
HAL Id: hal-01271552
https://hal.science/hal-01271552

Submitted on 9 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taking Static Analysis to the Next Level: Proving the
Absence of Run-Time Errors and Data Races with

Astrée
Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick

Cousot, Daniel Kästner, Stephan Wilhelm, Christian Ferdinand

To cite this version:
Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot, et al.. Taking Static
Analysis to the Next Level: Proving the Absence of Run-Time Errors and Data Races with Astrée. 8th
European Congress on Embedded Real Time Software and Systems (ERTS 2016), Jan 2016, Toulouse,
France. �hal-01271552�

https://hal.science/hal-01271552
https://hal.archives-ouvertes.fr


Taking Static Analysis to the Next Level: Proving the Absence of
Run-Time Errors and Data Races with Astrée

Antoine Miné2, Laurent Mauborgne5, Xavier Rival1,3, Jerome Feret1,3, Patrick Cousot4,
Daniel Kästner5, Stephan Wilhelm5, Christian Ferdinand5

1École normale supérieure, Paris, France
2Sorbonne University, University Pierre and Marie Curie, CNRS, LIP6

3INRIA, France
4Courant Institute of Mathematical Sciences, NYU, New York

5AbsInt GmbH, Saarbrücken, Germany, http://www.absint.com

Abstract

We present an extension of Astrée to concurrent C soft-
ware. Astrée is a sound static analyzer for run-time er-
rors previously limited to sequential C software. Our
extension employs a scalable abstraction which covers
all possible thread interleavings, and soundly reports all
run-time errors and data races: when the analyzer does
not report any alarm, the program is proven free from
those classes of errors. We show how this extension is
able to support a variety of operating systems (such as
POSIX threads, ARINC 653, OSEK/AUTOSAR) and
report on experimental results obtained on concurrent
software from different domains, including large indus-
trial software.

1 Introduction

Safety-critical embedded software has to satisfy strin-
gent quality requirements. All contemporary safety
standards require evidence that no data races and no
critical run-time errors occur, such as invalid pointer ac-
cesses, buffer overflows, or arithmetic overflows. Such
errors can cause software crashes, invalidate separation
mechanisms in mixed-criticality software, and are a fre-
quent cause of errors in concurrent and multi-core ap-
plications.

The last years have seen the emergence of semantics-
based static analysis tools able to detect run-time errors,
such as the Astrée analyzer [6]. However, such tools
cannot handle concurrent programs at all, or with the
same level of soundness, coverage, and automation as
sequential programs: they would not cover all potential
process interleavings, or require the user to enter manu-
ally the set and range of shared variables, or miss sup-
port for concurrency primitives (such as mutexes) or the
detection of concurrency-specific hazards (such as data
races). We present here an extension of Astrée to ana-

lyze soundly and automatically concurrent software.
The article is structured as follows: first, in Sec. 2, we

give an overview of sound static analysis and of Astrée.
In Sec. 3, we explain the key concepts underlying our
interleaving semantics, which makes it possible to ana-
lyze concurrent programs in a scalable and sound way,
and report all run-time errors and data races. Section 4
discusses our support for several standard operating sys-
tems, enabling the automated analysis of software run-
ning under these OS. Section 5 discusses our experi-
ments: the analysis of industrial avionic software, as
well as preliminary results on ongoing experiments on
OSEK software. Section 6 discusses related work. Sec-
tion 7 concludes.

2 Overview of Astrée

Sound static analysis. Astrée discovers errors by in-
specting the source code without running it. It traverses
the program control structure and interprets program in-
structions according to the language semantics to build
automatically a model of its executions. To ensure ef-
ficiency, the model must be approximated, but we take
care to always use over-approximations. Thus, in con-
trast to most other static analyzers, Astrée makes sure
that all possible program executions are taken into ac-
count: it achieves a full coverage of the whole control
and data space of the program. For this reason, it is
sound: whenever no error is reported, we are certain that
no error can exist in the actual program executions ei-
ther. Like all sound static analyzers, Astrée may report
false alarms (notifications about potential run-time er-
rors which do not occur in real program executions). An
important design goal of the analyzer, reached in 2003,
was to achieve zero false alarm on a significant class
of sequential software: large industrial avionics control-
command software [6].

1

http://www.absint.com


Language. Astrée has been developed for safety-
critical C programs and is based on the C99 standard
[17]. It supports all C control structures and C datatypes,
provides a stubbed C library and even supports dynamic
memory allocation. The only notable limitations are
that recursive calls will be detected and reported as an
alarm without trying to analyze the recursive invoca-
tions; moreover, long jumps are not supported. As a
recent extension, Astrée supports concurrency features,
such as threads and locks (Sec. 3) and can analyze soft-
ware running on top of operating systems implement-
ing common standards (e.g., POSIX, ARINC 653 [4],
OSEK/AUTOSAR [1], see Sec. 4).

Semantics. The semantics of programs used by
Astrée is based on the C99 standard [17]. How-
ever, the standard provides a high-level and abstract
semantics, leaving many aspects of program behav-
iors implementation-defined, unspecified, or undefined.
Implementation-defined features, such as the bitsize of
integers can be configured. Moreover, Astrée employs a
low-level memory semantics, which is aware of the bit-
level representation of objects, that can be configured as
well [21] (cf. also Sec. 3). This gives a semantics to un-
defined behaviors, such as type punning or wrap-around
after signed arithmetic overflow, often used in low-level
embedded code, and allows Astrée to analyze such pro-
grams correctly and precisely. This low-level semantics
also frees Astrée from the reliance on static type infor-
mation, so that it can handle the common case where an
unstructured array of bytes is dynamically reinterpreted
as a structure of some type. Astrée can also handle
multi-dimensional arrays encoded explicitly in a single
array using index arithmetic. Floating-point numbers
are modelled faithfully according to the IEEE 754 norm
[15], including special numbers (infinities and NaN) as
well as rounding.

