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I Introduction

Tagging experiments have been widely developed for the geolocation and tracking of animals in movement ecology studies. Classically global positioning system (GPS) are used to track seabirds or mammals including marine mammals. However geolocation remains complex for fish. Either acoustic telemetry studies are undertaken to track small scale displacements in space, or geolocation studies are performed using error-prone locations derived from light, depth and temperature collected from popup satellite archival tags (PSATs) (e.g. tuna in [START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF]) or tide signal collected from data storage tags (DSTs) (e.g. cod in [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]). These techniques are well adapted for fish either exhibiting trans-oceanic migration, or having low activity where tide can be retrieved from a pressure sensor. For other species, the challenge of geolocating and tracking fish from individual environmental histories remains and relies on our ability of correlating individual fish histories to environmental spatio-temporal fields derived for instance from satellite observations and/or operational hydrological models. This is the case of the European sea bass (Dicentrarchus labrax).

Despite its high economical and societal value, little is known about the spatial dynamics of this species at the population scale, and yet this information is necessary to better manage this likely overexploited stock (ICES, 2015).

From a methodological point of view, the reconstruction of tracks of animals generally relies on a state-space modeling framework. It states the geolocation and tracking as the inference of the hidden sequence of positions (referred to as 'states') from the available sequence of observations. As the movement of the fish is a continuous process in space and time, continuous settings along with Kalman (Sibert et al., 2003) or particle filters [START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF][START_REF] Breed | State-space methods for more completely capturing behavioral dynamics from animal tracks[END_REF] are natural.

However discrete settings associated with Hidden Markov Models may provide relevant alternatives regarding calibration and inference issues [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]. Overall, state-space model involves two key components: a dynamical model and an observation model. The dynamical model (i.e. the model for the movement of the fish) generally exploits generic random walk models, e.g. Brownian motion [START_REF] Holgate | Random walk models for animal behavior[END_REF] or correlated random walks [START_REF] Bovet | Spatial analysis of animals' movements using a correlated random walk model[END_REF]. The observation model depends on the targeted applications and should relate the recorded data to the hidden states.

Whereas the observation model is straightforward with GPS tags, no such explicit relationships can be analytically found when considering undersea geolocation. Previous works have explored specific observation models for fish geolocation using depth histories for demersal species for regions involving strong tide signals [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] as well as light measurements for pelagic species for tropical latitudes [START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF]. To our knowledge, the geolocation of fish, such as sea bass involving both demersal and pelagic behaviors, remains a challenge.

In this paper, we address the geolocation of pelagic fish from individual depth and temperature histories. Our methodological emphasis is two-fold: i) defining a relevant observation model at a daily scale to match individual temperature/depth fish histories to modeled and/or observed environmental conditions, ii) extending the discrete HMM-based setting proposed by [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] to address a joint calibration and inference of the considered model. In this model, only the primary parameters, i.e. the ones required to effectively geolocate the fish (the movement rate or diffusion and the temperature related parameters), are estimated, while the other ones like the parameters related to the depth and release/recapture position were considered determined or with a fixed uncertainty. As a case-study, we consider the European sea bass and report experiments on both numerical simulations and real DST data. These experiments demonstrate the robustness of the considered model and numerical implementation as well as the feasibility of the DST-based geolocation of pelagic fish. We further discuss the key features of our model as well as the expected contributions to behavioral fish ecology.

II Material and Methods

II.1 DST data

Adult sea bass were internally tagged with DSTs (CEFAS G5 long live). Tagging operations were carried out in summer for 3 consecutive years (2010)(2011)(2012) in the Iroise Sea, off the west coast of Brittany (France). Logging regimes were tested over the different years, all presented a high acquisition rate (temperature and depth at 1' intervals) during the first year post-tagging, reduced to 5' -10' for the second year. Daily range of vertical movements can be high (Figure MM1) and in most cases, the fish experienced temperatures equivalent to either sea surface temperature (SST; at depth < 10 m) and/or sea bottom temperature (SBT; at depth > 40 -50 m) during the same day.

Figure MM1

. DST data: daily summary (min and max data) of temperature and depth series for a representative fish (tag A05392). During winter, a plateau at c.a. 114 m (data below this depth limit were truncated due to DST tag specification) indicates that deeper depths were experienced by this fish although the literature indicates a maximum of 100m [START_REF] Frimodt | Multilingual Illustrated Guide to the World's Commercial Coldwater Fish[END_REF].

II.2 Geophysical fields

The geolocation model considers three geophysical fields: SST derived either from a satellite-based observation or from a hydrological model, the SBT and the bottom depth both derived from the same hydrological model. The model outputs were obtained from the French MARS model of IFREMER [START_REF] Lazure | Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology[END_REF][START_REF] Lazure | An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS)[END_REF]. It provided series of maps with a 4 km x 4 km resolution. The satellite-based SST observations were extracted from the Odyssea NWE product [START_REF] Piolle | Medspiration: Toward the Sustained Delivery of Satellite SST Products and Services over Regional Seas[END_REF]. This product is a gridded and interpolated field (i.e. missing-data-free) derived from a multi-sensor analysis with a 0.02° x 0.02° resolution. For consistency, the satellite-based observations were re-interpolated over the MARS grid. The MARS domain was reduced in longitude to 11°W to 2°E, and in latitude to 43°N and 52°N, but it was kept large enough to encompass any trajectory reconstruction. From comparison to in situ data, the typical levels of uncertainty (in standard deviation unit) were 0.65°C for SST derived from the satellite-based observation [START_REF] Piolle | Medspiration: Toward the Sustained Delivery of Satellite SST Products and Services over Regional Seas[END_REF], and 1.0°C for temperatures derived from the hydrological model [START_REF] Lazure | Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology[END_REF]. For the SST, differences exist between the two types of geophysical fields as illustrated by the field anomaly computed for a given day (Figure MM2). As the typical level of uncertainty of satellite-based observations is lower than that of the hydrological model, the trajectory patterns reconstructed using the satellite-based observations may be more constrained by the very values recorded by the tag than those using inputs from the hydrological model. However the uncertainty between these two reference geophysical fields is neither homogeneous in space, as seen on the anomaly map for a given day (Figure MM2), nor in time. Thus, a sensitivity analysis has been performed on the geophysical reference fields by reconstructing trajectories using either satellite-derived SST or MARS SST (see section III.3). . 

