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Abstract

In the present paper a method to reconstruct the 2D elasticity tensor from observations is

proposed. The novelty of the method, compared to other ones, is that this approach is based

on the identification of the invariants, rather than the components, of the elasticity tensor. The

main advantage is that all the information concerning the material, such as its symmetry class

and the orientation of the tested sample, are obtained during the reconstruction process. We

believe that such an approach based on intrinsic quantities may find interesting applications for

the identification of mechanical parameters based on full-field measurements.
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1. Introduction

These last years have seen a renew of interest toward the use of tensor invariants in continuum

mechanics [13, 12, 4, 29, 17]. This renew is driven by the will to better understand links that exist

between microstructure and overall elastic behavior. Since, and contrary to tensor components,

tensor invariants provide intrinsic information on the material, their use is more appealing for

applications in which material evolution occurs: damage mechanics [7, 18], optimal conception

[26].

The topic of the present article is slightly different from the previously evoked applications

and concerns the labelling of elastic materials from the invariants of the elasticity tensors. This

subject was, up to authors knowledge, first discussed by Boehler et al. [10] in the context of 3D

elasticity. And if, despite some progresses [10, 4, 28], the problem remains open in 3D space1, the

situation is clear for 2D elasticity. In this case the set of fundamental polynomial invariants (also

referred to as an integrity basis) is known since the end of the 90’ [20, 8, 33]. Those invariants

∗Corresponding author
Email address: Nicolas.auffray@univ-mlv.fr (N. Auffray)

1In fact the question has been theoretically solved in [28] but some works are still needed to put the result into

an amenable form.
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were discovered and rediscovered at different times, hence multiple names are attached to them.

But as demonstrated in an important review paper [17] these different approaches are strictly

equivalent.

The aim of the present paper is two-fold. First, to give a mechanical interpretation of

fundamental polynomial invariants. Such a picture is important in order to promote their

use. Second, to propose numerical experiments to directly measure them. This point proves

that, at least in 2D, such quantities are observable, and may give some hints on how to design

experimental testing devices to quantify them. Eventually, we show how to reconstruct elasticity

tensors from invariants. Since symmetry classes are encoded by relations between invariants,

within this approach all the information about the elastic material is directly obtained. We

believe that this method may find interesting applications in the development of identification

methods of mechanical parameters based on full-field measurements [5].

The paper is organized as follows. In the first section basic facts about the 2D elasticity

tensor and its symmetry classes are summed-up. The next section introduces the harmonic de-

composition of the tensor and gives the expressions of polynomial invariants. The link between

invariants and symmetry classes is presented. In §.4 the harmonic decomposition is analysed in

terms of mechanical quantities such as the stress-tensor, and the strain-energy. As a result the

physical meaning of the elementary invariants is clarified and numerical experiments to measure

them (§.5) are proposed. In §.6, it is shown how to reconstruct the elasticity tensor from these

data. Some concluding remarks close this paper. Appendices are devoted to detail some techni-

cal aspects of the present study.

Notations: The following matrix groups will be considered:

• GL(2): the group of invertible transformations of R2, i.e. if F ∈ GL(2) then det(F) 6= 0;

• O(2): the orthogonal group, that is the group of all isometries of R2 i.e. Q ∈ O(2) iff

det(Q) = ±1 and Q−1 = QT , where the superscript T denotes the transposition. As a

matrix group O(2) can be generated by:

rθ
∼
:=


cos θ − sin θ

sin θ cos θ


 , 0 ≤ θ < 2π, and σx

∼
:=


1 0

0 −1




in which rθ
∼

is a rotation of θ angle and σx
∼

is the reflection across the x axis;

• SO(2): the special orthogonal group, i.e. the subgroup of O(2) of elements satisfying

det(Q) = 1. This is the group of 2D rotations generated by rθ
∼
;
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In this work, zero-th, first, second, fourth and eighth order tensors are denoted by a, a, a
∼
, a
≈

and a
⌢

respectively. The simple, double and fourth contractions are written ·, : and :: accordingly.

In index form with respect to an orthonormal Cartesian basis, these notations correspond to

a · b := aibi, a
∼

: b
∼
:= aijbij , a

≈
:: b

≈
:= aijklbijkl

where repeated indices are summed up. The sign := defines the quantity on the left-hand

side. The tensor product is classically denoted ⊗ while ⊗n stands for its n-th power. Vector

spaces will be denoted using blackboard bold fonts, and their tensorial order indicated by using

formal indices. When needed index symmetries are expressed as follows: (..) indicates invariance

under permutation of the indices in parentheses, and .. indicates invariance with respect to

permutations of the underlined blocks.

2. The space of 2D elasticity tensors

In the following E2 will be the physical 2-dimensional Euclidean space. The anisotropic

elastic behavior will be introduced within this framework. The definitions of material and

physical symmetries will be recalled, and the list of bi-dimensional elastic symmetry classes

finally provided.

2.1. Constitutive law

In the theory of linear elasticity for an anisotropic homogeneous body, the constitutive law

is a local linear relation between the second-order symmetric Cauchy stress tensor σ
∼

and the

second-order symmetric infinitesimal strain tensor ε
∼
:

σij := Cijlmεlm (1)

Since both σ
∼

and ε
∼

are symmetric with respect to index permutations, the elasticity tensor

inherits these minors symmetries:

Cijlm = Cjilm = Cjiml

These symmetries are condensed in the following notation: C(ij)(kl). Due to the potential energy

associated to the elastic behavior another index symmetry has to be taken into account:

Cijlm = Clmij

This so-called major symmetry is encoded in the notation: Cij kl. Hence, combined with the

minor ones, we obtain the elastic index symmetries: C(ij) (kl). As a consequence the vector space
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of elasticity tensors is defined as2

Ela := {C
≈
∈ ⊗4

R
2|C(ij) (kl)}, dimEla = 6

This formulation of the elasticity law (1) is valid for any anisotropic material. In the following

subsection the concept of material and physical symmetries will be recapped.

