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Abstract 15 

Numerous methods have been developed to geolocate fish from data storage tags. Whereas demersal 16 

species have been tracked using tide-driven geolocation models, pelagic species which undertake 17 

extensive migrations have been mainly tracked using light-based models. Here, we present a new 18 

HMM-based model that infers pelagic fish positions from the sole use of high-resolution temperature 19 

and depth histories. A key contribution of our framework lies in model parameter inference (diffusion 20 

coefficient and noise parameters with respect to the reference geophysical fields - satellite SST and 21 

temperatures derived from the MARS3D hydrodynamic model), which improves model robustness. 22 

As a case study, we consider long time series of data storage tags deployed on European sea bass for 23 

which individual migration tracks are reconstructed for the first time. We performed a sensitivity 24 

analysis on synthetic and real data in order to assess the robustness of the reconstructed tracks with 25 

respect to model parameters, chosen reference geophysical fields and the knowledge of fish recapture 26 

position. Model assumptions and future directions are discussed. Finally, our model opens new 27 
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avenues for the reconstruction and analysis of migratory patterns of many other pelagic species in 28 

relatively contrasted geophysical environments. 29 

 30 

Keywords: fish movement, archival tagging, Temperature-Depth-Recorders (TDRs), migration, 31 

population structure, Hidden Markov Model, state-space model. 32 

 33 

I Introduction 34 

Tagging experiments have been widely developed for the geolocation and tracking of animals in 35 

movement ecology studies. Classically global positioning system (GPS) are used to track seabirds or 36 

mammals including marine mammals. However geolocation remains complex for fish. Either acoustic 37 

telemetry studies are undertaken to track small scale displacements in space, or geolocation studies are 38 

performed using error-prone locations derived from light, depth and temperature collected from pop-39 

up satellite archival tags (PSATs) (e.g. tuna in Royer et al. (2005)) or tide signal collected from data 40 

storage tags (DSTs) (e.g. cod in Pedersen et al. (2008)). These techniques are well adapted for fish 41 

either exhibiting trans-oceanic migration, or having low activity where tide can be retrieved from a 42 

pressure sensor. For other species, the challenge of geolocating and tracking fish from individual 43 

environmental histories remains and relies on our ability of correlating individual fish histories to 44 

environmental spatio-temporal fields derived for instance from satellite observations and/or 45 

operational hydrological models. This is the case of the European sea bass (Dicentrarchus labrax). 46 

Despite its high economical and societal value, little is known about the spatial dynamics of this 47 

species at the population scale, and yet this information is necessary to better manage this likely 48 

overexploited stock (ICES, 2015). 49 

 50 

From a methodological point of view, the reconstruction of tracks of animals generally relies on a 51 

state-space modeling framework. It states the geolocation and tracking as the inference of the hidden 52 

sequence of positions (referred to as ‘states’) from the available sequence of observations. As the 53 

movement of the fish is a continuous process in space and time, continuous settings along with 54 
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Kalman (Sibert et al., 2003) or particle filters (Royer et al., 2005; Breed et al., 2012) are natural. 55 

However discrete settings associated with Hidden Markov Models may provide relevant alternatives 56 

regarding calibration and inference issues (Pedersen et al., 2008). Overall, state-space model involves 57 

two key components: a dynamical model and an observation model. The dynamical model (i.e. the 58 

model for the movement of the fish) generally exploits generic random walk models, e.g. Brownian 59 

motion (Holgate, 1971) or correlated random walks (Bovet and Benhamou, 1988). The observation 60 

model depends on the targeted applications and should relate the recorded data to the hidden states. 61 

Whereas the observation model is straightforward with GPS tags, no such explicit relationships can be 62 

analytically found when considering undersea geolocation. Previous works have explored specific 63 

observation models for fish geolocation using depth histories for demersal species for regions 64 

involving strong tide signals (Pedersen et al., 2008) as well as light measurements for pelagic species 65 

for tropical latitudes (Royer et al., 2005). To our knowledge, the geolocation of fish, such as sea bass 66 

involving both demersal and pelagic behaviors, remains a challenge.  67 

 68 

In this paper, we address the geolocation of pelagic fish from individual depth and temperature 69 

histories. Our methodological emphasis is two-fold: i) defining a relevant observation model at a daily 70 

scale to match individual temperature/depth fish histories to modeled and/or observed environmental 71 

conditions, ii) extending the discrete HMM-based setting proposed by Pedersen et al.(2008) to address 72 

a joint calibration and inference of the considered model. In this model, only the primary parameters, 73 

i.e. the ones required to effectively geolocate the fish (the movement rate or diffusion and the 74 

temperature related parameters), are estimated, while the other ones like the parameters related to the 75 

depth and release/recapture position were considered determined or with a fixed uncertainty. As a 76 

case-study, we consider the European sea bass and report experiments on both numerical simulations 77 

and real DST data. These experiments demonstrate the robustness of the considered model and 78 

numerical implementation as well as the feasibility of the DST-based geolocation of pelagic fish. We 79 

further discuss the key features of our model as well as the expected contributions to behavioral fish 80 

ecology.  81 

 82 
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II Material and Methods 83 

II.1 DST data 84 

Adult sea bass were internally tagged with DSTs (CEFAS G5 long live). Tagging operations were 85 

carried out in summer for 3 consecutive years (2010-2012) in the Iroise Sea, off the west coast of 86 

Brittany (France). Logging regimes were tested over the different years, all presented a high 87 

acquisition rate (temperature and depth at 1' intervals) during the first year post-tagging, reduced to 5' - 88 

10' for the second year. Daily range of vertical movements can be high (Figure MM1) and in most 89 

cases, the fish experienced temperatures equivalent to either sea surface temperature (SST; at depth < 90 

10 m) and/or sea bottom temperature (SBT; at depth > 40 - 50 m) during the same day.  91 

 92 

 93 

Figure MM1. DST data: daily summary (min and max data) of temperature and depth series for a 94 

representative fish (tag A05392). During winter, a plateau at c.a. 114 m (data below this depth limit 95 

were truncated due to DST tag specification) indicates that deeper depths were experienced by this fish 96 

although the literature indicates a maximum of 100m (Frimodt, 1995).  97 

 98 
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II.2 Geophysical fields 99 

The geolocation model considers three geophysical fields: SST derived either from a satellite-based 100 

observation or from a hydrological model, the SBT and the bottom depth both derived from the same 101 

hydrological model. The model outputs were obtained from the French MARS model of IFREMER 102 

(Lazure et al., 2009; Lazure and Dumas, 2008). It provided series of maps with a 4 km x 4 km 103 

resolution. The satellite-based SST observations were extracted from the Odyssea NWE product 104 

