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Generalized guidance equation for peaked

quantum solitons: the single particle case.

Thomas Durt
1

Abstract

We study certain non-linear generalisations of the Schrödinger
equation which admit static solitonic2 solutions in absence of external
potential acting on the particle. We consider a class of solutions that
can be written as a product of a solution of the linear Schrödinger
equation with a peaked quantum soliton, in a regime where the size of
the soliton is quite smaller than the typical scale of variation of the lin-
ear wave. In the non-relativistic limit, the solitons obey a generalized
de Broglie-Bohm (dB-B) guidance equation. In first approximation,
this guidance equation reduces to the dB-B guidance equation accord-
ing to which they move at the so-called de Broglie-Bohm velocity along
the hydrodynamical flow lines of the linear Schrödinger wave. If we
consider a spinorial electronic wave function à la Dirac, its barycentre
is predicted to move exactly in accordance with the dB-B guidance
equation.

1 Introduction

Louis de Broglie proposed in 1927 a realistic interpretation of the
quantum theory in which particles are guided by the solution of the lin-
ear Schrödinger equation (ΨL), in accordance with the so-called guid-
ance equation [16, 17]. The theory was generalised by David Bohm

1Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel (UMR
7249),13013 Marseille, France.email: thomas.durt@centrale-marseille.fr

2By soliton we mean solitary wave.
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in 1952 [6, 7], who also applied it to the multiparticle case. Certain
ingredients of de Broglie’s original idea disappeared in Bohm’s formu-
lation, in particular the double solution program, according to which
the particle is associated to a wave φ distinct from the pilot-wave ΨL.
This program was never fully achieved, φ being sometimes treated as
a moving singularity [35], and sometimes as a solution of a non-linear
equation [17]. In this paper, we shall consider three non-linear gen-
eralisations of Schrödinger’s linear equation previously scrutinized in
[11], the 1+1 dimensional NLS equation, and the 1+3 dimensional S-N
equation in the single [30] and many particles (self-gravitating homo-
geneous sphere [18]) cases, which are known to admit static solitonic
solutions (from now on denoted e−iE0t/~φ0NL(x)) in absence of exter-
nal potential. We aim at finding particular solutions of (19), where
an external, linear, potential is present.

Our main idea is to consider an ansatz solution Ψ of (19) which
factorizes into the product of two functions ΨL and φNL where ΨL

is a solution of the linear Schrödinger equation. As we shall show
ΨL can be interpreted as a pilot-wave, while the barycentre of φNL

obeys a generalized guidance equation which contains the well-known
Madelung-de Broglie-Bohm contribution plus a new contribution due
to the internal structure of the soliton. In first approximation and
in the appropriate regime to be precised later, Ψ is the product of
a stationary soliton-shape solution of the non-linear free equation,
denoted φ0NL, moving at de Broglie-Bohm velocity, with the phase of
ΨL. If we denote AL and ϕL the amplitude and phase of ΨL, through
ΨL = AL · eiϕL , we find thus

Ψ(x, y, z, t) ≈ e−iE0t/~φ0NL(x−
∫ t
0 dtvdB−B)e

iϕL(t,x),
where

vdB−B =
~

m
∇ϕL(x, y, z, t) (1)

in accordance with the so-called de Broglie-Bohm (dB-B) guidance
equation, and E0 is the energy of the stationary ground state of the
free non-linear equation.

This is true at the lowest order of perturbation only. Actually, the
exact solution is predicted to obey

Ψ(x, y, z, t) ≈ φ′NL(x, t)e
iϕL ,

where as we shall show φ′NL is a function of constant L2 norm
(< φ′NL|φ′NL >= constant) proportional to φNL (AL · φNL = φ′NL).
φ′NL obeys a rather complicated non-linear equation and is in general
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not a solitary wave, by which we mean that its shape varies throughout
time.

It also obeys a generalized guidance equation, because the barycen-
tre of φ′NL is predicted to move at velocity vdrift =vdB−B + vint.,

with a structural contribution from the non-linear wave:
vint. =< φ′NL| ~

im▽|φ′NL > / < φ′NL|φ′NL >.
In this approach, where the de Broglie-Bohm point-particle is re-

placed by a soliton, the wave monism originally proposed by de Broglie
is restored. As we shall show, the amplitude AL of the linear solution
may be considered as a computation tool, which disappears at the
end of the calculation, to the same size that in the de Broglie-Bohm
approach, the linear wave ΨL is interpreted as a pilot-field, while the
“real” object is the pointlike particle.

From this point of view, the NLS and S-N equations are good can-
didates for fulfilling the de Broglie double solution program of 1927
[5], in the same sense that Schrödinger equation was a good candidate
for realizing de Broglie’s wave mechanics program of 1925, provided
we take some freedom relatively to de Broglie’s original ideas and con-
sider them from a broad perspective. In particular, our factorisability
ansatz is incompatible with the superposition principle in the sense
that we are not considering solutions of the type Ψ=ΨL+φNL. This
explains why the tail of the solution Ψ(x, y, z, t) may be arbitrary small
nearly everywhere, excepted in a supposedly small region where φNL

is strongly peaked. Another non-trivial feature of our model is the
appearance of corrections to the dB-B guidance equation. Moreover,
the phase matching condition of de Broglie is in general not respected
in our approach.

