occurs on the left side of the
sequent P ⇒ Q, (iii) the formula B does not belong to S∗j .

Since the formula G : C > B occurs on the left side of the sequent P ⇒ Q,
C > B belongs to S∗i and A ↔ C is a validity, by Claim 1, we can infer that
the formula C belongs to any world S∗z such that S∗z ∈ f(S∗i , A); thus C also
belongs to S∗j . This contradicts (iii).

Claim 5. If id ∈ X, then the selection function fX of the model M = 〈W, fX , v〉
satisfies the id condition.

Thanks to the applications of the rule id we know that for all S∗i and for all S∗j
such that S∗j ∈ f(S∗i , A), for some A, A ∈ S∗j , moreover G;Anj : A occurs on the
left side of the sequent P ⇒ Q. By Claim 3 we have S∗j |=M A.

The model M satisfies all the required properties. Since all rules seen top-down
preserve countermodels, Claim 3 implies that 2M M ⇒ N .

5 Natural Deduction Calculi

We use this section to introduce natural deduction calculi for the CK* systems.
In order to build these calculi we will use the same technique used for the
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Figure 4: Rules of the calculus NCK
Introduction Rules Elimination Rules

Propositional Rules

���[G : A]

...d
⊥

G : ¬A
¬I

��
��[G : ¬A]

...d
⊥

G : A
¬E

...

d1

G : A

...

d2

G : B
G : A ∧B

∧I

...

d

G : A ∧B
G : A

∧E

...

d

G : A ∧B
G : A

∧E

���[G : A]

...d
G : B

G : A → B
→I

...

d1

G : A → B

...

d2

G : A
G : B

→E

Counterfactual Rules

...

d

G; An
j : B

G : A > B
>I

...

d1

G : A > B

...
...

d2

A ↔ C

G; Cn
j : B

>E

In the rule > I the label An
j does not occur in any undischarged assumption of d.

In the rule > E the label Cn
j either already occurs in the derivation d1 or it will

be the principal label of an application of the rule > I.

sequent calculi, namely we will employ labelled formulas. The natural deduction
calculus NCK for the system CK is composed of the rules of Figure 4. As
usual, the rules are divided into introduction and elimination rules. As for the
rules that introduce and eliminate negation, conjunction and implication, these
are the classical ones, the only difference being that we use labelled formulas
instead of standard formulas. As for the rules that introduce and eliminate the
counterfactual symbol, these are analogous to the > L and > R rules of the
sequent calculus GCK, respectively. Let us draw the reader’s attention on the
special notation used in the derivation of the formula A ↔ C in the rule > E.
This notation serves to indicate the fact that in the derivation of the formula
A↔ C all assumptions must be discharged.

In order to take into account the axioms ID and MP, we will consider the
rules of Figure 5. Thus, the natural deduction calculi for the systems CK* will
be the calculi NCK, NCK+nid, NCK+nmp and NCK+nid+nmp. From now

17



Figure 5: ID and MP extensions of the calculus NCK

G; An
i : A

nid

...

d1

G : A > B

...

d2

G : A
G : B

nmp

on these calculi will be referred to as NCK*.
Before turning to the introduction of some important definitions and lemmas,

let us illustrate some derivations in the calculi NCK*.

A↔ A
((((

((((
((

[(A > C) ∧ (A > B)]
A > B

∧E

A1
j : B

>E
A↔ A

((((
((((

((
[(A > C) ∧ (A > B)]

A > C
∧E

A1
j : C

>E

A1
j : B ∧ C

∧I

A > B ∧ C >I

(A > C) ∧ (A > B)→ (A > B ∧ C)
→I

��
���[A1

j : ¬B]
A↔ A A > B

A1
j : B

>E

⊥ ∧I

A1
j : ¬¬B

¬I

A > ¬¬B >I

A↔ ¬¬A A > C

¬¬A1
j : C

>E

¬¬A > C
>I

¬¬A > C ∨ ¬¬A > D
∨I

(A > C)→ (¬¬A > C ∨ ¬¬A > D)
→I

Definition 5.1. The notions of deduction and height of a deduction in NCK*
are the standard ones, see [18]. We write M `mX G : A for: there exists a
deduction d from the multiset M to G : A in a calculus X ∈ NCK∗ with the
height of d, h(d), 6 m.
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Lemma 5.2. For all X ∈ NCK*, for all multiset M and formula G : B, if
M `mX G : B, then [Ani /A

n
j ]M `mX [Ani /A

n
j ]G : B.

