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Convergence in total variation distance for a
third order scheme for one dimensional diffusion

process
Clément Rey 1

Abstract
In this paper, we study a third weak order scheme for diffusion processes which has been
introduced by Alfonsi [1]. This scheme is built using cubature methods and is well defined
under an abstract commutativity condition on the coefficients of the underlying diffusion
process. Moreover, it has been proved in [1], that the third weak order convergence takes
place for smooth test functions. First, we provide a necessary and sufficient explicit condition
for the scheme to be well defined when we consider the one dimensional case. In a second
step, we use a result from [3] and prove that, under an ellipticity condition, this convergence
also takes place for the total variation distance with order 3. We also give an estimate of the
density function of the diffusion process and its derivatives.

1 Introduction
In this paper, we study the total variation distance between a one dimensional diffusion process
and a third weak order scheme based on a cubature method and introduced by Alfonsi [1].
In his work, Alfonsi proved that it converges with weak order three for smooth test functions
with polynomial growth. We will show that the convergence also takes place with order three
if we consider measurable and bounded test functions. In this case, we say that the total
variation distance between the diffusion process and the scheme converges towards zero with
order three. In order to do it, we will use a result from [3] based on en abstract Malliavin
calculus introduced by Bally and Clément [2]. A main interest of this approach is that the
random variables used to build the scheme are not necessarily Gaussian but belong to a class
of random variables with no specific law. Consequently our result can be seen as an invariance
principle.
Let us be more specific. We consider the R-valued one dimensional Markov diffusion process

dXt = V0(Xt)dt+ V1(Xt) ◦ dWt, (1)

with Vi : C∞b (R,R), i = 0, 1, (Wt)t>0 a one dimensional standard Brownian motion and ◦dWt

the Stratonovich integral with respect to Wt. In this paper, we will study an approximation
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scheme for (1) which is defined on an homogeneous time grid. It is relevant to notice that
the results we will obtain remain true for non homogeneous time grids, but we do not treat
that case for sake of clarity. We fix T > 0 and we denote n ∈ N∗, the number of time step
between 0 and T . Then, for k ∈ N we define tnk = kT/n and we introduce the homogeneous
time grid πT,n = {tnk = kT/n, k ∈ N} and its bounded version πT̃T,n = {t ∈ πT,n, t 6 T̃} for
T̃ > 0. Finally, for S ∈ [0, T̃ ) we will denote πS,T̃T,n = {t ∈ πT̃T,n, t > S}. Now, for tnk = kT/n,
we introduce the abstract R-valued Markov chain

Xn
tnk+1

= ψk(X
n
tnk
,
Zk+1√
n
, δnk+1), k ∈ N, (2)

where ψk : R×R×R+ → R is a smooth function such that ψk(x, 0, 0) = x, Zk+1 ∈ RN , k ∈ N
is a sequence of independent and centered random variables and supk∈N∗ δnk 6 C/n.

Before estimating the distance between X and Xn, we introduce some notations. For f ∈
C∞(Rd) and for a multi-index α = (α1, · · · , αd) ∈ Nd we denote |α| = α1 + ...+ αd and ∂αf =
∂αx f = ∂α1

x1
...∂αdxd f(x). We include the multi-index α = (0, ..., 0) and in this case ∂αf = f. We

will use the norms

‖f‖q,∞ = sup
x∈Rd

∑
06|α|6q

|∂αf(x)|, q ∈ N. (3)

In particular ‖f‖0,∞ = ‖f‖∞ is the usual supremum norm and we will denote Cqb (Rd) = {f ∈
Cq(Rd), ‖f‖q,∞ <∞}.

A first standard result is the following: Let us assume that there exists h > 0, q ∈ N such
that for every test function f ∈ Cqb (R), k ∈ N and x ∈ R,

|E[f(Xtnk+1
)− f(Xn

tnk+1
)|Xtnk

= Xn
tnk

= x]| 6 C‖f‖q,∞/nh+1. (4)

Then, we have
sup
t∈πTT,n

|E[f(Xt)− f(Xn
t )]| 6 C‖f‖q,∞/nh. (5)