II.3 HMM-based geolocation model

The geolocation problem is stated as an inference based on the Bayes theorem within a state-space framework. Let us denote by X = (X t ) the position series in the 2-dimensional geographical space to be inferred at a daily resolution and Y = (T t ,D t ) the observed histories of temperature (T t ) and depth (D t ) retrieved from DSTs. Hereafter, X will be referred to as the hidden state sequence. It might be stressed that, for geolocation problems, the state may also include speed and direction variables in addition to position variables [START_REF] Jonsen | Robust state-space modeling of animal movement data[END_REF][START_REF] Breed | State-space methods for more completely capturing behavioral dynamics from animal tracks[END_REF].

Here, subscript t refers to daily time indices from the release (t = 0) of the tagged fish to its recapture (t = N-1). It may be noted that depth and temperature histories are acquired at a high-resolution such that variable T t (resp. D t ) refers to all temperature (resp. depth) measurements stored by the DST during day t. We use the standard convention that day t starts at midnight.

The state-space model involves two key components: the dynamical model and the observation model (Figure MM3). The dynamical model describes the time dynamics of the state sequence. We resort to a Brownian random walk model described by:

(1) X !!! = X ! + 𝒩 ! where 𝒩 ! is a white Gaussian noise with (isotropic) diagonal covariance Σ = 𝜎 ! ! I. The standard deviation 𝜎 ! relates to the Brownian diffusion as 𝜎 ! ! = 2𝐷∆𝑡 with D the diffusion coefficient (in km²/day) and Δt the time (here daily) step [START_REF] Risken | The Fokker-Planck equation : (methods of solution and applications[END_REF][START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]. Hence, the diffusion coefficient D characterizes the mean distance covered by the fish daily. More precisely, for a Brownian random walk, this mean distance relates to the standard deviation 𝜎 ! as follows 𝑣 = 0.5𝜋𝜎 ! ! . Thus, the mean distance covered by the fish (in km/day) equals 𝜋𝐷. et al., 2003), the particle filter for the bluefin tuna [START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF]), no such relationship can be derived in our case between the depth and temperature series at time t and the spatial position of the fish. Our idea is to evaluate whether or not depth and temperature measurements Y t conform to the expected temperature and bathymetry conditions at position X t .

Formally, let us denote by SST SAT (X t ) the satellite-derived SST at position X t , T MARS (X t ) the MARSderived temperature profile from the sea surface to the sea bottom at position X t and D BATHY (X t ) the depth of the sea bottom at position X t . Observation likelihood 𝑃 𝑌 ! 𝑋 ! is stated as the product of a bathymetry-driven term and a temperature-driven term:

(2)

𝑃 𝑌 ! 𝑋 ! = 𝑃 𝐷 ! 𝐷 !"#$% 𝑋 ! ×𝑃 𝑇 ! 𝐷 ! , 𝑆𝑆𝑇 !"# 𝑋 ! , 𝑇 !"#$ 𝑋 !
The bathymetry-driven term amounts to discarding positions for which the depth of the sea bottom is below the depth experienced by the fish.

(

) 𝑃 𝐷 ! 𝐷 !"#$% 𝑋 ! = 1 if 𝐷 !"#$% 𝑋 ! ≥ 𝐷 ! max 0 otherwise 3 
where 𝐷 ! max is the maximum depth experienced by the fish during day t.

Regarding the temperature-driven term, we exploit the behavioral pattern of sea bass. Three different daily behavioral patterns have been described in the wild by [START_REF] Quayle | Observations of the Behaviour of European Sea Bass (Dicentrarchus labrax) in the North Sea[END_REF] but in most cases fish typically explore the water column from the surface to the sea bed within a same day. Such behavior was also experimentally observed by [START_REF] Schurmann | Change in vertical distribution of sea bass (Dicentrarchus labrax L.) during a hypoxic episode[END_REF]. Given the vertical stratification in the considered study area [START_REF] Lazure | Development of a hydrodynamic model of the Bay of Biscay. Validation of hydrology[END_REF], one can then expect the fish to depict significant time periods below and above the thermocline. Hence, at a given position X t , the temperature-driven term evaluates whether or not the temperatures experienced by the fish close to the sea surface and below the thermocline conform to the satellite-derived and MARS-derived temperature conditions.

(4)

𝑃 𝑇 ! 𝐷 ! , 𝑆𝑆𝑇 !"# 𝑋 ! , 𝑇 !"#$ 𝑋 ! = 𝐺 ! !"#$%&' max 𝑆𝑆𝑇 𝑇 ! , 𝐷 ! -𝑆𝑆𝑇 !"# 𝑋 ! ×𝐺 ! !"##"$ min 𝑆𝐵𝑇 𝑇 ! , 𝐷 ! -𝑆𝐵𝑇 !"#$ 𝑋 ! if 𝑆𝑆𝑇 !"# 𝑋 ! ≥ 𝑆𝐵𝑇 !"#$ 𝑋 ! , 𝐺 ! !"#$%&' min 𝑆𝑆𝑇 𝑇 ! , 𝐷 ! -𝑆𝑆𝑇 !"# 𝑋 ! ×𝐺 ! !"##"$ max 𝑆𝐵𝑇 𝑇 ! , 𝐷 ! -𝑆𝐵𝑇 !"#$ 𝑋 ! else 𝑆𝑆𝑇 !"# 𝑋 ! < 𝑆𝐵𝑇 !"#$ 𝑋 ! .
where 𝐺 ! stands for a zero-mean Gaussian distribution with standard deviation 𝜎, 𝜎 !!"#$%& the standard deviation of the sea surface term and 𝜎 !"##"$ the standard deviation of the sea bottom term.