2.2. Material symmetry & Physical symmetry

Let consider a body as a compact subset D0 of E2 having a microstructure M attached to

any of its material points P ∈ D0. Those points are located with respect to a reference frame

(R). The microstructure, which is represented by an open subset of R2 over P , describes the

local organisation of the matter at scales below the one used for the continuous description (see

fig.1):

Figure 1: What is hidden below a material point

For crystalline materials the microstructure is the crystal lattice, for polymers the organisa-

tion of polymeric chains, . . .. As for crystals, microstructures can possess invariance properties

with respect to orthogonal transformations Q ∈ O(2). Hence at each material point P , the set

of such transformations forms a point group GM(P ) ⊆ O(2) which describes the local material

symmetries, formally

GM(P ) := {Q ∈ O(2), Q · M(P ) = M(P )}

At the continuous macroscopic scale the detailed description of the microstructure is lost, and

information on the microstructure is contained in GM(P ). In the case of an homogeneous

medium the point dependence vanishes and GM(P ) = GM.

2It is worth noting that for being admissible, an elasticity tensor should further be positive definite. Since this

point plays no role in the present discussion this restriction will not be considered here.
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Linear constitutive laws are encoded by tensors: a tensor T is attached to each material

point P of D0, resulting in a tensor field that need not be continuous in general. In the present

situation, that is for the linear elasticity, the heterogeneous behavior is described by a field of

fourth-order tensor C
≈
(P ). If the material is homogeneous this tensor field is constant, and a

”unique”C
≈
describes the behavior. This hypothesis of material homogeneity will be assumed for

the rest of the paper.

As the material element is transformed, the physical property described over it is also trans-

formed in some related way. Hence a notion of physical symmetry group has to be introduced.

Since elasticity is described by a fourth-order tensor, the physical symmetry group is the sym-

metry group of this tensor, GC
≈
⊆ O(2):

GC
≈
:= {Q ∈ O(2) |QioQjpQkqQlrCopqr = Cijkl }. (2)

The link between these two notions is given by the Curie principle which states that the material

symmetry group (cause) is included in the physical symmetry group (consequence):

GM ⊆ GC
≈

More details concerning those notions can be be found in Zheng and Boehler [38].

2.3. Symmetry classes and strata

The notion of symmetry group, as defined in the previous subsection, is relative to a specific

orientation of the material with respect to a given reference frame. If the material is rotated

both the elasticity tensor and its symmetry group will be transformed. Since the nature of the

material is left unchanged by this transformation those objects are not appropriate to charac-

terize intrinsically elastic materials. The collection of all elasticity tensors obtained from C
≈

by

O(2)-operations constitutes its O(2)-orbit:

OC
≈
:= {C⋆

ijkl ∈ Ela|∃Q ∈ O(2), C⋆
ijkl = QioQjpQkqQlrCopqr}

The C
≈
-orbit represents all the elasticity tensors associated to C

≈
, and hence is O(2)-invariant.

As a consequence OC
≈
characterizes the elastic material which was represented by C

≈
in a specific

orientation w.r.t (R). In the same way two symmetry groups GD
≈
, GC

≈
are said O(2)-conjugate,

if

∃Q ∈ O(2), GD
≈
= QGC

≈
QT . (3)

The symmetry class of C
≈
is the set [GC

≈
] of O(2)-subgroups conjugate to GC

≈
:

[GC
≈
] := {G ⊆ O(2)

∣∣∣G = QGC
≈
QT , Q ∈ O(2)}. (4)
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In other words, the symmetry class of C
≈

is its symmetry group modulo its orientation. If two

tensors belong to the same orbit, they have the same symmetry class, the converse is false.

In a bidimensional space, the symmetry class of a tensor is conjugate to a closed subgroup

of O(2). The collection of these subgroups are known and are elements of the following set [1]:

{Id,Zσx

2 ,Zk,Dk, SO(2),O(2)}k∈N>1

in which the following groups are involved:

• Id, the identity group;

• Zk, the cyclic group3 with k elements generated by r2π/k, a rotation angle of 2π/k;

• SO(2), the infinitesimal rotation group, the cyclic limit group for k → ∞;

• Zσx

2 , where σx denotes the mirror transformation through the x axis;

• Dk, the dihedral group with 2k elements generated by r2π/k and σx;

• O(2), the infinitesimal orthogonal group, the dihedral limit group for k → ∞.

It has been demonstrated that in 2D, there is only 4 different possibilities for the symmetry

class of an elasticity tensor [21, 33, 17]:

Name Digonal Orthotropic Tetragonal Isotropic

[GC
≈
] [Z2] [D2] [D4] [O(2)]

#indep(C≈
) 6 (5) 4 3 2

According to that classification, Ela can be divided into 4 sets that regroup tensors of each

type. More formally, Σ[G] is the stratum4 of tensors having symmetry group conjugate to

G ⊆ O(2). In other terms:

Ela = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)]

which means that any 2D elastic tensor belong uniquely to one of these strata. Tensor invariants

that will be introduced in the next section allow to label elastic materials. Since those quantities

are unchanged if the material is rotated/flipped, they provide an interesting way to designate

elastic materials. Furthermore certain sets of invariants, referred to as functional basis, have the

property to separate orbits, i.e. to uniquely label elastic materials.

3It has to be noted that Zπ
2 and Z2 are isomorphic as group but not conjugate.

4It is worth noting that strata are not linear subspaces of Ela. A detail discussion on the geometry of strata

is provided in Auffray et al. [4].
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3. Fundamental invariants

When speaking of tensor invariants some points have to be specified:

Group action Since the notion of an invariant quantity is relative to a group of transfor-

mations, the group has to be indicated. Invariants under O(2)− or SO(2)−action, for

example, are not the same [33, 17];

Functional nature The functional form under which invariants are sought need to be indi-

cated. According to the type of functions the size of the generating basis may vary widely

[34, 9]. Bases for polynomial invariants are usually referred to as integrity bases, while

those for general functions are called functional5 [35].