Error checking. Astrée signals all potential runtime
errors and further critical program defects. It reports
program defects caused by unspecified and undefined
behaviors according to the C99 standard [17], program
defects caused by invalid concurrent behavior, viola-
tions of user-specified programming guidelines, and
computes program properties relevant for functional
safety. Astrée raises alarms for operations resulting in
unpredictable program behaviors, such as invalid array
and pointer accesses. Alarms are also raised for invalid
operations triggering exceptions, such as divisions by
zero or floating-point overflows, and for dangerous op-
erations whose result, although well-defined either in
the C99 standard or in Astrée’s more refined semantic,
may be unexpected, for instance wrap-around after un-
signed or signed arithmetic overflow. Astrée does not
stop at the first error, but strives to continue the anal-
ysis with a reasonable result. This is useful to handle,
e.g., programs with intended wrap-around, and prevents

a benign error from masking a subsequent, more serious
one. Astrée also permits users to specify their own func-
tional properties to be checked with an assertion mech-
anism (similar to C’s assert command), and will report
any violation. Finally, Astrée includes a rule checker
that supports MISRA C:2004 [26] and MISRA C:2012
[27] and can be extended for customer-specific rule sets.

Abstraction. Astrée is based on abstract interpreta-
tion [7]: it uses abstractions to represent and manipu-
late efficiently over-approximations of program states.
One simple example of abstraction used pervasively in
Astrée is to consider only the bounds of a numeric
variable, forgetting the exact set of possible values
within these bounds. However, more complex, but also
more costly, abstractions can also be necessary, such as
tracking linear relationships between numeric variables
(which is useful for the precise analysis of loops). As no
single abstraction is sufficient to obtain sufficiently pre-
cise results, Astrée is actually built by combining a large
set of efficient abstractions (e.g., the octagon domain
[22]). Some of them, such as abstractions of digital fil-
ters [10], have been developed specifically to analyze
control-command software as these constitute an impor-
tant share of safety-critical embedded software. In addi-
tion to numeric properties, Astrée contains abstractions
to reason about pointers, pointer arithmetics (abstract-
ing offsets as numeric variables), structures, arrays (in a
field-sensitive or field-insensitive way). Finally, to en-
sure precision, Astrée keeps a precise representation of
the control flow, by performing a fully context-sensitive,
flow-sensitive (and even partially path-sensitive) inter-
procedural analysis.

Analysis options allow fine-tuning the analysis pre-
cision, either with global parameters or with local di-
rectives focusing precision on some program parts and
some variables. All Astrée directives, e.g., for specify-
ing range information for inputs or adapting the preci-
sion of the analyzer can be specified in the formal lan-
guage AAL [3] by locating them in the abstract syn-
tax tree without modifying the source code — a prereq-
uisite for analyzing automatically generated code. To
deal with evolving software Astrée provides a mecha-
nism to detect whether annotations are still placed at the
intended location after structural code changes [19].

Analysis output. In addition to the list and location
of alarms, Astrée makes the semantic information com-
puted during the analysis available to the user. For in-
stance, Astrée constructs, based on its analysis of func-
tion pointers, a control-flow graph, which can be visu-
alized graphically and interactively explored after the
analysis. Furthermore, the range computed for each
variable, at each location and for each call context, can
be looked-up. This provides additional useful informa-
tion about the program: it can be used, beyond run-time
error checking, to verify design specifications. It is also



(a) (b)

Figure 1: Astrée call graph visualization (a) and variable range (b) visualization.

useful for alarm investigation, to understand the origin
of run-time errors and spurious alarms. Astrée also re-
ports unreachable code and non-terminating loops.

3 Concurrent Program Analysis

Astrée has been recently extended [23] to support
concurrency-related constructions, with a specific focus
on concurrency features for embedded C software. Tra-
ditionally (prior to the C11 standard, which includes
concurrency into the C language, but even after), con-
currency is provided to a C implementation through
additional libraries, with varying, incompatible seman-
tics. To solve this issue, Astrée provides universal low-
level building blocks for concurrency features, on top of
which realistic models of actual concurrency libraries
can be programmed. This section focuses on the se-
mantics and analysis of the low-level concurrent seman-
tics, while concurrency library modelling is discussed in
Sec. 4.

Threading model. Astrée’s low-level concurrency se-
mantics is based on POSIX-style threads [16]. Each
thread is a fully preemptable execution unit with inde-
pendent control and local variables, but shared global
memory. A program execution is then an interleaving of
thread executions. Thus Astrée threads can be used to
model POSIX threads, but also ARINC 653 processes,
OSEK/AUTOSAR tasks, interrupts, etc. Depending
on the concurrency model, threads may be declared in
an external configuration file (such as OSEK tasks) or
programmatically (as in POSIX threads). Astrée sup-
ports both models, but assumes in the latter case that
threads cannot be created arbitrarily during program ex-
ecution. Instead, program execution is decomposed into
two separate phases: an initialization phase that exe-
cutes arbitrary sequential C code and can create, but

not execute, threads; and a second phase where all
threads execute concurrently but new threads cannot be
created. This limitation matches the current practice
(and sometimes the OS limitations) in embedded soft-
ware. It is exploited to achieve a simpler and more
precise analysis. The set of threads created program-
matically is discovered during the analysis fully auto-
matically. Additionally, Astrée supports the concept of
thread instances, i.e., multiple creations of threads with
the same entry point. The thread-modular abstraction
used in Astrée, described below, reduces the analysis of
the program to that of a single instance of each thread.
Hence, Astrée naturally supports unbounded instances
of threads, which is useful to analyze parameterized sys-
tems, i.e., systems where the number of instances of a
thread is an unknown constant.

