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Introduction

Louis de Broglie proposed in 1927 a realistic interpretation of the quantum theory in which particles are guided by the solution of the linear Schrödinger equation (Ψ L ), in accordance with the so-called guidance equation [START_REF] De Broglie | Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution[END_REF][START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF]. The theory was generalised by David Bohm 1 in 1952 [START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables[END_REF][START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables[END_REF], who also applied it to the multiparticle case. Certain ingredients of de Broglie's original idea disappeared in Bohm's formulation, in particular the double solution program, according to which the particle is associated to a wave φ distinct from the pilot-wave Ψ L . This program was never fully achieved, φ being sometimes treated as a moving singularity [START_REF] Vigier | Particular solutions of a non-linear Schrödinger equation carrying particle-like singularities represent possible models of de Broglie's double solution theory[END_REF], and sometimes as a solution of a non-linear equation [START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF]. In this paper, we shall consider three non-linear generalisations of Schrödinger's linear equation previously scrutinized in [START_REF] Colin | Can quantum systems succumb to their own (gravitational) attraction?[END_REF], the 1+1 dimensional NLS equation, and the 1+3 dimensional S-N equation in the single [START_REF] Penrose | On Gravity's Role in Quantum State Reduction[END_REF] and many particles (self-gravitating homogeneous sphere [START_REF] Diósi | Gravitation and quantum-mechanical localization of macro-objects[END_REF]) cases, which are known to admit static solitonic solutions (from now on denoted e -iE 0 t/ φ 0 N L (x)) in absence of external potential. We aim at finding particular solutions of [START_REF] Durt | Broglie-Bohm dynamics and butterfly effect in a Stern-Gerlach measurement[END_REF], where an external, linear, potential is present.

Our main idea is to consider an ansatz solution Ψ of ( 19) which factorizes into the product of two functions Ψ L and φ N L where Ψ L is a solution of the linear Schrödinger equation. As we shall show Ψ L can be interpreted as a pilot-wave, while the barycentre of φ N L obeys a generalized guidance equation which contains the well-known Madelung-de Broglie-Bohm contribution plus a new contribution due to the internal structure of the soliton. In first approximation and in the appropriate regime to be precised later, Ψ is the product of a stationary soliton-shape solution of the non-linear free equation, denoted φ 0 N L , moving at de Broglie-Bohm velocity, with the phase of Ψ L . If we denote A L and ϕ L the amplitude and phase of Ψ L , through Ψ L = A L • e iϕ L , we find thus Ψ(x, y, z, t) ≈ e -iE 0 t/ φ 0 N L (x -t 0 dtv dB-B )e iϕ L (t,x) , where

v dB-B = m ∇ϕ L (x, y, z, t) (1) 
in accordance with the so-called de Broglie-Bohm (dB-B) guidance equation, and E 0 is the energy of the stationary ground state of the free non-linear equation. This is true at the lowest order of perturbation only. Actually, the exact solution is predicted to obey Ψ(x, y, z, t) ≈ φ ′ N L (x, t)e iϕ L , where as we shall show φ

′ N L is a function of constant L 2 norm (< φ ′ N L |φ ′ N L >= constant) proportional to φ N L (A L • φ N L = φ ′ N L ). φ ′ N L
obeys a rather complicated non-linear equation and is in general not a solitary wave, by which we mean that its shape varies throughout time.

It also obeys a generalized guidance equation, because the barycentre of φ ′ N L is predicted to move at velocity v drif t =v dB-B + v int. , with a structural contribution from the non-linear wave:

v int. =< φ ′ N L | im ▽|φ ′ N L > / < φ ′ N L |φ ′ N L >.
In this approach, where the de Broglie-Bohm point-particle is replaced by a soliton, the wave monism originally proposed by de Broglie is restored. As we shall show, the amplitude A L of the linear solution may be considered as a computation tool, which disappears at the end of the calculation, to the same size that in the de Broglie-Bohm approach, the linear wave Ψ L is interpreted as a pilot-field, while the "real" object is the pointlike particle.

From this point of view, the NLS and S-N equations are good candidates for fulfilling the de Broglie double solution program of 1927 [START_REF] Bacciagaluppi | Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference[END_REF], in the same sense that Schrödinger equation was a good candidate for realizing de Broglie's wave mechanics program of 1925, provided we take some freedom relatively to de Broglie's original ideas and consider them from a broad perspective. In particular, our factorisability ansatz is incompatible with the superposition principle in the sense that we are not considering solutions of the type Ψ=Ψ L +φ N L . This explains why the tail of the solution Ψ(x, y, z, t) may be arbitrary small nearly everywhere, excepted in a supposedly small region where φ N L is strongly peaked. Another non-trivial feature of our model is the appearance of corrections to the dB-B guidance equation. Moreover, the phase matching condition of de Broglie is in general not respected in our approach.

