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Approximate hedging for non linear transaction costs on
the volume of traded assets

Romuald Elie, Emmanuel Lépinette

Abstract This paper is dedicated to the replication of a convex contingent claim
h(S1) in a financial market with frictions, due to deterministic order books or
regulatory constraints. The corresponding transaction costs rewrite as a non lin-
ear function G of the volume of traded assets, with G’(0) > 0. For a stock with
Black-Scholes mid-price dynamics, we exhibit an asymptotically convergent repli-
cating portfolio, defined on a regular time grid with n trading dates. Up to a well
chosen regularization h™ of the payoff function, we first introduce the frictionless
replicating portfolio of A" (ST), where S™ is a fictive stock with enlarged local
volatility dynamics. In the market with frictions, a proper modification of this
portfolio strategy provides a terminal wealth, which converges in probability to
the claim of interest h(S1), as n goes to infinity. In terms of order book shapes,
the exhibited replicating strategy only depends on the size 2G’(0) of the bid-ask
spread. The main innovation of the paper is the introduction of a 'Leland type’
strategy for non-vanishing (non-linear) transaction costs on the volume of traded
shares, instead of the commonly considered traded amount of money. This induces
lots of technicalities, that we pass through using an innovative approach based on
the Malliavin calculus representation of the Greeks.

Key words Leland-Lott strategy, Delta hedging, Malliavin Calculus, transaction
costs, order book.
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JEL Classification G11-G13

1 Introduction

The current high frequency of trading on the financial markets does not allow to
neglect the frictions induced by market orders for buying or selling a given number
of shares. Depending on the liquidity of the stock of interest, the marginal price of
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any extra unit of stock can be significantly different. The shape of the order book
and the size of the bid-ask spread determine the underlying cost induced by pass-
ing an order on the market. Modeling order book dynamics and more importantly
quantifying the impact of the trades on the underlying price have brought a lot
of attention in the recent literature. Our concern in this paper is to look towards
efficient alternatives in order to replicate options in the presence of transaction
costs, related to the presence of order books.

This kind of induced cost rewrites as a function of the traded amount of shares
instead of the more classical and less realistic traded amount of money. For simplic-
ity here, the order book shape is supposed to be deterministic and has a stationary
asymptotic behavior when the number of traded shares goes to zero. More pre-
cisely, trading « shares of stock at time ¢ induces a cost G(t,y) where the possibly
non-linear function G satisfies G(t,~) ~ G’ (0)|y| + O(||?), for v small enough. We
consider a financial market with one bond normalized to 1 and one stock S with
Black—Scholes mid-price dynamics. Observe that G’(0) interprets as the half size of
the bid-ask spread. The order book induces frictions on any position taken on the
stock and we investigate the replication of a European option with payoff h(S1),
where h is a convex function.

In the classical framework of proportional transaction costs on the amount
of traded money, Leland [8] introduced an ingenious method in order to hedge
efficiently call options on a discrete time grid. His idea relies on the use of the
frictionless hedging strategy associated to a Black—Scholes stock with a suitably
enlarged volatility, related to the chosen frequency of trading. As the number of
trading dates goes to infinity, Lott [10] or Kabanov and Safarian [6] verified that
the terminal value of the corresponding portfolio converges to the claim h(S1)
of interest, under the additional condition that the transaction costs coefficient
vanishes sufficiently fast as well. This unrealistic assumption has recently been
relieved by Lépinette [9] via a proper modification of the replicating strategy.

The main motivation of the paper is the introduction of ’Leland-Lott’ ap-
proximate hedging strategies in the realistic framework described above, where
the amount of transaction costs is a non linear function of the number of traded
shares of asset. This particular feature implies that the natural ’Leland-type’ en-
larged volatility is associated to a local volatility model instead of a Black—Scholes
one. Indeed, we consider the pricing function C™ and associated delta hedging
strategy C? induced by a fictive asset with local volatility

on ¢ (t,x)— \/|0132 + JG/(O)\/%(E , (1.1)

where o is the Black—Scholes volatility of the stock and 1/n is the mesh size of the
regular revision grid.

In the imperfect market of interest, we exhibit a portfolio starting with ini-
tial wealth C™(0, So) and induced by a proper modification of the delta hedging
strategy (C2(t, St))o<t<T, in the spirit of [9]. The main result of the paper is the
convergence in probability of the terminal value of this portfolio to the claim of
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interest h(S1), as the number of revision dates n tends to infinity. This conver-
gence requires to consider payoff functions A with bounded second derivatives. For
derivatives with less regular payoff functions such as the classical call option, one
simply needs to replace h by a well chosen more regular payoff function A", char-
acterized in terms of number of trading dates n of the hedging strategy.

The approximate hedging strategy introduced in this paper allows therefore
to replicate asymptotically a convex contingent claim h(S;) in a market with non
vanishing transaction costs coefficient related to deterministic order books. The
enhanced strategy only relies on the size 2G’(0) of the bid-ask spread and not
on the global shape of the order book. The consideration of a fictive asset with
local volatility dynamics of the form (1.1) induces lots of technicalities since the
Lott—Kabanov methodology requires precise estimates on the sensitivities of the
pricing function C™ in terms of the number n of trading dates. The rather com-
putational obtention of these estimates relies on an innovative approach based on
the Malliavin representation of the Greeks introduced in [4].

The paper is organized as follows: The next section presents the financial mar-
ket with frictions and the replication problem of interest. Section 3 is dedicated
to the main results of the paper: the construction of the modified volatility and
corresponding fictive pricing and hedging functions, the Delta correction for the
consideration of non-vanishing transaction costs coefficient, the payoff regulariza-
tion and the convergence of the enhanced replicating strategy. Section 4 details
the proof of the convergence, whereas technical estimates on the derivatives of the
fictive pricing function C™ are reported in Section 5.

Notations. For a function f from [0,1] x R to R, we denote by fi, fz, ftz, foz,
... the time and space partial derivatives. For a function f from R to R, the first
and second derivatives are simply denoted Vf and V2. We denote by C a generic
constant, which may vary from line to line. For possibly random constants, we use
the notation C.,.

2 Hedging under transaction costs on the traded volume of shares

In this section, we introduce the market model and formulate the financial deriva-
tive replication problem under transaction costs induced by order book frictions.

2.1 The market model

We consider a financial market defined on a probability space (£2, F,Q), endowed
with a 1-dimensional Brownian motion W. We denote by F = (%), the comple-
tion of the filtration generated by W. -

Our model is the standard two-asset model with the time horizon T' =1 as-
suming that it is specified under the unique martingale measure Q. The non-risky
asset is the numéraire S° = 1, and the dynamics of the risky asset is given by the
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stochastic equation
t
St:SO+/OSuqu, 0<t<1,
0

where o > 0 is a constant. Up to considering discounted processes, all the results of
the paper extend as usual to financial markets with non zero deterministic interest
rates.

In a frictionless complete market of this form, the price at time ¢ of a financial
derivative h(S1) is given by C(t, S¢) where C' is the unique solution of the PDE

(e0) = Ce(t,z) + %029[:20351(75, z)=0, (t,x)€el0,1)x (0,00)
77 c,z) = h(z), =€ (0,00)
In presence of realistic transaction costs, where continuous hedging is not adequate

anymore, this paper develops an asymptotic hedging strategy for the financial
derivative h(S1).