It is known that an integrity basis is a functional one, but the converse is false. Interest in

functional basis are related to their property to separate orbits [35]. Any set that separates

orbits can be used to label elastic materials in an unique fashion. This is the core point of our

interest in invariant theory.

Albeit being essential those points are, nevertheless, not always clearly specified in mechan-

ical publications. In the present paper, attention will be drawn to polynomial invariants under

SO(2)- and O(2)-action. A well-known set of invariants is constituted of the Kelvin moduli asso-

ciated with the eigenvalues of the elasticity tensor. It is important to note that those quantities

are algebraical but non polynomial. Furthermore the group action is no more O(2) in this case,

but O(3) [37]. Hence our object is not the study of Kelvin invariants even if relations exist

between these two sets.

To obtain polynomial invariants, the elasticity tensor has first to be decomposed into ele-

mentary tensors irreducible under considered group action. This first step is generally referred

to as the harmonic decomposition [25, 14, 33]. Polynomial invariants are then constructed from

the elements of that decomposition. Remarks concerning non-polynomial invariants that can be

found in the literature [13] are made. Following a geometric interpretation proposed by Forte

and Vianello [15, 17] a vector representation of the harmonic decomposition is introduced.

5It should be noted that for functional bases, the size of bases vary according to the functional nature of the

basis elements. But, in practice those basis elements are nearly always taken polynomial [36].
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3.1. Irreducible decomposition

To determine its integrity basis, the elasticity tensor need to be decomposed into irreducible

components6. This is achieved through a two-step process [33, 23, 17, 24]:

1. The tensor is decomposed into sub-tensors having same elementary index symmetries;

2. Traces are removed from the obtained set of intermediate tensors.

This process is summed-up in the following diagram:

Ela
Sym

xxqq
qq
qq
qq
qq
q

Asym=Id−Sym

""
❊❊

❊❊
❊❊

❊❊
❊

S(ijkl)

H
��

Rijkl

H
��

K
4 ⊕K

2 ⊕K
0

K
0

in which Sym and Id denote the full-symmetrizing and identity operations, while H stands for

the removing of successive traces. Spaces that appear in this decomposition are:

• S(ijkl) and Rijkl: those spaces are GL(2)-invariants [23, 24]. In reference to an historical

dispute concerning the structure of the elasticity tensor7, the complete symmetric part

(Sijkl ∈ S(ijkl)) will be referred to as the Cauchy part, while the remainder (Rijkl ∈ Rijkl)

will be called the non-Cauchy part.

• K
k: those spaces are O(2)-invariant and referred to as harmonic tensor spaces. The main

properties of harmonic tensors are of being totally symmetric and traceless. Their dimen-

sions are8:

dimK
k =





2, k ≥ 1

1, k = 0,−1

(5)

More explicitly, the tensor elasticity tensor is first decomposed into its Cauchy and non-Cauchy

parts:

C(ij) (kl) = S(ijkl) +R(ij) (kl)

6By irreducible components we mean sub-tensors that transform in elementary way under the considered group

action. For a deeper introduction we refer the reader to the following references [31, 14].
7In short, this quarrel opposed the French school of mechanics (Navier, Cauchy) to the English one (Green)

on the number of elastic constants needed to properly set an elastic problem. For a historical discussion on that

interesting topics we refer to [30, 11].
8 The uni-dimensional space K

−1 contains pseudo-scalars, i.e. quantities that change sign if the space orienta-

tion is reversed. Spaces of that type are not involved in the harmonic structure of the elasticity tensor.
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in which:

S(ijkl) =
1

3
(Cijkl + Ciklj + Ciljk) ; R(ij) (kl) =

1

3
(2Cijkl − Ciklj − Ciljk)

Then all traces are removed to obtain harmonic tensors [33]:

Dijkl = Cijkl −
1

6
(δijCkplp + δklCipjp + δikClpjp + δljCipkp + δilCjpkp + δjkCiplp)

+
Cpqpq

12
(5δijδkl − δikδjl − δilδjk)−

Cppqq

8
(3δijδkl − δikδjl − δilδjk)

aij =
1

12
(2Cipjp − Cpqpqδij)

λ =
1

8
(3Cppqq − 2Cpqpq)

µ =
1

8
(2Cpqpq − Cppqq)

Doing some algebra the following expression is reached9

Cijkl = Dijkl+
1

6
(δijakl + δklaij + δikajl + δjlaik + δilajk + δjkail)+λδijδkl+µ(δikδjl+δilδjk) (6)

which can be compressed using the following notation: C
≈
= φ(D

≈
, a
∼
, λ, µ). The formula (6) is an

isomorphism between the space of elasticity tensors and a direct sum of harmonic spaces:

Ela ≃
φ
K

4 ⊕K
2 ⊕ 2K0

with the following essential property

Q
⌢

(4) :: C
≈
= φ

(
Q
⌢

(4) :: D
≈
,Q
∼
(2) : a

∼
, λ, µ

)

where

Q
(4)
ijklmnop = QimQjnQkoQlp ; Q

(2)
ijmn = QimQjn

The isomorphism φ that realizes the harmonic decomposition is not uniquely defined. If D
≈
∈ K

4

and a
∼

∈ K
2 are uniquely defined, the choice of the two isotropic parts is somehow arbitrary.

Such a fact is indeed well-known since there is a lot of possible couples of isotropic parameters.

For our needs, in the following, the bulk and shear moduli (K,G):

K := λ+ µ ; G := µ

will be preferred to the Lamé moduli.