It means that (Xn
tk

)k∈N is an approximation scheme of weak order h for the Markov process
(Xt)t>0 for the test functions f ∈ Cqb (R;R). The value h thus measures the efficiency of the
scheme whereas q stands for the required regularity on the test functions in order to obtain
convergence with order h. This subject has already been widely studied in the literature and
we point out some famous examples. However, the reader may notice that in all those works,
the required order of regularity q is greater than one. Concerning the Euler scheme for dif-
fusion processes, the result (5), with h = 1, has initially been proved in the seminal papers
of Milstein [19] and of Talay and Tubaro [22] (see also [12]). Since then, various situations
have been studied: Diffusion processes with jumps (see [21], [10]) or diffusion processes with
boundary conditions (see [7], [6], [8]). An overview of the subject is proposed in [11]. More re-
cently, discretization schemes of higher orders (e.g., h = 2), based on cubature methods, have
been introduced and studied by Kusuoka [16], Lyons [18], Ninomiya, Victoir [20] or Alfonsi
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[1]. The reader may also refer to the work Kohatsu-Higa and Tankov [13] for a higher weak
order for jump processes. Finally, in [1], a third weak order scheme (with h = 3) has been
introduced following similar cubature ideas. This is the one we will study in this paper.

As we already precised, all those schemes converge for some q > 1 in (5). Another point of
interest relies thus on the study of the set of test functions which enable the converge with
weak order h. The purpose is to extend this set beyond Cqb (R;R) and to obtain (5) with ‖f‖q,∞
replaced by ‖f‖∞ when f is a measurable and bounded function. In this case, we say that the
scheme converges for the total variation distance. A first result of this type has been obtained
by Bally and Talay [4], [5]. They treat the case of the Euler scheme using the Malliavin cal-
culus (see also Guyon [9] when f is a tempered distribution). Afterwards Konakov, Menozzi
and Molchanov [14], [15] established some local limit theorems using a parametrix method.
Recently Kusuoka [17], also using Malliavin Calculus, obtained estimates of the error in total
variation distance for the Ninomiya Victoir scheme (which corresponds to the case h = 2)
under a Hörmander type condition.

Under an ellipticity condition, we will obtain a similar result for the case h = 3, using a scheme
introduced in [1]. This scheme is well defined if the Lie bracket between V 2

1 and V0 is equal to
2Ṽ 2, with Ṽ a first order differential operator. Since we consider one dimensional processes
with form (1), we will be able to give an explicit necessary and sufficient condition in order to
obtain this property on the Lie bracket.

Moreover, we will not work in a Gaussian framework and then we will have to use a variant
of the Malliaivin calculus introduced by Bally and Clement [2] for which we can apply the
results from [3]. A main interest of this approach is that the random variables involved in the
scheme do not have a specific law but simply belong to a class of random variables which are
Lebesgue lower bounded and satisfy some moment conditions. In this way, our final result
can be seen as an invariance principle. The ambit of this scheme thus goes well beyond the
Gaussian case.

We will begin presenting the framework of this paper in Section 2. In Section 3, we will
give some third weak order convergence results for smooth test functions and for bounded
measurable test functions. The latter is presented in Theorem 3.2 and constitutes the main
result of this paper. It gives the convergence for the total variation distance with order three
of the scheme from [1], toward the Markov process (1). We will also obtain an estimate of
the density function of the diffusion and its derivatives. We will follow with a short numerical
illustration in order to check the order of convergence for a suited example. This paper will
end with the proof of our main theorems in Section 5.

2 The third weak order scheme
We consider the one dimensional R-valued diffusion process

dXt = V0(Xt)dt+ V1(Xt) ◦ dWt, (6)
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with V0, V1 ∈ C∞b (R;R), (Wt)t>0 a standard Brownian motion. Moreover, ◦dWt denotes the
Stratonovich integral with respect to W . The infinitesimal operator of this Markov process is

A = V0 +
1

2
V 2
1 , (7)

with the notation V f(x) = V (x)∂f(x). Let us define exp(V )(x) := ΦV (x, 1) where ΦV solves
the deterministic equation

ΦV (x, t) = x+
∫ t
0
V (ΦV (x, s))ds. (8)

By a change of variables one obtains ΦεV (x, t) = ΦV (x, εt), so we have

exp(εV )(x) := ΦεV (x, 1) = ΦV (x, ε).

We also notice that the semigroup of the above Markov process, which is given by P V
t f(x) =

f(ΦV (x, t)), has the infinitesimal operatorAV f(x) = V f(x). In particular the relation P V
t AV =

AV P
V
t reads

V f(ΦV (x, t)) = AV P
V
t f = P V

t AV f = V (x)∂x (f ◦ ΦV ) (x, t).

Using m times Dynkin’s formula P V
t f(x) = f(x) +

∫ t
0
P V
s AV f(x)ds we obtain

f(ΦV (x, t))) = f(x) +
m∑
r=1

tr

r!
V rf(x) +

1

m!