2.2 The order book frictions

We intend to take into account the frictions induced by the use of market orders in
the financial market. When a portfolio manager buys or sells a given quantity v # 0
of stock S, the presence of order books implies an additional cost, which is related
to the volume v of the order. We model these order book related costs via the
introduction of a non linear continuous deterministic cost function G. Whenever
an agent trades a (possibly negative) quantity v of stocks S on the financial market
at time t, he shall pay an immediate cost G(¢,v) > 0.

We make the following stationary assumption on the asymptotic behavior of
the cost function G on the neighborhood of v = 0.

Condition (G): There exists a constant G’(0) > 0 such that
G(t,7) =GOl +0(*), 0<t<1.

Remark 2.1 When S represents the mid-price dynamics of the risky financial asset,
2G’(0) interprets simply as the bid-ask spread of the asset in the order book of
interest. We shall see in the following that for asymptotic replication purpose, only
the size 2G’(0) of the bid-ask spread is relevant in our approach.

Remark 2.2 Of course, assuming that the order book is deterministic and that the
bid-ask spread remains constant is unrealistic and hence restrictive. Nevertheless,
we outline in this paper that this simple framework already raises interesting
mathematical problems and leads to promising conclusions. The consideration of
dynamic random order books, for which no unanimous model has emerged in the
literature, shall be left for further research.
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2.3 Portfolio dynamics and replication

Due to the presence of frictions on the market, inducing direct or indirect trans-
action costs, we only consider portfolio strategies, where the manager changes his
market position on a finite number n of revision dates (¢')o<i<n. For simplicity,
we assume in the paper that the revision dates (¢}') define a uniform deterministic
time grid, i.e. tj' :=i/n, for 0 <4 < n.

Remark 2.3 As observed in [2] or [13], the use of non uniform time grid, where
the number of trading dates increases as the maturity is getting closer, allows to
improve the convergence of the Leland type approximate hedging strategy. One
can expect this property to remain satisfied in our context. A rigorous proof of this
result requires very computational finer estimates, which go beyond the scope of
this (already technical) paper. For the consideration of random time nets, we refer
to the nice results of [5], which produces a robust asymptotic hedging strategy for
vanishing linear transaction costs written in terms of the traded amount of money.

A portfolio on the time interval [0, 1] is given by an initial capital z € R and an
F-adapted piecewise-constant process (H™),en, where Hﬁb € L£2(02) represents the
number of shares of stock hold in the portfolio on the time interval [t{, ¢}, ), for
any 0 < i < n. Due to the order book frictions, the value of the portfolio process
V"™ associated to the piecewise-constant investment strategy H' is given by

t
\4"=Vo”+/ H,ﬁdSufZG(t?,Ht’%fH[?_l), 0<t<1, neN. (2.2
0 <t

We aim at hedging the contingent claim with payoff h(S1), where h is a convex
function, for which precise regularity requirements are given in Section 3.3 below.
We look towards a portfolio V", with terminal value converging to h(S1) as the
number of trading dates n tends to infinity.

3 Asymptotic hedging via volatility modification and payoff regularization

In order to exhibit a portfolio strategy, whose asymptotic terminal value attains
the claim of interest h(S1) despite the frictions, we formally explain in Section 3.1
the Leland methodology and consider a fictive asset with upgraded volatility. Since
transaction costs rewrite in our framework as a function of the volume of traded
asset, the fictive asset has non Lipschitz local volatility dynamics. After verifying
in Section 3.2 that this stochastic differential equation has a unique solution, we
introduce the corresponding pricing and hedging functions of the claim h(S7) for a
frictionless market. Up to a proper strategy modification, we exhibit in Section 3.4
an asymptotic hedging strategy for the convex claim h(S1). For payoff functions
with few regularity such as call option, a well chosen additional regularization
method is exposed in Section 3.3.

3.1 Construction of the enlarged volatility function

In the frictionless Black—Scholes model, the price function of the convex claim
h(S1) is the unique solution C(.,.) of the PDE (eg) and the exact self-financing



6 Romuald Elie, Emmanuel Lépinette

replication portfolio is given by
t
C(t.5)) = Eh(51)+/ Colu, Su)dSu,  0<t<1.
0

It exactly replicates the contingent claim h(S1) and is self-financing. In the pres-
ence of transaction costs, Leland suggested in his famous paper [8] to substitute
the volatility o by an artificially enlarged one oy, related to the mesh 1/n of the
trading replication grid. We briefly recall the main ideas behind this volatility
enlargement and detail formally how it adapts to the framework of frictions con-
sidered here.

For a sequence of volatility functions (¢ )n to be determined below, consider
the following PDEs

{ut(mx) + 157 (2)2%uaa (t,x) = 0, (t,z) € [0,1) x (0,00)
u(l,z) = h(z), =z € (0,00) ’

for n € N. The solution C™ of this equation (if it exists) is the frictionless pricing
function of a financial derivative with payoff function h, whenever the stock has
o" local volatility dynamics.

We look towards a volatility function ™ allowing to take into account the
transaction costs induced on the n trading dates. More precisely, Ito’s formula
implies that the formally supposed smooth function C™ verifies

t t
1 ~
C"(t,S¢) = C™(0, So) +/ C™ (u, Su)dSu + §/ [02 - ai(su)} S2C (u, Su)du,
0 0
for 0 <t¢ <1 and n € N. Hence, the process (C" (¢, S¢))o<t<1 can be approximately
identified as a portfolio process with dynamics of the form (2.2) whenever the last
term on the right hand side above corresponds to the transaction costs cumulative
sum, i.e. equalizing the variations:

1 n n
5 [a - on(su)} S2CT (4, Su) Au = —G (u, 2 (u + A, Syt nn) — CP(u, Su))
for n € N. A formal Taylor approximation gives

C‘:’LL(U + A'LL, Su—i—Au) - C.? (’U,, S’LL) = .ZLF'Lt (U, SU)AU’ + C;,I.L(ua S’M) (Su+Au - SU) )
~ ng (u7 SU) (Su+Au - Su) 5

for n € N. Since h is a convex function, we expect Cyy > 0 and it follows formally
from Condition (G) together with the relation Sy, Ay — Su =~ 0Su Wyt Aw — Wa)
that

% [02 - ai(su)} Au~ —G(0)0 Wt pu — Wa si neN.

Taking the conditional expectation given F, and plugging the classical estimate
E\Wyy Ay — Wau| = /2Au/m, this leads to

1 / g QAU
3 {a’ —O'n(Su)} Au~ -G (O)S—u — n € N.
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For the regular trading grid considered here, Au = 1/n provides the following
candidate for the upgraded volatility function:

32 ¢ 2 e (0,00) = 0% + G (0)n/? g% neN. (3.3)

Observe that this candidate upgraded local volatility function is degenerate at 0
and we prove in the next paragraph the well posed-ness of the corresponding local
volatility fictive asset and associated pricing function.

3.2 The fictive asset dynamics

Let us consider a sequence of fictive assets, whose dynamics are given by the
candidate upgraded volatility (o) defined in (3.3). We expect the fictive assets
(S™)n to solve the following stochastic differential equation

t
S?:So+/%(53)dwu, 0<t<T, n €N, (3.4)
0

where we introduced the notation

An iz op(z) = /0222 + oyplz|, with -~y = G'(O)nl/Q\/g, n € N.(3.5)

Since the diffusion coefficients (7,) are not Lipschitz, the existence of a unique
process with such dynamics does not follow from the classical theorems. We puz-
zle out this difficulty using the Engelbert & Schmidt criterion as detailed in the
following lemma.