The paper is structured as follows. In section 2 we apply our ansatz
for deriving an exact solution of the NLS and S-N equations in ab-
sence of external potential. In section 3 we apply a similar scheme in
presence of an external potential, but this time the result is no longer
exact. However, it is a good approximation of the solution as far as
the region where φNL is strongly peaked is sufficiently small. In sec-
tion 4 we consider a typical scattering experiment and, combining the
results of the previous sections, we reproduce an argument originally
introduced by de Broglie in order to derive Born’s rule. In section 5
we consider a straightforward generalisation of the results derived in
the previous sections to the Dirac spinor.

The last section is devoted to discussion and conclusion.
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2 No external potential.

2.1 The 1 D NLS equation

The 1+1 dimensional nonlinear Schrödinger equation, here rewritten
in dimensionless coordinates, reads

i
∂ψ

∂s
+
∂2ψ

∂z2
+

∣

∣ψ
∣

∣

2
ψ = 0, (2)

We are free to search for stationary solutions

Ψ(Z,S) = eiESϕ(Z). (3)

The function ϕ(Z) then satisfies the stationary nonlinear Schrödinger
equation

∂2ϕ

∂Z2
+

∣

∣ϕ
∣

∣

2
ϕ = Eϕ, (4)

with E ≥ 0. As is well-known, equation (4) has statical and localized
solutions of the form

ϕ(Z) =

√
2λ

cosh(λZ + δ)
, E = λ2, (5)

for real parameters λ and δ, which correspond to (bright) static soliton
solutions for the nonlinear Schrödinger equation with amplitude 2E
(for |ψ|2).

2.2 The 3 D Schrödinger-Newton equation: from

single to many particles.

In the single particle case, the so-called Schrödinger-Newton integro-
differential equation reads3 [25]

i~
∂Ψ(t,x)

∂t
= −~

2∆Ψ(t,x)

2m
−Gm2

∫

d3x′(
|Ψ(t,x′)|2
|x− x′| )Ψ(t,x). (6)

One can therefore look for a “ground-state” solution to (6) in the form

ψ(x, t) = e
iEt
~ ϕ(x) , (7)

3This equation is also often referred to as the (attractive) Schrödinger-Poisson equation
[8, 24, 4] or the gravitational Schrödinger equation [25].
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This leads to a stationary equation for ϕ(x)

~
2

2M
∆ϕ(x) +GM2

∫

d3y

∣

∣ϕ(y)
∣

∣

2

|x− y| ϕ(x) = Eϕ(x) , (8)

which was studied in astrophysics and is known under the name of
the Choquard equation [28]. In [28], Lieb showed that the energy
functional

E(φ) =
~
2

2M

∫

d3x
∣

∣∇φ(x)
∣

∣

2− GM2

2

∫∫

d3xd3y

∣

∣φ(y)
∣

∣

2

|x− y|
∣

∣φ(x)
∣

∣

2
, (9)

is minimized by a unique solution ϕ(x) of the Choquard equation
(8) for a given L2 norm N(ϕ). However no analytical expression is
known for this ground state. Numerical treatments established that
this ground state has a quasi-gaussian shape, and that its size is, in
the case N(ϕ) = 1, of the order of ~

2

GM3 .
The generalisation of equation (6) to non-elementary (composite)

particles has been tackled by Diósi who considered the problem of a
self-interacting sphere in [18], and showed that when the mean width of
the center-of-mass wave function is small enough in comparison to the
size of the sphere, the self-interaction reduces, in a first approximation,
to a non-linear harmonic potential (see [37, 11] for a generalization of
Diósi’s result):

−G( M
4πR3

3

)2
∫

|x̃|≤R,|x̃′|≤R d
3x̃d3x̃′ 1

|xCM+x̃−(x′
CM

+x̃′)|

≈ GM2

R (−6
5 +

1
2(

|xCM−x′
CM

|
R )2 +O((

|xCM−x′
CM

|
R )3))

Looking for static solutions of the many particles NS equation, one
obtains the following equation for the ground state wave function of
the center of mass, where x=xCM :

~
2

2M
∆ϕ(x) − GM2

2R3

∫

d3y
∣

∣ϕ(y)
∣

∣

2 |x− y|2 ϕ(x) = −EDϕ(x) . (10)

Here we introduced the effective parameter ED as

ED =
6GM2

5R
− E , (11)

with respect to the parameter E used in the reduction (7). This treat-
ment is only valid, of course, to the extent that Diósi’s approximation
to a harmonic potential is valid, i.e. for widths of the ground state
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that are quite smaller than the radius R of the sphere. As is estab-
lished in [11], a static solitonic solution of gaussian shape exists in this
limit,

ϕ(x) =
1

(
√
πA)3/2

exp
(

−|x|2
2A2

)

,

with width

A = (
~
2

GM3
)
1

4R
3

4 . (12)

2.3 Factorisation ansatz and boosted solitonic

solutions in absence of external potential.