9It is worth noting that the structure of the harmonic decomposition depends on the dimension of the physical

space. Hence the harmonic decomposition of 3D elasticity tensors is slightly different [6, 14].
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3.2. Integrity basis

Integrity bases for SO(2)- and O(2)-action on the space of plane elasticity tensors are known

since the second-half of the 90’ [8, 33]. While expressed in slightly different manners in cited

publications, these bases are constituted by the following invariants:

• 4 simple invariants:

I1 = K ; J1 = G ; I2 = apqapq ; J2 = DpqrsDpqrs

• 2 joint invariants:

I3 = apqDpqrsars ; J3 = RpqaqrDprstast

with

R =


 0 1

−1 0




It can be noted that those invariants are related through the following polynomial relation

(sygyzy):

2I23 + 2J2
3 − I22J2 = 0

The sets:

• (I1, J1, I2, J2, I3) is an integrity basis for O(2)-action;

• (I1, J1, I2, J2, I3, J3) is an integrity basis for SO(2)-action;

The demonstration of these results can be found in [33]. Non-polynomial functions of the

integrity basis elements still separate the orbits. The following set of non polynomial invariants

can be considered

• 4 simple invariants:

i1 = K ; j1 = G ; i2 =
√
I2 ; j2 =

√
J2

• 2 joint invariants:

i3 =

√
2I3

I2
√
J2

; j3 =

√
2J3

I2
√
J2

Those invariants can naturally be understood as the cos and sin of an angle between

”vectors” associated to a
∼
and D

≈
. Hence, those invariants are related through the following

relation:

i23 + j23 = 1

From this set, and using the arcos function, the non-polynomial invariants of Vannucci are

retrieved [13]. It has to be noted that, contrary to polynomial invariants, those ones may not

be globally defined and have local domains. This fact is clear from the definitions of i3 and j3.
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3.3. Vector type interpretation

Following a geometric picture proposed by Forte and Vianello [33, 15, 17], in 2D harmonic

tensors can be represented as vectors in appropriate orthonormal bases. This representation will

be useful in section §.6 to identify the angular orientation of an elastic material with respect to

an arbitrary frame of reference.

Following this idea, a
∼
∈ K

2 can be associated to the following vector:

ã =



√
2a1

√
2a2




in the basis (E1,E2):

E1 :=

√
2

2
(e1 ⊗ e1 − e2 ⊗ e2) ; E2 :=

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1)

The angle between ã and E1 will be denoted α.

And in the same way, D
≈

can be represented by the following vector:

D̃ =



√
8d1

√
8d2




in the basis (E1, E2)

E1 :=

√
8

8
(e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2 − e1 ⊗ e1 ⊗ e2 ⊗ e2 − e1 ⊗ e2 ⊗ e1 ⊗ e2

−e2 ⊗ e1 ⊗ e1 ⊗ e2 − e2 ⊗ e1 ⊗ e2 ⊗ e1 − e1 ⊗ e2 ⊗ e2 ⊗ e1 − e2 ⊗ e2 ⊗ e1 ⊗ e1)

E2 :=

√
8

8
(e1 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ⊗ e1

−e2 ⊗ e2 ⊗ e2 ⊗ e1 − e2 ⊗ e2 ⊗ e1 ⊗ e2 − e2 ⊗ e1 ⊗ e2 ⊗ e2 − e1 ⊗ e2 ⊗ e2 ⊗ e2)

The angle between D̃ and E1 will be denoted β.

E1

E2

ã

α

E1

E2

D̃

β

Figure 2: The vector representations of ã and D̃ in their respective orthogonal bases
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3.4. Stratification

As discussed in the first section, the space of 2D elasticity tensors is divided into 4 strata:

Ela = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)]

where notation Σ[G] indicates the set of tensors having its symmetry group conjugate to G. As

indicated by the following graph, the vanishing of certain invariants indicates the symmetry class

of the elasticity tensor:

Σ[Z2]

J2=0
{{✇✇
✇✇
✇✇
✇✇ J3=0, J2 6=0

##
●●

●●
●●

●●
●

Σd
[D2]

I2=0

��
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹

Σg
[D2]

I2=0

��

Σ[D4]

J2=0
{{✈✈
✈✈
✈✈
✈✈
✈

Σ[O(2)]

In the former graph the sets Σg
[D2]

and Σd
[D2]

have been distinguished:

Σg
[D2]

Elements of this set are generic, or non-degenerated, orthotropic elasticity tensors. It only

contains elements obtained just by imposing orthotropic invariance to generic anisotropic

tensors. In such a situation the symmetry classes of D
≈

and a
∼
are, respectively, [D4] and

[D2].

Σd
[Dd]

Elements of this set are degenerated orthotropic tensors, they are not generic since extra

restriction, i.e. other than invariance properties, are needed to define them. Those tensors

correspond to what Vannucci called R0-orthotropic tensors [32]. In this degenerated case

the symmetry classes of D
≈

and a
∼
are, respectively, [O(2)] and [D2].

It has to be pointed out that these elements belong to the same stratum:

Σ[D2] = Σg
[D2]

∪ Σd
[D2]

In 2D this is the unique example of non-generic tensor set, some prior computations reveal that

this situation is much more frequent in 3D.

4. Mechanical content

Now that an integrity basis has been exhibited, and in order to set-up some experiments to

measure them, it is important to have an insight into the mechanical content of its elements.

The aim of the present section is to construct such a mechanical interpretation. In the following
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the elasticity tensor C
≈
will be observed through the second order stress tensor σ

∼
, and the scalar

strain energy function W .

4.1. The Cauchy stress tensor

Let now express the Cauchy stress tensor in terms of irreducible decomposition of the elas-

ticity tensor. In a first time σij will be expressed as a whole before being split into deviatoric

(σd
ij ∈ K

2) and spherical (σs
ij ∈ K

0) parts. Starting from the explicit harmonic decomposition

(6), the stress tensor is obtained

σij = Dijklεkl +
1

6
(aklεklδij + aijεpp + 2(aipεpj + ajpεpi)) + λεppδij + 2µεij

Let decompose the strain tensor into deviatoric (εdij) and spheric (εsij) components.

