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A REMARK ON VANISHING CYCLES WITH TWO STRATA

LE DUNG TRANG AND DAVID B. MASSEY

ABSTRACT. Suppose that the critical locus ¥ of a complex analytic function f on affine space
is, itself, a space with an isolated singular point at the origin 0, and that the Milnor number
of f restricted to normal slices of ¥ — {0} is constant. Then, the general theory of perverse
sheaves puts severe restrictions on the cohomology of the Milnor fiber of f at 0, and even more
surprising restrictions on the cohomology of the Milnor fiber of generic hyperplane slices.

1. SETTINGS

Let U be an open neighborhood of the origin in C**!, and f : (U,0) — (C,0) be a complex
analytic function. Let (X, 0) denote the germ of the complex analytic hypersurface defined by
this function.

The Milnor fiber, Fy, of f at the origin has been a fundamental object in the study of the
local, ambient topology of (X, 0) since the appearance of the foundational work by Milnor in
[11]. In [11], Milnor proves, among other things, that, if f has an isolated critical point at O,
then the homotopy-type of Fy is that of a finite one-point union, a bouquet, of n-spheres, where
the number of spheres is given by the Milnor number, po(f).

It is natural to consider the question of what can be said about the homotopy-type, or
even cohomology, of Fp in the case where the dimension of the critical locus (at the origin),
s :=dimg X f, is greater than 0.

One of the first general results along these lines was due to M. Kato and Y. Matsumoto in
[4] who proved that, in the case the critical locus of the function f at the origin is s, the Milnor
fiber of f at the origin is (n — s — 1)-connected.

Another general, more computational, result was obtained by the first author, in [5], where
it is shown that, up to homotopy, the Milnor fiber of f is obtained from the Milnor fiber of
a generic hyperplane restriction f|, by attaching (I‘ 7,1 - X)o n-cells, where (P #.H - X)o is the
intersection number of the relative polar curve I'y g with the hypersurface X. In fact, the result
of [4] can be obtained directly from [5] (see [2]).

A particular case of the main result of [5] is when the polar curve is empty (or, zero, as a
cycle), so that the intersection number above is zero, and the Milnor fiber of f and of f},, have
the same homotopy-type: that of a bouquet of (n — 1)-spheres.

If ¥ f is smooth and 1-dimensional, it is trivial to show that I'y z being empty is equivalent
to the Milnor number of the isolated critical point of generic transverse hyperplane sections
being constant along ¥ f. In fact, if 3 f is 1-dimensional, one can show, using [6], that I's i
being empty is equivalent to X f is smooth and the Milnor number of the isolated critical point
of generic transverse hyperplane sections being constant along > f. Thus, constant transverse
Milnor number implies the constancy of the cohomology of the Milnor fiber F}, of f at points p
along X f.

If X f is smooth, of arbitrary dimension s, then, proceeding inductively from the 1-dimensional
case, one obtains that, if the generic s-codimensional transverse slices of f have constant Milnor
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number along X f, then the reduced cohomology of the Milnor fiber Fy, of f at p, is constant
along X f, and is concentrated in the single degree n — s.

What if ¥ f is smooth, of dimension s, and the generic s-codimensional transverse slices of f
have constant Milnor number on X f — {0}, but, perhaps, the transverse slice at 0 has a different
(necessarily higher) Milnor number? If s > 2, then, it follows from Proposition 1.31 of [9] that,
in fact, the Milnor number of the s-codimensional transverse slices of f have constant Milnor
number on all of ¥ f, i.e., there can be no jump in the transverse Milnor numbers at isolated
points on a smooth critical locus of dimension at least 2. The remaining case where s = 1 was
addressed by the authors in [7].

In this brief paper, we address the case where:
(1) Xf — {0} is smooth near 0;
(2) s> 3;
(3) the Milnor number of a transverse slice of codimension s of the hypersurface f=1(0) is
constant along X f — {0} near 0; and
(4) the intersection of ¥ with a sufficiently small sphere S, centered at 0 is (s—2)-connected.

Under these hypotheses, we have:

Theorem 1.1. The Milnor fiber Fo of f at O can have non-zero cohomology only in degrees 0,
n—s,n—1andn.

Corollary 1.2. Suppose that s > 4 and, for a generic hyperplane H, the real link S N X N H
of XN H at 0 is (s — 3)-connected. Then, the Milnor fiber Ffy of f|,, at 0 can have non-zero
cohomology only in degrees 0, n — s and n — 1.

2. AN EXACT SEQUENCE

Let Z;, be the constant sheaf on I/ with stalks isomorphic to the ring of integers Z. If ¢ is
the functor of vanishing cycles of f, we know (see, e.g., [3], Theorem 5.2.21) that the complex
¢ ¢[—1]Z2[n + 1] is a perverse sheaf (see, e.g., [1] p. 9) on f~1(0). Let P* denote the restriction
of this sheaf to its support ¥, which is the set of critical points of f inside f~1(0).