In the first part of this section, we presented three non-linear general-
isations of the free linear Schrödinger equation i~∂Ψ(t,x)

∂t = −~
2∆Ψ(t,x)

2m
that can be cast in the form

i~
∂Ψ(t,x)

∂t
= −~

2∆Ψ(t,x)

2m
+ V NL(Ψ)Ψ(t,x), (13)

with V NL(Ψ) a potential which non-linearily depends on the wave
function Ψ. In each case, we know that there exists a localized solution
of the type φ0NL(x)e

−iE0t/~ (with φ0NL(x) = ϕ(x) and E0 = −~E)
which behaves as a static bright soliton. Let us now search for new

solutions by imposing our ansatz:

Ψ(t,x) = ΨL(t,x) · φNL(t,x) (14)

Substituting (14) in (13) we get

i ~ · ((∂ΨL(t,x)

∂t
)φNL(t,x)) + ΨL(t,x) · (

∂φNL(t,x)

∂t
)) =

− ~
2

2m
∆ΨL(t,x) · φNL(t,x)

− ~
2

2m
(2▽ΨL(t,x) · ▽φNL(t,x) + ΨL(t,x) ·∆φNL(t,x))

+ V NL(Ψ)Ψ(t,x), (15)

that we replace by a system of two equations4, making use of the
identity

4This replacement is not one to one in the sense that there could exist solutions of
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▽ΨL(t,x) = (▽AL(t,x))e
iϕL(t,x) +ΨL(t,x)i▽ϕL(t,x):

i~ · ∂ΨL(t,x)

∂t
= − ~

2

2m
∆ΨL(t,x), (16)

i ~ · ∂φNL(t,x)

∂t
= − ~

2

2m
·∆φNL(t,x)

− ~
2

2m
· (2i▽ϕL(t,x) · ▽φNL(t,x) +

▽AL(t,x)

AL(t,x)
· ▽φNL(t,x))

+ V NL(Ψ)φNL(t,x) (17)

We are free to solve equation (16) by imposing a plane wave solution:
ΨL(t,x) = A · eiϕL(t,x) with AL = A a positive real constant and

ϕL(t,x) = k · x − ω · t, with ω = ~k2/2m. The scaling properties of
the non-linear potentials considered by us are such that V NL(Ψ) =
V NL(ΨL(t,x) · φNL(t,x)) = A2V NL(φNL(t,x)).

Let us rescale φNL(t,x) by imposing that φNL(t,x) = φ′NL(t,x)/A;
then, V NL(Ψ) = V NL(φ′NL(t,x)), so that φ′NL(t,x) must fulfill the
equation

i~ · ∂φ
′
NL(t,x)

∂t
=

− ~
2

2m
·∆φ′NL(t,x)− i

~
2

m
▽ϕL(t,x) · ▽φ′NL(t,x)

+V NL(φ′NL(t,x))φ
′
NL(t,x), (18)

for which it is straightforward to check that there exists a solution
of the type φ0NL(x − v · t)e−iE0t/~, with v = ~▽ϕL(t,x)/m = ~k/m,
in accordance with de Broglie’s relation.

Putting all these results together, we find a solution φ0NL(x − v ·
t)e−i((E0+~ω)·t−~k·x)/~. Actually, this class of solution is well-known
and it can be generated from the static solution φ0NL(x)e

−iE0t/~ by
a Galilean boost. This result is in a sense trivial because we consid-
ered to begin with equations which are Galilei invariant. In the next
section, we shall generalize this idea by realizing a time-dependent
Galilean boost, in accordance with a generalized dB-B guidance equa-
tion.

equation (15) that do not fulfill the system (16,17). In any case, we focus on a particular
class of solutions here. Our goal is not to solve (19) for arbitrary initial conditions. We
actually assume that to begin with the full wave satisfies our factorisability ansatz.
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3 In presence of an external potential.

We now assume that an external, linear, potential acts on the particle
and we must replace (13) by

i~
∂Ψ(t,x)

∂t
= −~

2∆Ψ(t,x)

2m
+ V L(t,x)Ψ(t,x) + V NL(Ψ)Ψ(t,x). (19)

By repeating the scheme already applied in the previous section we
derive a system of two coupled equations, the linear Schrödinger equa-
tion

i~ · ∂ΨL(t,x)

∂t
= − ~

2

2m
∆ΨL(t,x) + V L(t,x)ΨL(t,x), (20)

and as before equation (17).
In order to solve the system of equations (16,17), it is worth noting

that while the L2 norm of the linear wave ΨL is preserved throughout
time, this is no longer true in the case of the non-linear wave φNL,
because the interaction terms coming from the Laplacian operator are
not hermitian.

By a straightforward but lengthy computation that we reproduce
in appendix, we were able to establish the following results:

• the solution of (17) obeys the scaling law

d<φNL|φNL>
dt

< φNL|φNL >
= −2

dAL

dt

AL
, (21)

in the limit where AL and φL vary smoothly.