(Piolle et al., 2010). This product is a gridded and interpolated field (i.e. missing-data-free) derived 105 

from a multi-sensor analysis with a 0.02° x 0.02° resolution. For consistency, the satellite-based 106 

observations were re-interpolated over the MARS grid. The MARS domain was reduced in longitude 107 

to 11°W to 2°E, and in latitude to 43°N and 52°N, but it was kept large enough to encompass any 108 

trajectory reconstruction. From comparison to in situ data, the typical levels of uncertainty (in standard 109 

deviation unit) were 0.65°C for SST derived from the satellite-based observation (Piolle et al., 2010), 110 

and 1.0°C for temperatures derived from the hydrological model (Lazure et al., 2009). For the SST, 111 

differences exist between the two types of geophysical fields as illustrated by the field anomaly 112 

computed for a given day (Figure MM2). As the typical level of uncertainty of satellite-based 113 

observations is lower than that of the hydrological model, the trajectory patterns reconstructed using 114 

the satellite-based observations may be more constrained by the very values recorded by the tag than 115 

those using inputs from the hydrological model. However the uncertainty between these two reference 116 

geophysical fields is neither homogeneous in space, as seen on the anomaly map for a given day 117 

(Figure MM2), nor in time. Thus, a sensitivity analysis has been performed on the geophysical 118 

reference fields by reconstructing trajectories using either satellite-derived SST or MARS SST (see 119 

section III.3). . 120 
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 121 

Figure MM2. Top) SST from the satellite. Middle) SST from the model MARS 3D. Bottom) SST 122 

anomaly between satellite and model MARS 3D. 123 
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 124 

II.3 HMM-based geolocation model 125 

The geolocation problem is stated as an inference based on the Bayes theorem within a state-space 126 

framework. Let us denote by X = (Xt) the position series in the 2-dimensional geographical space to be 127 

inferred at a daily resolution and Y = (Tt,Dt) the observed histories of temperature (Tt) and depth (Dt) 128 

retrieved from DSTs. Hereafter, X will be referred to as the hidden state sequence. It might be stressed 129 

that, for geolocation problems, the state may also include speed and direction variables in addition to 130 

position variables (Jonsen et al., 2005; Breed et al., 2012). 131 

 132 

Here, subscript t refers to daily time indices from the release (t = 0) of the tagged fish to its recapture (t 133 

= N-1). It may be noted that depth and temperature histories are acquired at a high-resolution such that 134 

variable Tt (resp. Dt) refers to all temperature (resp. depth) measurements stored by the DST during 135 

day t. We use the standard convention that day t starts at midnight. 136 

 137 

The state-space model involves two key components: the dynamical model and the observation model 138 

(Figure MM3). The dynamical model describes the time dynamics of the state sequence. We resort to 139 

a Brownian random walk model described by: 140 

 141 

(1) X!!! = X! +𝒩! 142 

 143 

where 𝒩! is a white Gaussian noise with (isotropic) diagonal covariance Σ = 𝜎!!I. The standard 144 

deviation 𝜎! relates to the Brownian diffusion as 𝜎!! = 2𝐷∆𝑡 with D the diffusion coefficient (in 145 

km²/day) and Δt the time (here daily) step (Risken, 1996; Pedersen et al., 2008). Hence, the diffusion 146 

coefficient D characterizes the mean distance covered by the fish daily. More precisely, for a 147 

Brownian random walk, this mean distance relates to the standard deviation 𝜎! as follows 𝑣 =148 

0.5𝜋𝜎!!. Thus, the mean distance covered by the fish (in km/day) equals 𝜋𝐷. The Brownian 149 

random walk model amounts to stating the hidden sequence as a first-order Markov chain, where the 150 
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dynamical model (1) defines the conditional transition 𝑃 𝑋!!! 𝑋!  from current state 𝑋! to next state 151 

𝑋!!!. 152 

 153 

The observation model resorts to defining observation likelihood    𝑃 𝑌! 𝑋! . At each time t, it evaluates 154 

the extent to which observation Yt and state Xt are coherent. Whereas, in most geolocation models, 155 

one can exploit an analytically-derived relationship between the observation and the state (e.g. the 156 

Kalman filter for the bigeye tuna (Sibert et al., 2003), the particle filter for the bluefin tuna (Royer et 157 

al., 2005)), no such relationship can be derived in our case between the depth and temperature series at 158 

time t and the spatial position of the fish. Our idea is to evaluate whether or not depth and temperature 159 

measurements Yt conform to the expected temperature and bathymetry conditions at position Xt. 160 

Formally, let us denote by SSTSAT(Xt) the satellite-derived SST at position Xt, TMARS(Xt) the MARS-161 

derived temperature profile from the sea surface to the sea bottom at position Xt and DBATHY(Xt) the 162 

depth of the sea bottom at position Xt. Observation likelihood 𝑃 𝑌! 𝑋!  is stated as the product of a 163 

bathymetry-driven term and a temperature-driven term: 164 

 165 

(2) 𝑃 𝑌! 𝑋! = 𝑃 𝐷! 𝐷!"#$% 𝑋! ×𝑃 𝑇! 𝐷! , 𝑆𝑆𝑇!"# 𝑋! ,𝑇!"#$ 𝑋!  166 

 167 

The bathymetry-driven term amounts to discarding positions for which the depth of the sea bottom is 168 

below the depth experienced by the fish. 169 

 170 

(3) 𝑃 𝐷! 𝐷!"#$% 𝑋! = 1  if  𝐷!"#$% 𝑋! ≥ 𝐷!max
0  otherwise                                            

 171 

 172 

where 𝐷!max is the maximum depth experienced by the fish during day t.  173 

 174 

Regarding the temperature-driven term, we exploit the behavioral pattern of sea bass. Three different 175 

daily behavioral patterns have been described in the wild by Quayle et al. (2009) but in most cases fish 176 

typically explore the water column from the surface to the sea bed within a same day. Such behavior 177 
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was also experimentally observed by Schurmann et al. (1998). Given the vertical stratification in the 178 

considered study area (Lazure et al., 2009), one can then expect the fish to depict significant time 179 

periods below and above the thermocline. Hence, at a given position Xt, the temperature-driven term 180 

evaluates whether or not the temperatures experienced by the fish close to the sea surface and below 181 

the thermocline conform to the satellite-derived and MARS-derived temperature conditions.  182 

 183 

(4)  184 

𝑃 𝑇! 𝐷! , 𝑆𝑆𝑇!"# 𝑋! ,𝑇!"#$ 𝑋!

=

𝐺!!"#$%&' max 𝑆𝑆𝑇 𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!   ×𝐺!!"##"$ min 𝑆𝐵𝑇 𝑇! ,𝐷! − 𝑆𝐵𝑇!"#$ 𝑋!
  if  𝑆𝑆𝑇!"# 𝑋! ≥ 𝑆𝐵𝑇!"#$ 𝑋! ,

𝐺!!"#$%&' min 𝑆𝑆𝑇 𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!   ×𝐺!!"##"$ max 𝑆𝐵𝑇 𝑇! ,𝐷! − 𝑆𝐵𝑇!"#$ 𝑋!   
else  𝑆𝑆𝑇!"# 𝑋! < 𝑆𝐵𝑇!"#$ 𝑋! .