Shared memory. Following the POSIX thread model,
Astrée assumes that all the threads can access all the
global variables, i.e., the global variables are implic-
itly shared. By analyzing the threads, Astrée then in-
fers automatically which variables are actually shared
and reports precisely which part of each variable is ac-
cessed by each thread and the access mode (read, write
or read/write). While it is possible for one thread to ac-
cess the local variables of another thread (e.g., sharing
a pointer to a local variable through a global variable)
this is a dangerous practice as the local variables can
be deallocated by the time the other thread accesses it.
Astrée thus detects and reports such usages as errors.
Similarly, while Astrée supports dynamic memory allo-
cation (e.g., with malloc), it is an error (reported to
the user) for one thread to access the memory allocated
by another thread.

Synchronization. Astrée has built-in support for
thread synchronization. In particular, Astrée has a no-
tion of mutual exclusion locks, so-called mutexes, with



the property that a given mutex can be locked by at most
one thread at a time. Astrée’s mutexes are very simple
non-recursive variants of POSIX’s mutexes: if a thread
locks a mutex that is locked by anther thread, it enters
a waiting state until the other thread unlocks the mu-
tex; locking again a mutex that is already locked by
the same thread, or unlocking a mutex that the thread
has not locked, has no effect. More complex locking
mechanisms can be programmed on top of such sim-
ple mutexes to model the semantics of realistic concur-
rency libraries (such as recursive mutexes that feature
a lock counter, or mutexes that fail when locked again
by the same thread). In Astrée, mutexes are identified
by 32-bit integers and need not be created a priory. It
is the responsibility of the OS modelling (Sec. 4) to al-
locate such integers, either statically (e.g., associate a
mutex to each resource in an OSEK program) or pro-
grammatically (e.g., use a counter to allocate at run-time
unique mutex identifiers when a new mutex is created by
a POSIX thread system call).

Astrée tracks which part of each thread is protected by
each mutex, and discovers automatically regions that are
in mutual exclusion. This information is combined with
the inference of shared memory locations, so that Astrée
can report all data races (both read/write and write/write
data races). In case of a data race, Astrée continues
the analysis by considering the possible values steam-
ing from all possible interleavings.

producer consumer

for (i=0;i<100000;i++)
{
lock(1);
x=x+1;
if (x>100) x=100;
unlock(1);

}

for (j=0;j<100000;j++)
{
lock(1);
if (x>0) x=x-1;
unlock(1);

}

Figure 2: Producer and consumer threads protected by a
mutex.

Example. Figure 2 gives an example program composed
of one or several instances of a producer thread and one
or several instances of a consumer thread, where the re-
source is abstracted as a counter variable x. In this ex-
ample, Astrée will be able to discover that x is shared
and that there is no data race, as all the accesses to x
are correctly protected by mutex 1. Additionally, Astrée
reports that x is always in the range [0,100], except just
after x=x+1, where it can be 101. Failure to use a mutex
would cause Astrée to report a data race at each access
to x. It would also cause the range of x to grow beyond
101 as several producer instances can now concurrently
increase x before the test if (x>100) x=100.

Astrée does not currently detect deadlocks caused
by improperly nesting of mutex locks by concurrent
threads. This is not an inherent limitation of our method,
but a limitation of the tool, and this detection is planned
for future work, by leveraging the automatic detection
of which mutexes are locked by each thread at each

program point. Additionally, Astrée has a prelimi-
nary support for additional synchronization primitives:
read/write locks, signals, and barriers, which are cur-
rently handled in a sound but sometimes imprecise way,
and future work to improve their support is planned.

high priority low priority

for (i=0;i<100000;i++)
{
if (!islocked(1))
{
x=x+1;
if (x>100) x=100;

}
yield();

}

for (j=0;j<100000;j++)
{
lock(1);
if (x>0) x=x-1;
unlock(1);

}

Figure 3: Priority-based producer-consumer example.

Real-time scheduling. Astrée is sound with respect
to all possible interleavings of threads, which would
correspond to a fully preemptive and non-deterministic
scheduler. However, embedded programs often employ
specific real-time schedulers that partially restrict thread
interleavings. Notably, each thread is given a prior-
ity, and higher priority threads cannot be preempted by
lower priority ones, unless they stop explicitly by is-
suing a blocking system call, such as locking a mutex
or waiting for an external event. Astrée takes prior-
ity information into account, when available, to detect
portions of threads in mutual exclusion due to priority
scheduling, and it uses this information to remove spu-
rious thread interactions and data races.
Example. Figure 3 presents a variant of Fig. 2 using pri-
orities. After testing whether the mutex is unlocked, the
high priority thread can assume that the low level prior-
ity thread is not in its critical section; it can then safely
test and modify x atomically, without fear of being in-
terrupted by the low priority thread. The effect is thus
the same as in the program of Fig. 2. Astrée proves the
absence of data race and provides precise bounds for x.

Note that, at the end of its critical section, the high
priority thread explicitly yields to allow the lower pri-
ority thread to run. The semantics of the yeild prim-
itive is that of a non-deterministic wait, which is useful
to model waiting for an external event or for a delay
(as Astrée does not keep track of execution time). As
a consequence of this non-determinism, the high prior-
ity thread may interrupt the lower priority thread at any
point during its execution. This highlights the fact that,
despite a deterministic, priority-based scheduling, em-
bedded programs often feature a large possible number
of thread interleavings. Unlike previous works on em-
bedded real-time applications [11], Astrée is not limited
to collaborative threads, nor discrete sets of preemption
points, which would not soundly account for all possi-
ble executions. Note that, to ensure scalability, Astrée
employs possibly imprecise abstractions of thread pri-
orities and real-time scheduling. For instance, threads



with dynamically changing priorities are supported, but
considered to be preemptable by all threads at any point
(i.e., their exact priority relative to other threads is not
tracked), which is sound but imprecise. To improve pre-
cision we are currently implementing the priority ceil-
ing protocol which is the standard scheduling scheme in
OSEK systems. When unable to use priorities to reduce
the interleaving space, Astrée reverts to unrestricted pre-
emption, which ensures a coverage of all concurrency
models.