• In equation (21) we introduced the total derivative dAL

dt defined
through

dAL

dt
=
∂AL

∂t
+ vdrift · ▽AL, (22)

where vdrift is in turn defined as follows:

vdrift =
d<φNL|x|φNL>

dt

< φNL|φNL >
, (23)

for which we found by direct computation the generalisation of
the dB-B guidance equation:
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vdrift =
~

m
▽ϕL(x0(t), t) +

< φNL| ~

im▽|φNL >

< φNL|φNL >

= vdB−B + vint., (24)

in which vint. can be considered as a contribution to the average
velocity originating from the internal structure of the soliton.
The dB-B contribution to the drift, ~

m▽ϕL(x0(t), t), denoted
vdB−B is evaluated at the barycentre of the soliton, from now on
denoted x0. In the rest of the paper, we shall refer to the guid-
ance equation (24) as the “Disturbed” dB-B guidance equation.

• vdB−B appears in (24) as a consequence of the coupling to ϕL

(as in the free case treated in section 2.3), through the term

−i~2m▽ϕL(t,x) · ▽φNL(t,x) present in the Hamiltonian of equa-
tion (17), that we shall from now on call the guidance potential.

• The coupling to AL (absent in the free case treated in section

2.3), that is to say, the term −~2

m
▽AL(t,x)

AL
· ▽φNL(t,x) present

in the Hamiltonian of equation (17), that we shall from now on
call the AL − φNL potential, does not contribute directly to the
drift velocity but as we show in appendix it contributes to the
scaling. It also contributes indirectly to the drift velocity because
it influences the shape of φNL, and thus also influences vint..

• From the constraint (21) we infer that <φNL|φNL>(t)
<φNL|φNL>(t=0) =

A2

L(t=0)

A2

L
(t)

,

where we evaluate A2
L(t) at the barycentre of φNL, which moves

according to the Disturbed dB-B guidance equation (24).

In analogy with the rescaling performed in the free case, let us define
φ′NL through

φNL(t,x) =
1

AL(t,x0)
· φ′NL(t,x). (25)
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(17) can the be cast in the form

i~ ·∂(φ
′
NL(t,x)/AL(t,x0))

∂t

= − ~
2

2m
·∆(φ′NL(t,x)/AL(t,x0))

− ~
2

m
· i▽ϕL(t,x) · ▽(φ′NL(t,x)/AL(t,x0))

− ~
2

m
· ▽AL(t,x)

AL(t,x)
· ▽(φ′NL(t,x)/AL(t,x0))

+ V NL(φ′NL)(φ
′
NL(t,x)/AL(t,x0)). (26)

We know from (21) that in very good approximation, the L2 norm
of φ′NL(t,x) remains constant. If we consider an extreme “adiabatic”

limit in which the logarithmic gradient of AL,
▽AL(t,x)
AL(t,x)

can be ne-
glected, we find that the soliton propagates like a classical particle,
because then it is also consistent to perform a WKB like treatment in
which φL is proportional to S, the solution of the classical Hamilton-
Jacobi equation5.

Without being so extreme, we are in right to claim that, if (1/AL(t,x0(t)))
varies smoothly enough so that in first approximation we may neglect
its temporal derivative in (26), as well as the AL−φNL coupling, then,
1/AL(t,x0(t)) factorizes in (26). If it is so, φ′NL(t,x) obeys (18) for
which we find6, as announced in the introduction, that the solution is
a progressive solitary wave

Ψ(x, y, z, t) ≈ e−iE0t/~φ0NL(x−
∫ t

0
dtvdB−B)e

iϕL(x,t), (27)

where vdB−B = ~

m∇ϕL(x, y, z, t), in accordance with the dB-B
guidance equation, and E0 is the energy of the stationary ground
state of the free non-linear equation.

This is a crude approximation however, and all we can predict
in general is that the solution, when it exists and remains peaked

5In the Bohmian language this occurs when we can consistently neglect the so-called
quantum potential [23].

6This approximation is a good approximation in the regime where we may neglect the
variation of ϕL over the size of the soliton. Consistently, in this limit, vint. = 0 because
φ0
NL

is a static solution of the free non-linear equation.
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throughout time, has the form

Ψ(x, y, z, t) ≈ φ′NL(x, t)e
iϕL , (28)

where φ′NL(x, t)’s norm is quasi-constant, while its barycentre is lo-

cated in x0(t = 0)+
∫ t
0 dtvdrift. In order to say more about φ′NL(x, t)

we must solve equation (26) which is a complicated problem, beyond
the scope of our paper. It is worth noting however that if we estimate
vint. at the first order of linear perturbation theory, we find identically
0, because this contribution is proportional to the average velocity of
the free soliton, evaluated in the frame where it is at rest.

What remains to do in order to find better approximations of the
exact solution of (17) is to resort to perturbative methods. This is
appropriate, having in mind, that the L2 norm of φ′NL does not vary
much and that the non-linear potential “seen” by φ′NL does not rescale,
which opens the door to a perturbative approach.