 

 185 

where 𝐺! stands for a zero-mean Gaussian distribution with standard deviation 𝜎, 𝜎!!"#$%& the 186 

standard deviation of the sea surface term and 𝜎!"##"$ the standard deviation of the sea bottom term. 187 

𝑆𝑆𝑇 𝑇! ,𝐷!  and 𝑆𝐵𝑇 𝑇! ,𝐷!  are respectively proxies of the sea surface temperature and sea bottom 188 

temperature in the area explored by the fish at day t. Given the vertical distribution of the thermocline 189 

in the study area (Koutsikopoulos and Le Cann, 1996), we consider as surface layer depths between 0 190 

m and 10 m and bottom layer depths below 50 m for months September to December, and below 40 m 191 

for the rest of the year. We then define 𝑆𝑆𝑇 𝑇! ,𝐷!  as the maximum temperature experienced by the 192 

fish at day t for depth values lower than 10 m and 𝑆𝐵𝑇 𝑇! ,𝐷!  as the minimum temperature 193 

experienced by the fish at day t for depth greater than 50 m for months September to December, and 194 

greater than 40 m for the rest of the year. It may be noted that, in some areas in winter, the sea surface 195 

layer may involve colder temperatures than the bottom (Koutsikopoulos and Le Cann, 1996). To 196 

account for such temperature patterns, 𝑆𝑆𝑇 𝑇! ,𝐷!  becomes a minimum of the temperature values in 197 

the surface layer and 𝑆𝐵𝑇 𝑇! ,𝐷!  a maximum of the temperature values in the bottom layer. However, 198 

if the fish is neither in the surface layer nor in the bottom layer at day t, the temperature-driven term is 199 

equally probable over the entire domain. It is noteworthy that, at the surface, satellite-derived 200 
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temperature conditions in equation 4 could be replaced without changes by MARS-derived 201 

temperature conditions in order to perform a sensitivity analysis on the geophysical reference fields 202 

(see section III.3). 203 

Regarding the release and the recapture position, the geolocation model treats them differently. For the 204 

recapture position, either this position is known and the observation likelihood for the last day is 205 

multiply by a bivariate Gaussian error centered on the recapture position with a variance chosen a 206 

priori to (0.1/h)² (h being the grid resolution, i.e. 4km), or this position is not known and the 207 

observation likelihood for the last day remains unchanged. For the release position, it is noteworthy 208 

that there is no uncertainty associated to it. 209 

 210 

 211 

Figure MM3. Conceptual diagram of the HMM-based geolocation model. 212 

 213 

II.4 Model calibration and inference 214 

Given the proposed state-space model, the geolocation problem resorts to an inference based on the 215 

Bayes theorem. For a given fish, it amounts to evaluating the posterior probability of the state 216 

sequence (i.e. track) given the DST data from the release of the fish to its recapture. The additional 217 

knowledge of the release and/or recapture positions might also be considered in the inference. 218 
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Different numerical schemes may be considered to evaluate the posterior. Among them, Kalman 219 

methods and particle filtering are the most popular methods (Sibert et al., 2003; Nielsen et al., 2006; 220 

Johnson et al., 2008). Kalman methods only apply to linear Gaussian observation and dynamical 221 

models and cannot be considered in our case, as the observation model does not involve a linear 222 

relationship between the state and the observations (Equation 4). Particle filters (e.g. Royer et al., 223 

2005; Breed et al., 2012) are appealing to account for non-linear and non-Gaussian models at the 224 

expense however of an increased computational cost, especially for the evaluation of the so-called 225 

smoothing posterior distribution 𝑃 𝑋! 𝑌!! !!!!:!!!  of the state Xt conditionally to all observations 226 

(and not only observations up to time t). 227 

 228 

Recently Pedersen et al.(2008) explored a discretized solution of the geolocation based on discrete 229 

Hidden Markov Model (HMM). Rather than considering continuous positions, it comes to 230 

constraining the positions on a discrete grid. The state then evolves in a discrete space, whose cardinal 231 

is the number of possible locations on the discrete grid. Within this discrete setting, one can exploit 232 

classical forward-backward HMM (Baum et al., 1970; Rabiner, 1989), which provides an exact 233 

computation of the filtering and smoothing posterior distributions, 𝑃 𝑋! 𝑌!! !!!!:!  and 234 

𝑃 𝑋! 𝑌!! !!!!:!!! . We let the reader refer to (Pedersen, 2007) for the details of the forward-235 

backward procedure. As by-products, given model parameters, on can derive both: 236 

• the MAP (Maximum A Posteriori) as the sequence 𝑋! obtained using the Viterbi algorithm 237 

(Viterbi, 1967; Forney, 1973)  238 

(5) 𝑋!"# = argmax
!

  𝑃 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ  239 

where Θ refers to model parameter 𝐷, 𝜎!"#$%&' and 𝜎!"##"$. 240 

• the MPM (Maximum Posterior Mode) as the sequence 𝑋!!"! verifying at time t 241 

(6) 𝑋!!"! = argmax
!!

  𝑃 𝑋! 𝑌! !!!:!!!,Θ  242 

The MPM sequence minimizes the estimation variance, i.e. the variance of the estimation 243 

error (Robert, 2007). 244 

• the Mean Posterior as the sequence 𝑋!!" verifying at time t 245 
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(7) 𝑋!!" = Ε 𝑋!| 𝑌! !!!:!!!,Θ    246 

• representative sequence examples 𝑋 !   from the sampling of the posterior likelihood 247 

(8) 𝑋 ! ~  𝑃 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ  248 

 249 

It may be noted that, in the continuous case, for non-Gaussian/non-linear settings, one cannot derive 250 

analytically nor computationally any of these expressions. Particle filtering may only provide a mean 251 

to approximate these estimates and distributions (Doucet et al., 2000; Royer et al., 2005). 252 

 253 

Here, we follow the discrete setting proposed by Pedersen et al.(2008) for our geolocation model. 254 

Besides, we further investigate model calibration issues. Overall, our model involves three parameters, 255 

namely the diffusion coefficient 𝐷 of the dynamical model and the standard deviations of surface and 256 

bottom temperature model, 𝜎!"#$%&' and 𝜎!"##"$. In Pedersen et al. (2008), the authors only consider 257 

the Maximum Likelihood (ML) calibration of the dynamical model using a gradient-based 258 

maximization. By contrast, we further exploit the computational properties of the discrete setting and 259 

address a joint ML estimation of all model parameters using an iterative Expectation-Maximization 260 

(EM) framework (Dempster et al., 1977). It provides a simple and robust implementation of the ML 261 

inference (Do and Batzoglou, 2008). Formally, at iteration k, it comes to iteratively solve for the 262 

maximization of the expectation of the joint log-likelihood of the observation and state sequences 263 

conditionnally to the posterior distribution of the state sequence for the current parameter estimates. 264 

 265 

(9) Θ = argmax
!