Thread-modular analysis. On sequential programs,
Astrée employs a fully flow-sensitive and context-
sensitive analysis: an abstraction of the possible mem-
ory states is propagated along the program control flow
graph, and abstract states are merged at control-flow
joins (such as the end of an if-then-else or a loop iter-
ation). Flow-sensitivity, i.e., the ability to distinguish
the value of a variable at different control points, is
often necessary to achieve a degree of precision suffi-
cient to prove the absence of run-time error. Concurrent
programs, however, feature a far more complex control
structure than sequential ones, which makes it unpracti-
cal to consider a fully flow-sensitive analysis. There is a
combinatorial explosion of the number interleaved exe-
cution paths and it would be too costly to distinguish the
value of a variable at each combination of thread control
locations.

For concurrent programs, Astrée thus employs in-
stead a thread-modular analysis. In a nutshell, each in-
dividual thread of the program is analyzed separately,
as would be a sequential program. In addition to po-
tential run-time errors, each thread analysis collects the
effect it can have on the global memory. The threads
are then reanalyzed, but now taking into account the ef-
fect from other threads as gathered at the previous anal-
ysis. As this new analysis may expose new behaviors
of threads, and so, more effects, it triggers a reanalysis
of the threads. The analysis thus proceeds in rounds,
starting from an empty set of thread interactions, and
reanalyzing the threads with an increasing interaction
set, until stabilization. A standard abstract interpretation
technique, iteration extrapolation with widening, is used
to ensure that this process terminates after a finite, small
number of iterations (experiences point towards around
6 iterations, independently from the program size and
number of threads). A theoretical result [23] states that,
after stabilization, the thread-modular analysis has ex-
plored an over-approximation of all the possible inter-
leavings; it is thus sound.
Example. Consider again the producer-consumer exam-
ple from Fig. 2. The first analysis round, considering
each thread in isolation, will deduce that, at the end of
the producer loop, x necessarily equals 100 while, at the
end of the consumer loop, x necessarily equals 0, which
is obviously inconsistent. However, the analysis also
deduces that, during its execution, the producer stores

a value in [1;101] into x, and the consumer does not
modify x (yet). This information is used at the second
analysis round. In particular, now, when the consumer
performs x=x-1, this is understood as storing into x
the last value stored into x by the consumer minus 1, or
storing a value stored by the producer, i.e. [1;101], mi-
nus 1. The analysis of mutexes further deduces that the
value 101 is not actually visible by the consumer, hence
the second case stores a value in [1,100]− 1 = [0,99]
into x. At the end of the consumer loop, x would thus
read either a value in [0,99], when reading the last value
stored by the consumer, or a value in [1,100], if a write
from the producer was performed since that last write
by the consumer. A third analysis round, where the con-
sumer takes into account the values [0,99] stored by the
consumer, yields the same set of interferences, hence,
the analysis finishes and deduce that, at the end of the
program, x is in the range [0,100], which is the expected
result.

The benefit of this method is threefold. Firstly, it
provides a sweet spot between cost and precision: it is
nearly as efficient as a sequential program analysis and
maintains flow-sensitivity at the intra-thread level. Sec-
ondly, each thread analysis is but a sequential program
analysis, slightly modified to extract and apply interfer-
ences on the shared memory; thus, all the infrastruc-
ture present in sequential Astrée could be reused as is.
Thirdly, the analysis is parametric independently in the
abstraction chosen to abstract the memory and the ab-
straction chosen to abstract thread interferences. The
former exploits all the memory abstractions developed
for sequential Astrée. For the later, the above example
employs a simple and scalable, non-relational and flow-
insensitive abstraction: the range of values stored by a
thread into a variable, but recent work [24] has proposed
new abstractions that can improve the precision without
sacrificing the scalability by adding a small measure of
relationality or flow-sensitivity; Astrée is thus able to in-
fer that a thread modifies a variable in a monotonic way,
and to discover relational locks invariants.

Memory consistency. When several threads access a
shared memory, it is important to determine the un-
derlying consistency model ensured by the hardware
and compiler. The simplest model, sequentially con-
sistent memory [20], assumed implicitly in our exam-
ples above, states that, in an interleaving of thread exe-
cutions, each thread reads back from the shared mem-
ory the value stored by the last thread to write into
the memory. This is unfortunately not realistic: mod-
ern hardware introduce memory hierarchies, buffers and
cache, and compilers introduce optimizations that in-
validate this view, as several copies of a variable may
reside in the system. Modern language specifications,
such as C11, introduce weaker memory models to take
such effects into account. As weak memories feature
non sequentially consistent executions, an analysis tool



designed solely for sequential consistency is not sound
with respect to a weak memory model. In contrast,
Astrée is designed to be sound for a variety of mem-
ory models, based on the choice of which abstractions
are used for thread interferences. For instance, the flow-
insensitive non-relational abstraction used in the above
example has been proven [23] to be sound for very lax
memory models, while the soundness of the abstraction
able to infer the monotonicity of shared variables re-
quires a model such as total store ordering adopted by
several popular processors, such as x86 [32].

4 Operating System Support

Programs to be analyzed are seldom run in isolation;
they interact with an environment. In order to soundly
report all run-time errors, Astrée must take the effect of
the environment into account. In the simplest case (e.g.,
the most critical software), the sofware runs directly on
top of the hardware, in which case the environment is
limited to a set of volatile variables, i.e., program vari-
ables that can be modified by the environment concur-
rently, and for which a range can be provided to Astrée
by formal directives. More often, the program is run on
top of an operating system, which it can access through
function calls to a system library. When analyzing a
program using a library, one possible solution is to in-
clude the source code of the library with the program.
This is not always convenient (if the library is complex),
nor possible, if the library source is not available, or not
fully written in C, or ultimately relies on kernel services
(e.g., for system libraries). An alternative is to provide a
stub implementation, i.e., to write, for each library func-
tion, a specification of its possible effect on the program.