4 A typical scattering experiment.

Let us consider a typical scattering experiment, where a beam of iden-
tical particles, all with the same velocity and direction, are sent on
a target. In the usual, linear formulation of quantum mechanics, the
position of the particle is randomly distributed according to the Born
rule. Moreover, before it reaches the target, the beam is described by
a linear plane wave (we neglect here size effects). According to the
Born rule everything happens as if the particle was uniformly spread
over the beam.

Making use of the results of the previous sections we are free to
adopt another picture in which the particle is attached to a peaked
soliton, maybe since eons. In this picture a particle consists of a very
dense concentration of field which is thus always well-localized. As
discussed in section2.3, the particle (soliton) moves at constant speed
in the direction of the target. This situation was actually considered
by de Broglie, who also assumed that inside the beam the probability
of localisation of the particles/singularities/second solutions and so on
was homogeneous, due to the symmetry of the beam7. In this case,
the predictions made in standard, linear quantum mechanics and in

7This argument of symmetry implicitly refers to the existence of what is called nowadays
an equilibrium distribution for the hidden positions of the particles. There exist serious
attempts to derive the onset of quantum equilibrium from the de Broglie-Bohm mechanics
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the non-linear model outlined above are the same. Now, because the
equilibrium distribution in |ΨL|2 is, as is well-known, equivariant un-
der de Broglie-Bohm mechanics, the non-linear dynamics sketched in
the previous sections also leads to the same predictions for all times,
because equilibrium is preserved during the scattering process. Ac-
tually, in the non-relativistic regime, this is so in first approximation
only, in the regime where the Disturbed dB-B trajectories (24) cannot
be distinguished from the dB-B trajectories (1), but we shall now show
that if we consider the relativistic Dirac equation, the dB-B guidance
equation linked to Dirac’s equation is exactly satisfied [33, 23].

5 The Dirac spinor.

We mentioned in the introduction that in our view the NLS and S-
N equations are good candidates for fulfilling the de Broglie double
solution program of 1927, in the same sense that Schrödinger’s equa-
tion was a good candidate for realizing de Broglie’s wave mechanics
program of 1925. In the same line of thought, it is natural to look
for a non-linear relativistic equation that would be to the NLS and
S-N equations what are the Klein-Gordon or Dirac equations to the
non-relativistic Schrödinger equation.

A way to fulfill this program consists of treating the Dirac spinor
more or less in the same way as the scalar Schrödinger wave, imposing
now the ansatz

Ψ =









Ψ0(t,x)
Ψ1(t,x)
Ψ2(t,x)
Ψ3(t,x)









=









ΨL
0 (t,x)

ΨL
1 (t,x)

ΨL
2 (t,x)

ΨL
3 (t,x)









· φNL(t,x), (29)

where φNL(t,x) is a Lorentz scalar. Remarkably, we now find that
the equation obeyed by φNL(t,x) can be cast in the simple form

i~∂φNL(t,x)

∂t
= vDirac(t,x)

~

i
▽φNL(t,x) + VNL(Ψ)φNL(t,x), (30)

where vDirac can be expressed in terms of the three Dirac α matrices
[23] through

[34, 21, 10, 13, 1], but this is a deep and complex problem, reminiscent of the H-theorem
of Boltzmann, which opens the door to a Pandora box that we do not wish to open here.
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vDirac = (Ψ∗
0(t,x),Ψ

∗
1(t,x),Ψ

∗
2(t,x),Ψ

∗
3(t,x)) · αc ·









Ψ0(t,x)
Ψ1(t,x)
Ψ2(t,x)
Ψ3(t,x)









(31)

As before we shall now assume that the self-interaction obeys the
usual scaling law VNL(λΨ) = |λ|2VNL(Ψ) and even more:

VNL(Ψ) is a function supposed to depend only on the “density of
stuff” is (Ψ)† · (Ψ)(t,x) = A2

L|φ|2NL(t,x), with

AL =
√

|ΨL
0 (t,x)|2 + |ΨL

1 (t,x)|2 + |ΨL
2 (t,x)|2 + |ΨL

3 (t,x)|2. (32)

If the linear Hamiltonian is the free Dirac Hamiltonian, and that
we impose properly normalised spinorial plane wave solutions, then
vDirac’s components are constant everywhere in space and we again
find “boosted” solutions of (30) of the type φNL(t,x) = e−iE0t/~φ0NL(x−
vDirac · t), where φ0NL is a bright static soliton solution of the con-
straint8VNL(φ

0
NL(t,x)) = E0φ

0
NL(t,x).

If we assume that the self-interaction of the electron does preserve
its norm and does not contribute to its drift, then, by repeating the
computations made in appendix, and also by resorting to the con-

servation equation
∂A2

L

∂t = −div(A2
L · vDirac(t,x0)) associated to the

linear Dirac equation [33], it is straightforward to establish the same
scaling law as in the non-relativistic case studied before:

dAL
dt

AL
= −1

2
1

<φNL|φNL>
d<φNL|φNL>

dt
Consequently, we are entitled to look for wave functions of the

form

Ψ =









Ψ0(t,x)
Ψ1(t,x)
Ψ2(t,x)
Ψ3(t,x)