The paper is structured as follows. In section 2 we apply our ansatz for deriving an exact solution of the NLS and S-N equations in absence of external potential. In section 3 we apply a similar scheme in presence of an external potential, but this time the result is no longer exact. However, it is a good approximation of the solution as far as the region where φ N L is strongly peaked is sufficiently small. In section 4 we consider a typical scattering experiment and, combining the results of the previous sections, we reproduce an argument originally introduced by de Broglie in order to derive Born's rule. In section 5 we consider a straightforward generalisation of the results derived in the previous sections to the Dirac spinor.

The last section is devoted to discussion and conclusion.

2 No external potential.

The 1 D NLS equation

The 1+1 dimensional nonlinear Schrödinger equation, here rewritten in dimensionless coordinates, reads

i ∂ψ ∂s + ∂ 2 ψ ∂z 2 + ψ 2 ψ = 0, (2) 
We are free to search for stationary solutions

Ψ(Z, S) = e iES ϕ(Z). (3) 
The function ϕ(Z) then satisfies the stationary nonlinear Schrödinger equation

∂ 2 ϕ ∂Z 2 + ϕ 2 ϕ = Eϕ, (4) 
with E ≥ 0. As is well-known, equation ( 4) has statical and localized solutions of the form

ϕ(Z) = √ 2λ cosh(λZ + δ) , E = λ 2 , (5) 
for real parameters λ and δ, which correspond to (bright) static soliton solutions for the nonlinear Schrödinger equation with amplitude 2E (for |ψ| 2 ).

2.2

The 3 D Schrödinger-Newton equation: from single to many particles.

In the single particle case, the so-called Schrödinger-Newton integrodifferential equation reads

3 [25] i ∂Ψ(t, x) ∂t = -2 ∆Ψ(t, x) 2m -Gm 2 d 3 x ′ ( |Ψ(t, x ′ )| 2 |x -x ′ | )Ψ(t, x). ( 6 
)
One can therefore look for a "ground-state" solution to [START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables[END_REF] in the form

ψ(x, t) = e iEt ϕ(x) , (7) 
This leads to a stationary equation for ϕ(x)

2 2M ∆ϕ(x) + GM 2 d 3 y ϕ(y) 2 |x -y| ϕ(x) = Eϕ(x) , (8) 
which was studied in astrophysics and is known under the name of the Choquard equation [START_REF] Lieb | Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation[END_REF]. In [START_REF] Lieb | Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation[END_REF], Lieb showed that the energy functional

E(φ) = 2 2M d 3 x ∇φ(x) 2 - GM 2 2 d 3 xd 3 y φ(y) 2 |x -y| φ(x) 2 , ( 9 
)
is minimized by a unique solution ϕ(x) of the Choquard equation ( 8) for a given L 2 norm N (ϕ). However no analytical expression is known for this ground state. Numerical treatments established that this ground state has a quasi-gaussian shape, and that its size is, in the case N (ϕ) = 1, of the order of 2 GM 3 . The generalisation of equation ( 6) to non-elementary (composite) particles has been tackled by Diósi who considered the problem of a self-interacting sphere in [START_REF] Diósi | Gravitation and quantum-mechanical localization of macro-objects[END_REF], and showed that when the mean width of the center-of-mass wave function is small enough in comparison to the size of the sphere, the self-interaction reduces, in a first approximation, to a non-linear harmonic potential (see [START_REF] Yang | Macroscopic quantum mechanics in a classical spacetime[END_REF][START_REF] Colin | Can quantum systems succumb to their own (gravitational) attraction?[END_REF] for a generalization of Diósi's result):

-G( M 4πR 3 3

) 2 |x|≤R,|x ′ |≤R d 3 xd 3 x′ 1 |x CM +x-(x ′ CM +x ′ )| ≈ GM 2 R (-6 5 + 1 2 ( |x CM -x ′ CM | R ) 2 + O(( |x CM -x ′ CM | R ) 3 ))
Looking for static solutions of the many particles NS equation, one obtains the following equation for the ground state wave function of the center of mass, where x=x CM :

2 2M ∆ϕ(x) - GM 2 2R 3 d 3 y ϕ(y) 2 |x -y| 2 ϕ(x) = -E D ϕ(x) . ( 10 
)
Here we introduced the effective parameter E D as

E D = 6GM 2 5R -E , (11) 
with respect to the parameter E used in the reduction [START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables[END_REF]. This treatment is only valid, of course, to the extent that Diósi's approximation to a harmonic potential is valid, i.e. for widths of the ground state that are quite smaller than the radius R of the sphere. As is established in [START_REF] Colin | Can quantum systems succumb to their own (gravitational) attraction?[END_REF], a static solitonic solution of gaussian shape exists in this limit,

ϕ(x) = 1 ( √ πA) 3/2 exp - |x| 2 2A 2 ,
with width

A = ( 2 GM 3 ) 1 4 R 3 4 . ( 12 
)
2.3 Factorisation ansatz and boosted solitonic solutions in absence of external potential.