Library stubs. Astrée provides facilities to concisely
write stubs that model functions at an abstract level us-
ing C code with additional primitives, including non-
deterministic variable modifications and checked asser-
tions (using arbitrary C boolean expressions). A typi-
cal stub first checks the validity of its arguments (using
assertions), then performs necessary side-effects (such
as modifying an argument passed by reference) and
finally constructs a valid return value. For instance,
the sin stub function only checks that its argument
is a not a special floating-point number and returns a
non-deterministic value assumed only to be in [−1,1].
Astrée comes with a complete set of stubs for the C li-
brary, weighting 9 Klines. It is based on the C99 stan-
dard [17], not on a specific implementation; as a result,
the analysis results are sound whatever conforming C
library implementation is used.

Concurrency stubs. With the addition of concur-
rency, new libraries have been added, including POSIX

threads [16] and the ARINC 653 standard used in avion-
ics [4]. These leverage the low-level concurrency primi-
tives offered by Astrée and its internal notion of threads
and mutexes, but often need to wrap them into more
complex objects maintained in C arrays and structures.
For instance, a POSIX thread is an Astrée thread to-
gether with attributes and a state (such as a cleanup rou-
tine, a return value, etc.). Additionally, the core set of
Astrée objects is reused to model the wide variety of
objects offered by such systems; e.g., asynchronous sig-
nal handlers are assigned an Astrée thread, mutexes are
reused to implement read-write locks, etc. Around 3
Klines of the 9 Klines of C library are devoted to POSIX
concurrency primitives, while the model of ARINC 653
occupies 4 Klines. More details on these models are
available in [25].

OSEK/AUTOSAR support. Astrée has recently
added support for OSEK/AUTOSAR operating sys-
tems [1], a widely used standard in automotive. An
OSEK/AUTOSAR program consists of a set of tasks, a
set of interrupts (also called ISRs), a set of timers (also
called alarms), and schedule tables (a data-driven mech-
anism to activate tasks). Task scheduling and synchro-
nization is achieved through explicit task activation and
chaining, the use of priorities, orders to disable and en-
able interrupts, the use of resources objects (that act as
locks), and events (that act as signals).

We provide an OSEK/AUTOSAR library that handles
these mechanisms by mapping them to Astrée low-level
concurrency objects: tasks, ISRs, alarms and sched-
ule tables are mapped to Astrée threads; resources are
mapped to Astrée mutexes; events are mapped to Astrée
signals; moreover, Astrée natively supports the rele-
vant notions of priorities and offers built-in primitives
to achieve chaining, starting, and stopping. Note that,
due to the abstractions employed by Astrée to achieve
scalability, some aspects of scheduling are not currently
analyzed in a precise way. For instance, Astrée does not
currently track which threads are in a stopped or started
state, and assumes that every thread is possibly started
at any point. As a result, interrupts enable and disable
operations are not precisely handled. We plan to address
this limitation in future work by simply adding new ab-
stractions without changing the model.

The standard proposes several conformance classes,
with support for increasingly complex features (such as
extended tasks, fully preemptive scheduling, multiple
task activation, etc.). The model proposed in Astrée
supports the most general class, which guarantees that
all programs can be soundly analyzed.

A particularity of OSEK/AUTOSAR is that all sys-
tem resources, including tasks, are not created dynam-
ically at program startup. Instead they are hardcoded
into the system: a specific tool reads a configuration
file in OIL format describing these resources and gen-
erates a dedicated version of the system to be linked



Size Added Select. Time Mem.
2.1 M 5.2 K 99.94% 24 h 27 GB
1.9 M 2.4 K 99.56% 154 h 18 GB
2.2 M 2.3 K 99.52% 160 h 23 GB
31.8 K 2.2 K 97.28% 50 mn 0.6 GB
33.1 K 1.2 K 97.18% 35 h 2.5 GB

Figure 4: Avionics case studies from [25], with the orig-
inal size (in lines), the size (in lines) of added stubs, the
selectivity (percentage of lines proved correct), the anal-
ysis time and memory consumption.

against the application. Astrée supports a similar work-
flow. In the preprocessor stage it can read OIL files and
outputs a C file containing a table of the declared re-
sources, with their attributes (task priority, alarm peri-
odicity, etc.). The OIL file also assigns actions to be ex-
ecuted when an OSEK alarm expires, such as activating
a given task or event, or calling a call-back. The pre-
processor thus generates specific C functions to handle
the actions associated to OSEK alarms. A fixed set of
application-independent stubs, comprising 3 Klines of
C with Astrée directives, implements the 31 OSEK en-
try points. The fixed stub also contains a main analysis
entry point that creates Astrée threads and mutexes ac-
cording to the generated tables and enters parallel execu-
tion mode. Finally, it contains synthetic entry-points for
Astrée threads handling OSEK alarms, whose purpose
is to call, at non-deterministic intervals, the functions
generated by the preprocessor to implement the actions
associated to OSEK alarms. Combining the C sources
of the OSEK application, the fixed OSEK stub provided
with Astrée, and the C file automatically generated from
the OIL file, we get a stand-alone application, without
any undefined symbol, that can be analyzed with Astrée
and models faithfully the execution of the application in
an OSEK environment. This workflow enables a high
level of automation with minimal configuration when
analyzing OSEK applications.

The set of errors detected by Astrée includes run-
time errors and data-race, but also a new alarm cate-
gory invalid usage of OS service. As an example the
OSEK stub automatically checks that the application
calls OSEK services according to the specification. In
case of API errors the analysis of an OSEK application
will raise alarms from this new category, including: in-
valid task, alarm, or resource identifiers, calling a ser-
vice from an ISR with incorrect level, improper nesting
of resource acquisition and release (lock/unlock prob-
lems), or failure to release all the acquired resources be-
fore terminating a task.