∫ t

0

(t− s)mV m+1P V
s f(x)ds. (9)

We present now the third weak order scheme introduced in [1]. In order to do it, we introduce
the following commutation property:

V 2
1 V0 − V0V 2

1 = 2Ṽ 2, (10)

where Ṽ is a first order operator. We consider some sequences εk, ρk, k ∈ N of independent
uniform random variables with values in {−1, 1} and {1, 2, 3}, and we define ψ : {−1, 1} ×
{1, 2, 3} × R3 → R using the following splitting procedure:

ψ(εk, ρk, x, w
1
k+1, w

0
k+1) =


exp(εkw

0
k+1Ṽ ) ◦ exp(w0

k+1V0) ◦ exp(w1
k+1V1)(x), if ρk = 1,

exp(w0
k+1V0) ◦ exp(εkw

0
k+1Ṽ ) ◦ exp(w1

k+1V1)(x), if ρk = 2,

exp(w0
k+1V0) ◦ exp(w1

k+1V1) ◦ exp(εkw
0
k+1Ṽ )(x), if ρk = 3,

(11)

with w0
k = T/n, w1

k =
√
TZk/

√
n. We notice that ψ(εk, ρk, x, 0, 0) = x, which is relevant with

the definition of a scheme. Moreover Zk, k ∈ N∗ are independent random variables which are
lower bounded by the Lebesgue measure: There exists z∗,k ∈ R and ε∗, r∗ > 0 such that for
every Borel set A ⊂ R and every k ∈ N∗

Lz∗(ε∗, r∗) P(Zk ∈ A) > ε∗λ(A ∩Br∗(z∗,k)). (12)



3 CONVERGENCE RESULTS 5

Moreover, we assume that the sequence Zk satisfies the following moment conditions:

E[Zk] = E[Z3
k ] = E[Z5

k ] = E[Z7
k ] = 0, E[Z2

k ] = 1, E[Z4
k ] = 3, E[Z6

k ] = 15,

∀p > 1, E[|Zk|p] <∞. (13)

One step of our scheme (between times tnk and tnk+1) is given by

Xn
tnk+1

= ψ(εk, ρk, X
n
tnk
, w1

k+1, w
0
k+1). (14)

Using the notation from (2), we also have

Xn
tnk+1

= ψk(X
n
tnk
, w1

k+1, w
0
k+1). (15)

with ψk(x, z, t) = ψ(εk, ρk, x, z, t). In the sequel, we will study the third order convergence
of this scheme towards the Markov process given in (1) for smooth test functions and for
bounded measurable test functions.

3 Convergence Results
We begin introducing some notations. Let r ∈ N∗. For a sequence of functions ψk ∈ Cr(R ×
R× R+;R), k ∈ N, we denote

‖ψ‖1,r,∞ = 1 ∨ sup
k∈N

r∑
|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx∂βz ∂
γ
t ψk‖∞, (16)

and for r ∈ N∗,

Kr(ψ) = (1 + ‖ψ‖1,r,∞) exp(‖ψ‖21,3,∞). (17)

3.1 Smooth test functions

In this Scetion, we study the convergence of the scheme given in (15) for smooth test functions.
We state a first result, which is the starting point in order to prove the convergence in total
variation distance.

Theorem 3.1. Suppose that V0, V1, Ṽ ∈ C∞b (R;R). We also assume that (10) and (13) hold.
Then, there exists some universal constant l ∈ N∗, C > 1 such that for every f ∈ C8b (R), we
have

sup
t∈πTT,n

|E[f(Xt))− E[f(Xn
t )]| 6 CC8(V )l‖f‖8,∞/n3, (18)

with Cq(V ) := supi=0,1 ‖Vi‖q,∞ + ‖Ṽ ‖q,∞.

Remark 3.1. This result has already been obtained in [1] in the case of test functions with
polynomial growth. The proof is similar and since we intend to obtain this result with the
supremum norm of f we do not treat that case.
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We give a proof of this result in Section 5. Once we have used the Lindeberg decomposition,
it relies on short time estimates using the Dynkin’s formula. Now, we are going to take a step
further and consider simply bounded and measurable test functions. Notice that, it means
the convergence for total variation distance.

3.2 Bounded mesurable test functions

We see that the estimate (18) involves the derivatives of order eight of the test function. We
will see that it is possible to obtain similar estimates with ‖f‖8,∞ replaced by ‖f‖∞. This is a
consequence of a result from [3] in which the authors provide some sufficient conditions for the
scheme in order to obtain the convergence for the total variation distance. The scheme (14)
satisfy those conditions and, under an ellipticity assumption on the diffusion coefficient V1,
we are going to obtain an estimate of its total variation distance with the diffusion process (6).