=
1

AL
·









ΨL
0 (t,x)

ΨL
1 (t,x)

ΨL
2 (t,x)

ΨL
3 (t,x)









· φ′NL(t,x), (33)

for which we know for sure that in very good approximation (as far
as the size of the soliton is quite smaller than the size of the linear
pilot-wave):

8Actually, in this case, even the linear equation admits a solution of arbitrary shape
formally derived by imposing E0=VNL = 0. However plane waves do not exist in nature
and in absence of a non-linear self-focusing, dispersion will spread the soliton sooner or
later.
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• the L2 norm of φ′NL(t,x) is constant throughout time.

• the barycentre of φ′NL moves along the hydrodynamical flow lines
of Dirac’s linear equation, at velocity vDirac.

• φ′NL(t,x) obeys the equation

i~∂
φ′
NL

(t,x)
AL

∂t
= vDirac(t,x)

~

i
▽φ′NL(t,x)

AL
(34)

+VNL(φ
′
NL(t,x)),

• which opens the door to a perturbative treatment.

• In particular, if AL and v0

Dirac
are smooth enough, we find at

the lowest order of approximation the solution

φ′NL(t,x) ≈ e−iE0t/~ · φ0NL(x− x0(t = 0)−
∫ t
0 dtv

0

Dirac
)

As in the non-relativistic case, the amplitude AL is an auxiliary
function that disappears at the end of the computation of Ψ.

It is beyond the scope of our paper to specify exactly the expression
of VNL. If gravity plays a role it is not granted that VNL ought to be
Lorentz covariant actually, and we prefer to leave this difficult question
as an open problem.

6 Discussion and Conclusions.

There remain many open questions that we do not pretend to solve
here. This concerns, as already mentioned, the reformulation of a H-
theorem sketched in the section 4, or the existence and stability of the
solitonic solutions considered above. Let us now briefly address some
other controversial topics which spontaneously arise in the present
context.

Normalisation and Born rule.

One could object that in order to fit to the constraints required
by our model, in particular in order to ensure that the size of the
soliton is quite smaller than the size of the linear wave, the models
of non-linear interaction presented by us in the sections 2.1 and 2.2
would require the NLS coupling constant to be huge, or the mass of
the particle to be incredibly heavy in the case of the S-N coupling.
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However this is not true. We are free to rescale9the solitonic solutions
without being constrained by the normalisation to unity of the wave
function, which is a condition imposed by the Born rule. In our case,
the Born rule is not postulated to begin with, it is rather derived
from the equilibrium condition. In our eyes, the equilibrium condition
ought to be derived from the Disturbed dB-B dynamics as is done
in e.g. classical chaos theory [34, 21, 10, 13, 1]. It is well-known
for instance from the study of deterministic chaotic systems that the
sensitivity to initial conditions is an essential ingredient for generating
stochasticity and impredictability. This ingredient is present in the
dB-B and Disturbed dB-B dynamics too [19].

Experiments.

The overwhelming majority of experiments [32, 12] proposed so far
in order to reveal the existence of intrinsic non-linearities at the quan-
tum level (like e.g. the self-gravity interaction) is a priori doomed to
fail, for what concerns our model, because they systematically took for
granted that the wave function was normalised to unity10. Therefore,
new strategies must be adopted in order to reveal whether or not it
is illusory to try to simulate quantum mechanics with realistic waves,
and whether departures from the linear paradigm are accessible to
experimentalists. For instance, departures from the Born rule could
result from the replacement of the dB-B (1) by the Disturbed dB-B
(24) guidance equation (section 3). Departure from the Born rule can
be tested in the lab. so that in principle our model can be falsified, at
least in the classical limit.

Even if our model is not relevant, and in the last resort its relevance
ought to be confirmed or falsified by experiments, it could appear to
be useful as a phenomenological tool. For instance it could be useful in
droplets physics where de Broglie like trajectories have been observed
[14, 15, 9]. The dynamics outlined here could also be interesting in
cold atoms physics [27] where effective non-linear equations of the S-N
type properly describe collective excitations of the atomic density [3].
As far as we know, no de Broglie like trajectory has yet been observed
during such experiments. In the same order of ideas, it would be highly

9The three non-linear equations that we described in the section 2 posses well defined
scaling properties. Actually when the size of the static soliton goes to 0, its norm goes to
infinity and its energy goes to minus infinity.

10We could impose for instance that the size δNL of the soliton is the Planck length (more
or less 10−35 meter). Of course the semi-classical gravity model considered in section 2.2
is not supposed to be relevant at this scale, but formally we are free to make such a choice.
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interesting to investigate whether de Broglie like trajectories are good
tools for describing optical and/or rogue waves [2, 26]. After all the
Choquard equation was initially derived in classical astrophysics, and
applied to classical plasma physics, and our factorisability ansatz could
be applied to classical non-linear wave equations too.