εij = εdij + εsij

with

εdij = εij −
εpp
2

δij ; εsij =
εpp
2

δij

thus

σij = Dijklε
d
kl +

1

6

(
aklε

d
klδij + 2(aipε

d
pj + ajpε

d
pi)
)
+ 2Gεdij + εpp

(
1

2
aij +Kδij

)

Hence the spheric and deviatoric stresses read 10:





σs
ij =

(
1
2apqε

d
pq +Kεpp

)
δij

σd
ij = Dijklε

d
kl + 2Gεdij +

1
2εppaij

From these expressions it can be observed that the tensor a
∼

generates shear stress from hy-

drostatic strain, and conversely hydrostatic stress from shear strain. Hence the invariant I2,

which is the Frobenius norm of a
∼
, measures the level of transfer between hydrostatic and spheric

modes.

4.2. The elastic energy

Using the harmonic decomposition the elastic energy reads:

2W = Dijklεijεkl +
1

6
(aklεklεii + 2(aipεpj + ajpεpi)εij + εppaijεij) + λεppεqq + 2µεpqεpq

10In the computation the following term 1

3

(

aipε
d
pj + ajpε

d
pi − aklε

d
klδij

)

appears in the expression of

σ
d
ij. Some computations would show that this term is identically null

13



and separating deviatoric and spheric contributions11:

2W = Dijklε
d
ijε

d
kl + 2Gεdpqε

d
pq + apqε

d
pqεrr +Kεppεqq (7)

Using the harmonic decomposition of the elasticity tensor, the elastic energy naturally split into

three contributions:

W = W d +W c +W s

• The deviatoric energy12:

2W d = Dijklε
d
ijε

d
kl + 2Gεdpqε

d
pq

• The coupling energy:

2W c = apqε
d
pqεrr

• The spherical energy:

2W s = Kεppεqq

As can be observed the spherical energy is purely isotropic and remains the same no matter

how the material is anisotropic. At the opposite the coupling energy is purely anisotropic and,

hence, vanishes for isotropic media. The deviatoric contribution, for its own, is defined by two

irreducible components: one isotropic supplemented by an anisotropic part.

According to introduced energy partition (7) the mechanical meaning of most of those invariants

are elucidated:

• J1 measures the isotropic part of the deviatoricity of the material, while J2 is the squared

norm of its anisotropic part;

• I1 measures the sphericity of the material;

• I2 is the square of a norm that measures the amount of coupling energy in the material.

Last invariants I3 and J3 are less direct to interpret, their mechanical interpretations will be

provided in the next section. As a consequence the different anisotropies can be classified

according to the following scheme:

11In the computation a term proportional to aipε
d
pjε

d
ij appears. This term is null in 2D, but not in higher

dimension.
12To avoid any confusion, this does not imply that Dijkl is positive definite, since Dijkl is traceless it can not

be positive definite.
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Deviatoric energy Coupling Spheric energy Orientation

Σ[Z2] Anisotropic Yes Isotropic Any

Σg
[D2]

Anisotropic Yes Isotropic Aligned

Σd
[D2]

Isotropic Yes Isotropic ×

Σ[D4] Anisotropic No Isotropic ×

Σ[O(2)] Isotropic No Isotropic ×

where × indicates that this information is meaningless. It can be observed that for the

classes [D4] and [O(2)] the coupling effect is null. Hence a characteristic of those classes is to

produce stress tensors of the same type of the input strain tensors. Concerning elements in Σd
[D2]

they are somewhere in the middle between generic orthotropic elements (Σg
[D2]

) and isotropic

ones since they behave like isotropic elements with a spheric/deviatoric anisotropic coupling.

5. Reconstruction of the elasticity tensor

The aim of this section is to propose some numerical experiments that allow to, almost

directly, measure the invariants of the elasticity tensor. Albeit being somewhat theoretical, this

procedure is an interesting result since it is a constructive proof of the observability of the 2D

elastic invariants. The numerical experiment we propose are optimal testing, it may give some

hints for the designing of experimental procedure to measure those invariants.

Setting

Let us define a fixed reference frame equipped with a Cartesian basis, and consider an homo-

geneous anisotropic elastic material. No prior information is known about its micro-structure,

and so on the privileged directions the material may possess. A first rectangular13 sample is

extracted out of the material and define a reference orientation for testing. The material is

then rotated by an angle of θ and a second sample is extracted. These different samples are

then tested with a fixed testing device. Hence between experiments only the orientation of the

material within the sample varies.

Let introduce the following functions which express the stress tensor and the mechanical

13The shape of the sample has indeed no importance in the process.
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energy as function of the angle θ14:

σ
∼
(θ; ε

∼
) = σ

∼
(θ; ε11, ε22, ε12) = C

≈
(θ) : ε

∼

W (θ; ε
∼
) = W (θ; ε11, ε22, ε12) =

1

2
ε
∼
: C
≈
(θ) : ε

∼

with

C
≈
(θ) = Q

⌢

(4) :: C
≈

Experiments

To that aim let recap the shape of the elastic energy for a complete anisotropic material:

2W = Dijklε
d
ijε

d
kl +Gεdpqε

d
pq + apqε

d
pqεrr +Kεppεqq

The meaning of I1 and J1 are rather simple since we choose for them the well-known bulk

and shear moduli. I1 is the strain-elastic energy associated with a unit equibiaxial

strain-state:

I1 = K =
1

2
W (0; 1, 1, 0)

To compute J1 we first need to impose a simple shear strain-state, in a second

time the isotropic contribution to the elastic energy has to be singled out from the

anisotropic contribution. To cancel the anisotropic part, the combination of the

strain energy over two orientations of the sample has to be computed:

J1 = G =
1

4

(
W (0; 0, 0, 1) +W (

π

4
; 0, 0, 1)

)

Since the other invariants measure anisotropic aspects, their computation involve the use of the

stress tensor:

I2 =
∥∥∥σ
∼
d (0; 1, 1, 0)

∥∥∥
2

; J2 =
1

2

(∥∥∥σ
∼
d (0; 0, 0, 1)

∥∥∥
2
+
∥∥∥σ
∼
d
(π
4
; 0, 0, 1

)∥∥∥
2
)
− 8J2

1

in which ‖·‖ denotes the Frobenius norm. It can be observed that the quantity defined by

J2 + 8J2
1 is a measure of the intensity of the deviatoricity of the material.