Lemma 3.1 Whatever initial condition (t,z) € [0,1] x (0,00), the stochastic differen-
tial equation (3.4) admits a unique strong solution (53 )i<s<1, starting from x at time
t. Furthermore, this solution remains non-negative.

Proof. We fix n € N and (¢,z) € [0,1] x (0,00). For any z € R, observe that the
diffusion coefficient 7, defined in (3.5) satisfies:

g
. dy ~
if ———— =00, foranye>0, then z)=0. (3.6

/—s An(z +y)I2 Y n(z) (3.6)
Indeed, for z # 0, taking ¢ = |z|/2, we get ffe Ify(gi—ykyw < 00, so that the left hand
side condition of (3.6) implies z = 0, leading to Yn(z) = 0. Hence, the diffusion
coefficient 7y, satisfies the Engelbert & Schmidt criterion, and, there exists a weak

solution to (3.4) with initial condition (¢,z), see Theorem 5.4 in Section 5 of [7].

We now observe that the diffusion coefficient 7,, also satisfies

[n(2) =3 (@)| = |V/722% + ormla] = /oy + oy

IN

. (2,y) €R?,

ol =yl + | Vo2 + oralel = /o7y + ol
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since the derivative of y — /c2y2 4 oyn|z| is upper bounded by o. We deduce
An(2) = An@) < olz =yl + Vo VIz =l < z—yl), (2,9) €R?,

with £ : v — ou + /oynu. Since fo W = oo, for any ¢ > 0, we deduce from
Proposition 2.13 in Section 5 of [7] that pathwise uniqueness holds for the stochas-
tic differential equation (3.1). Together with the existence of a weak solution ver-
ified above, this implies the existence of a unique strong solution to (3.1) for any
initial condition (¢,z), see Corollary 3.23 in Section 5 of [7].

Finally, S™ remains non-negative, since it is continuous and Markovian, and
the unique strong solution starting at 0 is the null one. a

3.3 Payoff regularization and related pricing function

We now inquire the properties of the pricing functions associated to the fictive
assets (S™), and first discuss the regularity of the payoff function of interest.

We aim at hedging the contingent claim with payoff h(S1), where the payoff
function h is supposed to satisfy the following;:

Condition (P): The convex function h : [0,00) — R is affine outside the interval
[1/K, K], with K > 1.

Observe that most of the classical convex payoffs satisfy this condition. In par-
ticular, under Condition (P), the map h is Lipschitz and we denote by L > 0 its
smallest Lipschitz constant.

In the following, we shall sometimes require the payoff function to be continu-
ously differentiable. Besides, in order to consider non-vanishing transaction costs,
we need a control on the second order variations of the payoff function. In order
to do so, we regularize the convex map h, as detailed in the following lemma.

Lemma 3.2 There exists a sequence of convexr maps (h™)n valued in C*([0,00),R)
such that, for n large enough,

5 = hlloo < 220 yont s < L, Whnm<mlmanM]@ﬂ
Tn/

Proof. We observe that h is affine on [0,1/K] and introduce the extension of h
on R, which remains affine with the same slope on (—oc0,0). For simplicity, this
extended map is also denoted h. For n € N, we introduce the convolution between
h and the square kernel with support [— ln(n)/'yl/6 ln(n)/'yl/ﬁ].

n 4 [ 1
h :xE[O,oo)»—)g/ h(az—l—y’ﬁ%))(l—yz)dy.

—1

Since h is L-Lipschitz and fil(l —y?)dy = 3/4, we compute

4 1
n <=
I hle < 5 [

Lin(n)y
1/6
Tn

2 2L 1In(n) In(n)
Tn Tn
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Fix n € N. Observe that h™ € C?%(]0,00),R) and, denoting abusively VA the
right derivative of h, we have

Vh"(z) %/1 Vh (fﬂ + yfﬁf?) (1-y*)dy

2

i i e
_4 _ _ >
3 /w_i Vh(z) [ 1 Tn(n) (z—x) () dz, z>0

Since ||Vh||eo < L, we deduce that ||[VA"||e < L.
Differentiating the second expression of VA" above, we deduce that
L 1/6
2. n 4 $+ / ’Yn 8 1 yln(n) Yn
h == h —Vh d
V20 () S/m Vh() ot o= ) sde = § [ <vh{a+ 6 )

for z > 0. Using once again that ||Vh| e < L, this yields

- 8L WS gp e /6
IVA oo < ?/ e ® = S i) = % (3.8)

Besides, since h is affine on [K, 00), we deduce that

1
™ (x) = ;l/_l Vh(K) <x K+ yj;f?) (1—y?)dy = Vh(K)(z - K) = h(z),

for any = > K + ln(n)/%l/6. The exact same reasoning applies for z < 1/K —
ln(n)/fy,l/fj. Hence, for n large enough such that 'y,lz/G/ln(n) > K, h™ is affine and
therefore V2h™ = 0 outside the interval [1/2K,2K]. Combined with (3.8), this
completes the proof. a

Remark 3.4 Whenever h is valued in C2([0, c0),R), the regularization procedure is
not necessary since (3.7) is satisfied as soon as n is large enough. Hence one can
simply use h instead of (h")n.

The sequence of regularized approximating payoff functions (h™), in hand, we
can now introduce the associated valuation PDEs, given by:

(en) = { Ci(t,2) + 30n(2)2°Chu(t,2) =0, (@) €[0,1) x (0,00) ,
" C™"(1,z) = h™(z), =z € (0,00).,

for n € N. The existence of a unique strong solution for this PDE is given in Propo-
sition 3.3 below. For sake of completeness and since the corresponding differential
operator is not uniformly parabolic on [0, 1) x (0, c0), the proof of this proposition
is reported in Appendix. As expected, the solution of the PDE interprets as the
valuation function of the option with payoff A" on the terminal value of the fictive
asset §?, introduced in the previous section.

Proposition 3.3 For any n € N, the PDE (en) has a unique solution denoted 6",
which moreover satisfies

O"(t,z) = By o [h”(??)} . (ha)e[0,1]x(0,00), neN. (3.9)
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3.4 Delta correction and asymptotic hedging for non vanishing transaction costs
coefficient

Even in a frictionless complete setting, a contingent claim can never be perfectly
replicated in practice, since continuous time hedging is not feasible. As detailed in
Section 2.3, we consider portfolios where the position in the assets changes on the
regular discrete time grid (¢');<y. In this framework, we claim that the upgrade
(on)n of volatility and the regularization (™), of the payoff detailed in Section
3.2 and Section 3.3 allows to counterbalance asymptotically the frictions due to
order book related transaction costs. This claim is the content of the next theorem,
which is the main result of the paper.

Theorem 3.4 Consider the sequence of portfolios (V™)y associated to the initial con-
ditions (C™(0,50))n and the investment strategies (H™)n defined by

HY = G (8, 5) = Y (CR (87,517 ,) = CR (-1, 807.,))

J<i

fort e [t7, t?_H) and 0 < ¢ < n. Then, the sequence of portfolio values rewrite

t
vt :6"(0,So)+/ H;dS, — Z G(t?,Hg} —H@_l) , 0<t<1l, neN,
0 tn<t
(3.10)
and (V{*)n converges in probability to the payoff h(S1) as n goes to co.