Proof. By induction on the height of the deduction of G : B from M . We
distinguish cases according to the last rule R applied in the deduction M `mX
G : B. If there is no such a rule R, since G : B is an assumption, then so is
[Ani /A

n
j ]G : B. If the last rule R applied in the deduction M `mX G : B is one

of the propositional rules or one of the rules > E, nid, nmp, then we apply the
inductive hypothesis on the premise of R and then apply R again.

If the last rule R applied in the deduction M `mX G : B is > I, then we
consider the following specific case:

M
...

〈m−1〉G;Anj : B
〈m−1〉G : A > B

>I

We apply twice the inductive hypothesis on the deductionM `m−1
X G;Anj : B

obtaining [Ani /A
n
j ]M `m−1

X G;Ank : B. The application of the rule > I gives the
desired conclusion.

Lemma 5.3. For all X ∈ NCK*, for all multiset M and formula G : B, if
M `mX G : B, then C1

j ; [M ] `mX C1
j ;G′ : B.

Proof. By a straightforward induction on the height of the deduction of G : B
from M .

Lemma 5.4. For all X ∈ NCK*, for all multiset M and formula G : B, if
M `mNCK∗ G : B, then M,N `mNCK∗ G : B.

Proof. It follows from the definition of deduction employed in the calculi. In
case of clash of variables with the rule > I, we use Lemma 5.2.

Lemma 5.5. For all X ∈ NCK*, for all multiset M and formula G : B, if
H : C,H : C,M `mX G : B, then H : C,M `mX G : B.

Proof. Contraction is achieved by identifying two distinct labels for assumption
classes containing H : C, respectively.

6 Normalization Theorem

We use this section to prove that in natural deduction calculi NCK* deductions
normalize. Let us first introduce some important definitions and lemmas.

Definition 6.1. A maximal segment of lenght 1, or a cut, in a deduction d of a
calculus X ∈ NCK∗ is a labelled formula G : A which is, at the same time, the
conclusion of an introduction rule and the major premise of an elimination rule.
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The cutrank of a cut, or of a maximal segment, G : A is |A|. The cutrank of a
deduction d is the maximum of the cutranks of cuts in d. If in d there is no cut,
then the cutrank of d is zero. A critical cut of d is a cut of maximal cutrank
among all cuts in d. A deduction without critical cut is said to be normal.

Lemma 6.2. For all X ∈ NCK*, if M `X G : A, then there is a deduction d′

in X ∈ NCK* of G : A from M where the consequence of every application of
the rule ¬E is either atomic or it can be eliminated.

Proof. Let d be a deduction in NCK* of G : A from M in which the highest
complexity of a consequence of an application of the ¬E rule is m, where m > 0.
Let H : B be a consequence of an application α of the ¬E rule in d such that
its degree is m but no consequence of an application of the ¬E-rule that stands
above H : B is of degree m. Then d has the form:

���
�[H : ¬B]

d2

⊥
(H : B)
d1

where [H : ¬B] is the set of assumptions discharged by α. H : B has one of the
shapes H : ¬C, H : D∧C, H : A→ C, H : D > C. We remove this application
of the ¬E rule by transforming d in the respective cases to:

[Negation case]

���
�[H : A] ���

�[H : ¬A]
⊥ ∧I

[H : ¬¬A]
¬I

d2

⊥
H : ¬A ¬I

[Conjunction case]

(((
((([H : D ∧ C]

H : D
∧E

��
���[H : ¬D]

⊥ ∧I

[H : ¬(D ∧ C)]
¬I

d2

⊥
H : D

¬E

(((
((([H : D ∧ C]

H : C ��
��[H : ¬C]

⊥ ∧I

[H : ¬(D ∧ C)]
¬I

d2

⊥
H : C

¬E

H : D ∧ C ∧I

[Implication case]
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((((
(([H : D → C] ���

�[H : D]
[H : C]

→E
���

�[H : ¬C]
⊥ ∧I

[H : ¬(D → C)]
¬I

d2

⊥
H : C

¬E

H : D → C
→I

[Counterfactual case]

(((
((([H;Dn
i : ¬C]

((((
(([H : D > C]

...
...