The joint invariant I3 is computed in two times. First we determine the expression for apq:

a
∼
= σ

∼
d (0; 1, 1, 0)

14The orientation θ = 0 correspond to the material orientation of the reference sample, and do not have any

intrinsic meaning.
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which is then inserted into the energy expression

2W (0, a1,−a1, a2) = a
∼
: σ
∼
(0; a1,−a1, a2) = Dijklaijakl +Gapqapq

where a
∼
=


a1 a2

a2 −a1


 and hence:

I3 = 2W (0, a
∼
)− J1I2

This invariant can be interpreted by noting that J1I2 correspond to the strain energy of an

isotropic material loaded with a
∼

2W (0, a
∼
)O(2) = J1I2

Hence

I3 = 2
(
W (0, a

∼
)−W (0, a

∼
)O(2)

)

which gives a physical meaning to the last invariant. In the next section the role of this invariant

will be illustrated on the reconstruction of elements in Σ[D2] (c.f. fig.3 and fig.4). For the last

invariant J3, the strategy is the same since we have

a
∼
⋆ : σ

∼
(0; a

∼
) = RipapjDijklakl +GRipapjaij = J3

with a
∼
⋆ = R

∼
· a
∼
, and the property a

∼
⋆ : a

∼
= 0, which means that a

∼
⋆ is orthogonal to a

∼
. From

a practical point of view the strain-state associated to a
∼

might be very difficult to

impose in practice to a sample.

Strain-state control

The computation of invariants as proposed above supposes that a strain state can be im-

posed on a sample. This is possible (in mean) by controlling the displacement field through

Kinematic Uniform Boundary Conditions (KUBC). These boundary conditions are classical in

computational homogenization [22, 27].

Let consider Ω a regular open subset of R
2 with smooth boundary denoted by ∂Ω. Let

denote by u(x) the displacement field in Ω, and ε
∼
(x) the related local strain state. The KUBC

amounts to impose the following field at the boundary of the sample

u(x) = E
∼
· x, for x ∈ ∂Ω

in which E
∼
is a constant symmetric second order tensor. This implies that the mean strain over

Ω is

E
∼
=
〈
ε
∼
(x)
〉

with 〈.〉 = 1

V

∫

V
· dV
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The overall stress tensor Σ
∼
is defined by the spatial average:

Σ
∼
=
〈
σ
∼
(x)
〉

It is worth noting that this type of boundary condition satisfies the Hill-Mandel Lemma. Hence,

we have the following relation
〈
ε
∼
: σ
∼

〉
= E

∼
: Σ
∼

If the local elasticity constitutive law is written

σ
∼
= c

≈
(x) : ε

∼

through this approach the mean quantities are related by an effective constant elasticity tensor

C
≈
:

Σ
∼
= C

≈
: E
∼

Since, in our case, the material is supposed to be homogeneous, c
≈
is a constant tensor and

C
≈
= c

≈

hence:

Σ
∼
= c

≈
: E
∼

Hence the numerical experiments combined with the use of KUBC allow to directly measure

tensor invariants. The dual boundary conditions also known as Static Uniform Boundary Con-

ditions (SUBC) can also be used to control the problem in force rather than in displacement to

identify the compliance tensor s
≈
= c

≈
−1 1516.

Remark 5.1. The mechanical tests and measurements needed to identify the invari-

ants are, in practice, far from being trivial. The development of testing devices that

can impose enriched boundary condition would be of valuable interest. This devel-

opment, if possible, would constitute a research direction in experimental mechanics

on its own.

15It is important to note that even if c
≈

and s
≈

admits harmonic decomposition, the relation between their

different element are not direct at all.
16In the present situation there is no need to use Periodic Boundary Conditions since the material

we are testing is supposed to be homogeneous. Applying the procedure to an inhomogeneous

periodic material will amount to construct invariant of the overall elasticity tensor, in such as case

the use of PBC ensure the convergence of the effective properties making computations on an

unique elementary cell.
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Applying this method, the 6 elementary invariants are obtained almost directly. As discussed

previously such a set provides a unique label to each material. From this knowledge, the next

step is to reconstruct the associate elasticity tensor in an appropriate basis.

6. Tensor reconstruction

The reconstruction is a two step process:

1. Construction of a tensor normal form;

2. Determination of the material orientation.

What we call a tensor normal form here is the expression of the tensor in a basis in which

some properties are verified. In most of the cases the property is to have a maximal number

of zero components. For material having [Dk]-type symmetry classes associated bases coincide

with the symmetry elements of the micro-structure. For [Zk]-type symmetry classes, the lack

of mirror lines makes the choice of a normal form a bit more arbitrary but, nevertheless, a

choice is still possible. It is worth noting that normal forms are not unique, hence some choices

have to be made. Since these normal forms are related to specific bases, it is important to

identify their angular positions with respect to the testing device. This is the second point of

the reconstruction process.