5 Practical Experiments
The concurrency support built into Astrée has been
tested in a variety of analysis experiments.

Name Size Select. Time Mem.
HiTechnic 162 100% 0.4 s 11 MB
NXT GT 302 97% 1.2 s 20 MB
NXTway-GS 439 98% 4.1 s 20 MB
NXT Cesar 4500 95% 6 mn 435 MB

Figure 5: Preliminary OSEK experiments on nxtOSEK
samples [2, 14].

5.1 Avionics Software – ARINC 653

The support for ARINC 653 was first designed as a re-
search experiment extending Astrée to analyze medium-
sized to large concurrent industrial avionics C soft-
ware. Astrée was later extended with a subset of POSIX
threads, also used in avionics software. The results of
these experiments are reported in details in [25] and
summarized in Fig. 4. To sum-up, this study shows that
Astrée can handle complex, realistic concurrent pro-
grams with a sufficient level of precision (a selectiv-
ity near 100%, indicating that very few lines exhibit
an alarm) and adequate performance in the context of
software validation (where tests, the usual validation
method, can take weeks).

5.2 Automotive Software – OSEK

In the following we summarize experimental results ob-
tained on OSEK applications: some small C programs
designed for Lego Mindstorm NXT robots under the nx-
tOSEK system [2], and three real-life automotive ap-
plications. For reasons of confidentiality the results on
industrial automotive projects have been anonymized.
The results show that Astrée can be successfully applied
on real-life industrial software projects. Moreover, the
analysis runs on standard PC hardware and is reasonably
fast.

Lego Mindstorm. As a proof-of-concept, our initial
tests of the OSEK support in AstréeA were performed
on simple, freely available C programs designed for
the Lego Mindstorm OSEK platform. The results are
shown in Fig. 5. The first three programs, of a few
hundred lines, are sample programs included in the nx-
tOSEK distribution. The last program is the NXT Cesar
robot developed at the iCube laboratory [14]. This pro-
gram performs non-trivial floating-point computations,
on which Astrée reports possible overflows and invalid
operations; indeed the software elects to perform com-
putations without checking operator arguments, and fix
the result only after the computation, by replacing any
infinity and not-a-number with zero.

Automotive 1. The first real-life application is a small
project consisting of two tasks comprising 177 576 lines
of preprocessed C code (without blank lines and without



comments). The project is configured by an .oil file
automatically processed by Astrée. Astrée reports 698
alarm locations with alarms of the following type:

Alarm Category #Loc
Invalid range of pointers and arrays 17
Division or modulo by zero 58
Invalid ranges and overflows 617
Read/write data race 6

The analysis takes 38min with full precision and con-
sumes 7.5 GB RAM. It reaches 78% of the code. The 6
alarms about read/write data races were all confirmed to
be justified, there were no false alarms about data races.

Automotive 2. The second real-life application con-
sists of 358 335 lines of preprocessed C code (without
blank lines and without comments). The configuration
is given by an .oil file which can be automatically pro-
cessed by Astrée to produce all relevant data structures
and access functions. The project consists of 4 tasks, 30
ISRs (interrupts) and 3 alarms (timers). Astrée reports 1
796 code locations with alarms of the following types:

Alarm Category #Loc
Division or modulo by zero 58
Invalid usage of pointers or arrays 460
Invalid ranges and overflows 1 278

With reduced precision settings the analysis reaches
97% of the code, the analysis time is 7h13min, and
memory consumption 3.1GB. The resulting selectiv-
ity is above 99%; these alarms include run-time errors
caused by the effects of data races, e.g., overflows or in-
valid pointer accesses, but not the data races itself. This
distinction is reasonable since there may be data races
which do not actually induce erroneous behavior.

Furthermore Astrée reports 15 967 code locations
with alarms from the newly introduced concurrent alarm
categories:

Invalid Concurrent Behavior #Loc
Read/write data race 8 024
Write/write data race 7 941
Invalid usage of OS service 2

A data race alarm is produced for every access contribut-
ing to a race, i.e. for each shared variable subject to a
data race several alarms will be issued. This increases
the number of of alarms reported but helps users to
distinguish between correct accesses and accesses con-
tributing to a race. A further analysis of the data races
shows that in this project most of the synchronization
is done via explicit enable/disable interrupt calls. Cur-
rently such calls are not precisely handled, but dedicated
abstractions for them are under development. Also task

priorities have been exploited to optimize the applica-
tion: write operations are mostly done by the highest-
priority task which enables light-weight synchroniza-
tion mechanisms. As explained in Sec. 6 the support
of the priority ceiling protocol currently is in develop-
ment, too, so to enable a sound result, task priorities are
currently not taken into account. With both extensions
finished we expect the number of data race alarms to be
significantly reduced.

Automotive 3. The third real-life project is an OSEK
application with 1 655 384 lines of preprocessed C code
(without blank lines and without comments), again con-
figured by an .oil file. The project consists of 24
tasks, 34 ISRs and 12 alarms. Astrée reports 1 743 code
locations with alarms from the following categories:

Alarm Category #Loc
Division or modulo by zero 4
Uninitialized variables 27
Invalid usage of pointers and arrays 310
Invalid ranges and overflows 1 402

With reduced precision settings the analysis reaches
46% of the code, analysis time is 3h7min, the required
memory consumption is 5.4GB. The reason of the low
percentage of reached code is incomplete environment
information, and also the lack of some parts of the ap-
plication which have not been available to us.