Conclusions-open questions.

The normalisation of the solitonic solutions considered by us is
also left entirely open here; we need an argument that fixes the nor-
malisation once for all. It is not clear whether such an argument can
be found in existing theories such as the standard model of particles
physics.

Related to this, the scaling of the non-linear potential required for
localizing the particle is not arbitrary, but exhibits a |Ψ|2 dependence,
typical of the Newton and/or Coulomb self-interaction [36].

All these questions are important of course and they deserve to be
scrutinized in depth. At this level, our goal is less ambitious. We hope
that the rather simple models treated in this paper will convince the
reader that de Broglie’s ideas were maybe not that much surrealistic
[20] and deprived of consistence. Our results indeed reinforces the dB-
B picture according to which the particle non-locally and contextually
explores its environment thanks to the nearly immaterial tentacles
provided by the solution of the linear Schrödinger equation. This
picture is not comfortable but it is maybe the price to pay to restore
wave monism11.

Last but not least, our analysis also confirms several prophetic
intuitions originally presented by Louis de Broglie during the Solvay
conference of 1927 [5].
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[18] L. Diósi. Gravitation and quantum-mechanical localization of
macro-objects. Phys. Lett. A, 105:199–202, 1984.

Zeit. fur Naturf., 59 A:425, 2004. (2001).

[19] T. Durt et al. de Broglie-Bohm dynamics and butterfly effect in
a Stern-Gerlach measurement.In preparation.

[20] B-G Englert, M. Scully, G. Süssman, H. Walther. Surrealistic
Bohm TrajectoriesZeit. für Nat. A, 47, 12, 1992.

[21] C. Efthymiopoulos, C. Kalapotharakos, and G. Contopoulos. Ori-
gin of chaos near critical points of quantum flow. Phys. Rev. E,
79(3):036203, 2009.

N. Gisin. Stochastic Quantum Dynamics and Relativity. Helv.
Hys. Acta, 62(4):363–371, 1989.

18



[22] G. Gouesbet Hidden Worlds in Quantum Physics. (Dover Books
on Physics, 2013)

[23] P.R. Holland.The Quantum Theory of Motion (Cambridge Uni-
versity Press, 1993)

[24] R. Illner and P.F. Zweifel. Global Existence, Uniqueness and
Asymptotic Behaviour of Solutions of the Wigner-Poisson and
Schrödinger-Poisson Systems. Mathematical Methods in the Ap-

plied Sciences, 17:349–376, 1994.

[25] K. R. W. Jones. Newtonian Quantum Gravity. Aust. J. Phys.,
48:1055–1081, 1995.

[26] P. Koonath, D. R. Solli, C. Ropers, and B. Jalali. Optical rogue
waves. Nature Letter, 450(19):1054-1057, 2007.

[27] G. Labeyrie, E. Tesio, P. M. Gomes, G.-L. Oppo, W. J. Firth, G.
R. M. Robb, A. S. Arnold, R. Kaiser, and T. Ackemann Optome-
chanical self-structuring in cold atomic gases Nature Photon. 8,
321 2014.

[28] E.H. Lieb. Existence and Uniqueness of the Minimizing Solution
of Choquard’s Nonlinear Equation. Studies in Applied Mathe-

matics, 57:93–105, 1977.

[29] C. Møller. The energy-momentum complex in general relativity
and related problems. In A. Lichnerowicz and M.-A. Tonnelat,
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7 Appendix.

7.1 Change of norm

Let us denote HL the linear part of the the full Hamiltonian in (17).
It is not hermitian, so that < φNL|φNL >, the L2 norm of its solution
φNL(t,x)) is not constant throughout time. The non-linear potentials
considered by us preserve the L2 norm however. We can thus evaluate
the time derivative of < φNL|φNL > by direct computation, either
integrating by parts, or making use of the formula

d < φ|O|φ >
dt

=

< φ|∂O
∂t

|φ > +
1

i~
< φ|H†

LO −OHL|φ >

=< φ|∂O
∂t

|φ > +
1

i~
(< φ|[O,Re.HL]−|φ > (35)

+
1

~
(< φ|[O, Im.HL]+|φ >),

where O is an arbitrary observable, described by a self-adjoint oper-
ator, while Re.HL and Im.HL, the real and imaginary parts of HL

are self-adjoint operators defined through 2 · Re.HL = HL +H†
L and

2i · Im.HL = HL −H†
L.

We find by direct computation that

Re.(−~
2

m
i▽ϕL(t,x) · ▽)

= (−~
2

m
i▽ϕL(t,x) · ▽)− (

~
2

2m
i∆ϕL(t,x)) (36)

and Im.(−~2

m i▽ϕL(t,x) · ▽) = ( ~2

2m∆ϕL(t,x)).
Therefore the guidance potential contributes to
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d<φNL|φNL>
dt = d<φNL|1|φNL>

dt by a quantity

(< φNL|(
~

m
∆ϕL(t,x))|φNL >≈ (

~

m
∆ϕL(t,x)) < φNL|φNL >),

due to the fact that, over the size of the soliton, ϕL(t,x) and its
derivatives are supposed to vary so slowly that we can consistently
neglect their variation and put them in front of the L2 integral.