𝑆𝑆𝑇 𝑇 ! , 𝐷 ! and 𝑆𝐵𝑇 𝑇 ! , 𝐷 ! are respectively proxies of the sea surface temperature and sea bottom temperature in the area explored by the fish at day t. Given the vertical distribution of the thermocline in the study area [START_REF] Koutsikopoulos | Physical processes and hydrological structures related to the Bay of Biscay anchovy[END_REF], we consider as surface layer depths between 0 m and 10 m and bottom layer depths below 50 m for months September to December, and below 40 m for the rest of the year. We then define 𝑆𝑆𝑇 𝑇 ! , 𝐷 ! as the maximum temperature experienced by the fish at day t for depth values lower than 10 m and 𝑆𝐵𝑇 𝑇 ! , 𝐷 ! as the minimum temperature experienced by the fish at day t for depth greater than 50 m for months September to December, and greater than 40 m for the rest of the year. It may be noted that, in some areas in winter, the sea surface layer may involve colder temperatures than the bottom [START_REF] Koutsikopoulos | Physical processes and hydrological structures related to the Bay of Biscay anchovy[END_REF]. To account for such temperature patterns, 𝑆𝑆𝑇 𝑇 ! , 𝐷 ! becomes a minimum of the temperature values in the surface layer and 𝑆𝐵𝑇 𝑇 ! , 𝐷 ! a maximum of the temperature values in the bottom layer. However, if the fish is neither in the surface layer nor in the bottom layer at day t, the temperature-driven term is equally probable over the entire domain. It is noteworthy that, at the surface, satellite-derived temperature conditions in equation 4 could be replaced without changes by MARS-derived temperature conditions in order to perform a sensitivity analysis on the geophysical reference fields (see section III.3).

Regarding the release and the recapture position, the geolocation model treats them differently. For the recapture position, either this position is known and the observation likelihood for the last day is multiply by a bivariate Gaussian error centered on the recapture position with a variance chosen a priori to (0.1/h)² (h being the grid resolution, i.e. 4km), or this position is not known and the observation likelihood for the last day remains unchanged. For the release position, it is noteworthy that there is no uncertainty associated to it. 

II.4 Model calibration and inference

Given the proposed state-space model, the geolocation problem resorts to an inference based on the Bayes theorem. For a given fish, it amounts to evaluating the posterior probability of the state sequence (i.e. track) given the DST data from the release of the fish to its recapture. The additional knowledge of the release and/or recapture positions might also be considered in the inference.

Different numerical schemes may be considered to evaluate the posterior. Among them, Kalman methods and particle filtering are the most popular methods (Sibert et al., 2003;[START_REF] Nielsen | Improving light-based geolocation by including sea surface temperature[END_REF][START_REF] Johnson | Continuous-time correlated random walk model for animal telemetry data[END_REF]. Kalman methods only apply to linear Gaussian observation and dynamical models and cannot be considered in our case, as the observation model does not involve a linear relationship between the state and the observations (Equation 4). Particle filters (e.g. [START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF][START_REF] Breed | State-space methods for more completely capturing behavioral dynamics from animal tracks[END_REF] are appealing to account for non-linear and non-Gaussian models at the expense however of an increased computational cost, especially for the evaluation of the so-called smoothing posterior distribution 𝑃 𝑋 ! 𝑌 !! !!!!:!!! of the state X t conditionally to all observations (and not only observations up to time t).

Recently [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] explored a discretized solution of the geolocation based on discrete Hidden Markov Model (HMM). Rather than considering continuous positions, it comes to constraining the positions on a discrete grid. The state then evolves in a discrete space, whose cardinal is the number of possible locations on the discrete grid. Within this discrete setting, one can exploit classical forward-backward HMM [START_REF] Baum | A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains[END_REF][START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF], which provides an exact computation of the filtering and smoothing posterior distributions, 𝑃 𝑋 ! 𝑌 !! !!!!:! and

𝑃 𝑋 ! 𝑌 !! !!!!:!!! .
We let the reader refer to [START_REF] Pedersen | Hidden Markov models for geolocation of fish[END_REF] for the details of the forwardbackward procedure. As by-products, given model parameters, on can derive both:

• the MAP (Maximum A Posteriori) as the sequence 𝑋 ! obtained using the Viterbi algorithm (Viterbi, 1967;[START_REF] Forney | The viterbi algorithm[END_REF] (5)

𝑋 !"# = argmax ! 𝑃 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ
where Θ refers to model parameter 𝐷, 𝜎 !"#$%&' and 𝜎 !"##"$ .

• the MPM (Maximum Posterior Mode) as the sequence 𝑋 ! !"! verifying at time t

(6) 𝑋 ! !"! = argmax ! ! 𝑃 𝑋 ! 𝑌 ! !!!:!!! , Θ
The MPM sequence minimizes the estimation variance, i.e. the variance of the estimation error [START_REF] Robert | The Bayesian Choice: From Decision Theoretic Foundations to Computational Implementation[END_REF].