The proof of this theorem is presented in Section 4 below, and it requires sharp
estimates on the derivatives of (C™),, whose proofs are postponed to Section 5.

Remark 3.5 Observe that the hedging strategy does not simply consist in consider-
ing the Delta associated to the fictive asset (5™)y. Indeed, as observed in [6,11] for
the classical framework of transaction costs proportional to the amount of money,
this original Leland replicating strategy does not converge to the claim of interest,
unless the transaction costs vanish fast enough as the number of trading dates n
increases. As in [9], the extra term in the definition of (Hn)n allows to consider
non vanishing transaction costs. In particular, observe that the change of position
at time ¢7, for i < n, in the portfolio V™ is given by C7 (7, Sin) — cr(tr, Sen_ ).

Remark 3.6 Our main result also allows to quantify the effects of a volume based
trading taxation, on the cost of hedging strategies for convex derivatives. Indeed,
in order to render most of the high frequency trading arbitrage opportunities ir-
relevant, the regulator is still looking towards the best way to create a tax on
trading orders. Nevertheless, the exact consequences of such a regulation on asset
management strategies or more generally risk management strategies is not yet
completely understood. Simple questions on this subject still lack fully satisfying
answers: Should the regulator create a tax on the volume of traded asset or the
quantity of traded money? Should he use a linear tax? What are the consequences
of using a different shape of tax function? In our simplifying Black—Scholes frame-
work, our conclusions are that the global shape of the taxation does not really
matters from a hedging perspective since only the asymptotic behavior around 0
is relevant. Besides, Theorem 3.4 exhibits the volatility change related to a volume
based taxation instead of a more classical amount based one.
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4 Proof of the main result

Due to the consideration of volume related non linear transaction costs, the exhib-
ited trading strategy is based on a pricing function of a stock model with non linear
dynamics. Hence, classical estimates are not available for the sensitivities of the
price function in terms of the volatility parameter. But, we require to understand
precisely the dependence of the price sensitivities with respect to the number of
trading dates n which affects the modified volatility parameter. We overcome this
difficulty, using Malliavin derivative type representation of the Greeks, as detailed
in the next subsection. This leads to sharp estimates, which allow to derive the
convergence of the approximating replicating portfolio to the claim of interest at
maturity.

4.1 Representation and estimates for the modified price function sensitivities
Recall that the price function C™ is given by
O™ ¢ (t,2) > Erg [h"(A{L)} . (4.11)

A well chosen probability change leads classically to a nice representation of
the Delta of the option presented below.

Lemma 4.1 For n € N and any initial condition (t,z) € [0,1] x (0,00), the s.d.e.
dS = Fn(S2)dWy + 30 VAR (S du (4.12)
has a unique solution g", which moreover remains strictly positive. Besides, we have

Cr(t,z) = Erp [Vh"(gy)} . (ba)e[0,1]x (0,00), neN.  (4.13)

Proof. Fix n € N. The existence of a unique solution to (4.12) follows from similar
arguments as the one presented in Lemma 3.1. Besides, since fol pn(u)du = oo

where
145 2 2
20°y + o c°+o
P U XD / 2 Qy ryn’dy = 2,2 ’yn77
w O°Y°+ oy o“u® + oynu

Theorem 2.16 and 2.17, [1], ensure that S™ remains strictly positive for a given
positive initial condition.

The mappings y — 5"(e¥) and y — [6"(e¥)|?> admit locally Lipschitz first
derivatives because their second derivatives are locally bounded. Let denote S :=
InS". By virtue of Theorem 39 (V.7) and Theorem 38 (V.7)[12], we deduce that
there exists a version of the mapping y — gzy, which is continuously differentiable

and so is = §{f$ on (0, 00), for any ¢ € (0, 1). Precisely, for a given initial condition
(t,z) € [0,1] x (0,00), the tangent process VS™ is given by

u
var =1 +/ VAn(SO)VETAW,s,  t<s<T.
t
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Besides, differentiating expression (4.12) provides Cr(t,z) = Etyx[Vh”(:S’\?)Vg{‘].
Assume for the moment that VS™ is a positive martingale and introduce the new
equivalent probability P" defined by dP"™ = V.STdQ, so that

On(t,x) = EF {wﬂ@?)} . (4.14)

Girsanov theorem asserts that the process W™ given by dW,} = dW,, — Vﬁ"(@’} )du
is a standard Brownian motion under P". Hence, the dynamics of S™ under P™ are
given by

dSi; = 3"(S5)dWy +7" VA" (55 ) du.
Therefore, the law of S under P" is identical to the one of S” under Q and (4.14)
rewrites as (4.13).
The rest of the proof is dedicated to the verification that VS" is indeed a

positive martingale.
For any p € N, let us introduce the stopping time

=inf{s<1:57 <z/(1+p)},

with the convention that inf 0 = oo. Applymg Gronwall’s lemma, we verify that
SUP¢< <1 VSSAT" is square integrable, hence v "\rn is a martingale. Let us define

the change of measure dQP := VSMTde. Then,
E[VST] > E[VSiarrlrr—o] = QF(7P =), peN. (4.15)

As (7P)p, let us define the sequence (77), associated to the process S™ given by
(4.12). By construction, observe that 7P has the same law under QP than 77 under
Q, for any p € N. It follows that QP (7P = c0) = Q(7F = 00) — Q(7*>° = o0) where
7 is the first time when S™ hits zero. But S™ remains strictly positive, so that
(4.15) implies that E[V:S’\?] > 1. Since VS" is a supermartingale, we then conclude.

O

We now provide an expression for the second derivative of the price function
C", in the spirit of the Malliavin representation of the Greeks presented in [4].

Lemma 4.2 For any n € N, we have

Cr (1, 2) = B [wﬁ@) ( /t 17erWu)] C (ba) € [0,1] % (0,00) , (4.16)

where ™ is defined by

an
wﬁ::L, 0<t<u<l. (4.17)

(1=t (Su -

Proof. Fix any initial condition (¢,z) € [0,1] x (0,00) and n € N. Differentiating
(4.13) with respect to x, we directly compute

rad o an
C;Lw(t7 IE) = Et,m [Vth(S?)VS?} = Et@ |:L/ v hn(Sl )D Sl VSb Vs ol
1-t ), ’y(SZ})
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Recall that the Malliavin derivative and the tangent process only differ by their
initial conditions. Hence, recalling the definition (4.17) of =", the integration by
parts formula yields

1 1
E (1, 2) = By { / DS[Vh"(S{’)]w?ds} R [Vh”(S{’) / w?dWs] .
t t
O
Similarly, the third derivative of the price function also has such type of repre-

sentation in expectation, where we emphasize that the stochastic integrals consid-
ered below are of Skorokhod type, since the integrand is not necessarily F-adapted.