In total the number of alarms about invalid concurrent
behavior is 5 759:

Invalid Concurrent Behavior #Loc
Read/write data race 3 152
Write/write data race 2 599
Invalid usage of OS service 8

Also this project uses enable/disable interrupt calls as
a synchronization mechanism and exploits task priori-
ties to implement lightweight synchronization. When
support for these mechanisms is finished we expect the
number of data race alarms to be significantly reduced.

6 Related work
Applying formal methods to the verification of con-
current programs and systems has a long history. We
will focus on recent work and refer the reader to [31]
for a survey and historical perspective. The theoretical
foundation of Astrée is based on the abstract interpre-
tation theory [7]. We refer the reader to [8] for an in-
depth comparison of abstract interpretation techniques
with other formal methods. Other tools based on ab-
stract interpretation include Polyspace [9] which can de-
tect shared variables and take task interleavings into ac-
count. However, to the extent of our knowledge, it does



not report data races nor lock/unlock defects and lacks a
direct support for OSEK applications so that users have
to manually specify the concurrency setup. By com-
parison, in addition to reporting all potential data races
and lock/unlock defects Astrée provides a complete and
automated support for OSEK, including a stub OS li-
brary, a toolchain allowing the analysis to be automati-
cally configured by an OIL file, the automatic detection
of the entry points of all the tasks and interrupts, as well
as the detection of critical sections. The modeling of
concurrent embedded operating systems for use in the
analysis of applications has been considered before in
[11]. We report in [25] the use of Astrée for avionics
application and detail the modeling of the ARINC 653
OS specification.

The thread-modular semantics employed to achieve
a scalable analysis of concurrent programs is inspired
from the rely-guarantee principle, introduced in proof
methods [18]. Note that, unlike proof-based verification
tools, Astrée automatically infers memory invariants as
well as interferences and does not rely on the program-
mer to provide them.

Another popular method to verify concurrent systems
is model checking. Model checking can suffer from the
state explosion problem, particularly acute when con-
sidering concurrent systems. It has been partially ad-
dressed by partial order reduction methods [12]. In
practice, the SPIN model checker has been used [13] to
check for data-races and deadlocks in concurrent code
from NASA. The analysis of C code was however lim-
ited to fragments of a few hundred lines. The study also
mentions that C code up to 45 KLoc could be handled
by analyzing a hand-crafted 1 Kloc model. By contrast,
Astrée scales to million-line codes. It does not require
building a model by hand, and can analyze directly full
C applications without the need to extract small, self-
contained parts, which is time-consuming and error-
prone. Another recent proposal to improve the scala-
bility of model-checking is to analyze a system only up
to a fixed, generally small number of context switches
[28]. While this method can be useful to find bugs, it is
unsound and only covers a small fraction of the possi-
ble behaviors, and is thus not adequate according to the
most stringent certification processes used in embedded
critical software (such as avionics software [30]). By
contrast, Astrée is sound and will find all run-time er-
rors and data-races.

Sequentialization [29] suggests a reduction from con-
current programs to equivalent sequential ones in order
to apply existing sequentialization verification methods.
The method has been applied in particular to the static
analysis by abstract interpretation of interrupt-driven
programs [33]. The method is however limited to spe-
cific scheduling policies, as a higher priority task must
complete before the control is returned to a lower pri-
ority task. Unlike Astrée, it does not permit arbitrary
preemption (as found for instance in ARINC or POSIX

threads), and is thus less general.
With the rise of multi-core applications, formal meth-

ods have been updated to take into account weakly
memory models. Astrée is also aware of weakly mem-
ory models, through a careful selection of which ab-
stractions are employed during the analysis. Similar re-
sults concerning the influence of the abstraction on the
soundness in weak memory models can be found in [5].

Future work. Future work on Astrée is planned to ad-
dress its current limitation. Firstly, we plan to add a
deadlock detector. Secondly, we plan to improve the
handling of thread priorities, including dynamic prior-
ities and the priority ceiling protocol implemented in
OSEK, to improve the precision. We plan to add a pre-
cise, flow-sensitive tracking of interrupt enable, which
will also improve the precision by removing spurious
interferences from disabled interrupts. Thirdly, we wish
to improve our support for multi-core applications since
our current support for multi-core requires, for sound-
ness, ignores the priority of threads and assuming arbi-
trary preemption. The focus on multi-core will also en-
courage us to seek more precise abstractions of weakly
consistent memory models.

7 Conclusion

Safety requirements mandate that critical software is ex-
empt from run-time errors. The rising predominance
of concurrent software architectures puts a strain on
classic validation methods, such as testing or code re-
views, that hardly cope with the non-deterministic na-
ture of concurrent programs, the huge number of in-
terleavings, and the difficulty to uncover errors in ex-
tremely rare but possible cases. We have presented
Astrée, a tried static analysis verification tool based on
abstract interpretation, and its recent extension to the
sound analysis of concurrent C programs, efficiently
covering all possible interleavings and uncovering all
run-time errors and data races. We have explained how
Astrée can support programs for various operating sys-
tems and concurrency libraries (POSIX threads, ARINC
653, OSEK/AUTOSAR) and presented encouraging ex-
perimental results. Ongoing work includes further ex-
perimentation (in particular on automotive applications
under the OSEK/AUTOSAR system), support for more
systems and concurrency models, as well as the design
of additional abstractions to improve both the precision
and the scalability of the analysis.

Acknowledgement. The work presented in this arti-
cle has been supported by the German BMBF project
FORTISSIMO and the project ANR-11-INSE-014 from
the French Agence nationale de la recherche.



References
[1] AUTOSAR (AUTomotive Open System ARchitecture).

http://www.autosar.org.

[2] nxtOSEK/JSP. http://lejos-osek.sourcefor
ge.net/.

[3] AbsInt. The Static Analyzer Astrée– User Documenta-
tion for AAL Annotations, 2015.

[4] Aeronautical Radio Inc. ARINC 653. http://www.
arinc.com.