  𝐸!|!,! ! log 𝑝 𝑌! !!!:!!!, 𝑋! !!!:!!! Θ  266 

 267 

Maximization (9) can be regarded as a reweighted ML criterion where the posterior distribution acts as 268 

a weighing factor. The great interest of the EM algorithm is that they deliver a two-step iterative 269 

algorithm: the E-step computes the posterior distribution   𝑃 𝑋! !!!:!!! 𝑌! !!!:!!!  given current 270 

model parameter estimates; and the M-step updates model parameters according to a ML criterion 271 

reweighted by the posterior distribution. The EM algorithm (Do and Batzoglou, 2008) guarantees to 272 
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increase the likelihood after each EM iteration, as such it can be regarded as a gradient-based 273 

procedure. However, their convergence depends on the initial parameter values. To improve the 274 

robustness to the initialization, we consider here a stochastic version of the EM algorithm, the 275 

Stochastic EM (SEM) procedure (Diebolt et al., 1994). It replaces the numerical evaluation of the 276 

posterior distribution 𝑃 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ !  in the E-step by its sampling. Here, this 277 

sampling exploits the classical HMM forward-backward procedure (see Pedersen, 2007). Overall, at 278 

iteration 𝑘, the SEM procedure involves two steps: 279 

• the E-step comes to sampling NSEM trajectories 𝑋 !
!!!:!!"#

 from posterior 𝑃 𝑋 𝑌,Θ !  280 

using the standard forward-backward HMM procedure (Rabiner, 1989; Pedersen, 2007); 281 

• the M-step comes to updating estimate Θ !!! = 𝐷 !!! ,𝜎!"#$%&'
!!! ,𝜎!"##"$

!!!  as 282 

 283 

(10) 

𝐷 !!! = !
!  !!"#⋅!

𝑋!!!
! − 𝑋!

! !
                                                                            !!!

!!!
!!"#
!!!

𝜎!"#$%&'
!!! = !

!!"#⋅!
𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!

!
!

!!!
!!!

!!"#
!!!

𝜎!"##"$
!!! = !

!!"#⋅!
𝑆𝐵𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"#$ 𝑋!

!
!

!!!
!!!

!!"#
!!!

 284 

 285 

Updates (10) refer to classical ML parameter estimation applied to the sampled trajectories 𝑋!
(!) . We 286 

let the reader refer to appendix 1 for the details of the derivation of these updates. This two-step SEM 287 

procedure is iterated until convergence (ratio between the average over the 20 last values of D and the 288 

new value of D below 1%). The SEM procedure can be regarded as a stochastic gradient-based 289 

scheme with improved convergence to the global estimate compared to classical EM or gradient-based 290 

algorithms (Diebolt et al., 1994). In addition, the proposed SEM procedure estimates both the 291 

diffusion coefficient and the observation errors, while the gradient-based ML setting considered in 292 

Pedersen et al. (2008) only estimates the diffusion coefficient, the observation errors being set a priori. 293 

Regarding its computational complexity, it relates to the number of sampled trajectory according to 294 
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posterior distribution 𝑃 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ ! . By contrast, the computational complexity of 295 

gradient-based methods depends more heavily on the size of the discrete grid of possible locations. 296 

 297 

II.5 Evaluation of the model performance 298 

With the aim of evaluating the robustness of our geolocation model, synthetic data were generated 299 

with a diffusion coefficient of 30.0 km²/day and observation errors (in standard deviation) of 1.0°C for 300 

sea bottom temperature and 0.65°C for sea surface temperature (in agreement with the typical level of 301 

uncertainty of the reference geophysical fields). The synthetic data involve the simulation of 302 

sequences of positions (longitude, latitude) and depths over a 150-day time series. The simulated 303 

trajectory is generated using a random walk with the chosen diffusion coefficient, a release point in the 304 

Iroise Sea (48.5°N, 4.0°W), and a linear drift (1.5° toward South and 0.9° toward East). The simulated 305 

depths were drawn independently for each given day from a multinomial distribution with a 306 

probability mass function of 0.2 for the fish being at the surface only, 0.2 for the fish being at bottom 307 

only and 0.6 for the fish being at the surface and at the bottom. On these synthetic data, the gradient-308 

based inference introduced in (Pedersen et al., 2008) and the proposed SEM-based inference were 309 

compared.  310 

For the real data, a similar comparison was performed. In addition, a sensitivity analysis was 311 

undertaken. The objective was to evaluate and understand how the various model parameters, the 312 

geophysical reference fields and the recapture location influence the reconstruction of the trajectories.  313 

 314 

III Results 315 

III.1 Model calibration and inference for synthetic data 316 

100 synthetic track data were simulated following our simulation procedure. All the simulated 317 

trajectories spread over the continental shelf of the Bay of Biscay and showed a southward migration 318 

in the Bay of Biscay (cf. an example simulated trajectory in Figure R1). Model calibration and 319 

inference were performed using both the SEM procedure and the gradient-based ML approach 320 
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proposed by Pedersen et al. (2008). The SEM procedure was run until convergence. The estimated 321 

parameters were considered as the average values over the last 20 iterations. The SEM procedure 322 

converged for all the synthetic track data. For an example of the synthetic data (Figure R1), the 323 

estimated diffusion coefficient (33.8 km²/day) and the estimated observation errors (1.070°C for the 324 

sea bottom temperature and 0.697°C for the sea surface temperature) were close to the simulated true 325 

values (Table R1). In addition, the reconstructed trajectory patterns (the posterior distribution summed 326 

over time, the mean, the modal and the most probable tracks) were in agreement with the simulated 327 

trajectory (Figure R2). With observation errors set to the simulated true values or to the SEM 328 

estimates, the gradient-based ML estimates of D were respectively 32.4 km²/day and 31.2 km²/day, 329 

corresponding to relative differences with the SEM estimate of 7.7% and 4.1% smaller respectively. 330 