In the first part of this section, we presented three non-linear generalisations of the free linear Schrödinger equation i

∂Ψ(t,x) ∂t = -2 ∆Ψ(t,x) 2m that can be cast in the form i ∂Ψ(t, x) ∂t = -2 ∆Ψ(t, x) 2m + V N L (Ψ)Ψ(t, x), (13) 
with V N L (Ψ) a potential which non-linearily depends on the wave function Ψ. In each case, we know that there exists a localized solution of the type φ 0 N L (x)e -iE 0 t/ (with φ 0 N L (x) = ϕ(x) and E 0 = -E) which behaves as a static bright soliton. Let us now search for new solutions by imposing our ansatz:

Ψ(t, x) = Ψ L (t, x) • φ N L (t, x) (14) 
Substituting ( 14) in ( 13) we get

i • (( ∂Ψ L (t, x) ∂t )φ N L (t, x)) + Ψ L (t, x) • ( ∂φ N L (t, x) ∂t )) = - 2 2m ∆Ψ L (t, x) • φ N L (t, x) - 2 2m (2▽Ψ L (t, x) • ▽φ N L (t, x) + Ψ L (t, x) • ∆φ N L (t, x)) + V N L (Ψ)Ψ(t, x), (15) 
that we replace by a system of two equations4 , making use of the identity

▽Ψ L (t, x) = (▽A L (t, x))e iϕ L (t,x) + Ψ L (t, x)i▽ϕ L (t, x): i • ∂Ψ L (t, x) ∂t = - 2 2m ∆Ψ L (t, x), (16) 
i • ∂φ N L (t, x) ∂t = - 2 2m • ∆φ N L (t, x) - 2 2m • (2i▽ϕ L (t, x) • ▽φ N L (t, x) + ▽A L (t, x) A L (t, x) • ▽φ N L (t, x)) + V N L (Ψ)φ N L (t, x) (17) 
We are free to solve equation ( 16) by imposing a plane wave solution:

Ψ L (t, x) = A • e iϕ L (t,x) with A L = A a positive real constant and ϕ L (t, x) = k • x -ω • t, with ω = k 2 /2m
. The scaling properties of the non-linear potentials considered by us are such that

V N L (Ψ) = V N L (Ψ L (t, x) • φ N L (t, x)) = A 2 V N L (φ N L (t, x)). Let us rescale φ N L (t, x) by imposing that φ N L (t, x) = φ ′ N L (t, x)/A; then, V N L (Ψ) = V N L (φ ′ N L (t, x)), so that φ ′ N L (t, x) must fulfill the equation i • ∂φ ′ N L (t, x) ∂t = - 2 2m • ∆φ ′ N L (t, x) -i 2 m ▽ϕ L (t, x) • ▽φ ′ N L (t, x) +V N L (φ ′ N L (t, x))φ ′ N L (t, x), (18) 
for which it is straightforward to check that there exists a solution of the type φ 0 N L (xv • t)e -iE 0 t/ , with v = ▽ϕ L (t, x)/m = k/m, in accordance with de Broglie's relation.

Putting all these results together, we find a solution φ 0

N L (x -v • t)e -i((E 0 + ω)•t-k•x)/ .
Actually, this class of solution is well-known and it can be generated from the static solution φ 0 N L (x)e -iE 0 t/ by a Galilean boost. This result is in a sense trivial because we considered to begin with equations which are Galilei invariant. In the next section, we shall generalize this idea by realizing a time-dependent Galilean boost, in accordance with a generalized dB-B guidance equation.

equation [START_REF] Couder | Walking droplets, a form of wave-particle duality at macroscopic scale[END_REF] that do not fulfill the system [START_REF] De Broglie | Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution[END_REF][START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF]. In any case, we focus on a particular class of solutions here. Our goal is not to solve [START_REF] Durt | Broglie-Bohm dynamics and butterfly effect in a Stern-Gerlach measurement[END_REF] for arbitrary initial conditions. We actually assume that to begin with the full wave satisfies our factorisability ansatz. [START_REF] Anastopoulos | Problems with the Newton-Schrödinger equations[END_REF] In presence of an external potential.

We now assume that an external, linear, potential acts on the particle and we must replace [START_REF] Contopoulos | Order in de Broglie -Bohm quantum mechanicsJ[END_REF] by

i ∂Ψ(t, x) ∂t = -2 ∆Ψ(t, x) 2m + V L (t, x)Ψ(t, x) + V N L (Ψ)Ψ(t, x). ( 19 
)
By repeating the scheme already applied in the previous section we derive a system of two coupled equations, the linear Schrödinger equation

i • ∂Ψ L (t, x) ∂t = - 2 2m ∆Ψ L (t, x) + V L (t, x)Ψ L (t, x), (20) 
and as before equation [START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF].

In order to solve the system of equations [START_REF] De Broglie | Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution[END_REF][START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF], it is worth noting that while the L 2 norm of the linear wave Ψ L is preserved throughout time, this is no longer true in the case of the non-linear wave φ N L , because the interaction terms coming from the Laplacian operator are not hermitian.