D ↔ D

H;Dn
i : C

>E

⊥ ∧I

[H : ¬(D > C)]
¬I

d2

⊥
H;Dn

i : C
¬E

H : D > C
>I

We firstly show how to remove propositional cuts which are common to all
calculi NCK∗. Then we show how to remove counterfactual cuts and finally cuts
generated by the rule nmp. These last two types of cut are both not so simple
to be dealt with and require a more detailed treatment.

[¬I − ¬E]

���[G : p]
...
d1

⊥
G : ¬p ¬I

...
d2

⊥
G : p

¬E

d3 cont

���
�[G : ¬p]

...
d2

⊥
G : p

¬E

d3

[∧I − ∧E]
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...
d0

G : A0

...
d1

G : A1

G : A0 ∧A1
∧I

G : Ai
∧E

d2

cont

...
di

G : Ai
d2

where i = {0, 1}.

[→ I− → E]

��
��[G : A]

...
d1

G : B
G : A→ B

→I
...
d2

G : A
G : B

→E

d3

cont

...
d2

G : A
...
d1

G : B
d3

[> I− > E]

...
d1

G;Ani : B
G : A > B

>I

...
...
d2

A↔ C
G;Cnj : B

>E

d2

cont

In order to solve this case, we need a
lemma stating that, if we have a de-
duction d1 of G;Ani : B from M and a
deduction d2, with no undischarged as-
sumption, of A ↔ C, then we have a
deduction d3 of G;Cnj : B from M . In
order to prove this lemma, we need the
normalization theorem. For not creat-
ing any loop, we prove the normaliza-
tion theorem and the above mentioned
lemma by parallel induction.

[> I − nmp]

...
d1

G;Ani : B
G : A > B

>I

...
d2

G : A
G : B

nmp

d3

cont

In order to solve this case, we need a
lemma stating that, if we have a de-
duction d1 of G;Ani : B from M and a
deduction d2 of G : A from P , then we
have a deduction d3 of G : B from M
and P . In order to prove this lemma, we
need the normalization theorem. For
not creating any loop, we prove the nor-
malization theorem and the above men-
tioned lemma by parallel induction.
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In what follows we will prove, by parallel induction, the normalization the-
orem for the calculi NCK* together with two lemmas that, as explained above,
are required for the very same proof of the normalization theorem. Such a
technique has been introduced by [1] for deep-inferences (or tree-hypersequent)
calculi for the systems CK*. Here we adapt such a technique to the case of
natural deduction calculi with labelled formulas.

We start considering calculi NCK and NCK+nid; successively we will deal
with those calculi that contain the nmp rule.

Theorem 6.3. The following propositions hold:

(i) Every derivation d in NCK and NCK+nid is normalizable.

(ii) If M `X G;Ani : B, where the label Ani does not occur in M , and there
is a norma derivation without undischarged assumptions of A↔ C in X,
then M `X G;Cnj : B, where X is either NCK or NCK+nid.

Proof. Let us call Cut(c, h) the assertion that the property (i) holds for the
cutrank c and the sum h of the heights of all critical cuts in d. Let us call
Sub(c) the assertion that (ii) holds for any M and any labelled formula H : D
of complexity c. We show the following facts:

(i) ∀c∀h (∀c′ < c Cut(c′, h) ∧ ∀h′ < h Cut(c, h′) → Cut(c, h))

(ii) ∀c (∀h Cut(c, h)→ Sub(c)).

Let us first prove (i). We will do it by primary induction on the cutrank c
and secondary induction on h, the sum of the heights of the cuts. By a suitable
choice of the critical cuts to which we apply the contraction, we can achieve
that either c decreases, or that c remains constant but h decreases. Let us call
σ a top critical cut in d if no critical cut occurs in a branch of d above σ. Now
apply a contraction to the rightmost top critical cut of d; then the resulting d′

has a lower cutrank, or has a same cutrank but a lower value for h.
Let us see this in the case of counterfactual. Suppose we apply a contraction

to the rightmost top critical cut consisting of a formula occurrence G : A > B

...
d1

G;Ani : B
G : A > B

>E

...
...
d2

A↔ C
G;Cnj : B

>E

Since |B|< |A > B|, the label An does not occur in the undischarged as-
sumptions of d1, because of the restriction of the rule > I, and the derivation
d2 is in normal form because if it was not, it would contain the rightmost cut
against the initial assumption, by inductive hypothesis we can apply (ii) to the
derivation d1 and the derivation d2 obtaining a derivation d3 of G;Cnj : B (from
the same undischarged assumptions of d1). This is exactly what we were looking
for.
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Before passing to the proof of (ii), let us remind two standard properties of
normal deductions which will be useful in what follows.