We know that, for all x € 3, we have

H*B(z) N P*) = HFP®), =~ H'"*(F,;7),

where F, is the Milnor fiber of f at z and B(z) is a sufficiently small ball (open or closed, with
non-zero radius) of C"™! centered at x. Let B*(z) = B(z) — {x}.
Then, we have the exact sequence in hypercohomology:

— H*B(z) N X, B*(z) N Z; P*) — H*B(x) N ; P*)
— H*(B*(z) N Z; P*) — H*(B(z) N Z,B*(z) N I; P®) —
Since P* is perverse, using the cosupport condition (see e.g. [1] p. 9):
H 1 (B(z) NS, B*(2) N X;P*) =0
for —k + 1 < 0. The support condition (see loc. cit.) leads to:
H*B(z) NS, P*) = H" W (F,;Z) =0
for k > 0. Therefore,
H" *(F,;7)
for —k+1 <0 and:

1

H*B(z) N Z;P*) = H*B*(z) N ; P*)

H*(Fy;Z) = 0
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for k > n.

3. TOPOLOGICAL HYPOTHESES

Throughout the remainder of this paper, we assume, as in the introduction, that:

(1) s >3 (and X f might be singular at 0).

(2) There is an open neighborhood U of the origin 0, such that the Milnor number of
a transverse slice of codimension s of the hypersurface f~1(0) is constant along the
singular set X NU(=XZf NU) of X NU outside of 0, and equal to u.

(3) The intersection of ¥ with a sufficiently small sphere S, centered at 0 is (s—2)-connected.

Note that (1) and (3) imply, in particular, that S N¥ is simply-connected. Also (2) implies that
(E-{0ph)nU = (Zf —{0}) NU is smooth.

As we discussed in the introduction, without the language of sheaves, the assumption on
the constancy of the Milnor number of f, restricted to a normal slice to ¥, is equivalent to
saying that our shifted, restricted vanishing cycle complex Przf{o} is locally constant, with stalk

cohomology Z* concentrated in degree —s. (The technical details of the sheaf result are non-
trivial; see Theorem 6.9 of [9] and Corollary 3.14 of [10].) As B*(0)NX is homotopy-equivalent to
Se N3, which is simply-connected, it follows that P} is isomorphic to the shifted constant

R |B*(0)ns
sheaf (Z") 5. 0)s: [5]-
This implies that
H*B*(0)N%;P*) = H*(B*(0)N%;Z4) = H (S, n%;ZM).
Thus, as S: N X is (s — 2)-connected, we have:
H™*(B*(0)N%;P*) = HO(S.N%;ZM) = ZH,
and, if 2 <k <s—1:
H*B*(0)N%;P*) = HFS.Nn%;z2") =0.

4. PROOFS

Combining the results from the previous two sections, we find that, if the real link of the
critical locus ¥ at 0 is (s — 2)-connected and s > 3, then we have for the Milnor fiber F' of f at
0:

H*(F;Z) = HY(S.n%;2¢) = 7
H" M(F;Z)=0,if2<k<s—1.
flk(F; Z) =0, for k <n — s —1, because of the result of [4]
ﬁk(F; Z) = 0, for k > n, because of the support condition.

This proves the theorem.

Suppose now that, in addition to our other hypotheses, s > 4 and, for generic hyperplanes
H,S.NXNH is (s — 3)-connected. Then, f|, satisfies the hypotheses of the theorem, except
that n is replaced by n — 1 and s is replaced by s — 1. Thus, for the Milnor fiber Fg:

]Ej:n*s(FH;Z) >~ 7ZM
H*(Fiy:Z)=0,ifk#n—2n—1.
However, by the main result of [5], the Milnor fiber F' is obtained from the Milnor fiber Fiy by
attaching cells in dimension n. Hence, H"~%(Fy;Z) = H"%(F;Z), which we know is 0. This
proves the corollary.
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5. WHEN THE CRITICAL LOCUS 1S AN ICIS

Assume that the critical locus ¥ of f is an isolated complete intersection singularity (ICIS)
of dimension s > 4.

For an ICIS, the real link S. N'¥ is (s — 2)-connected (see [8]). In addition, for a generic
hyperplane H, the critical locus of f,, which equals ¥ N H, will also be an ICIS, but now of
dimension s — 1. Thus, Sc N XN H is ((s — 1) — 2)-connected. Therefore, we are in the situation
that we have considered above.

In his preprint [12] M. Shubladze asserts that if the singular locus ¥ of f is a complete
intersection with isolated singularity at 0 of dimension > 3 and the Milnor number for transverse
sections is 1 along X \ {0}, the Milnor number of f at 0 has cohomology possibly # 0 only in
dimensions 0, n — s and n.

The results above show that, under the hypothesis of M. Shubladze, one obtains in a general
way that the cohomology of the Milnor fiber of f at 0 is possibly # 0 in dimension 0, n — s,
n—1 and n, and a similar result as the one of M. Shubladze in dimension 0, n — s, n — 1 for the
cohomology of the Milnor fiber of f restricted to a general hyperplane section if dim ¥ > 4.

Shubladze’s result would follow immediately from our corollary, if it were true that every
function such as that studied by Shubladze can be obtained as a generic hyperplane restriction
of a function satisfying the same hypotheses. We cannot easily prove or disprove this result.

6. WHAT IF S N X IS A HOMOLOGY SPHERE?

One might also wonder what happens if the real link of ¥ is (s — 1)-connected. This would, in
fact, imply that Sc.NY is a homology sphere. In this case, our earlier exact sequence immediately
yields that H"(F;Z) = 0.

A special case of S N'Y being a homology sphere would occur if 3 were smooth. However, in
this case, when s > 2, Proposition 1.31 of [9] implies that the Milnor number cannot change at
0, i.e., we have a smooth p-constant family, and so the non-zero cohomology of F' occurs only
in degrees 0 and n — s.
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