Before doing it, we introduce a necessary and sufficient explicit condition in order to obtain
(10) as son as for all x ∈ R, V1(x) 6= 0. Notice that, since we assume that V1 is continuous,
it has a constant sign. Moreover, this hypothesis will not be restrictive in this application.
Indeed, the ellipticity condition required to use the result from [3] implies that infx V1(x)2 >
λ∗ > 0 for a constant λ∗. We will suppose without loss of generality that V1 is positive. The
necessary and sufficient condition for (10) is the following: We assume that the function

g :R→ R
x 7→ V0(x)/V1(x) (19)

is increasing. Notice that if V1 is negative, g has to be decreasing.

Moreover, we propose an alternative scheme in order to approximate the density function of X
and its derivatives. We consider a standard normal random variable G which is independent
from Zk, k ∈ N, and for θ > 0, we introduce (Xn,θ

t )t∈πT,n as follows

Xn,θ
t (x) =

1

nθ
G+Xn

t (x). (20)

where Xn(x) is the process which starts from x that is Xn
0 = x. We denote by pθ,nt (x, y) the

density of the law of Xθ,n
t (x) and for t ∈ πT,n, we define

Qn,θ
t f(x) := E[f(

1

nθ
G+Xn

t (x))]. (21)

Now, we can state our main result.

Theorem 3.2. Suppose that V0, V1, Ṽ ∈ C∞b (R;R). We fix T > 0 and we also assume that
(19), (12) and (13) hold and that

V1(x)2 > λ∗ > 0 ∀x ∈ R. (22)

Let S ∈ (0, T/2). Then there exists n0 ∈ N∗ such that for every n > n0, we have the following
properties.
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A. There exists l ∈ N∗ and C > 1 which depends on m∗, r∗ and the moments of Z such
that, for every bounded and measurable function f : R→ R,

sup
t∈π2S,T

T,n

|E[f(Xt)]− E[f(Xn
t )]| 6 C

C8(V )lK11(ψ)l

(λ∗S)η(8)
‖f‖∞ /n

3. (23)

with Kr(ψ) and Cq(V ) given in (17) and (18) and η(r) = r(r + 1).

B. Moreover, for every t > 0, Pt(x, dy) = pt(x, y)dy with (x, y) 7→ pt(x, y) belonging to
C∞(Rd × Rd).

C. Let θ > h+1. We recall the Qn,θ is defined in (21) and verifies Qn,θ
t (x, dy) = pn,θt (x, y)dy.

Then, there exists l ∈ N∗ such that for every R > 0, ε ∈ (0, 1), x0, y0 ∈ Rd, and every
multi-index α, β with |α|+ |β| = u, we also have

sup
t∈π2S,T

T,n

sup
(x,y)∈BR(x0,y0)

|∂αx∂βy pt(x, y)− ∂αx∂βy p
n,θ
t (x, y)| 6CC8(V )lK11(ψ)l

(λ∗S)η(pu,ε∨8)
/n3(1−ε) (24)

with a constant C which depends on R, x0, y0, T and on |α| + |β| and pu,ε = (u + 2d +
1 + 2d(1− ε)(u+ d)/(2ε)e).

Remark 3.2. It is relevant to notice that we have the same result if we assume that the
function defined in (19) is decreasing (resp. increasing) for V1 positive (resp. V1 negative). In
this case V0V 2

1 −V 2
1 V0 = 2Ṽ 2 and we have to define the scheme differently. In the construction

(11), we invert the terms containing V1 with the ones containing V0.

Remark 3.3. The property (12) is crucial here, since we will use a result from [3] which
employs abstract integration by parts formulae based on the noise Zk. However it is not
restrictive for concrete applications.

The result (23) signifies the convergence in total variation with order 3. The proof of this
theorem is given in Section 5. Since we have already obtained some short time estimates of
the form (4) in the proof of Thereom 3.1 and (19) holds, the key point of this proof does not
rely on the weak order of the scheme. This is the fact that, the splitting procedure (11) in
order to build the scheme, always includes a diffusion part through exp(Zk/

√
n/TV1), with

Zk satisfying (12) and the ellipticity condition (22) for V1. The proof is then a consequence
from Theorem 3.3 in [3] which employs an abstract Malliavin calculus based on such noise Zk
and initially presented by Bally and Clément [2]. A similar approach can be used in order to
prove the convergence for the total variation distance for even higher order scheme built as in
(11). The main difficulty will then rely on the proof of the short time estimate (4).