Lemma 4.3 For any n € N, we have

(b 2) = B [Vh”(g?) ( /t 17r3dwu)], (t,5) € [0,1] x (0,00),  (4.18)

where T is defined by
1
Ty 1= Vamy, + 7y (/ deWS> , 0<t<u<l. (4.19)
t

Proof. Fix any initial condition (¢,z) € [0,1] x (0,00) and n € N. Differentiating
(4.16) with respect to = and following a similar reasoning as above yields

1 1
Cn ot ) = Bo s [vm(s{w ( / wa?dWs) VR (SP)VET ( / wﬂqu>}
t t

1 1 1
=Et [Vh(S{L) (/ Vaﬂr?dVVs> +/ Ds[VR™(ST)]|7s </ ﬂﬁqu) d5:| .
t t t
Hence, the Malliavin integration by parts formula provides
N _ 1 _ 1 1
En () = Fra {Vh(S?) ( / Vzw?dWs) +VAm(ED) / a7 ( / ngwu) dWs} ,
t t t
and the definition (4.19) concludes the proof. ]

The exact same line of arguments provides a similar representation for the
fourth derivative of the pricing function.

Lemma 4.4 For any n € N, we have
Ol (1) = B {Vh"(g?) ( / 1 ﬁgdwuﬂ . () €[0.1] x (0,00) ,  (4.20)
t
where ™ is defined by
fr{f:zvmfrf}—i—wﬁ(/lfr?dWS) . 0<t<u<l. (4.21)
t

These representations allow to derive estimates on the dependance of the
derivatives of the pricing function C", in terms of the parameter n. The rather
computational obtention of these estimates is reported in Section 5 below.



14 Romuald Elie, Emmanuel Lépinette

Proposition 4.5 There exist a constant C and a continuous function f on (0,00)
which do not depend on n € N, such that

ICR(t,2)| < C, (4.22)
0 < égz(tvx) < ﬁﬂ?—lm (4.23)
An C -1 C —3/2
Caaa(t, @)| < mw mx ) (4.24)
An f(x) f(=) f(=) f(z)
Crzas (b0 < A= T Ty (1—t)3/4y5/* ’ (1—t)3/243/%" (42
Ci(t,z)| < S C) (4.26)

(1—t)4/31n(n)’
for any (¢,z) € [0,1] x (0,00) and n € N.

Remark 4.7 Observe that (4.23) also indicates that the price function C™ is convex
with respect to the space variable. Indeed, the pricing function inherits the con-
vexity of the payoff. This observation is crucial in order to ensure that a volatility
upgrade allows to compensate the transaction costs.

4.2 Asymptotics of the hedging error

The subsection is dedicated to the proof of Theorem 3.4, the main result of the
paper. We verify below that the sequence (V{"),, of terminal values for approximate
replicating portfolios converges to h(S1), as the number of trading dates n tends
to infinity.

For any n € N, we rewrite the hedging strategy (Hi')o<¢<1 as H" = H™+ K™ with

A" := Ci(t],Sim) and K[':=Y CR(tj_i, Spn )= CR(t], Sen ), (4:27)
j<i
for t € [t7,¢" ;) and 1 < i < n. We also denote A H[* := H]. — H and AK} :=

Ky — K{* . Therefore the terminal value of the candidate replicating portfolio V{*
rewrites

1
Vln:cn(o,so)Jr/ HﬁdSufZG(t?,Aﬁ%—i—AK&), neN. (4.28)
0 <n ’

Besides, the dynamics of C™ and the definition (3.3) of 6™ yields
~ L 1 [t ~
R"™(S1) = C"™(0,So) —|—/ Cy (u, Su)dSy + 5/ oY SuClry(u, Su)du, neN.
0 0

Plugging the two expressions above together directly leads to the following tractable
decomposition of the hedging error

V' — h(S1) = Fy' + FI' + F3' + F§' + Ff',
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for any n € N, where

Fg = h™(S1) — h(S1) + /1

tn

n—1

(HF = C(t,5))as, — G (LAY + AKT)

ey -
o= / (A — G2 (t, 51))dSt,
0]

1
3 ::/ Ki'dS;
0

n—1 n—1
Fp =Y GO)AHY + AR - Y G (t?,Aﬁ% +AK;;) ,
i=1 i=1
1 1 n—1
Fy = §/ o SiCit (t, Se)dt — > G'(0)| A Hin + A K.
0 i=1
We now prove that each sequence of random variables (Fj")n for 7 =0,...,4

goes to zero in probability, as n goes to infinity.

Proposition 4.6 The sequences (FY'), (FT'), (F3') and (F§') converge to 0 in proba-
bility as n goes to co.

Proof. We prove the convergence of each sequence separately.

Step 0. Convergence of (F()n.

By construction of (hx), (3.7) implies that the first term A" (S1) — h(S1) tends
to 0 as h™ — h. The second one converges to 0 because (C2(.,S.))n is bounded
according to (4.22). As for the last term, observe from (4.13) that

AR =|C2(1,81) — Cl (81, Sin )] = ‘Vh”(Sl) ) [Vh"(é?) B St;_l}

< [V2R"||ooE [\51 — 5|5k = stﬁil} , neN.

As E[S1 — Si»_ | < Cy/1/n, we deduce from (3.7) that

71/6 71/6
Frm n n an an
|AH1|§C\/ﬁlnn+ClnnE|5’1 _St271|7 nGN.

From the dynamics (4.12) of 5™, we compute directly E|S7 7§?n71| < C+\/vn/n

so that |A H}| goes to 0 as n goes to infinity. Very similarly, we show that |A K|
converges also to 0 and Condition (G) provides the convergence of Fj to 0.

Step 1. Convergence of (F[')n.
Applying the Ito formula, we directly compute that

P = CP(t,81) = M{' = Mt + A — Afh ) <t <ty , i<n—1, (4.29)

where the sequence of processes (M™),, and (A™), are given by

M" = / O'Suagm(lh Su)dW, and A" := / |:6;Lt(u7 Su) + %UQSEL@;LM(U, Su)| du,
0 0
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for any n € N. Since S has bounded moments, (4.23) together with the Cauchy—
Schwartz inequality yield

Tn

E(MP - M) < S (
¢ n Tn

2
t gy c
/ T <=, tp <t<tiy;, i<n-—1.
t

Besides, (4.24) together with (4.26) indicate that

ElA} — AR |* < C /t In(n) “du |y du RN
BV e N (R R

mm)~t 42\
n < i i -1.
Sc’(n(l—t)4/3+n(1—t)> 5 tz_t<t1+17 1<n 1

Plugging the last two estimates in (4.29) leads directly to

C C th_1
EFf> < = +— <
Y n= Jo

n

|In(n)|
(1—t)5/3

-1 —2
L >dt§c i), c

a-02) "= an T

for any n € N, so that E[FJ*|? goes to 0 as n goes to infinity.

Step 2. Convergence of (F3')n.
From the definition of K™ given in (4.27), we directly compute

v
’ Cg’t(uvst;’;l)(st? —51)du

B=-> /

i<n—17%i-1

Combining the Cauchy—Schwartz inequality together with (4.26) yields

C 2 1/2 t? du
Y < — n— —
E|F2 | = lnn . Z E“Stz Sll } \/tTL (1 _ u)4/3
i<n—1 i—1
C 1 C
_ _— < — .
~— nlnn Z (17tzﬂ)5/6 - lnn_>0

i<n—1

Step 3. Convergence of (F3')n.
For any 0 < i < n, observe that

AR+ AK = CR(t7, Sim) — CR (17, S ) = Coa(t}, Sm)(Sen — Sen ),

where the random variable ?t? is between Si» ~and Si». Hence, (4.23) together
with Condition (G) yield |F3'| < Cwx5 where

1
n 2
= Y gy S = Su)”
i<ne1 W(l t; )
for any n € N. But Ex% < C(y,) ' Inn, hence F§' — 0 as n goes to oco. O

Proposition 4.7 The sequence (Fy') converges to O in probability as n goes to co.
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Proof. For any n € N, we write F;' = Zle L} with the summands

1 1 n—1 N
LY = 5/0 o SiCly (t, S )dt — — Z oS Cra(ti—1,Sen ),
n—1
~ g
LY = ;Lx(t?,l,st?_l)(;" &' (0)o |AWt?|),

i=1

ty ~
/ 08uCrz(u, Su)dWy
t

n
i—1

)

Observe that the previous decomposition uses the convexity of the price function
given in (4.23), see Remark 4.7.
It now suffices to show that L} — 0 for ¢ =1,...4 as detailed in the steps below.