• the Mean Posterior as the sequence 𝑋 ! !" verifying at time t

(7) 𝑋 ! !" = Ε 𝑋 ! | 𝑌 ! !!!:!!! , Θ • representative sequence examples 𝑋 ! from the sampling of the posterior likelihood (8) 𝑋 ! ~ 𝑃 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ
It may be noted that, in the continuous case, for non-Gaussian/non-linear settings, one cannot derive analytically nor computationally any of these expressions. Particle filtering may only provide a mean to approximate these estimates and distributions [START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian filtering[END_REF][START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF].

Here, we follow the discrete setting proposed by [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] for our geolocation model.

Besides, we further investigate model calibration issues. Overall, our model involves three parameters, namely the diffusion coefficient 𝐷 of the dynamical model and the standard deviations of surface and bottom temperature model, 𝜎 !"#$%&' and 𝜎 !"##"$ . In [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF], the authors only consider the Maximum Likelihood (ML) calibration of the dynamical model using a gradient-based maximization. By contrast, we further exploit the computational properties of the discrete setting and address a joint ML estimation of all model parameters using an iterative Expectation-Maximization (EM) framework [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. It provides a simple and robust implementation of the ML inference [START_REF] Do | What is the expectation maximization algorithm?[END_REF]. Formally, at iteration k, it comes to iteratively solve for the maximization of the expectation of the joint log-likelihood of the observation and state sequences conditionnally to the posterior distribution of the state sequence for the current parameter estimates.

(

) Θ = argmax ! 𝐸 !|!,! ! log 𝑝 𝑌 ! !!!:!!! , 𝑋 ! !!!:!!! Θ 9 
Maximization (9) can be regarded as a reweighted ML criterion where the posterior distribution acts as a weighing factor. The great interest of the EM algorithm is that they deliver a two-step iterative algorithm: the E-step computes the posterior distribution 𝑃 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! given current model parameter estimates; and the M-step updates model parameters according to a ML criterion reweighted by the posterior distribution. The EM algorithm [START_REF] Do | What is the expectation maximization algorithm?[END_REF] guarantees to increase the likelihood after each EM iteration, as such it can be regarded as a gradient-based procedure. However, their convergence depends on the initial parameter values. To improve the robustness to the initialization, we consider here a stochastic version of the EM algorithm, the Stochastic EM (SEM) procedure [START_REF] Diebolt | A stochastic EM algorithm for approximating the maximum likelihood estimate[END_REF]. It replaces the numerical evaluation of the

posterior distribution 𝑃 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ !
in the E-step by its sampling. Here, this sampling exploits the classical HMM forward-backward procedure (see [START_REF] Pedersen | Hidden Markov models for geolocation of fish[END_REF]. Overall, at iteration 𝑘, the SEM procedure involves two steps:

• the E-step comes to sampling N SEM trajectories 𝑋 ! !!!:! !"# from posterior 𝑃 𝑋 𝑌, Θ ! using the standard forward-backward HMM procedure [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF][START_REF] Pedersen | Hidden Markov models for geolocation of fish[END_REF];

• the M-step comes to updating estimate Θ !!! = 𝐷 !!! , 𝜎 !"#$%&' !!! , 𝜎 !"##"$ !!! as (10) 𝐷 !!! = ! ! ! !"# ⋅! 𝑋 !!! ! -𝑋 ! ! ! !!! !!! ! !"# !!! 𝜎 !"#$%&' !!! = ! ! !"# ⋅! 𝑆𝑆𝑇 𝑋 ! , 𝑇 ! , 𝐷 ! -𝑆𝑆𝑇 !"# 𝑋 ! ! ! !!! !!! ! !"# !!! 𝜎 !"##"$ !!! = ! ! !"# ⋅! 𝑆𝐵𝑇 𝑋 ! , 𝑇 ! , 𝐷 ! -𝑆𝑆𝑇 !"#$ 𝑋 ! ! ! !!! !!! ! !"# !!!
Updates (10) refer to classical ML parameter estimation applied to the sampled trajectories 𝑋 ! (!) . We let the reader refer to appendix 1 for the details of the derivation of these updates. This two-step SEM procedure is iterated until convergence (ratio between the average over the 20 last values of D and the new value of D below 1%). The SEM procedure can be regarded as a stochastic gradient-based scheme with improved convergence to the global estimate compared to classical EM or gradient-based algorithms [START_REF] Diebolt | A stochastic EM algorithm for approximating the maximum likelihood estimate[END_REF]. In addition, the proposed SEM procedure estimates both the diffusion coefficient and the observation errors, while the gradient-based ML setting considered in [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] only estimates the diffusion coefficient, the observation errors being set a priori.

Regarding its computational complexity, it relates to the number of sampled trajectory according to posterior distribution 𝑃 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ ! . By contrast, the computational complexity of gradient-based methods depends more heavily on the size of the discrete grid of possible locations.

II.5 Evaluation of the model performance

With the aim of evaluating the robustness of our geolocation model, synthetic data were generated with a diffusion coefficient of 30.0 km²/day and observation errors (in standard deviation) of 1.0°C for sea bottom temperature and 0.65°C for sea surface temperature (in agreement with the typical level of uncertainty of the reference geophysical fields). The synthetic data involve the simulation of sequences of positions (longitude, latitude) and depths over a 150-day time series. The simulated trajectory is generated using a random walk with the chosen diffusion coefficient, a release point in the Iroise Sea (48.5°N, 4.0°W), and a linear drift (1.5° toward South and 0.9° toward East). The simulated depths were drawn independently for each given day from a multinomial distribution with a probability mass function of 0.2 for the fish being at the surface only, 0.2 for the fish being at bottom only and 0.6 for the fish being at the surface and at the bottom. On these synthetic data, the gradientbased inference introduced in [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] and the proposed SEM-based inference were compared.