Theorem 6.4. Let d be a normal deduction in NCK or NCK+nid and let β
= G1 : A1, G2 : A2, . . ., Gk : Ak be a branch in d. Then there is a labelled
formula occurrence Gi : Ai, called the minimum formula in β, which separates
two (possibly empty) parts of β, called the E-part and the I-part of β, with the
properties:

- Each Gj : Aj in the E-part (i.e. j < i) is a major premise of an E-rule.

- Gi : Ai, provided that i 6= k, is premiss of an I-rule or of the rule ¬E.

- Each Gj : Aj in the I-part, except the last one (i.e. i < j < k), is a
premiss of an I-rule.

Proof. The proof can be developed in the same way as the proof of Theorem 3
in [18, p. 41-42].

Corollary 6.5. Let d be a derivation of G : A in NCK or NCK+nid without
undischarged assumptions, which is normal and such that G : A is not atomic.
Then the derivation d ends with an I-rule.

Proof. The proof can be developed in the same way as the proof of Exercise
6.26D in [22, p. 148].

Let us now pass to (ii). We proceed by induction on the height h of the
derivation of G;Ani : B from M . We distinguish cases according to the last rule
that has introduced G;Ani : B. If G;Ani : B is an assumption, G;Cni : B is
an assumption too. If G;Ani : B has been derived by a rule R that is either a
propositional rule or the rule > I, then we apply the inductive hypothesis and
then the rule R again. If G;Ani : B has been derived by the rule > E, then we
consider the following problematic case:

...
d3

G : D > B

...
...
d4

D ↔ A
G;Ani : B

>E

To solve this case, we proceed in the following way. Let us consider the
derivation of A↔ C, let us call this derivation d2, and the derivation d4 of D ↔
A; both these derivations are normal and without undischarged assumptions.
Since d2 and d4 are normal, do not contain any undischarged assumption and
end up with non-atomic formula, we can apply on each of them Corollary 6.5
and thus know that both d2 and d4 terminate with an introduction rule. Given
the form of their last formulas, namely A ↔ C and D ↔ A, respectively, then
in both cases we know that their last rule is the rule ∧I. In particular, we know
that the derivation d2 ends with ∧I applied on A → C and C → A, while the
derivation d4 ends with ∧I applied on A→ D and D → A.
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...
...
d2′

A→ C

...
...
d2′′

C → A
A↔ C

∧I

...
...
d4′

A→ D

...
...
d4′′

D → A
D ↔ A

∧I

Let us now consider the derivations d2′ , d2′′ , d4′ , d4′′ . Each of them is in
normal form, does not contain open assumptions and ends up with non-atomic
formula. Thus, once more, on each of them we can apply Corollary 6.5 and thus
know that each of them terminates with an introduction rule. Given the form
of their last formulas, then all of d2′ , d2′′ , d4′ , d4′′ have as their last rule the rule
→ I. In particular each of them is nothing but the result of the application of
the rule → I to one of the following derivations, respectively:

- a derivation d′ of C from A

- a derivation d′′ of A from C

- a derivation d′′′ of D from A

- a derivation div of A from D

Let us now consider the derivations d′ - div. By combining together d′′ and
d′′′ and d′ and div, we obtain a derivation d∗ of D from C and a derivation d∗∗

of C from D, respectively. By applying on d∗ and d∗∗ the rules→ I and ∧I, we
obtain:

��[C]
...d∗
D

C → D
→I

��[D]
...d∗∗
C

D → C
→I

C ↔ D
∧I

The new derivations d∗ and d∗∗ might contain contractions the cutrank of
which is |A|. Since |A|< |A > B|, on these contractions we apply (i) and obtain
a cut-free derivation of C ↔ D. By applying the rule > E on G : D > B and
C ↔ D, we get a normal derivation of G;Cnj : B, as desired.