Both estimates were close to the SEM estimate (Table R1), showing that both techniques were 331 

coherent. The inference capacity of the SEM procedure as well as the coherence between both 332 

approaches were checked for the remaining synthetic data. The performance of the SEM estimator was 333 

quantified over 100 simulations. Two metrics were considered: the coefficient of variation (CV) and 334 

the 95% credible interval (CI) of the parameter estimates (Table R2). In Bayesian statistics, a credible 335 

interval is an interval in the domain of a posterior probability distribution of the parameter, which 336 

differs from the frequentist confidence interval. The CV was higher for the coefficient of diffusion 337 

than for the observation errors (42% vs 7%). Then, all parameters estimates were within the 95% CI 338 

meaning that they were unbiased. 339 

 340 

 341 
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 342 

Figure R1. Top left) Simulated temperature history depicted by a blue polygon. Blue stars represent 343 

surface and bottom temperatures with observation errors. Bottom left) Simulated depth history 344 

depicted by a red polygon. Right) Simulated track in grey with release position (green triangle) and 345 

recapture position (red triangle). Simulated true values of the parameters were: D = 30.0, σsurface = 0. 346 

673, and σbottom = 1.050.  347 

 348 

 349 

Table R1: Simulated parameter values and estimated parameters for the synthetic data using the two 350 

different inference techniques. The gradient-based approach estimates only D with observation errors 351 

fixed either to the true values or that of the SEM estimates. 352 

 353 

 D 
(km²/day) 

σsurface 
(°C) 

σbottom 
(°C) 

Simulated true values 30.0 0.673 1.050 
SEM-based ML estimates 33.8 0.697 1.070 
Gradient-based ML estimate with observation errors set to the true values 32.4 0.673 1.050 
Gradient-based ML estimate with observation errors set to the SEM estimates 31.2 0.697 1.070 
 354 

 355 
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 356 

Figure R2. Left) Convergence of the SEM-based estimation of model parameters on synthetic data. 357 

Right) Reconstruction of the simulated trajectory (grey line) illustrated with the posterior distribution 358 

summed over time (color image scale), the mean track (white line), the modal track (yellow line) and 359 

the most probable track (red line).  360 

 361 

Table R2: Average of true parameter values and metrics of estimation performance (i.e. mean, 362 

standard deviation, coefficient of variation (CV) and credible interval (CI)) computed over 100 363 

simulations. 364 

Parameters Average of true values  Mean Std. CV (%) Lower 95% CI Upper 95% CI 
D 29.69 26.74 11.40 43 8.57 48.68 
σsurface 0.643 0.668 0.047 7 0.589 0.766 
σbottom 0.994 1.045 0.083 8 0.906 1.201 
 365 

III.2 Model calibration and inference for real data 366 

Daily DST temperature and depth series from a representative fish (tag A05392) was used as a real 367 

case study. The model parameters were estimated using the SEM procedure. The algorithm converged 368 

after about 50 iterations (Figure R3). The estimated model parameters were D = 27.3, σsurface = 0.367, 369 

and σbottom = 1.859. The reconstructed tracks according to the different criterion (MAP, MPM and 370 

mean tracks) looked consistent to one another, i.e. close to each other over the time series (Figure R3). 371 

In addition, the reconstructed tracks seemed plausible relative to the sea bass ecology. Thus, over a 372 

year of data (383 days), the tagged fish spent some time in the Iroise Sea, then undertook a migration 373 



18 
 

toward the south-east in the Bay of Biscay, stayed there for a while, and moved back to the Iroise Sea, 374 

thus completing a annual migration cycle. With observation errors set to the typical uncertainty levels, 375 

the gradient-based ML estimate of D is 30.1 km2/day. The two techniques of calibration and inference 376 

result in some small discrepancies in the estimated parameters, however the reconstructed trajectory 377 

patterns were coherent (not shown). To ascertain that the trajectory reconstructed by our geolocation 378 

model is robust, one must assess its sensitivity to the various model parameters, the geophysical 379 

reference fields and the recapture location. 380 

 381 

 382 

Figure R3. Left) Convergence of the SEM-based estimation of model parameters on the real data (tag 383 

A05392). Right) Reconstruction of the real trajectory illustrated with the posterior distribution 384 

summed over time (color image scale), the mean track (white line), the modal track (yellow line) and 385 

the most probable track (red line). 386 

 387 

III.3 Sensitivity analysis 388 

First, the sensitivity to model parameters was evaluated by inferring trajectories for different sets of 389 

model parameters. Practically, 3 nominal values of D, σsurface and σbottom were chosen in a range 390 

encompassing gradient-based ML estimates of D and typical uncertainty levels for the observation 391 

errors. The trajectories were reconstructed using these 9 possible sets of model parameters (Figure 392 

R4). Posterior distributions summed over time were compared to the one reconstructed with the 393 
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reference nominal parameter values (i.e. D = 30, σsurface = 0.55 and σbottom = 1.73). To compare pairwise 394 

maps, the difference in log scale between cumulated probabilities was computed for each grid cell. 395 

Basic statistics as mean, variance and coefficient of variation (CV) were derived (Table R3). We 396 

observed that the posterior distribution summed over time spread in space with the increase of the 397 

observation errors and the diffusion coefficient. The trajectory patterns were modified locally but not 398 

globally. Given the nominal parameter values, the shrinking of the posterior distribution summed over 399 

time were larger in average (negative mean values) and more variant with the decrease of the 400 

coefficient of diffusion, then the observation error at the surface, finally the observation error at the 401 

bottom. The spreading of the posterior distribution summed over time  was larger in average (positive 402 

mean values) and more variant with the increase of the coefficient of diffusion, then with the 403 

observation error at the surface, and the observation error at the bottom. 404 

 405 
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 406 

Figure R4. Maps of posterior distributions summed over time with trajectories (mean, MPM and 407 

MAP) reconstructed based on different sets of parameters (3 values for D, 3 values for σsurface and 3 408 

values for σbottom). 409 

 410 

Table R3: Basic statistics (mean, variance, and coefficient of variation) computed from the difference  411 

between map of the posterior distributions summed over time of the reference nominal trajectory and 412 

that of the nominal trajectories. Note that cumulated probabilities of the posterior distributions were 413 

considered in log scale. 414 

 415 
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Nominal trajectories Reference nominal trajectory Mean 
 

Variance 
 

Coefficient of 
variation 

 D σsurface σbottom D σsurface σbottom 

10 0.55 1.73 30 0.55 1.73 -53.16 5445.10 -1.39 
50 0.55 1.73 30 0.55 1.73 15.51 552.16 1.51 
30 0.32 1.73 30 0.55 1.73 -10.02 421.56 -2.05 
30 0.70 1.73 30 0.55 1.73 3.84 69.71 2.17 
30 0.55 1.00 30 0.55 1.73 -2.94 33.06 -1.96 
30 0.55 2.24 30 0.55 1.73 1.53 11.21 2.19 

 416 

Second, the sensitivity to geophysical reference fields was evaluated. We inferred trajectories using 417 

either satellite-derived SST or MARS SST. The use of different geophysical fields for the SST makes 418 

a noticeable difference in the inferred trajectories (Figure R5). When using satellite based SST, 419 

inferred trajectory pattern showed an entire migration cycle going toward the south and then back to 420 

the North. One can note two zones where the fish staid longer (one in the Iroise Sea and one in the 421 