For the real data, a similar comparison was performed. In addition, a sensitivity analysis was undertaken. The objective was to evaluate and understand how the various model parameters, the geophysical reference fields and the recapture location influence the reconstruction of the trajectories.

III Results

III.1 Model calibration and inference for synthetic data

100 synthetic track data were simulated following our simulation procedure. All the simulated trajectories spread over the continental shelf of the Bay of Biscay and showed a southward migration in the Bay of Biscay (cf. an example simulated trajectory in Figure R1). Model calibration and inference were performed using both the SEM procedure and the gradient-based ML approach proposed by [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]. The SEM procedure was run until convergence. The estimated parameters were considered as the average values over the last 20 iterations. The SEM procedure converged for all the synthetic track data. For an example of the synthetic data (Figure R1), the estimated diffusion coefficient (33.8 km²/day) and the estimated observation errors (1.070°C for the sea bottom temperature and 0.697°C for the sea surface temperature) were close to the simulated true values (Table R1). In addition, the reconstructed trajectory patterns (the posterior distribution summed over time, the mean, the modal and the most probable tracks) were in agreement with the simulated trajectory (Figure R2). With observation errors set to the simulated true values or to the SEM estimates, the gradient-based ML estimates of D were respectively 32.4 km²/day and 31.2 km²/day, corresponding to relative differences with the SEM estimate of 7.7% and 4.1% smaller respectively.

Both estimates were close to the SEM estimate (Table R1), showing that both techniques were coherent. The inference capacity of the SEM procedure as well as the coherence between both approaches were checked for the remaining synthetic data. The performance of the SEM estimator was quantified over 100 simulations. Two metrics were considered: the coefficient of variation (CV) and the 95% credible interval (CI) of the parameter estimates (Table R2). In Bayesian statistics, a credible interval is an interval in the domain of a posterior probability distribution of the parameter, which differs from the frequentist confidence interval. The CV was higher for the coefficient of diffusion than for the observation errors (42% vs 7%). Then, all parameters estimates were within the 95% CI meaning that they were unbiased. 

III.2 Model calibration and inference for real data

Daily DST temperature and depth series from a representative fish (tag A05392) was used as a real case study. The model parameters were estimated using the SEM procedure. The algorithm converged after about 50 iterations (Figure R3). The estimated model parameters were D = 27.3, σ surface = 0.367, and σ bottom = 1.859. The reconstructed tracks according to the different criterion (MAP, MPM and mean tracks) looked consistent to one another, i.e. close to each other over the time series (Figure R3).

In addition, the reconstructed tracks seemed plausible relative to the sea bass ecology. Thus, over a year of data (383 days), the tagged fish spent some time in the Iroise Sea, then undertook a migration toward the south-east in the Bay of Biscay, stayed there for a while, and moved back to the Iroise Sea, thus completing a annual migration cycle. With observation errors set to the typical uncertainty levels, the gradient-based ML estimate of D is 30.1 km 2 /day. The two techniques of calibration and inference result in some small discrepancies in the estimated parameters, however the reconstructed trajectory patterns were coherent (not shown). To ascertain that the trajectory reconstructed by our geolocation model is robust, one must assess its sensitivity to the various model parameters, the geophysical reference fields and the recapture location. 

III.3 Sensitivity analysis

First, the sensitivity to model parameters was evaluated by inferring trajectories for different sets of model parameters. Practically, 3 nominal values of D, σ surface and σ bottom were chosen in a range encompassing gradient-based ML estimates of D and typical uncertainty levels for the observation errors. The trajectories were reconstructed using these 9 possible sets of model parameters (Figure R4). Posterior distributions summed over time were compared to the one reconstructed with the reference nominal parameter values (i.e. D = 30, σ surface = 0.55 and σ bottom = 1.73). To compare pairwise maps, the difference in log scale between cumulated probabilities was computed for each grid cell.

Basic statistics as mean, variance and coefficient of variation (CV) were derived (Table R3). We observed that the posterior distribution summed over time spread in space with the increase of the observation errors and the diffusion coefficient. The trajectory patterns were modified locally but not globally. Given the nominal parameter values, the shrinking of the posterior distribution summed over time were larger in average (negative mean values) and more variant with the decrease of the coefficient of diffusion, then the observation error at the surface, finally the observation error at the bottom. The spreading of the posterior distribution summed over time was larger in average (positive mean values) and more variant with the increase of the coefficient of diffusion, then with the observation error at the surface, and the observation error at the bottom. Table R3: Basic statistics (mean, variance, and coefficient of variation) computed from the difference between map of the posterior distributions summed over time of the reference nominal trajectory and that of the nominal trajectories. Note that cumulated probabilities of the posterior distributions were considered in log scale. Second, the sensitivity to geophysical reference fields was evaluated. We inferred trajectories using either satellite-derived SST or MARS SST. The use of different geophysical fields for the SST makes a noticeable difference in the inferred trajectories (Figure R5). When using satellite based SST, inferred trajectory pattern showed an entire migration cycle going toward the south and then back to the North. One can note two zones where the fish staid longer (one in the Iroise Sea and one in the South). In between these zones, the fish moved rapidly and in an oriented manner. By comparison, when using MARS SST, the inferred trajectory did not show such pattern. The trajectory was still cyclic, but this time the fish movement was more regular along the trajectory except at the end. In addition, the fish went less South and more toward the West. The use of observations (satellite-based SST) over model outputs (MARS-based SST) were eventually favored as the satellite data are more precise, and the reconstructed tracks with satellite based SST were more coherent (MAP, MPM and mean track close to each other) than with models outputs. Given this analysis, the two zones where the fish stayed longer were interpreted as feeding and spawning grounds, whereas the rapid move between zones were interpreted as fish migration.