6.1. Normal forms

In this section the fourth-order elasticity tensor C
≈
in R

2 will be represented as a second order

one C
∼
in R

3. Details this construction is provided in Appendix B.

Symmetry class [Z2]

Let consider a generic elasticity tensor expressed in components in a randomly oriented basis:

[C
∼
] =




c1111 c1122
√
2c1112

c2222
√
2c2212

2c1212




this tensor can also be expressed (in the same basis) in terms of its harmonic components

[C
∼
] =




K +G+ a1 +d1 K−G−d1
√
2
a2+2d2

2

K+G−a1+d1
√
2
a2−2d2

2

2G−2d1




For the generic class, the normal form will be chosen such as a2 = 0 and a1 > 0. The reason

of this choice, it that the associated formula for the reconstruction are simpler. Hence, the
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normal form has the following shape

[C
∼
]Z2 =




K+G+a1+d1 K−G−d1
√
2d2

K+G−a1+d1 −
√
2d2

2G−2d1




To proceed the reconstruction we need to evaluate the invariants for this normal form.





I2 = 2a21

J2 = 8(d21 + d22)

I3 = 4a21d1

J3 = −4a21d2

Inverting the system, and according to our choice selecting the positive root for a1:





a1 =
√
2I2
2

d1 =
I3
2I2

d2 = − J3
2I2

Hence

[C
∼
]Z2 =




I1+
J1
2
+

√
2I2
2

+
I3
2I2

I1−J1
2
− I3

2I2
−

√
2J3
2I2

I1+
J1
2
−
√

2I2
2

+
I3
2I2

√
2J3
2I2

J1− I3
I2




It can be observed that we did not exploit the J2 invariant. An interesting and a bit tricky

situation appears here. In fact using J2 leads to the following expression for d2:

d2 =
1

2
√
2

√
J2I22 − 2I23

I22

According to the syzygy

J2I
2
2 − 2I23 − 2J2

3 = 0

this relation can be recast

d2 =

√
J2
3

2I2

hence two possibilities appear concerning the choice of the root for J2
3 . If we consider SO(2)-

action (only rotating the sample), the two different roots are two different SO(2)-orbits. Hence

the sign of J3 distinguish between these two orbits. But if we consider O(2)-action we can also

flip the sample, and as a consequence the two roots of J3 belong to the same O(2)-orbit. So to

label O(2)-orbit the following two sets can be used: (I2, J2, I3), (I2, I3, J3), while for SO(2)-orbit

this choice reduces only to (I2, I3, J3).
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Symmetry class [D2]

For this class, the choice of a normal form will be chosen so as a2 = d2 = 0. In this case the

vertical components of ã and D̃ are null. According to their sign, this conducts to 4 different

situations for the couple (a1, d1):

(+,+) , (+,−), (−,−), (−,+)

But in fact, as depicted on fig.3 and fig.4, these 4 situations correspond to 2 different orbits

according to the sign of d1 which is determined by I3. Hence the supplementary condition that

a1 > 0 will be added to retain in each case on unique normal form (the other one being deduced

by a material rotation of π
2 ).

ã

D̃

ã

D̃

Figure 3: Two configurations on the same orbit, I3 > 0. Those configurations are related by a material rotation

of π

2

ã

D̃

ã

D̃

Figure 4: Two configurations on the same orbit, I3 < 0. Those configurations are related by a material rotation

of π
2

To proceed the reconstruction we need to evaluate the invariants for this normal form.





I2 = 2a21

J2 = 8d21

I3 = 4a21d1

⇒





d1 =
I3
2I2

a1 =
√
2I2
2

As a consequence

[C
∼
]D2 =




K+G+a1+d1 K−G−d1 0

K+G−a1+d1 0

2G−2d1


 =




I1+
J1
2
+

√
2I2
2

+
I3
2I2

I1−J1
2
− I3

2I2
0

I1+
J1
2
−
√

2I2
2

+
I3
2I2

0

J1− I3
I2



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It can be observed that the set (I2, J2) is unable to label an orthotropic material uniquely

since it can not make distinction between the two orbits represented on fig.3 and fig.4, while

this distinction can be made with the set (I2, I3).

Symmetry class [D4]

In the [D4] situation, we choose for the normal form d2 = 0, d1 > 0. We have:

[C
∼
]D4 =




K+G+d1 K−G−d1 0

K+G+d1 0

2G−2d1




hence the evaluation of the invariants on this slice gives





I2 = 0

J2 = 8d21

I3 = 0

And choosing the positive square root of J2:

[C
∼
]D4 =




I1+
J1
2
+

√
8J2
8

I1−J1
2
−
√

8J2
8

0

I1+
J1
2
+

√
8J2
8

0

J1−
√

8J2
4




It can be observed that the choice of the negative square root would have defined another normal

form on the same orbit obtained by a rotation of π
4 .

Symmetry class [O(2)]

The last situation is trivial

[C
∼
]O(2) =




K+G K−G 0

K+G 0

G


 =




I1+
J1
2

I1−J1
2

0

I1+
J1
2

0

J1




6.2. Determination of the rotation

For the [Z2] and [D2] symmetry classes, bases for normal forms are defined by the condition

a2 = 0. Let consider our material in the testing basis, which is different from the normal one.

The tensor a
∼
can be constructed in the following way

a
∼
= σ

∼
d (0; 1, 1, 0) =


a1 a2

a2 −a1



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Hence

cosα =
a1√

a21 + a22
; sinα =

a2√
a21 + a22

and so

cosα =

√
2a1√
I2

; sinα =

√
2a2√
I2

Since a
∼
∈ K

2 when the elasticity tensor is rotated by θ a
∼
is rotated by 2θ. Hence the basis of

the normal form is oriented with an angle α
2 with respect to the testing device.

For the [D4] symmetry class, the covariant a
∼

is null and the basis forthe normal form is

defined by the condition d2 = 0. In this specific situation information about D
≈

can be obtained

in the following way

σ
∼
d

(
0; 0, 0,

1

2

)
=


 d2 G− d1

G− d1 −d2




Hence

cosβ =
d1√

d21 + d22
; sinβ =

d2√
d21 + d22

and so

cosβ =

√
8d1√
J2

; sinβ =

√
8d2√
J2

Since D
≈
∈ K

4 when the elasticity tensor is rotated by θ, D
≈

is rotated by 4θ. Hence the basis of

the normal form is oriented with an angle β
4 with respect to the testing device.