For estimating the contribution of theAL−φNL coupling to d<φNL|φNL>
dt ,

we integrate by parts and find
~2

m
1
i~

∫

d3x(▽AL(t,x)
AL(t,x)

·▽(φNL(t,x))
∗φNL(t,x)−(φNL(t,x))

∗ ▽AL(t,x)
AL(t,x)

·
▽φNL(t,x)).

We now suppose that we are in right to neglect the variation of
▽AL(t,x)
AL(t,x)

in the integral above and we find, integrating by parts, a

contribution −2▽AL(t,x0)
AL(t,x0)

·
∫

d3x(φNL(t,x))
∗ ~▽
mi · φNL(t,x)

Putting all these results together, we find that

d < φNL|φNL >

dt
≈ ~

m
∆ϕL(t,x0)· < φNL|φNL >

−2
▽AL(t,x0)

AL(t,x0)
·
∫

d3x(φNL(t,x))
∗ ~▽
mi

· φNL(t,x). (37)

7.2 Change of position of the barycentre of

the soliton.

By similar computations, we are able to estimate the displacement
of the barycentre of the soliton. For instance, let us consider its z
component:

z0 =
<φNL|z|φNL>
<φNL|φNL>

and dz0
dt = 1

<φNL|φNL>
d<φNL|z|φNL>

dt − z0
<φNL|φNL>2

d<φNL|φNL>
dt

We find

dz0
dt

=
1

< φNL|φNL >

∫

d3x(φNL(t,x))
∗(
~▽z

m
· ϕL(t,x))φNL(t,x)

+
1

< φNL|φNL >

∫

d3x(φNL(t,x))
∗ ~▽z

mi
· φNL(t,x) +

1

< φNL|φNL >
< φNL|(

~

m
∆ϕL(t,x)) · z|φ

+
~

im

∫

d3x(
▽AL(t,x)

AL(t,x)
· ▽(φNL(t,x))

∗ · z · φNL(t,x) − (φNL(t,x))
∗ · z · ▽AL(t,x)

AL(t,x)
· ▽φNL(t,x

− z0
< φNL|φNL >2

· ( ~
m
∆ϕL(t,x0)· < φNL|φNL > −2

▽AL(t,x0)

AL(t,x0)
·
∫

d3x(φNL(t,x))
∗ ~▽
mi

· φNL(t,
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Now, ~

im

∫

d3x(φNL(t,x))
∗·z·▽AL(t,x)

AL(t,x)
·▽φNL(t,x) ≈ z0

▽AL(t,x0)
AL(t,x0)

∫

d3x(φNL(t,x))
∗ ~▽
mi ·

φNL(t,x)),
< φNL|( ~

m∆ϕL(t,x))·z|φNL > ≈ z0·( ~

m∆ϕL(t,x0)· < φNL|φNL >)
and so on so that finally we find

dz0
dt

=
~▽z

m
· ϕL(t,x0) +

1

< φNL|φNL >

∫

d3x(φNL(t,x))
∗ ~▽z

mi
· φNL(t,x),(39)

which establishes the Disturbed dB-B guidance equation (24).

7.3 Scaling.

Let us, in accordance with (22), introduce the total time derivative
of AL (dAL

dt = ∂AL

∂t + vdrift · ▽AL) where vdrift obeys the Disturbed
dB-B guidance equation (24) in virtue of which

vdrift =
d<φNL|x|φNL>

dt

<φNL|φNL>
= ~▽

m ·ϕL(t,x0)+
1

<φNL|φNL>

∫

d3x(φNL(t,x))
∗ ~▽
mi ·

φNL(t,x).
By a direct computation, we find

dAL

dt

AL
=

∂AL

∂t

AL
+

▽AL

AL
· ~▽
m

· ϕL(t,x0) +
▽AL

AL
· 1

< φNL|φNL >

∫

d3x(φNL(t,x))
∗ ~▽
mi

· φNL(t,x)(40)

Making use of the conservation equation of the linear Schrödinger
equation

∂A2

L

∂t = −div(A2 ~▽
m ·ϕL(t,x0)) we find

∂AL
∂t

AL
+ ▽AL

AL
· ~▽m ·ϕL(t,x0) =

−1
2 div(

~▽
m · ϕL(t,x0)) and we can rewrite (40) as follows:

dAL

dt

AL
=

−1

2

~

m
∆ϕL(t,x0) +

▽AL

AL
· 1

< φNL|φNL >

∫

d3x(φNL(t,x))
∗ ~▽
mi

· φNL(t,x)(41)

Making use of (37), we obtain at the end
dAL
dt

AL
= −1

2
1

<φNL|φNL>
d<φNL|φNL>

dt which establishes our main result

(21).
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