By a straightforward but lengthy computation that we reproduce in appendix, we were able to establish the following results:

• the solution of (17) obeys the scaling law

d<φ NL |φ NL > dt < φ N L |φ N L > = -2 dA L dt A L , (21) 
in the limit where A L and φ L vary smoothly.

• In equation [START_REF] Efthymiopoulos | Origin of chaos near critical points of quantum flow[END_REF] we introduced the total derivative dA L dt defined through

dA L dt = ∂A L ∂t + v drif t • ▽A L , (22) 
where v drif t is in turn defined as follows:

v drif t = d<φ NL |x|φ NL > dt < φ N L |φ N L > , (23) 
for which we found by direct computation the generalisation of the dB-B guidance equation:

v drif t = m ▽ϕ L (x 0 (t), t) + < φ N L | im ▽|φ N L > < φ N L |φ N L > = v dB-B + v int. , (24) 
in which v int. can be considered as a contribution to the average velocity originating from the internal structure of the soliton.

The dB-B contribution to the drift, m ▽ϕ L (x 0 (t), t), denoted v dB-B is evaluated at the barycentre of the soliton, from now on denoted x 0 . In the rest of the paper, we shall refer to the guidance equation [START_REF] Illner | Global Existence, Uniqueness and Asymptotic Behaviour of Solutions of the Wigner-Poisson and Schrödinger-Poisson Systems[END_REF] as the "Disturbed" dB-B guidance equation.

• v dB-B appears in [START_REF] Illner | Global Existence, Uniqueness and Asymptotic Behaviour of Solutions of the Wigner-Poisson and Schrödinger-Poisson Systems[END_REF] as a consequence of the coupling to ϕ L (as in the free case treated in section 2.3), through the term -i

2 m ▽ϕ L (t, x) • ▽φ N L (t, x)
present in the Hamiltonian of equation [START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF], that we shall from now on call the guidance potential.

• The coupling to A L (absent in the free case treated in section 2.3), that is to say, the term -

2 m ▽A L (t,x) A L
• ▽φ N L (t, x) present in the Hamiltonian of equation ( 17), that we shall from now on call the A L -φ N L potential, does not contribute directly to the drift velocity but as we show in appendix it contributes to the scaling. It also contributes indirectly to the drift velocity because it influences the shape of φ N L , and thus also influences v int. .

• From the constraint [START_REF] Efthymiopoulos | Origin of chaos near critical points of quantum flow[END_REF] we infer that <φ NL |φ NL >(t) <φ NL |φ NL >(t=0) =

A 2 L (t=0) A 2 L (t)
, where we evaluate A 2 L (t) at the barycentre of φ N L , which moves according to the Disturbed dB-B guidance equation [START_REF] Illner | Global Existence, Uniqueness and Asymptotic Behaviour of Solutions of the Wigner-Poisson and Schrödinger-Poisson Systems[END_REF].

In analogy with the rescaling performed in the free case, let us define

φ ′ N L through φ N L (t, x) = 1 A L (t, x 0 ) • φ ′ N L (t, x). (25) 
(17) can the be cast in the form

i • ∂(φ ′ N L (t, x)/A L (t, x 0 )) ∂t = - 2 2m • ∆(φ ′ N L (t, x)/A L (t, x 0 )) - 2 m • i▽ϕ L (t, x) • ▽(φ ′ N L (t, x)/A L (t, x 0 )) - 2 m • ▽A L (t, x) A L (t, x) • ▽(φ ′ N L (t, x)/A L (t, x 0 )) + V N L (φ ′ N L )(φ ′ N L (t, x)/A L (t, x 0 )). ( 26 
)
We know from ( 21) that in very good approximation, the L 2 norm of φ ′ N L (t, x) remains constant. If we consider an extreme "adiabatic" limit in which the logarithmic gradient of A L , ▽A L (t,x)

A L (t,x) can be neglected, we find that the soliton propagates like a classical particle, because then it is also consistent to perform a WKB like treatment in which φ L is proportional to S, the solution of the classical Hamilton-Jacobi equation 5 .

Without being so extreme, we are in right to claim that, if (1/A L (t, x 0 (t))) varies smoothly enough so that in first approximation we may neglect its temporal derivative in [START_REF] Koonath | Optical rogue waves[END_REF], as well as the A L -φ N L coupling, then, 1/A L (t, x 0 (t)) factorizes in [START_REF] Koonath | Optical rogue waves[END_REF]. If it is so, φ ′ N L (t, x) obeys ( 18) for which we find 6 , as announced in the introduction, that the solution is a progressive solitary wave Ψ(x, y, z, t) ≈ e -iE 0 t/ φ 0 N L (x -

t 0 dtv dB-B )e iϕ L (x,t) , (27) 
where v dB-B = m ∇ϕ L (x, y, z, t), in accordance with the dB-B guidance equation, and E 0 is the energy of the stationary ground state of the free non-linear equation. This is a crude approximation however, and all we can predict in general is that the solution, when it exists and remains peaked throughout time, has the form

Ψ(x, y, z, t) ≈ φ ′ N L (x, t)e iϕ L , (28) 
where φ ′ N L (x, t)'s norm is quasi-constant, while its barycentre is located in x 0 (t = 0) + t 0 dtv drif t . In order to say more about φ ′ N L (x, t) we must solve equation ( 26) which is a complicated problem, beyond the scope of our paper. It is worth noting however that if we estimate v int. at the first order of linear perturbation theory, we find identically 0, because this contribution is proportional to the average velocity of the free soliton, evaluated in the frame where it is at rest.