Figure R5

. Left) Reconstructed trajectory using satellite data for the sea surface temperature. Rigth)

Reconstructed trajectory using MARS 3D model data for the sea surface temperature.

Last, the sensitivity to the presence/absence of recapture location was evaluated. For two representative tags, their trajectories were reconstructed with and without the recapture location (Figure R6). We observed that the inferred trajectories did not show important differences in both cases. The general trajectory patterns were conserved. Only the last days of the trajectories showed some differences, demonstrating that the geolocation model was robust. 

IV Discussion

IV.1 Inference method

A HMM-based model allowing the undersea geolocation from Temperature-Depth DSTs has been successfully implemented. It can be regarded as an extension of the model developed by [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]. In comparison, it has the advantage of jointly estimating all model parameters i.e. the coefficient of diffusion of the dynamical model, as well as the errors of the observation model. To achieve the joint estimation of movement and observation parameters, we consider a stochastic version of the EM algorithm. There were three main reasons. First, it might be stressed that EM procedures can be regarded as gradient-based optimizers. Different studies have compared convergence properties of EM and classical gradient-based optimizers. For instance, in [START_REF] Minami | Convergence speed and acceleration of the EM algorithms[END_REF] reports the good global convergence properties of the EM algorithm but greater convergence speed of quasi-Newton optimizer. Second, an interesting feature of the stochastic EM algorithm for the considered geolocation model is that it relies on previously developed model components; the sampling of the posterior distribution of the state-sequence using a forward-backward procedure [START_REF] Pedersen | Hidden Markov models for geolocation of fish[END_REF][START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] , and the ML estimation of observation and movement model parameter. As such, it does not require additional derivations of the first-and second-order derivatives as required by classical gradient-based techniques. Third, all deterministic gradient-based techniques are strongly dependent on the initialization of model parameters. The stochastic EM procedure ensures a greater robustness to these initial parameter values. This improves the convergence to the global solution, and avoids the reconstruction to be caught in a local solution.

Then, the joint estimation allowed having no a priori assumptions on model parameter values. This was in agreement with the lack of knowledge available in the natural environment for the most sensitive model parameter, the coefficient of diffusion (Figure R4 and Table R3). Only maximum swimming speed of juvenile sea bass from a controlled environment were accessible [START_REF] Killen | Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass[END_REF], which was not satisfactory. For the observation errors, the typical levels of uncertainty were provided with the satellite and model output data, however these values were averages in space and time over a large domain, which might not be relevant locally when reconstructing trajectories (e.g. impact of clouds on the local error). Otherwise, the undersea geolocation is achieved using sea temperature and depth rather than tide signals as in [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]. Tide signals were not appropriate in our case first because the sea bass seldom shows demersal behavior (with clear tidal signal on depth time series), and second because the Bay of Biscay does not have contrasted phase and amplitude tidal signals as observed in the North Sea. For these reasons, the sea temperature was considered as it revealed contrasted geophysical conditions allowing the reconstruction of the trajectory of an active swimmer fish. However no behavioral switches were included in our geolocation model in order to develop our inference method in a simpler framework. The model is robust to model parameters as demonstrated by the sensitivity analysis with the convergence of the byproduct trajectories (mean, MPM and MAP tracks).

IV.2 Observation model

In the hidden Markov model framework, the observation model relates at every time step the extent to which the observation and the state (here the position) are coherent. Here, sea temperature and depth series were used as observation variables. However various other variables were used for more general trajectory reconstruction problems with or without irregularly recorded error-prone positions. As detailed hereafter, each observation variable and associated geophysical field has its pros and cons.

Light-based geolocation is mostly adapted for transoceanic migrations [START_REF] Musyl | Ability of archival tags to provide estimates of geographical position based on light intensity[END_REF][START_REF] Royer | A state-space model to derive bluefin tuna movement and habitat from archival tags[END_REF]. Tide-based geolocation required environments where the phase and amplitude of the tidal signals are contrasted within the study area such as the North Sea for instance [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF].

In addition, fish need to exhibit resting periods where tide signals can be recorded with the pressure sensors. Regarding temperature-based geolocation, its success may depend on the contrast exhibited by the water masses explored by the fish. In other words, it required fish moving in water masses showing significant temperature gradients. That is the reason why our observation model is based on daily minimum and maximum temperature per depth layer. Alternative statistics could have been considered to summarize the daily temperature explored by the fish, but they would not maximize temperature contrast as much as the extreme values. Among the geophysical parameters of interest, salinity also appears as a relevant variable to infer fish movement in coastal or estuarine areas, especially when addressing diadromous species movement ecology. To our knowledge, only one application reported the use of salinity observations to geolocate fish (Pedersen et al., 2011b). The combination of several observation variables (temperature, tide signals, and salinity) is also an appealing future direction to increase the precision of the reconstruction in areas where it is relevant (e.g. in the English channel and in the North Sea).

The reconstruction from synthetic data showed that the geolocation model performed well. For real data, the model appeared robust to the absence of recapture position. This is quite important, as tags are not always recovered where the fish dies (e.g. captured by professional or recreational fishermen).