A main interest of this result is that it can be seen as an invariance principle as well. Indeed,
it does not require that Zk follows a particular law but only the properties (12) and (13). In
particular, we do not restrict ourselves to the Gaussian framework which is necessary to use
the Malliavin Calculus in order to proove the convergence for the total variation distance as
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in [4], [5], or [17]. In this way, the condition (12) might be a hint to find a necessary condition
on the random variables (Zk)k∈N∗ in order to obtain the total variation convergence with order
h = 3.

Moreover, using Remark 3.2, we can define a third order scheme as soon as the function defined
in (19) is monotonic. If it is increasing (recall that V1(x) > 0), the Lie bracket between V 2

1

and V0 is given by [V 2
1 , V0]f = V 2

1 V0f − V0V 2
1 f = 2Ṽ 2f with

Ṽ (x) =
√
|V1(x)(V1(x)∂xV0(x)− ∂xV1(x)V0(x))|, x ∈ R.

If it is decreasing, we have [V0, V
2
1 ]f = 2Ṽ 2f as well. This explicit representation for Ṽ is

crucial for concrete applications since the scheme is defined using the solution of (8) with
V = Ṽ . Moreover, looking at (18) and (23), we have to control its derivatives.

4 Numerical illustration
In this section, we study the numerical approximation of a one dimensional SDE with schemes
defined on homogeneous time grids with form πT,n = {kT/n, k ∈ N}. We will fix T and we will
analyze the behavior of the total variation distance between the diffusion process (Xt)t>0 and
miscellaneous discretization schemes (Xn

t )t∈πT,n with respect to the number of time step n.
More particularly, we will study the weak error |E[f(Xt)]−E[f(Xn

t )]| for bounded measurable
functions f and various n.

In concrete applications, once we have selected a scheme Xn, E[f(Xn
t )] will be used to esti-

mate E[f(Xt)]. The next step is thus to approximate E[f(Xn
t )]. A standard way to do it, is to

use a Monte Carlo method. Given an independent sampling of size M , and using the Central
Limit Theorem, we can easily show that those algorithms converge toward the real expectancy
with rate

√
M . Moreover, discretization schemes provide an estimation of E[f(Xt)] with any

desired precision since we can choose any value for n. However, the cost of calculation will
also increase with n since we have n iterations of the scheme function (2). At this point, it is
important to notice that there is a trade off to make between the precision we want to obtain
and the time of calculation we can afford. Indeed, if our scheme converges with order h, we
have to choose M = O(n2h) and then choose n large enough in order to obtain the desired
precision. We will see that even if the time of calculation of one step of the scheme we study in
this paper is much longer than the time of a lower order scheme (e.g. the Euler scheme), the
third weak order scheme is better in time of calculation and precision as soon as the precision
is high enough. In order to illustrate the reason why we point out such properties, we now
present our example.

We consider the Markov diffusion process (Xt)t>0 given by the following SDE,

dXt = adt+
σ

arctan(Xt) + π
◦ dWt, (25)

with σ > 0 and a ∈ R. Notice that the coefficients of the SDE (25) belong to C∞b (R) and more-
over V1 : x 7→ σ/(arctan(x) + π) satisfies infx V1(x) > 2σ/π and the function V0/V1 = a/V1 is
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increasing. Therefore, the scheme (11) is well-defined and we have the required hypothesis in
order to obtain the results from Theorem 3.2. Moreover, we have an explicit representation
for the first order operator Ṽ , that is : Ṽ (x) = σ

√
a/(
√

1 + x2(arctan(x) + π)3/2).

The next step consists then in solving the ODE (8) for V = V0, V1, Ṽ . Looking closer to (11),
we will use each of these solutions once for each step of the discretization algorithm. In this
example, it is easy to find an analytic solution to (8) when V = V0. However for V = V1, Ṽ ,
it is much more cumbersome and we will use some numerical algorithms. A naive algorithm
consists in using the Riemann approximation of

∫ t
0
V (ΦV (x, s))ds on a time grid of [0, t] in the

following way : For a number N of time steps, we put ΦN
V (x, 0) = x and for i ∈ {0, . . . , N−1},

ΦN
V (x, (i + 1)t/N) = ΦN

V (x, it/N) + TN−1V (ΦN
V (x, it/N)). This is the method we will use to

approximate ΦN
Ṽ

(x, t). Finally, in this case, we can use an alternative way to approximate
ΦN
V1

(x, t). Indeed, we can show that g(ΦN
V1

(x, t)) = g(x) + t where g is the bijective function
in C1(R) defined by

g(x) = (x arctan(x)− 0.5 log(1 + x2) + xπ)/σ.