What remains to do in order to find better approximations of the exact solution of ( 17) is to resort to perturbative methods. This is appropriate, having in mind, that the L 2 norm of φ ′ N L does not vary much and that the non-linear potential "seen" by φ ′ N L does not rescale, which opens the door to a perturbative approach.

A typical scattering experiment.

Let us consider a typical scattering experiment, where a beam of identical particles, all with the same velocity and direction, are sent on a target. In the usual, linear formulation of quantum mechanics, the position of the particle is randomly distributed according to the Born rule. Moreover, before it reaches the target, the beam is described by a linear plane wave (we neglect here size effects). According to the Born rule everything happens as if the particle was uniformly spread over the beam.

Making use of the results of the previous sections we are free to adopt another picture in which the particle is attached to a peaked soliton, maybe since eons. In this picture a particle consists of a very dense concentration of field which is thus always well-localized. As discussed in section2.3, the particle (soliton) moves at constant speed in the direction of the target. This situation was actually considered by de Broglie, who also assumed that inside the beam the probability of localisation of the particles/singularities/second solutions and so on was homogeneous, due to the symmetry of the beam 7 . In this case, the predictions made in standard, linear quantum mechanics and in the non-linear model outlined above are the same. Now, because the equilibrium distribution in |Ψ L | 2 is, as is well-known, equivariant under de Broglie-Bohm mechanics, the non-linear dynamics sketched in the previous sections also leads to the same predictions for all times, because equilibrium is preserved during the scattering process. Actually, in the non-relativistic regime, this is so in first approximation only, in the regime where the Disturbed dB-B trajectories ( 24) cannot be distinguished from the dB-B trajectories ( 1), but we shall now show that if we consider the relativistic Dirac equation, the dB-B guidance equation linked to Dirac's equation is exactly satisfied [START_REF] Takabayasi | Relativistic hydrodynamics of the Dirac matter[END_REF][START_REF] Holland | The Quantum Theory of Motion[END_REF].

5 The Dirac spinor.

We mentioned in the introduction that in our view the NLS and S-N equations are good candidates for fulfilling the de Broglie double solution program of 1927, in the same sense that Schrödinger's equation was a good candidate for realizing de Broglie's wave mechanics program of 1925. In the same line of thought, it is natural to look for a non-linear relativistic equation that would be to the NLS and S-N equations what are the Klein-Gordon or Dirac equations to the non-relativistic Schrödinger equation.

A way to fulfill this program consists of treating the Dirac spinor more or less in the same way as the scalar Schrödinger wave, imposing now the ansatz

Ψ =     Ψ 0 (t, x) Ψ 1 (t, x) Ψ 2 (t, x) Ψ 3 (t, x)     =     Ψ L 0 (t, x) Ψ L 1 (t, x) Ψ L 2 (t, x) Ψ L 3 (t, x)     • φ N L (t, x), (29) 
where φ N L (t, x) is a Lorentz scalar. Remarkably, we now find that the equation obeyed by φ N L (t, x) can be cast in the simple form

i ∂φ N L (t, x) ∂t = v Dirac (t, x) i ▽φ N L (t, x) + V N L (Ψ)φ N L (t, x), ( 30 
)
where v Dirac can be expressed in terms of the three Dirac α matrices [START_REF] Holland | The Quantum Theory of Motion[END_REF] through [START_REF] Valentini | Dynamical origin of quantum probabilities[END_REF][START_REF] Efthymiopoulos | Origin of chaos near critical points of quantum flow[END_REF][START_REF] Colin | Relaxation to quantum equilibrium for Dirac fermions in the de Broglie-Bohm pilotwave theory[END_REF][START_REF] Contopoulos | Order in de Broglie -Bohm quantum mechanicsJ[END_REF][START_REF] Abraham | Long-time relaxation in pilot-wave theory[END_REF], but this is a deep and complex problem, reminiscent of the H-theorem of Boltzmann, which opens the door to a Pandora box that we do not wish to open here.

v Dirac = (Ψ * 0 (t, x), Ψ * 1 (t, x), Ψ * 2 (t, x), Ψ * 3 (t, x)) • αc •     Ψ 0 (t, x) Ψ 1 (t, x) Ψ 2 (t, x) Ψ 3 (t, x)     (31) 
As before we shall now assume that the self-interaction obeys the usual scaling law V N L (λΨ) = |λ| 2 V N L (Ψ) and even more:

V N L (Ψ) is a function supposed to depend only on the "density of stuff" is (Ψ) † • (Ψ)(t, x) = A 2 L |φ| 2 N L (t, x), with A L = |Ψ L 0 (t, x)| 2 + |Ψ L 1 (t, x)| 2 + |Ψ L 2 (t, x)| 2 + |Ψ L 3 (t, x)| 2 . (32)
If the linear Hamiltonian is the free Dirac Hamiltonian, and that we impose properly normalised spinorial plane wave solutions, then v Dirac 's components are constant everywhere in space and we again find "boosted" solutions of (30) of the type

φ N L (t, x) = e -iE 0 t/ φ 0 N L (x- v Dirac • t), where φ 0 N L is a bright static soliton solution of the con- straint 8 V N L (φ 0 N L (t, x)) = E 0 φ 0 N L (t, x
). If we assume that the self-interaction of the electron does preserve its norm and does not contribute to its drift, then, by repeating the computations made in appendix, and also by resorting to the conservation equation

∂A 2 L ∂t = -div(A 2 L • v Dirac (t, x 0 
)) associated to the linear Dirac equation [START_REF] Takabayasi | Relativistic hydrodynamics of the Dirac matter[END_REF], it is straightforward to establish the same scaling law as in the non-relativistic case studied before:

dA L dt A L = -1 2 1 <φ NL |φ NL > d<φ NL |φ NL > dt
Consequently, we are entitled to look for wave functions of the form

Ψ =     Ψ 0 (t, x) Ψ 1 (t, x) Ψ 2 (t, x) Ψ 3 (t, x)     = 1 A L •     Ψ L 0 (t, x) Ψ L 1 (t, x) Ψ L 2 (t, x) Ψ L 3 (t, x)     • φ ′ N L (t, x), (33) 
for which we know for sure that in very good approximation (as far as the size of the soliton is quite smaller than the size of the linear pilot-wave):

• the L 2 norm of φ ′ N L (t, x) is constant throughout time. • the barycentre of φ ′
N L moves along the hydrodynamical flow lines of Dirac's linear equation, at velocity v Dirac .

• φ ′ N L (t, x) obeys the equation i ∂ φ ′ NL (t,x) A L ∂t = v Dirac (t, x) i ▽ φ ′ N L (t, x) A L (34) 
+V N L (φ ′ N L (t, x)),

• which opens the door to a perturbative treatment.

• In particular, if A L and v 0 Dirac are smooth enough, we find at the lowest order of approximation the solution

φ ′ N L (t, x) ≈ e -iE 0 t/ • φ 0 N L (x -x 0 (t = 0) - t 0 dtv 0 Dirac )
As in the non-relativistic case, the amplitude A L is an auxiliary function that disappears at the end of the computation of Ψ.

It is beyond the scope of our paper to specify exactly the expression of V N L . If gravity plays a role it is not granted that V N L ought to be Lorentz covariant actually, and we prefer to leave this difficult question as an open problem.

Discussion and Conclusions.

There remain many open questions that we do not pretend to solve here. This concerns, as already mentioned, the reformulation of a Htheorem sketched in the section 4, or the existence and stability of the solitonic solutions considered above. Let us now briefly address some other controversial topics which spontaneously arise in the present context.

Normalisation and Born rule.

One could object that in order to fit to the constraints required by our model, in particular in order to ensure that the size of the soliton is quite smaller than the size of the linear wave, the models of non-linear interaction presented by us in the sections 2.1 and 2.2 would require the NLS coupling constant to be huge, or the mass of the particle to be incredibly heavy in the case of the S-N coupling. However this is not true. We are free to rescale9 the solitonic solutions without being constrained by the normalisation to unity of the wave function, which is a condition imposed by the Born rule. In our case, the Born rule is not postulated to begin with, it is rather derived from the equilibrium condition. In our eyes, the equilibrium condition ought to be derived from the Disturbed dB-B dynamics as is done in e.g. classical chaos theory [START_REF] Valentini | Dynamical origin of quantum probabilities[END_REF][START_REF] Efthymiopoulos | Origin of chaos near critical points of quantum flow[END_REF][START_REF] Colin | Relaxation to quantum equilibrium for Dirac fermions in the de Broglie-Bohm pilotwave theory[END_REF][START_REF] Contopoulos | Order in de Broglie -Bohm quantum mechanicsJ[END_REF][START_REF] Abraham | Long-time relaxation in pilot-wave theory[END_REF]. It is well-known for instance from the study of deterministic chaotic systems that the sensitivity to initial conditions is an essential ingredient for generating stochasticity and impredictability. This ingredient is present in the dB-B and Disturbed dB-B dynamics too [START_REF] Durt | Broglie-Bohm dynamics and butterfly effect in a Stern-Gerlach measurement[END_REF].

Experiments.