South). In between these zones, the fish moved rapidly and in an oriented manner. By comparison, 422 

when using MARS SST, the inferred trajectory did not show such pattern. The trajectory was still 423 

cyclic, but this time the fish movement was more regular along the trajectory except at the end. In 424 

addition, the fish went less South and more toward the West. The use of observations (satellite-based 425 

SST) over model outputs (MARS-based SST) were eventually favored as the satellite data are more 426 

precise, and the reconstructed tracks with satellite based SST were more coherent (MAP, MPM and 427 

mean track close to each other) than with models outputs. Given this analysis, the two zones where the 428 

fish stayed longer were interpreted as feeding and spawning grounds, whereas the rapid move between 429 

zones were interpreted as fish migration. 430 

 431 
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 432 

Figure R5. Left) Reconstructed trajectory using satellite data for the sea surface temperature. Rigth) 433 

Reconstructed trajectory using MARS 3D model data for the sea surface temperature. 434 

 435 

Last, the sensitivity to the presence/absence of recapture location was evaluated. For two 436 

representative tags, their trajectories were reconstructed with and without the recapture location 437 

(Figure R6). We observed that the inferred trajectories did not show important differences in both 438 

cases. The general trajectory patterns were conserved. Only the last days of the trajectories showed 439 

some differences, demonstrating that the geolocation model was robust.  440 

 441 
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 442 

Figure R6. Sensitivity to the recapture location for 2 real trajectories (tag A05392 on the top line, and 443 

tag A06226 on the bottom line): Map of posterior distributions summed over time with recapture 444 

positions (red triangle) on the left column and without on the right column. 445 

 446 

IV Discussion 447 

IV.1 Inference method 448 

A HMM-based model allowing the undersea geolocation from Temperature-Depth DSTs has been 449 

successfully implemented. It can be regarded as an extension of the model developed by Pedersen et 450 
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al. (2008). In comparison, it has the advantage of jointly estimating all model parameters i.e. the 451 

coefficient of diffusion of the dynamical model, as well as the errors of the observation model. To 452 

achieve the joint estimation of movement and observation parameters, we consider a stochastic version 453 

of the EM algorithm. There were three main reasons. First, it might be stressed that EM procedures 454 

can be regarded as gradient-based optimizers. Different studies have compared convergence properties 455 

of EM and classical gradient-based optimizers. For instance, in (Minami, 2004) reports the good 456 

global convergence properties of the EM algorithm but greater convergence speed of quasi-Newton 457 

optimizer. Second, an interesting feature of the stochastic EM algorithm for the considered 458 

geolocation model is that it relies on previously developed model components; the sampling of the 459 

posterior distribution of the state-sequence using a forward-backward procedure (Pedersen, 2007; 460 

Pedersen et al., 2008) , and the ML estimation of observation and movement model parameter. As 461 

such, it does not require additional derivations of the first- and second-order derivatives as required by 462 

classical gradient-based techniques. Third, all deterministic gradient-based techniques are strongly 463 

dependent on the initialization of model parameters. The stochastic EM procedure ensures a greater 464 

robustness to these initial parameter values. This improves the convergence to the global solution, and 465 

avoids the reconstruction to be caught in a local solution. 466 

Then, the joint estimation allowed having no a priori assumptions on model parameter values. This 467 

was in agreement with the lack of knowledge available in the natural environment for the most 468 

sensitive model parameter, the coefficient of diffusion (Figure R4 and Table R3). Only maximum 469 

swimming speed of juvenile sea bass from a controlled environment were accessible (Killen et al., 470 

2014), which was not satisfactory. For the observation errors, the typical levels of uncertainty were 471 

provided with the satellite and model output data, however these values were averages in space and 472 

time over a large domain, which might not be relevant locally when reconstructing trajectories (e.g. 473 

impact of clouds on the local error). Otherwise, the undersea geolocation is achieved using sea 474 

temperature and depth rather than tide signals as in Pedersen et al. (2008). Tide signals were not 475 

appropriate in our case first because the sea bass seldom shows demersal behavior (with clear tidal 476 

signal on depth time series), and second because the Bay of Biscay does not have contrasted phase and 477 

amplitude tidal signals as observed in the North Sea. For these reasons, the sea temperature was 478 
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considered as it revealed contrasted geophysical conditions allowing the reconstruction of the 479 

trajectory of an active swimmer fish. However no behavioral switches were included in our 480 

geolocation model in order to develop our inference method in a simpler framework. The model is 481 

robust to model parameters as demonstrated by the sensitivity analysis with the convergence of the by-482 

product trajectories (mean, MPM and MAP tracks).  483 

 484 

IV.2 Observation model 485 

In the hidden Markov model framework, the observation model relates at every time step the extent to 486 

which the observation and the state (here the position) are coherent. Here, sea temperature and depth 487 

series were used as observation variables. However various other variables were used for more general 488 

trajectory reconstruction problems with or without irregularly recorded error-prone positions. As 489 

detailed hereafter, each observation variable and associated geophysical field has its pros and cons. 490 

Light-based geolocation is mostly adapted for transoceanic migrations (Musyl et al., 2001; Royer et 491 

al., 2005). Tide-based geolocation required environments where the phase and amplitude of the tidal 492 

signals are contrasted within the study area such as the North Sea for instance (Pedersen et al., 2008). 493 

In addition, fish need to exhibit resting periods where tide signals can be recorded with the pressure 494 

sensors. Regarding temperature-based geolocation, its success may depend on the contrast exhibited 495 

by the water masses explored by the fish. In other words, it required fish moving in water masses 496 

showing significant temperature gradients. That is the reason why our observation model is based on 497 

daily minimum and maximum temperature per depth layer. Alternative statistics could have been 498 

considered to summarize the daily temperature explored by the fish, but they would not maximize 499 

temperature contrast as much as the extreme values. Among the geophysical parameters of interest, 500 

salinity also appears as a relevant variable to infer fish movement in coastal or estuarine areas, 501 

especially when addressing diadromous species movement ecology. To our knowledge, only one 502 

application reported the use of salinity observations to geolocate fish (Pedersen et al., 2011b). The 503 

combination of several observation variables (temperature, tide signals, and salinity) is also an 504 
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appealing future direction to increase the precision of the reconstruction in areas where it is relevant 505 

(e.g. in the English channel and in the North Sea). 506 

 507 

The reconstruction from synthetic data showed that the geolocation model performed well. For real 508 

data, the model appeared robust to the absence of recapture position. This is quite important, as tags 509 

are not always recovered where the fish dies (e.g. captured by professional or recreational fishermen). 510 