Then, we can find ΦV1(x, t) using a Newton algorithm in order to invert g. Likewise the
naive Riemann approximation, this method provides an approximation given a parameter of
precision (which is N for Riemann sums). Obviously, the more this parameter is tight, the
more the cost of the algorithm is high. Compared to one step the Euler scheme,

Xn,Eul
tnk+1

= Xn,Eul
tnk

+ (a− σ2

2(1 + (Xn,Eul
tnk

)2)(arctan(Xn,Eul
tnk

) + π)3
)T/n (26)

+
σ

arctan(Xn,Eul
tnk

) + π

√
T/NZk+1, (Zk)k∈N∗ i.i.d ∼ N (0, 1),

the cost of one step of (11) can thus be very important. However, despite that cost, the third
order scheme become more effective as soon as we want to compute E[f(Xt)] with a sufficiently
high precision.
Heuristically, let ε > 0, the precision of the weak error that is |E[f(Xt)] − E[f(Xn

t )]| 6 ε.
In order to reach that precision, we will have to run M = ε−2 Monte Carlo iterations. Now
let n ∈ N such that n3 = ε−1. Then, if we want to reach this precision, we will have to
simulate M = ε−2 realizations of the third order scheme with time step t/n, or of the Euler
scheme with time step t/n3. Now, we assume that the cost in time of calculation of one step
of the third order scheme is given by τNV 3 and by τEul for the Euler scheme. Then the total
cost to reach the precision ε will be τNV 3nM = τNV 3ε

−2−1/3 for the third order scheme and
τEuln

3M = τEulε
−3 for the Euler scheme. Then, as soon as τNV 3/τEul 6 ε−2/3, the cost of the

third order scheme will be lower than the cost of the Euler scheme. Controversially, if τNV 3

and τEul are fixed we can find a precision ε0 such that the cost of the three order scheme is
lower than the one of the Euler scheme for all ε 6 ε0.

In Figure 1, we represent the error |E[f(Xt)] − E[f(Xn
t )]| 2, with respect to the number of

time steps n, in Log Log scale, for the third order scheme we study in this paper and when f
2We do not estimate E[f(Xt)] using Monte Carlo methods with exact simulation but with the third order

scheme for n = 50.
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is a Heavyside function. We observe that the scheme converges with the expected rate, that
is h ≈ 2.91. This numerical experiment thus confirms the total variation convergence result
from Theorem 3.2. Notice that we have also implemented the Euler scheme and the Ninomiya
Victoir scheme of order 2 [20] in order to compare the cost of the different approaches. With
the precision parameters we have selected in the algorithms solving (8) in order to obtain
Figure 1, we have τNV 3 ≈ 7.8τNV 2 ≈ 51.9τEul which is quite reasonable given the gain which
is made with respect to the number of time steps. In this case, the third order scheme thus
become more effective than the Euler scheme as soon as the precision ε of the weak error
satisfies |E[f(Xt)]− E[f(Xn

t )]| 6 ε 6 (51.9)−3/2.

10

10

10

-5

-4

-3

10 10
0 1

Figure 1: Log-Log representation of |E[f(Xt)]−E[f(Xn
t )]| for x = 0.8, T = 1, a = 0.2, σ = 2,

with respect to n for f(x) = 1x>1.1.

5 Proof of the main theorems
Proof of Theorem 3.1. Step 1. We define (Pt,s)t,s∈πT,n;t6s by

P n
t,tf(x) = f(x), ∀k 6 r ∈ N, P n

tnk ,t
r
k
f = E[f(Xtnr )|Xtnk

= x],

Qn
t,tf(x) = f(x), ∀k 6 r ∈ N, Qn

tnk ,t
r
k
f = E[f(Xn

tnr
)|Xn

tnk
= x],

and we notice that for t, s, u ∈ πT,n with t 6 s 6 u, then P n
t,uf = P n

t,sP
n
s,uf . It follows that∣∣E[f(Xtnm)]− E[f(Xn

tnm
)]
∣∣ 6 ‖P n

0,tnm
f −Qn

0,tnm
f‖∞ (27)

6
m−1∑
k=0

‖P n
tnk+1,t

n
m
P n
tnk ,t

n
k+1
Qtnk+1

f − P n
tnk+1,t

n
m
Qtnk ,t

n
k+1
Qn
tnk
f‖∞

=
m−1∑
k=0

‖Ptnk+1,t
n
m

(Ptnk ,tnk+1
−Qtnk ,t

n
k+1

)Qtnk
f‖∞.
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‖P n
tnm
f −Qn

tnm
f‖∞ 6

m−1∑
k=0

‖P n
tnk
P n
tnk ,t

n
k+1
Qn
tnk+1,t

n
m
f − P n

tnk
Qn
tnk ,t

n
k+1
Qn
tnk+1,t

n
m
f‖∞ (28)

=
m−1∑
k=0

‖P n
tnk

(Ptnk ,tnk+1
−Qtnk ,t

n
k+1

)Qn
tnk+1,t

n
m
f‖∞.