Let us finally suppose that G;Anj : B is of the form G;Anj : A and has been
obtained by the rule id. We proceed as follows. Let us consider the derivation
d2 of A↔ C. Since d2 is normal, does not contain any undischarged assumption
and ends up with a non-atomic formula, following Corollary 6.5 we know that
d2 terminates with an introduction rule. Given the form of the last formula of
d2, namely A↔ C, the last rule in question will be the rule ∧I. Thus we have:

...
...
d2′

A→ C

...
...
d2′′

C → A
A↔ C

∧I

Let us now consider the derivations d2′′ of C → A. d2′′ is in normal form,
does not contain open assumptions and ends up with non-atomic formula. Thus,
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once more, we can apply Corollary 6.5 and thus know that it terminates with an
introduction rule. Given the form of its last formula, namely C → A, then d2′′

has as its last rule the rule → I. In particular it is nothing but the result of the
application of the rule → I to a derivation d′′ of A from C. Let us consider this
derivation d′′; by applying several times Lemma 5.3 on it, we obtain a derivation
d∗ of G;Cni : A from G;Cni : C. For the rule nid and Lemma 5.4, we obtain a
derivation of G;Cni : A from M as desired.

Let us now pass to analyze the calculi NCK + nmp and NCK + nid + nmp.
The proof of the normalization theorem is in this case slightly different from the
one of Theorem 6.3 above, that is why we prove it in a separate theorem. As
previously stated, to make normalization work we need to show the following
statement:

If M `X G;Ani : B, where the label Ani does not occur in M , and
P `X G : A, then M,P `X G : B, where X is either NCK + nmp
or NCK + nid + nmp.

This statement is needed to handle the contraction in case the counterfactual
conditional formula is eliminated by the nmp rule.

Theorem 6.6. The following propositions hold:

(1) Every derivation d in NCK + nmp and NCK + nid + nmp is normal-
izable.

(2) If M `X G;Ani : B, where the label Ani does not occur in M , and there is
a normal derivation of A ↔ C in X, then M `X G;Cnj : B, where X is
either NCK + nmp or NCK + nid + nmp.

(3) If M `X G;Ani : B, where the label Ani does not occur in M , and P `X
G : A, then M,P `X G : B, where X is either NCK + nmp or NCK +
nid + nmp.

Proof. Let us call Cut(c, h) the assertion that the property (i) holds for the
cutrank c and the sum h of the heights of all critical cuts in d. Let us call
Sub(c) the assertion that (ii) holds for any M and any labelled formula H : D
of complexity c; let us call MP (c) the assertion that (iii) holds for any M and
P and any labelled formula H : D of complexity c. We show the following facts:

(1) ∀c∀h (∀c′ < c Cut(c′, h) ∧ ∀h′ < h Cut(c, h′) → Cut(c, h))

(2) ∀c (∀h Cut(c, h)→ Sub(c)).

(3) ∀c (∀h Cut(c, h)→MP (c)).
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Let us first prove (1). The proof of (1) is the same as the proof of (i)
except for the case where a labelled formula of the form G : A > B is firstly
introduced by the rule > I and then eliminated by the rule nmp, i.e. except for
the case where we have the following situation:

...
d1

G;Ani : B
G : A > B

>E

...
d2

G : A
G : B

>E

Since |B|< |A > B|and the label An does not occur in the premisses of d1,
because of the restriction of the rule > I , by inductive hypothesis we can apply
(3) to the derivation d1 and the derivation d2 obtaining a derivation d3 of G : B
(from the same premisses of d1 and d2). This is exactly what we were looking
for.

Before passing to the proofs of (2) and (3), let us remind two standard
properties of normal deductions which have been already mentioned before and
will be useful in what follows.

Theorem 6.7. Let d be a normal deduction in NCK+nmp or NCK+nid+nmp
and let β = G1 : A1, G2 : A2, . . ., Gk : Ak be a branch in d. Then there is
a labelled formula occurrence Gi : Ai, called the minimum formula in β, which
separates two (possibly empty) parts of β, called the E-part and the I-part of β,
with the properties:

- Each Gj : Aj in the E-part (i.e. j < i) is a major premise of an E-rule.

- Gi : Ai, provided that i 6= k, is premiss of an I-rule or of the rule ¬E.

- Each Gj : Aj in the I-part, except the last one (i.e. i < j < k), is a
premiss of an I-rule.

Proof. The proof can be developed in the same way as the proof of Theorem 3
in [18, p. 41-42].