The overwhelming majority of experiments [START_REF] Smolin | Quantum fluctuations and inertia[END_REF][START_REF] Colin | Crucial tests of macrorealist and semi-classical gravity models with freely falling mesoscopic nanospheres[END_REF] proposed so far in order to reveal the existence of intrinsic non-linearities at the quantum level (like e.g. the self-gravity interaction) is a priori doomed to fail, for what concerns our model, because they systematically took for granted that the wave function was normalised to unity 10 . Therefore, new strategies must be adopted in order to reveal whether or not it is illusory to try to simulate quantum mechanics with realistic waves, and whether departures from the linear paradigm are accessible to experimentalists. For instance, departures from the Born rule could result from the replacement of the dB-B (1) by the Disturbed dB-B (24) guidance equation (section 3). Departure from the Born rule can be tested in the lab. so that in principle our model can be falsified, at least in the classical limit.

Even if our model is not relevant, and in the last resort its relevance ought to be confirmed or falsified by experiments, it could appear to be useful as a phenomenological tool. For instance it could be useful in droplets physics where de Broglie like trajectories have been observed [START_REF] Couder | Single-Particle Diffraction and Interference at a Macroscopic Scale[END_REF][START_REF] Couder | Walking droplets, a form of wave-particle duality at macroscopic scale[END_REF][START_REF] Busch | Pilot-Wave Hydrodynamics[END_REF]. The dynamics outlined here could also be interesting in cold atoms physics [START_REF] Labeyrie | Ackemann Optomechanical self-structuring in cold atomic gases[END_REF] where effective non-linear equations of the S-N type properly describe collective excitations of the atomic density [START_REF] Anastopoulos | Problems with the Newton-Schrödinger equations[END_REF]. As far as we know, no de Broglie like trajectory has yet been observed during such experiments. In the same order of ideas, it would be highly interesting to investigate whether de Broglie like trajectories are good tools for describing optical and/or rogue waves [START_REF] Akhmediev | Waves that appear from nowhere and disappear without a trace[END_REF][START_REF] Koonath | Optical rogue waves[END_REF]. After all the Choquard equation was initially derived in classical astrophysics, and applied to classical plasma physics, and our factorisability ansatz could be applied to classical non-linear wave equations too.

Conclusions-open questions.

The normalisation of the solitonic solutions considered by us is also left entirely open here; we need an argument that fixes the normalisation once for all. It is not clear whether such an argument can be found in existing theories such as the standard model of particles physics.

Related to this, the scaling of the non-linear potential required for localizing the particle is not arbitrary, but exhibits a |Ψ| 2 dependence, typical of the Newton and/or Coulomb self-interaction [START_REF] Visser | A classical model for the electron[END_REF].

All these questions are important of course and they deserve to be scrutinized in depth. At this level, our goal is less ambitious. We hope that the rather simple models treated in this paper will convince the reader that de Broglie's ideas were maybe not that much surrealistic [START_REF] Englert | Surrealistic Bohm Trajectories Zeit[END_REF] and deprived of consistence. Our results indeed reinforces the dB-B picture according to which the particle non-locally and contextually explores its environment thanks to the nearly immaterial tentacles provided by the solution of the linear Schrödinger equation. This picture is not comfortable but it is maybe the price to pay to restore wave monism 11 .

Last but not least, our analysis also confirms several prophetic intuitions originally presented by Louis de Broglie during the Solvay conference of 1927 [START_REF] Bacciagaluppi | Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference[END_REF]. chanics: Limits of the No-Signaling Condition" . Warm regards to my coinvestigators in these projects, Samuel Colin and Ralph Willox and sincere thanks for their uninterrupted and challenging collaboration on these questions during all these years. Thanks to Ralph Willox for commenting the draft of this paper.

7 Appendix.

Change of norm

Let us denote H L the linear part of the the full Hamiltonian in [START_REF] De Broglie | Interpretation of quantum mechanics by the double solution theory Annales de la Fondation Louis de Broglie[END_REF]. It is not hermitian, so that < φ N L |φ N L >, the L 2 norm of its solution φ N L (t, x)) is not constant throughout time. The non-linear potentials considered by us preserve the L 2 norm however. We can thus evaluate the time derivative of < φ A L (t,x) •▽φ N L (t, x) ≈ z 0 ▽A L (t,x 0 ) A L (t,x 0 ) d 3 x(φ N L (t, x)) * ▽ mi • φ N L (t, x)), < φ N L |( m ∆ϕ L (t, x))•z|φ N L > ≈ z 0 •( m ∆ϕ L (t, x 0 )• < φ N L |φ N L >) and so on so that finally we find

dz 0 dt = ▽ z m • ϕ L (t, x 0 ) + 1 < φ N L |φ N L > d 3 x(φ N L (t, x)) * ▽ z mi • φ N L (t, x),( 39 
)
which establishes the Disturbed dB-B guidance equation [START_REF] Illner | Global Existence, Uniqueness and Asymptotic Behaviour of Solutions of the Wigner-Poisson and Schrödinger-Poisson Systems[END_REF].

Scaling.