We notice that it easy to prove that, for t, s ∈ πT,n, t 6 s, ‖Pt,sf‖p,∞ 6 C‖f‖p,∞ and
‖Qt,sf‖p,∞ 6 C‖f‖p,∞.
Step 2. It remains to show ‖Ptnk ,tnk+1

f −Qtnk ,t
n
k+1
f‖∞ 6 C‖f‖8,∞/n4 and using (28) the proof

will be completed. In order to simplify the notation, we fix T = 1 without loss of generality.
For ε = −1, 1, we denote

T0f(x) = f(exp(
1

n
V0)(x)), T1f(x) = f(exp(

Z√
n
V1)(x)), T̃εf(x) = f(exp(

ε

n
Ṽ )(x)).

Notice that, using the notation introduced in the beginning of this section with V = n−1/2ZV1,
we have T1f(x) = P n−1/2ZV1

1 f(x). Using (9) with t = 1 and V = n−1/2ZV1 we obtain

T1f(x) = f(x) +
m∑
r=1

Zr

nr/2
1

r!
V r
1 f(x) +

Zm+1

n(m+1)/2
Rm+1,1f(x) (29)

with

Rm+1,1f(x) =
1

m!

∫ 1

0

(1− λ)mV m+1
1 P n−1/2ZV1

λ f(x)dλ (30)

and we recall that P n−1/2ZV1
λ f(x) = f(exp(λZV1/

√
n)). We have a similar development if we

put V = V0/n or V = εṼ /n in (9). Our aim is to give a development of order 4 (with respect
to n) for E[f(ψk(x,w

1
k+1, w

0
k+1)] (see (31) below). We replace each T ∈ {T0, T1, T̃ε}, with

an expansion of order m 6 7 given above with Z = Zk+1 for T1 and m 6 3 for T = T0, T̃ .
Then, we calculate the products of the miscellaneous expansions, each with a well chosen order
such that there is no term with factor n−r, r > 4, appearing in those productss. Moreover,
all the terms containing n−4 go in the remainder. The last step consists in computing the
expectancy. We notice that E[P n−1/2ZV1

t ] = P
V 2
1 /(2n)

t and E[Zr
k+1] = 0 for odd r 6 7. Finally,

since E[Z2
k+1] = 1, E[Z4

k+1] = 6 and E[Z6
k+1] = 15, the calculus is completed and we obtain:

E[f(ψk(x,w
1
k+1, w

0
k+1)] =

1

6

∑
ε=−1,1

E[(T̃εT0T1 + T0T̃εT1 + T0T1T̃ε)f(x)] (31)

= f(x) +
1

n

(
V0 +

1

2
V 2
1

)
f(x) +

1

2n2

(
V 2
0 +

1

4
V 4
1 + 2V0

1

2
V 2
1 + Ṽ 2

)
f(x)

+
1

6n3

(1

8
V 6
1 + V 3

0 + 3V0
1

4
V 4
1 + 3V 2

0

1

2
V 2
1 + 2Ṽ 21

2
V1 + 2V0Ṽ

2 +
1

2
V 2
1 Ṽ

2 + Ṽ 2V0
)
f(x)

+
1

n4
Rf(x)

= f(x) +
1

n

(
V0 +

1

2
V 2
1

)
f(x) +

1

2n2

(
V0 +

1

2
V 2
1

)2
f(x) +

1

6n3

(
V0 +

1

2
V 2
1

)3
f(x) +

1

n4
Rf(x)
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The remainder R is a sum of terms of the following form:

C(T̃ε,αεT0,α0T1,α1 + T0,α0 T̃ε,αεT1,α1 + T0,α0T1T̃ε,αε)f(x) (32)

with α = (α0, α1, α2) ∈ {0, . . . , 4}3, |α| = α0 + α1 + α2 = 4, and, using the notation given in
(30),

T0,k ∈ {V k
0 , Rk,0}, T̃ε,k ∈ {Ṽ k, R̃k,ε}, T1,k ∈{V 2k

1 , R2k,1}, k = 0, . . . , 3,

T0,4 = R4,0, T̃ε,4 = R̃4,ε, T1,4 =R8,1,

with

R8,1 = E[Z8R8,1] =

∫ 1

0

(1− λ)7E[Z8V 8
1 P

U1
λ f(x)]dλ.