7. Conclusion

In the present paper an identification procedure of the elastic material parameters has been

proposed. The method is based on the (almost direct) evaluation of the invariants of the 2D

elasticity tensor rather than on its tensor components. Such a way to proceed is appealing since

all the quantities that determine the elastic material are obtained in the same time: symmetry

class, material orientation, material parameters. Further works will be devoted to compare the

procedure proposed in this paper to more classical techniques through numerical studies.

One natural question is how to extend this approach to 3D elasticity. This problem is far more

complicated since the minimal integrity basis is constituted of 299 elements [28], and the size

of a functional basis is presently unknown. Furthermore the elementary covariants are no more

characterized, as in 2D, by only one invariant. For example, in 3D, D
≈
∈ H

4 is characterized by 9

invariants [10]. Hence the extension of the present method to 3D is not direct. An intermediate

situation of interest is the study of O(2)-invariants polynomials of the 3D elasticity tensor. In
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such as case a functional basis is known [16]. Another interesting extension of the present work

would be to consider 2D generalized continuum model [2, 3].
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Appendix A. Harmonic decomposition

In order to properly set the problem, the tensor spaces under study should be decomposed

into a collection of elementary spaces. The nature of those elementary spaces depends on the con-

sidered group action. In the present case, our fundamental pieces are O(2)-irreducible spaces. In

the mechanical literature this decomposition is often referred to as the harmonic decomposition

[6, 25, 14, 17].

Appendix A.1. One basic example

Let consider the case of a second-order symmetric tensor, as well known any T(ij) ∈ T(ij)

admits the following decomposition

Tij = K2
ij +

1

2
K0δij = φ(K2

ij ,K
0)

where K2 ∈ K
2 and K0 ∈ K

0 are, respectively, the 2-D deviatoric and 1-D spheric part of T(ij).

They are defined by the following formula:

K0 = Tii ; K2
ij = Kij −

1

2
K0δij

φ, defined by the expression (Appendix A.1), is an isomorphism between T(ij) and the direct

sum of K2 and K
0

T(ij) ≃ K
2 ⊕K

0

The main property of this decomposition is to be O(2)-invariant, or expressed in other way the

components (K0,K
∼
2) are covariant with T

∼
under O(2)-action, i.e.

∀Q
∼
∈ O(2), ∀T

∼
∈ T(ij), Q

∼
T
∼
Q
∼
T = φ(Q

∼
K
∼
2Q
∼
T ,K0)

This decomposition is irreducible meaning that those tensors can not be split into smaller ones

satisfying again this property. Irreducible tensors that satisfy this property are said to be

harmonic.
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Appendix A.2. The harmonic decomposition

The harmonic decomposition establishes an isomorphism between T
(n) and a direct sum of

harmonic tensor spaces Kk [14]. We shall note

T
(n) ≃

n⊕

k=−1

(
αk⊕

l=0

)
K

k (A.1)

where k denotes the order of the harmonic space and αk indicates the multiplicity of Kk in the

decomposition. To spare space, this decomposition will often be written

T
(n) ≃

n⊕

k=−1

αkK
k (A.2)

As a consequence, any element of T(n) can be expressed as

T(n) =

n∑

k=0

(
αk∑

l=0

Dk,l(n)

)
(A.3)

in which tensor Dk,l(n) is the l-th elements of order k imbedded into a n-th order tensor. It is

worth noting that the explicit decomposition (A.3) is uniquely defined only if αk ≤ 1 [19]. At

the opposite the global structure of the decomposition (A.2) is uniquely defined.

Appendix B. Matrix representations of the elasticity tensor

Let be defined the following spaces:

T(ij) = {T ∈ Tij |T =
2∑

i,j=1

Tijei ⊗ ej , Tij = Tji}

which is, in 2D, respectively, a 3D vector spaces. Therefore the elasticity tensor C
≈
is a self-adjoint

endomorphism of T(ij).

In order to express the Cauchy-stress tensor σ
∼
, the strain tensor ε as 3-dimensional vectors

and write C
≈
as a 3× 3 we introduce the following orthonormal basis vectors:

ẽI =

(
1− δij√

2
+

δij
2

)
(ei ⊗ ej + ej ⊗ ei) , 1 ≤ I ≤ 3

where the summation convention for a repeated subscript does not apply. Then, the aforemen-

tioned tensors can be expressed as:

ε̃ =

3∑

I=1

ε̃I ẽI , σ̃ =

3∑

I=1

σ̃I ẽI , C̃ =

3,3∑

I,J=1,1

C̃IJ ẽI ⊗ ẽJ (B.1)

so that the elastic relation can be written in the matrix form

σ̃I = C̃IJ ε̃J
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The relationship between the matrix components ε̃I and εij is

ε̃I =





εij if i = j,

√
2εij if i 6= j;

(B.2)

and, obviously, the same relation between σ̃I and σij hold. For the constitutive tensor we have

the following correspondence:

C̃IJ =





Cijkl if i = j and k = l,

√
2Cijkl if i 6= j and k = l or i = j and k 6= l,

2Cijkl if i 6= j and k 6= l.

(B.3)

It remains to choose an appropriate two-to-one subscript correspondences between ij and I:

I 1 2 3

ij 11 22 12

Table B.1: The two-to-one subscript correspondence for 2D strain/stress tensors

Hence we obtain the following second-order tensor representation for C
≈

C̃ =




c1111 c1122
√
2c1112

c1122 c2222
√
2c2212

√
2c1112

√
2c2212 2c1212



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[28] Olive M. (2014). Géométrie des espaces de tenseurs Une approche effective appliquée à la
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