Tags can be found stranded on the beach by hikers thanks to a lightly buoyant flotation "jackets" or within the seafood industry without the possibility to trace the fish back to the fisherman. In both cases, fish death can be inferred retrospectively, and the reconstruction is still doable increasing significantly the number of reconstructed tracks. The model was also robust to model parameters, however the reconstruction may be affected through several other aspects. Contrary to synthetic data, real data present some days where the fish is only in one of the layers (surface or bottom layer), or worse in none of them (i.e. between the surface and the bottom for an entire day). For the former, the observation likelihood is resolved only with one temperature field instead of two, unlike the latter, for which no observation are available, and the likelihood is equally probable all over the domain. These aspects have a negative impact on the reconstruction. Specifically, the more the proportion of days with no layers visited by the fish relative to the total days at liberty is high, the more uncertain the reconstruction will be. The proportion of days spent in 0, 1 and 2 layers can be used an index to specify the quality of the reconstruction. For the representative tags considered for this study, these proportions were respectively 0.8%, 61.3% and 37.9% for the tag A05392, and 2.8%, 30.0% and 67.2% for the tag A06226. Although there were some undetermined days, the number of days with 1 or 2 layers visited was high enough to achieve a coherent reconstruction, as stressed by the sensitivity analysis. Furthermore, we pointed out that the type of reference geophysical fields (satellite based SST vs. MARS based SST) has an impact on the reconstruction. As stated earlier, observation data should be favored over model outputs. In the proposed implementation, we considered a simple Gaussian observation model. More advanced statistical models may be investigated to better account for the different types of noise and uncertainties (e.g., potential low-consistency patterns between the satellite-derived and MARS SST fields, differences between the very superficial temperature conditions measured by the satellite and the temperature conditions in the upper sea layer (0-10m), diurnal sea surface temperature cycles,….). The calibration of these models could combine both prior calibration from in situ datasets (for instance, for possible temperature offsets between the surface and the subsurface) as well as model parameter inference from the processed DST data.

Regarding the depth observation model, our approach disregards the uncertainty inherent in comparing the depth observation with the bathymetry. The depth observation from the tag has a minor uncertainty, but the main uncertainty comes from the potential variability of the bathymetry within a grid cell. The bathymetry is a 4x4 km grid. Because of this size it is very unlikely that the seabed is flat within each grid cell. It is more likely that the value in a grid cell of the 4x4 km bathymetry map represents some mean depth contained within the grid cell. Using the current depth model a problem arises if the fish visited a deep part of the grid cell. In the comparison with the bathymetry the grid cell would be excluded because the observed depth was deeper than the mean of the cell (or whatever the cell value represents) thus imposing a bias in the geolocation. A more continuous approach (as in [START_REF] Pedersen | Hidden Markov models for geolocation of fish[END_REF][START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF] for the depth data likelihood could resolve this, either through the estimation of this uncertainty prior to running the model, or by including the uncertainty within the current estimation framework. Here, a parameter-free binary likelihood with a threshold set to the local bathymetry was considered to keep the model as simple as possible. This binary model could also account for some depth uncertainty by setting the threshold to a percentage greater than the local bathymetry (e.g., 110%, 120% depending on priors on the uncertainty level...). Numerical experiments have shown no significant changes with such parameterization. A continuous depth model (as in [START_REF] Pedersen | Hidden Markov models for geolocation of fish[END_REF][START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF], including some margin parameter, could also be considered and calibrated using the SEM algorithm. It will involve the same E-step and will complement the Mstep with the update of depth parameters according to a weighted ML criterion. Future work could address this issue. However, as stated above, for the considered case-studies, we do not expect significant added-value from such a model as the depth information is rather a secondary cue compare to the temperature information.

Given the uncertainty on the recapture information, the SEM also delivers as a by-product the posterior variance of the recapture position. Contrary to movement and temperature model parameters, we did not update the variance of the recapture position from the posterior variance within each EM iteration. Additional experiments with this update could be undertaken in a future work, however we are not expecting any significant global change in the reconstructed trajectories, as demonstrated in the sensitivity analysis to the recapture location.

IV.3 Dynamical model

The dynamical model described the time dynamics of the positions of the fish. In our case, such dynamics were ruled by one parameter, the coefficient of diffusion. As such, we considered a simple constant (constant mean velocity) and isotropic (no preferred movement orientation) prior model. This is a rather simple dynamics when modeling a migratory species such as the European sea bass [START_REF] Pawson | The distribution and migrations of bass, Dicentrarchus labrax L., in waters around England and Wales as shown by tagging[END_REF]. Indeed, movement characteristics are expected to vary depending on the activities of the fish. For instance, the movement steps during foraging activity are more likely to be short and omnidirectional [START_REF] Barraquand | Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts[END_REF], whereas they might be large and oriented during migration behavior [START_REF] Bowler | Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics[END_REF]). An alternative model could thus include some behavioral switches like in [START_REF] Pedersen | Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching[END_REF]. In this study, they estimated an activity level as a time-continuous indicator function to rule cod behavioral switches. The estimation was done before the geolocation step, because the distinction between different behaviors was obvious and it allowed preserving the tractability of the problem. For the sea bass, the behavioral switches could be derived from a joint analysis of horizontal and vertical data. Because in this case the distinction may not be obvious, the HMM setting should involve an additional latent variable referring to some hidden behavioral state (Pedersen et al., 2011a). Such an approach would significantly increase the computational complexity but appears tractable. The behavioral inference based on Hidden Markov models is quite common and recommended in other domains, for instance in marine ecology [START_REF] Patterson | Classifying movement behaviour in relation to environmental conditions using hidden Markov models[END_REF]Pedersen et al., 2011a) or in fisheries (Vermard et al., 2010;Walker and Bez, 2010;[START_REF] Joo | Hidden Markov Models: The Best Models for Forager Movements[END_REF][START_REF] Gloaguen | An autoregressive model to describe fishing vessel movement and activity[END_REF]. Alternative implementations based for instance 
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Overall, the M-step of the SEM procedure comes to update model parameters as:
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It may be stressed that these updates may be regarded as the computation of the ML estimates from the trajectories sampled from the E-step. Hence, as mentioned in the main text, the SEM algorithm involves two procedures: the sampling of trajectories according to the posterior distribution 𝑝 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ (!) (E-step) and the update of model parameters from ML estimates computed for the sampled trajectories (M-step). The later extend to any other observation and/or dynamical model. Hence, the SEM procedure provides an efficient and robust model calibration framework, while requiring no specific mathematical derivation.
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VIII