Let us, in accordance with [START_REF]Gouesbet Hidden Worlds in Quantum Physics[END_REF], introduce the total time derivative of A L ( dA L dt = ∂A L ∂t + v drif t • ▽A L ) where v drif t obeys the Disturbed dB-B guidance equation [START_REF] Illner | Global Existence, Uniqueness and Asymptotic Behaviour of Solutions of the Wigner-Poisson and Schrödinger-Poisson Systems[END_REF] in virtue of which

v drif t = d<φ NL |x|φ NL > dt <φ NL |φ NL > = ▽ m •ϕ L (t, x 0 )+ 1 <φ NL |φ NL > d 3 x(φ N L (t, x)) * ▽ mi • φ N L (t, x).
By a direct computation, we find

dA L dt A L = ∂A L ∂t A L + ▽A L A L • ▽ m • ϕ L (t, x 0 ) + ▽A L A L • 1 < φ N L |φ N L > d 3 x(φ N L (t, x)) * ▽ mi • φ N L (t, x)(40)
Making use of the conservation equation of the linear Schrödinger equation

∂A 2 L ∂t = -div(A 2 ▽ m • ϕ L (t, x 0 )) we find ∂A L ∂t A L + ▽A L A L • ▽ m • ϕ L (t, x 0 ) = -1
2 div( ▽ m • ϕ L (t, x 0 )) and we can rewrite (40) as follows:

dA L dt A L = -1 2 m ∆ϕ L (t, x 0 ) + ▽A L A L • 1 < φ N L |φ N L > d 3 x(φ N L (t, x)) * ▽ mi • φ N L (t, x)(41)
Making use of [START_REF] Yang | Macroscopic quantum mechanics in a classical spacetime[END_REF], we obtain at the end dA L dt

A L = -1 2 1 <φ NL |φ NL > d<φ NL |φ NL > dt
which establishes our main result [START_REF] Efthymiopoulos | Origin of chaos near critical points of quantum flow[END_REF].

2 m

 2 i▽ϕ L (t, x) • ▽) = (

2 2m

 2 ∆ϕ L (t, x)). Therefore the guidance potential contributes to Now, im d 3 x(φ N L (t, x)) * •z• ▽A L(t,x) 

  N L |φ N L > by direct computation, either integrating by parts, or making use of the formula φ|[O, Im.H L ] + |φ >),where O is an arbitrary observable, described by a self-adjoint operator, while Re.H L and Im.H L , the real and imaginary parts of H L are self-adjoint operators defined through 2 • Re.H L = H L + H † L and 2i • Im.H L = H L -H †L . We find by direct computation that

	d < φ|O|φ > dt	=
	< φ|	∂O ∂t	|φ > +	1 i	< φ|H † L O -OH L |φ >
	=< φ| + 1 (< Re.(-∂O ∂t |φ > + 1 i (< φ|[O, Re.H L ] -|φ >	(35)

This equation is also often referred to as the (attractive) Schrödinger-Poisson equation[8, 24, 

4] or the gravitational Schrödinger equation[START_REF] Jones | Newtonian Quantum Gravity[END_REF].

This replacement is not one to one in the sense that there could exist solutions of

In the Bohmian language this occurs when we can consistently neglect the so-called quantum potential[START_REF] Holland | The Quantum Theory of Motion[END_REF].

This approximation is a good approximation in the regime where we may neglect the variation of ϕ L over the size of the soliton. Consistently, in this limit, v int. = 0 because φ 0 N L is a static solution of the free non-linear equation.

This argument of symmetry implicitly refers to the existence of what is called nowadays an equilibrium distribution for the hidden positions of the particles. There exist serious attempts to derive the onset of quantum equilibrium from the de Broglie-Bohm mechanics

Actually, in this case, even the linear equation admits a solution of arbitrary shape formally derived by imposing E 0 =V N L = 0. However plane waves do not exist in nature and in absence of a non-linear self-focusing, dispersion will spread the soliton sooner or later.

The three non-linear equations that we described in the section 2 posses well defined scaling properties. Actually when the size of the static soliton goes to 0, its norm goes to infinity and its energy goes to minus infinity.

We could impose for instance that the size δ N L of the soliton is the Planck length (more or less 10 -35 meter). Of course the semi-classical gravity model considered in section 2.2 is not supposed to be relevant at this scale, but formally we are free to make such a choice.

An advantage of wave monism is that, contrary to the Bohmian dynamics formulated in terms of material points, wave monism does not violate the No Singularity Principle formulated by Gouesbet[START_REF]Gouesbet Hidden Worlds in Quantum Physics[END_REF]. Everything is continuous in our approach, even if very different spatial scales coexist.
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due to the fact that, over the size of the soliton, ϕ L (t, x) and its derivatives are supposed to vary so slowly that we can consistently neglect their variation and put them in front of the L 2 integral.

For estimating the contribution of the A L -φ N L coupling to d<φ NL |φ NL > dt , we integrate by parts and find

We now suppose that we are in right to neglect the variation of

A L (t,x) in the integral above and we find, integrating by parts, a contribution -2

x) Putting all these results together, we find that

7.2 Change of position of the barycentre of the soliton.

By similar computations, we are able to estimate the displacement of the barycentre of the soliton. For instance, let us consider its z component:

We find