LY = oG/( O)Z (stn Cru(tf1,Sen )| AWin | —

_ r n—1
= G'(0) Z 08uClte (u, Su)dWa| — G'(0) Y |AHfH + AK |
i=1 |7t i=1

Step 1. Convergence of (L7)n.
We have |LT| < Cy (LT | + \L?Q ) where, by virtue of (4.23),

We have E|LT;| < Cy/vn/n — 0. For the second term, we use the Taylor expansion
Cita(t,St) = Cita (671, Sty ) = Caaa(E, Sep ) (St = Sty ) + Cloae (B, Sy ) (t = 11

for some random variables ;' and S’tn for tI* ; <t < tI'. Besides, differentiating

i
the dynamics of C", we observe that
éﬁtt = _2026;1 (20 T+ U’yna:)sz (02m2 + mna;)éﬁm , (4.30)

for any z € (0,00) and n € N. Hence, combining (4.23), (4.24) and (4.25), we get

P
L12 < Cw’Yn Z/ S (1 7zt1dt
n
—1
N2 [t dt dt dt dt
+ Cu - + + :
T o (mu—t) R S R e e

for any n € N. Hence the Cauchy—Schwartz inequality and a direct computation
yield

n In(n) 1 1
Enggc(\/ﬁ+n1/4+n3/8)—>0.

Step 2. Convergence of (L3)y.



18 Romuald Elie, Emmanuel Lépinette

We use the equality E|AWn| = /2/7n from which we deduce

2~/ 2
T _ ¢’ 2 ' %G (0)
E (G~ GO laWs )" = Var [6'O)|aW, (] = == 5=,
for any ¢ < n. The independence of the increments of the Brownian motion together

with (4.23) yield

C 1 C'ln(n)
mn2 < 2 < .
B ST D S <m0

i<

Step 3. Convergence of (L3 ).
We use the inequality ||a| — |b|| < |a — b|. Therefore, the Cauchy-Schwarz in-
equality and the Ito isometry give us
N 1/2
} du .

n—1 L N N
E|Ly] < C Z (/ E Ustgglcgw(t?—hstggl) — SuChx(u, Su)
i=1 \’

i—1

By the Ito formula, we get d[S;Cly(t, S¢)] = fI'dW; + gj*dt where

f' = 0S0Ciu(t,8t) + 07 Crlya(t, St)

g1 = Stagmt(t St) + %025'?6;?”1@7 St) + 025}26;‘”(75, St),
for 0 <t <1 and n € N. Hence, we derive

-1 n " 1/2
n 5 1 bi n2 2 g n2
ElL] <C ) - E|fPds + — Elgids | . (4.31)
i=1 t tiy

n
i—1

Estimates (4.23) and (4.24) provide

n 2

c 1 1

E|fiPdu < = + , i<n.
e <\ T * o=

Besides, combining (4.30) together with (4.23), (4.24) and (4.25), we get

7 —1/2 -1 —5/4 —3/2
/ E|gg|2du < C;Zn ( Tn + Tn + Tn + Tn )
t

. (T—tr) (=) (A—tp)>/4 - (1 —tp)3/2

i—1

Plugging these last two estimates in (4.31), similar computations as in Step 1 yield
to the convergence of E|L%] to zero.

Step 4. Convergence of (L} )n. .
We first verify that we may replace AK™ by AK"™ where

e
AK& = —/ Coi(u, Sy)du, i< n.
/ o

To do so, it suffices to show that x™ — 0 where

34 N R
= S / (Cgt(u,Su)—Cgt(u,St?_l)) du.
vy

i<n—1
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Using a Taylor expansion, we compute
Crulu, Su) = Culu, Sip ) = Ca(u, Sz ) (Su = Sz, )

for some random variable S't?_l between Sy and Sin for any 0 < ¢ < wu < 1.
Hence (4.30) together with (4.23), (4.24) and (4.25) imply that x™ < Cux"™ where

n—1 &y Sy — Sin Sy — Sin Sy — Sin Su — Syn
—n i—1 1—1 i—1 1—1
X =7 / + + + du,
N N e
for n e N. As E|Sy — St;l_l‘ < Cn~12 for ti <wu <t ,, we easily conclude that

EX™ — 0. At last, replacing AKj» by Af({% and using the inequality ||a|] — |b]] <
|a — b|, we deduce from Ito’s formula together with (4.24) that

t::71 —~ tn—l du d'LL
|L7| < Cw/ Craz(u, Su)du < Cw/ + 0.
0 0 (1 - U)’Yn (1 - U)Vn

5 Price sensitivities estimation

This section is dedicated to the obtention of the estimates presented in Proposition
4.5 above, which allow to upper bound the sensitivities of the price function C™ in
terms of the number of trading dates n. The control of each sensitivity is presented
separately. These estimates, namely (4.22), (4.23), (4.24), (4.25) and (4.26), are
obtained using the Malliavin representation of the Greeks detailed in Section 4.1.
This particular feature is new in the classical scheme of proof for the obtention of
Leland type convergence theorems.

In all the section, we fix (¢,z) € [0,1] x (0,00) and omit the subscript {t,z} in
order to alleviate the notations.
5.1 Estimates (4.22) and (4.23) on the first and second derivatives
First observe that estimate (4.22) directly follows from the representation (4.13),
since (VA™)y is bounded. The rest of this subsection is dedicated to the obtention

of (4.23).

We fix (t,z) € [0,1] x (0,00). Using (4.16) together with the Cauchy—Schwartz
inequality, we derive

1 1/2
|G (t, )| < [[VA" oo (/ E‘TFZ‘QdU) , neN. (5.32)
t

We now focus more closely on the dynamics of the processes (7")n_defined by
(4.17). First, according to the dynamics of S™, the tangent process V.S™ satisfies

AVt = VA (S VSEdW+ (IVFa (S0P + 30 (S V*9u(57)) VSidu
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for n € N. Besides, Ito’s formula implies that 1 /ﬁn(gn) has the following dynamics

= (Qny =~ QN2 _ & (Qn\v25 (Qn
d( 1 ) _ _ VAn(Su) ds™ + 2|VAn (S3)] 'VnN(Su)v 'VR(Su)du

An(SE) An (S22 29n(S%)
~ ran 2~ ran
= VonlS) gy VIS) g, e,
n (S2)]2 2

A direct application of the integration by parts formula hence implies

_ VAAu(SHvVSy o2

dry, = du = ————2 —70du, neN. 5.33
' 2(1-1) 87n (SH)2 " >3

Therefore, we deduce that

u 2_ 2
Wﬁ:W?eXp{—/ A"Z” ds}§ 1,\ , 0<u<1l, neN. (534)
¢ 8|7n(S2)|2 (1= t)7n (=)

Plugging this expression together with Jn(z) > /o7 in (5.32) provides (4.23).
Indeed (5.34) also indicates that 7" and hence VS™ are non-negative, so that

Cio(t,2) = Beo [V2H"(57)VSF] 2 0.