It is easy to check that for every g ∈ Ck+p(R), we have the following property

‖T0,kg‖p,∞ + ‖T1,kg‖p,∞ + ‖T̃ε,kg‖p,∞ 6 CC2k+p(V )l‖g‖2k+p,∞

for some constants l ∈ N∗, C > 1. So

‖Rf‖∞ 6 CC8(V )l‖f‖8,∞. (33)

We turn now to the diffusion process Xt. We have the development

E[f(Xt(x))] = PA
t f(x) = f(x) + tAf(x) +

t2

2
A2f(x) +

t3

6
A3(x) +

t4

4!
R′tf(x).

with

R′tf(x) = t−1
∫ t

0

PA
λ A

4f(x)(1− λ/t)3dλ. (34)

We take t = n−1 and make the difference between (34) and (31). All the terms cancel except
for the remainders so we obtain

∀k ∈ {0, . . . , n− 1},
E[f(Xtnk+1

)]− E[f(Xn
tnk+1

) | Xtnk
= Xn

tnk
= x] = (R′1/nf(x)/4!−Rf(x))/n4. (35)

We clearly have ‖R′1/nf‖∞ 6 CC8(V )l‖f‖8,∞. This, together with (33) and (28), completes
the proof.

Proof of Theorem 3.2. Step 1. Let us prove that (10) is satisfied. We have

1

2
(V 2

1 V0 − V0V 2
1 )f(x) =

(
∂xV1(x)(V1(x)∂xV0(x)− ∂xV1(x)V0(x))

+V1(x)(∂2xV0(x)V1(x)− ∂2xV1(x)V0(x))
)
∂xf(x)

+V1(x)(V1(x)∂xV0(x)− ∂xV1(x)V0(x))∂2xf(x).
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Since V1(x) 6= 0, if we take

Ṽ (x) =
√
V1(x)(V1(x)∂xV0(x)− ∂xV1(x)V0(x)), (36)

then, using (19), Ṽ is well defined and satisfies (10).
Step 2. Now we are going to show the convergence in total variation distance. In order to do
it we will use a result from [3]. First, applying the same reasoning as in the proof of Theorem
3.1 we can show that there exists some universal constants C, l > 1 such that

|〈g, P n
tnk ,t

n
k+1
f −Qtnk ,t

n
k+1
f〉| 6 n−4CC8(V )l‖g‖1,8‖f‖∞, (37)

with 〈·, ·〉 the scalar product in L2(R). Now we have (35) and (37), the result will be a con-
sequence of Theorem 3.3. in [3], as soon as we check that the following ellipticity assumption
holds:

∃λ∗ > 0, inf
k6n

inf
x∈R

(∂w1ψk(x,w
1, w0)|w1=w0=0)

2 > λ∗. (38)

We fix k and we look at ψk(x,w1, w0) defined in (15). We suppose that ρk = 3, εk = 1 (the
proof for ρk = 1, 2 or εk = −1 is similar). We consider the process xt(w̃), 0 6 t 6 T3, with
Ti = i, w̃ = (w1, w0), solution of the following equation:

xt(w̃) = x+ w0

∫ t

0

Ṽ (xs(w̃))ds, T0 6 t 6 T1,

xt(w̃) = xT1(w̃) + w1

∫ t

T1

V1(xs(w̃))ds, T1 6 t 6 T2,

xt(w̃) = xT2(w̃) + w0

∫ t

T2

V0(xs(w̃))ds, T2 6 t 6 T3.

We notice that ψk(x,w1
k+1, w

0
k+1) = xT3(w̃k+1) and consequently, we have ∂zψk(x,w1

k+1, w
0
k+1) =

∂w1xT3(w̃k+1). Moreover, ∂w1xt(w) = 0 for t 6 T1. Now, let T1 6 t 6 T2. Then ∂w1xt(w̃) solves
the equation

∂w1xt(w̃) =

∫ t

T1

V1(xs(w̃))ds+ w1

∫ t

T1

∂V1(xs(w̃))∂w1xs(w̃)ds.

It follows that

∂w1xt(w̃) |w̃=0=

∫ t

T1

V1(xs(0))ds = V1(x)(t− T1).

Notice that T2 − T1 = 1. Then, we have

∂w1xT3(w̃) |w1=0= ∂w1xT2(w̃) |w̃=0= V1(x).

and then, by (22),

(∂w1xT3(0))2 > λ∗.
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