Corollary 6.8. Let d be a derivation of G : A in NCK+nmp or NCK+nid+nmp
without undischarged assumptions, which is normal and such that G : A is not
atomic. Then the derivation d ends with an I-rule.

Proof. The proof can be developed in the same way as the proof of Exercise
6.26D in [22, p. 148].

Let us now pass to (2). The proof of (2) is the same as the proof of
(ii) except for the case where G;Ani : B has been introduced by the rule nmp.
This case can easily be dealt with by applying the inductive hypothesis on the
premises and then by reapplying the rule nmp.
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Let us finally prove (3). We proceed by induction on the height h of
the derivation of G;Ani : B from M . We distinguish cases according to the last
rule that has introduced G;Ani : B. If G;Ani : B is an assumption, G : B is
an assumption too. If G;Ani : B has been derived by a rule R that is either a
propositional rule or one of the rules > I and nmp, then we apply the inductive
hypothesis and then the rule R again. If G;Ani : B has been derived by the rule
> E, then we consider the following problematic case:

...
d3

G : D > B

...
...
d4

D ↔ A
G;Ani : B

>E

To solve this case, we proceed in the following way. Let us consider the
derivations d4 of D ↔ A; this derivation is normal and without undischarged
assumptions. Since d4 is normal, does not contain any undischarged assumption
and ends up with non-atomic formula, we can apply on it Corollary 6.8 and thus
know that d4 terminates with an introduction rule. Given the form of its last
formula, namely D ↔ A, then we know that its last rule is the rule ∧I. In
particular, we know that the derivation d4 ends with ∧I applied on A→ D and
D → A.

...
...
d4′

A→ D

...
...
d4′′

D → A
D ↔ A

∧I

Let us now consider the derivation d4′ ; d4′ is in normal form, does not contain
undischarged assumptions and ends up with non-atomic formula. Therefore,
even on d4′ we can apply Corollary 6.8 and thus know that it terminates with
an introduction rule. Given the form of its last formula, namely A → D, then
d4′ have as its last rule the rule→ I; more precisely d4′ is nothing but the result
of the application of the rule → I on a derivation d

′
from A to D.

Let us now consider the derivation d
′
. By applying several times Lemma

5.3 on it, we obtain a proof d
′∗ from the labelled formula G : A to the labelled

formula G : D. Let us now combine together such a derivation d
′∗ with the

derivation d2 of G : A, obtaining a derivation d∗ of G : D from the same
premisses of d2. d∗ might contain a cut of cutrank |A|. In this case, since |A|<
|A > B|, we can apply the inductive hypothesis on (1) and obtain a normal
derivation of G : D. We use this normal derivation and the derivation d3 of
G : D > B to apply the rule nmp and obtain a derivation of G : B as desired.

Finally, if G;Ani : B has been obtained by the rule nid, then we consider the
derivation d2 of G : A and thanks to Lemma 5.4 we get the desired derivation.
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7 From natural deduction calculi to sequent cal-
culi and adequateness theorem

In this section we show how to transform natural deduction calculi into sequent
calculi. We exploit this result to prove the adequateness theorem of the NCK*
calculi.

Theorem 7.1. Let X ∈ NCK∗ and X ∈ GCK∗. For all X and X, for all
multiset of formulas M and all labelled formula G : A

if M `X G : A, then `M ⇒ G : A in X

Proof. By induction on the height of the derivations in X. We distinguish cases
according to the last rule applied in the derivation d of X. If G : A is an
assumption, then is translated as the axiom G : A ⇒ G : A. If G : A has
been derived by means of a propositional introduction or elimination rule, then
we follow the standard strategy, see [22, p.190-191]. If G : A is of the form
G : B > C has been derived by means of the rule > I, then we have an object
of the following form

M
...

G;Bni : C
G : B > C

> I

where the label Bni does not occur in M . By the inductive hypothesis, we have
that the sequent M ⇒ G;Bni : C is derivable in X. By applying the rule > R,
we obtain M ⇒ G : B > C.

If G : A is of the form G;Cnj : B has been derived by means of the rule > E,
then we have an object of the following form:

M
...

G : D > B

...
...