5.2 Estimate (4.24) on the third derivative
This subsection is dedicated to the obtention of (4.24) and divides in 3 steps.

Step 1. Estimate decomposition
Using (4.18), we derive

1

(Gt (,2)] < VA" [|oE| 20| where Z == / FdW., neN. (5.35)

t
Let us introduce the sequence of processes (Z"), given by
S
Zy = / TydWy , neN. (5.36)
t

By the definition of (7") given in (4.19), we compute

~ 1 1

2 = [ Vewtawu+ [ iz,

Jt Jt

1 1
:/ vmﬁquﬂZﬁgf/ T OAT
t t

1 1 1 1
:/ vm’deuﬂzﬂgf/ \7r3|2du7/ o (/ Dmgdws> du
t t t u
U

1 1
= ‘Z{L|2 —/ \7r3|2du—|—/ (wag —/ w?Dands) dWy, meN.
t t t
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Plugging this expression in (5.35) and using Ito’s formula, we deduce
Cllra(t,2)] < C (A° +Ba) . neN, (5.37)

where (Ay) and (Bp) are respectively defined by

1 u
/ (Vﬂrﬂ — / W?D3W3d8> AWy,
t t

for n € N. We now fix n € N and intend to control the terms A,, and By, separately.

2

A, = E and B, :=E

)

1
/ A AW
t

Step 2. Control of (An)n
Recall from (5.34) that |7 < 1/(1 — ¢)yn(x). Hence, we get from a direct

application of Ito’s formula that
1 u
= / E |y (/ W?dWs)
t t

1 u
/ w{f (/ W:dWs) dWhy,
t t

We recall from (5.34) that || < 1/(1 — ¢t)yn(z) and deduce from the previous

expression
U
Ty ( / W?dWs)
t

1 1 u
1 2
A :/IE dug—A//Ew’? dsdu . (5.38
" =0l J; S, B (535

Using once again the same relation together with |fyn(:r)\2 > oynx yields

2 2

A, =E du .

2

1 1
A71L/2 < _ < . 5.39
= 20— 02Fa@) = V20 (1 - )z (-39

Step 3. Control of (By)n
We now turn to the more intricate term By. Let us introduce the notation

1
/ bW
t

By virtue of the martingale moment inequalities, there exists C > 0 such that

b = Var' — /.[Dswg]ﬂ?ds , so that Bp, =E (5.40)
t

1 1/2
B, < CE (/ |bZ\2du) < CVI—tE sup |by], neN. (5.41)
t t<u<l

In order to control the last term on the r. h. s. ; we look towards the dynamics of
(b™)n. Differentiating the dynamics of (7™) given in (5.33), we compute separately

2 2 2 292 (an _
AVl = —— 70 g gy TV In(S6) Gan n g, (5.42)
87n (Si)? 4 (S
2 2 2 292 (an _
dDsn? = —— 200 poxldgu + Mpssgngdu, t<s, (5.43)

87 (Si)2 47 (S2)P3
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Since DsSP = VSI3,(ST)/VSE = VS /{(1 - t)xl} for t < s < r < 1, we deduce

2.2 _n u 2 2 mn
/Wstwuds— // T InTs Swrdrds+// "%W"(S) DsSPalndrds
8[7n (S1)|2 A7n (SP)[3

J— ~n ~
:_/ (/ o Dsmy ds) g fyndr —|—/ r-to VEVZ"(ST)VS%?EZT,
¢ \Jt BAn (ST Je L=t 4F.(SH)P3

for t < wu < 1. Combining this expression with (5.42), we get

2 2 2 _2vo (an
bt = ——F I prgy 4 2 VﬁVZ"(S“) 172 (1 - w)du . (5.44)
8[n (SH)|? 4n (SH)I?

Notice that b} = —VAn(2)/(1—t)|3n(x)]* < 0. From the dynamics of b, we observe
that b" increases as long as b™ is negative. Once it becomes positive, it must remain

non negative, since the negative part of the drift disappears as soon as b" reaches
0. Indeed, b" = L" 7" /n;* where

.2 275 (an

L= b} + / T NVIn(SE) nny  yay (5.45)
t AFn(SP)[?

is strictly increasing. From there, we deduce that o™ and L™ have the same sign.

Hence b" is always non negative on [r", 1] where 7" := inf{s € [¢,1], b5 =0} A 1.
Therefore, we get

|bﬁ| < —bgl{bugo} + bzl{u>7'"}

—b — 1 son “ U'VnT A D / U’an'}/n5)| (lfr)d*r
R A N Y SR TN ’

IA

for any ¢t < u < 1, which directly leads to
BE < BRI 400, with TP = — / VA (S0 (1 = r)2endr? . (5.46)
t

Since V7, is non-negative and " is decreasing, we deduce that

E sup ’b” V()

e, Wi < Ty R, e TR (547

We now focus on the last term of this expression and observe from a direct appli-
cation of the integration by parts formula that

= (1= )VAn(@)Inf'|* = (1 = u)VAn () |mi)?

u U
+/ \w¢|2(1—r)dvan(s;l)—/ TP PYAN S, t<u<1. (5.48)
t t

We compute

2 2_2 o~
v;?n(x) m VQ:Y\n( ): . 0' ’Vn v3/'}7n( )_ 3o Tn V’Yn(x)

2/0%2% + oyna’ 435 (z)’ 4 An(x) 7
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and deduce from the application of Ito’s formula that

. 2.2 =~ qn
AVAn (S = —Z In qu—Mdu = —o’7 0 gW, -V (Sn)dﬂu (5.49)
=2 2 452
43 (S%) (s Tu

Plugging this expression in (5.48) directly leads to

I < (1= O)VAu(@)m P+ NS+ T8, t<us<l,
where N" := —ft |72 (1 - r)-Z als dW,. Since I > 0, it follows that (N;)y,>+

477 (S7)
is a supermartingale whence EN 1 < 0. We deduce an upper bound on EI{* which
plugged in (5.47) provides

3VAn(z)

E sup [bi] < DG

7A+2 1 — t)VAn(2)|m)?
t<u<i (1 =t)An(=)[? ( )V (@)l

(5.50)

Together with (5.41) and the expression V7, (z)/9n(z) < C/z, we get

C 232

aAn(z) \/71— ,/% 1—1) ’

which, combined with (5.37) and (5.39), provides (4.24).

Bn <

5.3 Estimate (4.25) on the fourth derivative

This subsection is dedicated to the obtention of (4.25). Fix n € N. The represen-
tation (4.20) directly provides

1
(Conoa(t 2)] < [|VA"|ocE l/ AW | (5.51)
t

and we now intend to control the term E ’ /. tl T dWy| in several steps.

Step 1. A tractable Decomposition for E ‘ftl ARAWy|.