  Appendix: derivation of the updating equations (M-step) of the SEM algorithm.This appendix shows that the M-step of the SEM algorithm comes to compute ML (Maximum Likelihood) estimates of model parameters from the trajectories sampled during the E-step (cf. section II.4). The SEM algorithm comes to iteratively maximize the expectation of the joint log-likelihood of the observations and the states conditionally to the posterior distribution for the current parameter estimates (equation 9 in the manuscript):Θ = argmax ! 𝐸 !|!,! ! log 𝑝 𝑌 ! !!!:!!! , 𝑋 ! !!!:!!! ΘIt resorts to solve:𝜃 (!!!) = argmax ! log 𝑝 𝑌 ! !!!:!!! , 𝑋 ! !!!:!!! Θ 𝑝 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ (!) 𝑑𝑋Considering an approximation of this integral from a sum over samples from posterior distribution𝑝 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ ! ,the SEM algorithm amounts to:𝜃 (!!!) = argmax ! log 𝑝 𝑌 ! !!!:!!! , 𝑋 ! from 𝑝 𝑋 ! !!!:!!! 𝑌 ! !!!:!!! , Θ(!) during the E𝑝 𝑌 ! !!!:!!! , 𝑋 ! !!!:!!! Θ , we can decompose the above expression as:𝜃 (!!!) = argmax ! log 𝑝 𝑌 ! !!!:!!! 𝑋 ! Θ = 𝜎 !"#$%&' , 𝜎 !"##"$ , 𝐷Setting the partial derivative with respect to each model parameters to 0, we derive the parameter updates: !) 𝑆𝑆𝑇 𝑋 ! , 𝑇 ! , 𝐷 ! -𝑆𝑆𝑇 !"# 𝑋 !

  

  

  The Brownian random walk model amounts to stating the hidden sequence as a first-order Markov chain, where the dynamical model (1) defines the conditional transition 𝑃 𝑋 !!! 𝑋 ! from current state 𝑋 ! to next state

	𝑋 !!! .
	The observation model resorts to defining observation likelihood 𝑃 𝑌 ! 𝑋 ! . At each time t, it evaluates
	the extent to which observation Y t and state X t are coherent. Whereas, in most geolocation models,
	one can exploit an analytically-derived relationship between the observation and the state (e.g. the
	Kalman filter for the bigeye tuna (Sibert

Table R1 :

 R1 Simulated parameter values and estimated parameters for the synthetic data using the two different inference techniques. The gradient-based approach estimates only D with observation errors fixed either to the true values or that of the SEM estimates.

		D	σ surface	σ bottom
		(km²/day)	(°C)	(°C)
	Simulated true values	30.0	0.673	1.050
	SEM-based ML estimates	33.8	0.697	1.070
	Gradient-based ML estimate with observation errors set to the true values	32.4	0.673	1.050
	Gradient-based ML estimate with observation errors set to the SEM estimates	31.2	0.697	1.070

Table R2 :

 R2 Average

	Parameters Average of true values Mean	Std. CV (%) Lower 95% CI Upper 95% CI
	D	29.69 26.74 11.40	43	8.57	48.68
	σ surface	0.643 0.668 0.047	7	0.589	0.766
	σ bottom	0.994 1.045 0.083	8	0.906	1.201

of true parameter values and metrics of estimation performance (i.e. mean, standard deviation, coefficient of variation (CV) and credible interval (CI)) computed over 100 simulations.

  Sibert, J.R.,Musyl, M.K., Brill, R.W., 2003. Horizontal movements of bigeye tuna (Thunnus obesus) near Hawaii determined by Kalman filter analysis of archival tagging data. Fish. Oceanogr. 12, 141-151. Vermard, Y., Rivot, E., Mahévas, S., Marchal, P., Gascuel, D., 2010. Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models. Ecol.Model. 221, 1757-1769. Viterbi, A.J., 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260-269.Walker, E., Bez, N., 2010. A pioneer validation of a state-space model of vessel trajectories (VMS) with observers' data.Ecol. Model. 221, 2008-2017. 

on an augmented particle filter [START_REF] Breed | State-space methods for more completely capturing behavioral dynamics from animal tracks[END_REF] also exist, but they may be less appropriate than the discrete HMM setting as detailed herein. Overall, the development of different geolocation models (with and without behavioral switches) will naturally raise the question of the model comparison.

Within a classical approach based on the Bayes theorem, which geolocation model provides the best reconstruction result may be answered by inspecting the likelihood of the residuals and keeping the model which depicts some optimal trade-off between the maximization of this likelihood and model complexity. Classically, this can be done computing the commonly used information criteria such as the Bayesian or the Aikaike's Information Criterion (BIC, AIC).

V Conclusions

A HMM-based model allowing the undersea geolocation from Temperature-Depth DSTs has been successfully implemented. The SEM algorithm provides an efficient and robust solution to infer all geolocation model parameters (i.e. both the observation errors and the coefficient of diffusion). The reconstruction for both synthetic and real data were robust. Geolocation results stressed the relevance of satellite-derived SST, compared to numerical model outputs and we reported, for the first time, consistent reconstructions of sea bass migratory patterns within the bay of Biscay. This method is generic and could be applied to the geolocation and tracking of many other pelagic fish such as tuna, salmon, shark or ray. Such geolocation models are particularly relevant to better understand the spatial dynamics and structuring of fish populations, which may improve fish stock delineations often poorly addressed in current management framework.
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