[5] J. Alglave, D. Kroening, J. Lugton, V. Nimal, and
M. Tautschnig. Soundness of data flow analyses for weak
memory models. In Proc. of the 9th Asian Symp. on Pro-
gramming Languages and Systems (APLAS’2011), vol-
ume 7078 of LNCS, pages 272–288, Dec. 2011.

[6] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. A Static Analyzer for Large Safety-Critical
Software. In Proc. of PLDI’03, pages 196–207. ACM
Press, June 7–14 2003.

[7] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. of
POPL’77, pages 238–252. ACM Press, 1977.

[8] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne,
D. Monniaux, and X. Rival. Varieties of Static Ana-
lyzers: A Comparison with ASTRÉE. In First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Soft-
ware Engineering, TASE 2007, pages 3–20. IEEE Com-
puter Society, 2007.

[9] A. Deutsch. Static Verification of Dynamic Properties.
ACM SIGAda 2003 Conference, 2003.

[10] J. Feret. Static analysis of digital filters. In Proc. of
ESOP’04, volume 2986 of LNCS, pages 33–48. Springer,
2004.

[11] A. Gamatié and T. Gautier. Synchronous modeling of
avionics applications using the SIGNAL language. In
Proc. of the 9th IEEE Real-Time and Embedded Technol-
ogy and Applications Symp. (RTAS’03), pages 144–151.
IEEE Computer Society, 2003.

[12] P. Godefroid. Partial-Order Methods for the Verifica-
tion of Concurrent Systems – An Approach to the State-
Explosion Problem. PhD thesis, University of Liege,
Computer Science Department, 1994.

[13] G. J. Holzmann. Mars code. Commun. ACM, 57(2):64–
73, Feb. 2014.

[14] ICube. NXT CESAR project. http://icube-avr.
unistra.fr/en/index.php/NXT_CESAR.

[15] IEEE Computer Society. Standard for binary floating-
point arithmetic. Technical report, ANSI/IEEE Std. 745-
1985, 1985.

[16] IEEE Computer Society and The Open Group. Portable
operating system interface (POSIX) – Application pro-
gram interface (API) amendment 2: Threads exten-
sion (C language). Technical report, ANSI/IEEE Std.
1003.1c-1995, 1995.

[17] ISO/IEC JTC1/SC22/WG14 working group. C standard.
Technical Report 1124, ISO & IEC, 2007.

[18] C. B. Jones. Development Methods for Computer Pro-
grams including a Notion of Interference. PhD thesis,
Oxford University, Jun. 1981.

[19] D. Kästner and J. Pohland. Program Analysis on Evolv-
ing Software. In M. Roy, editor, CARS 2015 - Criti-
cal Automotive applications: Robustness & Safety, Paris,
France, Sept. 2015.

[20] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Comm. ACM, 21(7):558–565, July
1978.

[21] A. Miné. Field-sensitive value analysis of embedded
C programs with union types and pointer arithmetics.
In Proc. of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES’06), pages 54–63. ACM, Jun. 2006.

[22] A. Miné. The Octagon Abstract Domain. Higher-Order
and Symbolic Computation, 19(1):31–100, 2006.

[23] A. Miné. Static analysis of run-time errors in embed-
ded real-time parallel C programs. Logical Methods in
Computer Science (LMCS), 8(26):63, Mar. 2012.

[24] A. Miné. Relational thread-modular static value analysis
by abstract interpretation. In Proc. of VMCAI’14, volume
8318 of LNCS, pages 39–58. Springer, Jan. 2014.

[25] A. Miné and D. Delmas. Towards an Industrial Use of
Sound Static Analysis for the Verification of Concur-
rent Embedded Avionics Software. In Proc. of the 15th
International Conference on Embedded Software (EM-
SOFT’15), pages 65–74. IEEE CS Press, Oct. 2015.

[26] MISRA-C:2004 Guidelines for the use of the C language
in critical systems, Oct. 2004.

[27] MISRA-C:2012 Guidelines for the use of the C language
in critical systems, Mar. 2013.

[28] S. Qadeer and J. Rehof. Context-bounded model check-
ing of concurrent software. In Proc. of the 11th Int. Conf.
on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’05), volume 3440 of LNCS, pages
93–107. Springer, 2005.

[29] S. Qadeer and D. Wu. KISS: Keep it simple and sequen-
tial. In Proc. of the ACM SIGPLAN Conf. on Program-
ming Languages Design and Implementation (PLDI’04),
pages 14–24. ACM, June 2004.

[30] Radio Technical Commission for Aeronautics. RTCA
DO-178C. Software Considerations in Airborne Systems
and Equipment Certification, 2011.

[31] M. C. Rinard. Analysis of multithreaded programs. In
Proc. of the 8th Int. Symp. on Static Analysis (SAS’01),
volume 2126 of LNCS, pages 1–19. Springer, Jul 2001.

[32] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and
M. Myreen. x86-TSO: A rigorous and usable program-
mer’s model for x86 multiprocessors. Comm. ACM, 53,
2010.

[33] W. Wu, L. Chen, A. Miné, D. Dong, and J. Wang.
Numerical Static Analysis of Interrupt-Driven Pro-
grams via Sequentialization. In Proc. of the 15th In-
ternational Conference on Embedded Software (EM-
SOFT’15), pages 55–64. IEEE CS Press, Oct. 2015.

http://www.autosar.org
http://lejos-osek.sourceforge.net/
http://lejos-osek.sourceforge.net/
http://www.arinc.com
http://www.arinc.com
http://icube-avr.unistra.fr/en/index.php/NXT_CESAR
http://icube-avr.unistra.fr/en/index.php/NXT_CESAR

	Title
	Introduction
	Overview of Astrée
	Concurrent Program Analysis
	Operating System Support
	Practical Experiments
	Avionics Software – ARINC 653
	Automotive Software – OSEK

	Related work
	Conclusion