Tags can be found stranded on the beach by hikers thanks to a lightly buoyant flotation “jackets” or 511 

within the seafood industry without the possibility to trace the fish back to the fisherman. In both 512 

cases, fish death can be inferred retrospectively, and the reconstruction is still doable increasing 513 

significantly the number of reconstructed tracks. The model was also robust to model parameters, 514 

however the reconstruction may be affected through several other aspects. Contrary to synthetic data, 515 

real data present some days where the fish is only in one of the layers (surface or bottom layer), or 516 

worse in none of them (i.e. between the surface and the bottom for an entire day). For the former, the 517 

observation likelihood is resolved only with one temperature field instead of two, unlike the latter, for 518 

which no observation are available, and the likelihood is equally probable all over the domain. These 519 

aspects have a negative impact on the reconstruction. Specifically, the more the proportion of days 520 

with no layers visited by the fish relative to the total days at liberty is high, the more uncertain the 521 

reconstruction will be. The proportion of days spent in 0, 1 and 2 layers can be used an index to 522 

specify the quality of the reconstruction. For the representative tags considered for this study, these 523 

proportions were respectively 0.8%, 61.3% and 37.9% for the tag A05392, and 2.8%, 30.0% and 524 

67.2% for the tag A06226. Although there were some undetermined days, the number of days with 1 525 

or 2 layers visited was high enough to achieve a coherent reconstruction, as stressed by the sensitivity 526 

analysis. Furthermore, we pointed out that the type of reference geophysical fields (satellite based SST 527 

vs. MARS based SST) has an impact on the reconstruction. As stated earlier, observation data should 528 

be favored over model outputs. In the proposed implementation, we considered a simple Gaussian 529 

observation model. More advanced statistical models may be investigated to better account for the 530 

different types of noise and uncertainties (e.g., potential low-consistency patterns between the 531 

satellite-derived and MARS SST fields, differences between the very superficial temperature 532 
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conditions measured by the satellite and the temperature conditions in the upper sea layer (0-10m), 533 

diurnal sea surface temperature cycles,….). The calibration of these models could combine both prior 534 

calibration from in situ datasets (for instance, for possible temperature offsets between the surface and 535 

the subsurface) as well as model parameter inference from the processed DST data. 536 

 537 

Regarding the depth observation model, our approach disregards the uncertainty inherent in comparing 538 

the depth observation with the bathymetry. The depth observation from the tag has a minor 539 

uncertainty, but the main uncertainty comes from the potential variability of the bathymetry within a 540 

grid cell. The bathymetry is a 4x4 km grid. Because of this size it is very unlikely that the seabed is 541 

flat within each grid cell. It is more likely that the value in a grid cell of the 4x4 km bathymetry map 542 

represents some mean depth contained within the grid cell. Using the current depth model a problem 543 

arises if the fish visited a deep part of the grid cell. In the comparison with the bathymetry the grid cell 544 

would be excluded because the observed depth was deeper than the mean of the cell (or whatever the 545 

cell value represents) thus imposing a bias in the geolocation. A more continuous approach (as in 546 

Pedersen, 2007; Pedersen et al., 2008) for the depth data likelihood could resolve this, either through 547 

the estimation of this uncertainty prior to running the model, or by including the uncertainty within the 548 

current estimation framework. Here, a parameter-free binary likelihood with a threshold set to the 549 

local bathymetry was considered to keep the model as simple as possible. This binary model could 550 

also account for some depth uncertainty by setting the threshold to a percentage greater than the local 551 

bathymetry (e.g., 110%, 120% depending on priors on the uncertainty level...). Numerical experiments 552 

have shown no significant changes with such parameterization. A continuous depth model (as in 553 

Pedersen, 2007; Pedersen et al., 2008), including some margin parameter, could also be considered 554 

and calibrated using the SEM algorithm. It will involve the same E-step and will complement the M-555 

step with the update of depth parameters according to a weighted ML criterion. Future work could 556 

address this issue. However, as stated above, for the considered case-studies, we do not expect 557 

significant added-value from such a model as the depth information is rather a secondary cue compare 558 

to the temperature information. 559 

 560 
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Given the uncertainty on the recapture information, the SEM also delivers as a by-product the 561 

posterior variance of the recapture position. Contrary to movement and temperature model parameters, 562 

we did not update the variance of the recapture position from the posterior variance within each EM 563 

iteration. Additional experiments with this update could be undertaken in a future work, however we 564 

are not expecting any significant global change in the reconstructed trajectories, as demonstrated in the 565 

sensitivity analysis to the recapture location. 566 

 567 

IV.3 Dynamical model 568 

The dynamical model described the time dynamics of the positions of the fish. In our case, such 569 

dynamics were ruled by one parameter, the coefficient of diffusion. As such, we considered a simple 570 

constant (constant mean velocity) and isotropic (no preferred movement orientation) prior model. This 571 

is a rather simple dynamics when modeling a migratory species such as the European sea bass 572 

(Pawson et al., 1987). Indeed, movement characteristics are expected to vary depending on the 573 

activities of the fish. For instance, the movement steps during foraging activity are more likely to be 574 

short and omnidirectional (Barraquand and Benhamou, 2008), whereas they might be large and 575 

oriented during migration behavior (Bowler and Benton, 2005). An alternative model could thus 576 

include some behavioral switches like in Pedersen et al. (2008). In this study, they estimated an 577 

activity level as a time-continuous indicator function to rule cod behavioral switches. The estimation 578 

was done before the geolocation step, because the distinction between different behaviors was obvious 579 

and it allowed preserving the tractability of the problem. For the sea bass, the behavioral switches 580 

could be derived from a joint analysis of horizontal and vertical data. Because in this case the 581 

distinction may not be obvious, the HMM setting should involve an additional latent variable referring 582 

to some hidden behavioral state (Pedersen et al., 2011a). Such an approach would significantly 583 

increase the computational complexity but appears tractable. The behavioral inference based on 584 

Hidden Markov models is quite common and recommended in other domains, for instance in marine 585 

ecology (Patterson et al., 2009; Pedersen et al., 2011a) or in fisheries (Vermard et al., 2010; Walker 586 

and Bez, 2010; Joo et al., 2013; Gloaguen et al., 2015). Alternative implementations based for instance 587 
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on an augmented particle filter (Breed et al., 2012) also exist, but they may be less appropriate than the 588 

discrete HMM setting as detailed herein. Overall, the development of different geolocation models 589 

(with and without behavioral switches) will naturally raise the question of the model comparison. 590 