D ↔ C
G;Cnj : B

>E

By the inductive hypothesis we have that the sequents M ⇒ G : D > B and
⇒ D ↔ C are derivable in X. We consider the derived sequent G;Cnj : B ⇒
G;Cnj : B. By applying on this sequent and the sequent ⇒ D ↔ C the rule
> L, we obtain G : D > B ⇒ G;Cnj : B. By applying a cut on M ⇒ G : D > B
and G : D > B ⇒ G;Cnj : B, we obtain M ⇒ G;Cnj : B, which is the desired
conclusion.

If G : A is of the form G;Bni : B and has been derived by means of the rule
nid, then we have to show that the sequent⇒ G;Bni : B is derivable in X. This
can be easily done by considering axioms of the form G;Bni : B ⇒ G;Bni : B
and by applying on them the rule id.

If G : A has been derived by means of the rule nmp, then we have an object
of the following form
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M
...

G : B > A

P
...

G : B
G : A

nmp

By the inductive hypothesis, we have that the sequent M ⇒ G : B > A and the
sequent P ⇒ G : B are both derivable in X. We consider axioms of the form
G : B > A,G : B ⇒ G : B and of the form G : B > A,G : A ⇒ G : A and we
apply on them the rule mp, obtaining the sequent G : B > A,G : B ⇒ G : A.
We first apply a cut on the sequent M ⇒ G : B > A and the sequent G : B >
A,G : B ⇒ G : A, getting G : B,M ⇒ G : A. Then we apply a second cut
on P ⇒ G : B and G : B,M ⇒ G : A, thus obtaining the desired conclusion
M,P ⇒ G : A.

We now show soundness and completeness of the calculi NCK∗ with respect
to the appropriate semantics. In order to establish this result we use Theorem
7.1.

Theorem 7.2.

(i) If G : A is derivable from a multiset M in a calculus X ∈ NCK∗, then
(G : A)τ is a logical consequence of the multiset (M)τ in the corresponding
class of frames C + X, X ∈ {id,mp}.

(ii) If A is valid in a class of frames C + X, X ∈ {id,mp}, then A is derivable
in the corresponding natural deduction calculus X ∈ NCK∗.

Proof. (i) follows from Theorem 4.1 and Theorem 7.1. In order to further ac-
quaint the reader with the calculi NCK* we verify (ii). We present the deduc-
tions of the axioms ID and MP, and we show that the rules RCK and RCEA
are derivable in the calculi NCK*. As for the classical axioms and the rule of
modus ponens, the deductions are the standard ones.7

RCK rule

C1
i : (A1 ∧ · · · ∧An → B)

(((
((((

((((
C > A1 ∧ · · · ∧ C > An

C > A1
∧E

C1
i : A1

>E
. . .

(((
((((

((((
C > A1 ∧ · · · ∧ C > An

C > An
∧E

C1
i : An

>E

C1
i : (A1 ∧ · · · ∧An)

∧I∗

C1
i : B

→E

C > B
>I

(C > A1 ∧ · · · ∧ C > An)→ (C > B)
→I

7We will use R∗ to denote several applications in a row of the rule R.
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where C1
i : (A1 ∧ · · · ∧ An → B) has been obtained from (A1 ∧ · · · ∧ An → B)

by Lemma 5.3.

RCEA rule

A↔ B ���
�A > C

B1
i : C

>E

B > C
>I

(A > C)→ (B > C)
→I

A↔ B ���
�B > C

A1
k : C

>E

A > C
>I

(B > C)→ (A > C)
→I

(A > C)↔ (B > C)
∧I

ID axiom

A1
i : A

nid

A > A
>I

MP axiom

���
�A > B �A
B

nmp

A→ B
→I

(A > B)→ (A→ B)
→I

8 Conclusions

In this paper we have focussed on the proof theory for counterfactual logics
based on Nute semantics. In particular we have introduced labelled sequent
calculi and labelled natural deduction calculi for the systems CK∗. We have
proved that these calculi satisfy many important properties. In the light of these
results, we see two main lines of future research. On the one hand, we would
like to extend our labeling method to other logics based on Nute’s semantics,
like those characterized by the axioms CEM and CSO, see [12]; on the other
hand, we believe it would interesting to draw a formal comparison between our
calculi and the other calculi, introduced in [1, 14], for the logics based on Nute
semantics.

In the last decade research in proof theory for non-classical logics has known
great developments; nevertheless, the interesting question of finding analogous
sequent calculi and natural deduction calculi for the same (non-classical) logic
has been left aside. We hope that this paper can be seen as a first step towards
filling this gap.
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