Within a classical approach based on the Bayes theorem, which geolocation model provides the best 591 

reconstruction result may be answered by inspecting the likelihood of the residuals and keeping the 592 

model which depicts some optimal trade-off between the maximization of this likelihood and model 593 

complexity. Classically, this can be done computing the commonly used information criteria such as 594 

the Bayesian or the Aikaike's Information Criterion (BIC, AIC). 595 

 596 

V Conclusions 597 

A HMM-based model allowing the undersea geolocation from Temperature-Depth DSTs has been 598 

successfully implemented. The SEM algorithm provides an efficient and robust solution to infer all 599 

geolocation model parameters (i.e. both the observation errors and the coefficient of diffusion). The 600 

reconstruction for both synthetic and real data were robust. Geolocation results stressed the relevance 601 

of satellite-derived SST, compared to numerical model outputs and we reported, for the first time, 602 

consistent reconstructions of sea bass migratory patterns within the bay of Biscay. This method is 603 

generic and could be applied to the geolocation and tracking of many other pelagic fish such as tuna, 604 

salmon, shark or ray. Such geolocation models are particularly relevant to better understand the spatial 605 

dynamics and structuring of fish populations, which may improve fish stock delineations often poorly 606 

addressed in current management framework. 607 

 608 
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VIII Appendix: derivation of the updating equations (M-step) of the SEM algorithm. 722 

This appendix shows that the M-step of the SEM algorithm comes to compute ML (Maximum 723 

Likelihood) estimates of model parameters from the trajectories sampled during the E-step (cf. section 724 

II.4). The SEM algorithm comes to iteratively maximize the expectation of the joint log-likelihood of 725 

the observations and the states conditionally to the posterior distribution for the current parameter 726 

estimates (equation 9 in the manuscript): 727 

Θ = argmax
!

  𝐸!|!,! ! log 𝑝 𝑌! !!!:!!!, 𝑋! !!!:!!! Θ  

It resorts to solve: 728 

𝜃(!!!) = argmax
!

   log 𝑝 𝑌! !!!:!!!, 𝑋! !!!:!!! Θ 𝑝 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ(!) 𝑑𝑋 

Considering an approximation of this integral from a sum over samples from posterior distribution 729 

𝑝 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ ! , the SEM algorithm amounts to: 730 

𝜃(!!!) = argmax
!

   log 𝑝 𝑌! !!!:!!!, 𝑋!
(!)

!!!:!!!
Θ

!

   

where 𝑋!
(!)

!!!:!!!
 are trajectories sampled from  𝑝 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ(!)  during the E-step 731 

of the SEM algorithm. Using the factorization of the joint log-likelihood 732 

  𝑝 𝑌! !!!:!!!, 𝑋! !!!:!!! Θ , we can decompose the above expression as: 733 

𝜃(!!!) = argmax
!

   log 𝑝 𝑌! !!!:!!! 𝑋!
(!)

!!!:!!!
,Θ 𝑝 𝑋!

(!)

!!!:!!!
Θ

!

 

𝜃(!!!) = argmax
!

   log 𝑝 𝑌! !!!:!!! 𝑋!
(!)

!!!:!!!
,𝜎!"#$%&'

!!

+ log 𝑝 𝑌! !!!:!!! 𝑋!
(!)

!!!:!!!
,𝜎!"##!"

!!

+ log 𝑝 𝑋!
(!)

!!!:!!!
𝑋!!!
(!)

!!!:!!!
,𝐷

!!

 

with Θ = 𝜎!"#$%&' ,𝜎!"##"$ ,𝐷  734 

 735 
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Under modeling assumptions that surface and bottom temperature residuals follow a normal 736 

distribution and daily distance increments follow a Rayleigh distribution with its variance equal to 2𝐷, 737 

we resort to three independent terms in the maximization: 738 

𝜃(!!!) = argmax
!

   −
1
2
log 2𝜋 −

1
2
log 𝜎!"#$%&'!

!!

+
1

2𝜎!"#$%&'! 𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!
!

!

+ −
1
2
log 2𝜋 −

1
2
log 𝜎!"##"$!

!!

+
1

2𝜎!"##"$! 𝑆𝐵𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"#$ 𝑋!
!

!

+ log 𝑋!!!
! − 𝑋!

! − log 2𝐷 +
𝑋!!!

! − 𝑋!
! !

4𝐷
!!

 

Setting the partial derivative with respect to each model parameters to 0, we derive the parameter 739 

updates: 740 

𝜕
𝜕𝜎!"#$%&'

: −
1

2𝜎!"#$%&'! (!!!) +
1

2𝜎!"#$%&'! (!!!) 𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!
!

!

!!

= 0 

−
𝑁!"# ⋅ 𝑁

2𝜎!"#$%&'! (!!!) +
1

2𝜎!"#$%&'! (!!!) 𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!
!

!!!!

!!!

!!"#

!!!

= 0 

1

2𝜎!"#$%&'! (!!!) 𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!
!

!!!!

!!!

!!"#

!!!

=
𝑁!"# ⋅ 𝑁

2𝜎!"#$%&'! (!!!) 

𝜎!"#$%&'! (!!!) =
1

𝑁!"# ⋅ 𝑁
𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!

!
!!!!

!!!

!!"#

!!!

 

The development is the same for 𝜎!"##"$! (!!!). Regarding parameter D, we obtain: 741 

𝜕
𝜕𝐷

:   log 𝑋!!!
! − 𝑋!

! − log 2𝐷(!!!) −
𝑋!!!

! − 𝑋!
! !

4𝐷(!!!)
!!

= 0 
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−
𝑁!"# ⋅ 𝑁
2𝐷(!!!)

− 𝑋!!!
! − 𝑋!

! !
!!!

!!!

!!"#

!!!

⋅
−1

𝐷!(!!!)
⋅
1
4
= 0 

𝐷(!!!) =
1

4𝑁!"# ⋅ 𝑁
𝑋!!!

! − 𝑋!
! !

!!!

!!!

!!"#

!!!

 

Overall, the M-step of the SEM procedure comes to update model parameters as: 742 

𝐷 !!! =
1

4  𝑁!"# ⋅ 𝑁
𝑋!!!

! − 𝑋!
! !

  
!!!

!!!

!!"#

!!!

𝜎!
!!! =

1
𝑁!"# ⋅ 𝑁

𝑆𝑆𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"# 𝑋!
!

!!!!

!!!

!!"#

!!!

𝜎!
!!! =

1
𝑁!"# ⋅ 𝑁

𝑆𝐵𝑇 𝑋! ,𝑇! ,𝐷! − 𝑆𝑆𝑇!"#$ 𝑋!
!

!!!!

!!!

!!"#

!!!

 

It may be stressed that these updates may be regarded as the computation of the ML estimates from the 743 

trajectories sampled from the E-step. Hence, as mentioned in the main text, the SEM algorithm 744 

involves two procedures: the sampling of trajectories according to the posterior distribution 745 

𝑝 𝑋! !!!:!!! 𝑌! !!!:!!!,Θ(!)  (E-step) and the update of model parameters from ML estimates 746 

computed for the sampled trajectories (M-step). The later extend to any other observation and/or 747 

dynamical model. Hence, the SEM procedure provides an efficient and robust model calibration 748 

framework, while requiring no specific mathematical derivation. 749 