Let introduce the notation

U 1
7= / (B 4277 Z0)aW,s . t<u<1, so that Z?:/ AW,
t t

where (b");, is defined above and given by b" := V" — [ m!(Dy7x")dr. The defi-
nition of 7™ given in (4.21) implies

1 1 1 1
/ ﬁgqu:/ Vﬁ;’qu+/ T Z1dW, = VZ{HL/ Ty 21 dWy . (5.52)
t t t t
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Using integration by parts formulae, observe that ftl 7wt ZdW,, rewrites
— 1 —
e / D20 du
t
~ 1 1 1
71z~ [ s rmaa- [ ([ owr vapszan.)
t t u

1 1 1 S S
_ / Zrazn + / Zrazn — / ( / A Dubldu — 227 / TrZDuwgdu) AW,
t t t t t
1 s 1 s r
_2/ T (/ |7r,’}\2du) dWs — 2/ T </ (/ wgpuw:‘du) dWr) AW .
t t t t t

Plugging this expression together with VZ}* = ftl(Vb? +2Z¢Vnd +2riVZE)dWs
and the definition of " in (5.52), we obtain

1 1 1 1
/ T AWy = / csdWs + / ZudZy + / Zndz
t t t t

1 s S
n 2/ {ngg fan (/ b?dW,«> o (/ \wﬁ|2du> } AW, .
t t t

where ¢" := Vb" — [ 77! (Dyb")dr. Introducing the dynamics of 2" and Z" in the
previous expression, we get

1 1 1 s
/ AW, = / AWy + 3 / (ng:ﬂg / b?dWr) aw,
t t t t
1 S S
+ 2/ o (|Z§|2+/ ﬂ?Z?der/ |7r?\2dr) dWs .
t t t

Using Ito’s formula together with the definition of Z”, we deduce

1
/ AW,
¢
where we set

1 s
/ n ( / Z?dWr) AW,
t t

We now require to control these three terms separately.

E < 307 +3CH +CF (5.53)

1
/ c?dWs .
t

1
oM = o ::]E/ 2 AW, CF = E
t

Step 2. Control of (CT)
Using twice the martingale moment inequality, we compute

1
CP < CxPE / (Z0)2du < en?VI—IE sup |Z]
t t<u<l

<Crmiv1l—t (\/l—tE sup |by|+ 27y V1 —tE sup |ZZ}|>

t<u<t t<u<l

<Crf(1—t) [E sup b+ 2|7 )>VI—1t].
t<u<t
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Plugging (5.50) in this expression, it follows that

sy (m(wn‘z Vi tan<x>|2> '

Since [Yn(2)|? > oynz and |VAn(z)|/[Fn(2)| < 3/2z, we deduce that

n C 1 1
A< gz <x+ m) : (5.54)

Step 3. Control of (C%)
Applying the martingale moment inequality together with the relation (5.46),
we deduce

Cy < CV1I—tE sup |buZy| < CV1I—t||b|E sup |Z;|+E sup I;|Z;|| ,
t<u<l t<u<l t<u<l

where I'" defined in (5.46) is non negative and increasing. Using once again the
martingale moment inequality, we derive

Cy < CA -t |nt + CV1I—tE sup Iy|Zy] . (5.55)
t<u<l

Observe that the integration by parts formula yields
dIL 7 = —VAn(SH (1 — u) Z02nitdrll 4+ ThwirdWa.

The Jensen inequality applied to the concave function x — +/z yields the inequality
(f f(w)udu)® < ([ f(u)du)([ f(u)u®du). Since n™ is decreasing, we deduce that

u 1/2
/ I dW, ‘
t

2 sup |I}Zy| < sup

—=n
+ ‘anl
t<u<l t<u<l

: (5.56)

where, using (5.49), we have

u
o _/ V(G (1 — )| 20 22" dr?
t

u u
— / I [A95 (52)(1 — r)dr — / (72121 22 2V (32 )dr
t t

dm)

s

u
- / I 21ZEE (L — r) VA (32)
t

for t < u <1, with N" a local martingale. Hence, we deduce that %TZ < N} +
xT + x5 where

1 1
e / (TSI (L = r)dr >0, x5 = —4/ A=) 2|7 Pdrr >0 .
t t

Applying Ito’s formula to (|x|*Vn(SP)(1 — 7)?)¢<r<1 together with the relation
(5.49) yields
1
X = [T VA (@) (1 — )2 + 4/ (1= 1)2V5,(87) (1) dn?
t

dn?

o

+ N,

1
- / (1= r)2(x2)177(50)

2 [ @127 B Vi)
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where N™ is a lower bounded local martingale, so that
ENT| < frf[*VAn(2) (1~ 1)?

From the martingale inequality together with Ito’s formula, we get

n|3
E|x3| <4Esup|Z"| —(1=r)|mPdrl < 41T —txp (1—1t) |7Tg| ,

where the last inequality follows from the monotonicity of 7™ together with Doob’s
inequality.

We deduce that E|xT 4+ x5 | < oo, so that 0 < %TZ < NJHE[|XT + x5 |Fu], which
implies that N™ is a supermartingale. Therefore EN? < 0 and ET'} < 2E[x} + x3].
Hence, the two previous inequalities together with (5.56) lead to

2 sup |y Zy | < ]Esup

/ L'y dwy
t

+¢W\/(1”t' Vin(e) + o

The martingale moment inequality and the monotonicity of I'™ and «" ensure

u
/ 'y dw,
t

Plugging EI7* < 2(1 — t)VAn(z)|7}'|? observed in (5.50) together with the defini-
tions of 7" and b}’ in the previous expressions and (5.55) leads to

n C Van(x) VAn( ) V%(m) 1
@ = VI—t (%(x)?’ Tt An(@? | An@) (1 —1) %(w)“(lt)?’”)

Since VA (x)/An(x) < 3/2z and A (z)? > oynz, we compute

f(z) f(z)
) s TR (5.57)

E sup
t<u<l

u
< CE / | LAl |2dr < Crpv/1—tEIT .
t

Cy <
250
for some continuous function f.

Step 4. Control of C%
We now turn to the last term C% and observe from the martingale moment

inequality that
1 1
/ csdWs| < CE / |c2|2ds < CvV1—tE sup |cg|. (5.58)
t t t<s<1

In order to control this last term, we compute the dynamics of ¢" defined as
Vb — [, ¢ Dsb™ds. We deduce from the dynamics of b™ given in (5.44) that

Cy =E

2
AV = —Viﬁv Mdu + 12 7 W” L (SH)VShbidu
8[n (Si)1 4 Pl

+ 7—"57'” (Sl (1 u)du+7"v{
n

v'}/n
n

}(5 )VSE w2 (1 — u)du .
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Similarly, we compute

2
n 'n )

+ %"77” (SMYrl Dor (1 — w)du + va[

(S”)DSS”b”du

V’Yn
[An

for t < s <wu < 1. Since D_§3 = Vg,”/{(l —t)mg}, we deduce following the same
line of arguments as in Step 3 of the previous section that

} (S DsSH w2 (1 — u)du

2
no_ Tn 'Yn VAn ;znyon —u on
dc? = 7% & du ut L (S)b (1 t>VSudu
. . _ 2
+ T VW L (Siym (1 u)bﬁdu+l"v Y”’; (Sﬁ)VSZhE\Qi(l W
2 4 | Pl 1—¢

Therefore, Ito’s formula together with the definition of 7™ leads to

Crr cy “ 7 medr
= == +6/ V7 i n_ Trl
m =g T8, VRENO-NTS [Fn ()12

va [V Vinl*] g
—|—/t I{ ’Ynn—Q‘hTQ‘ :|(S77})|7T7T~L|2(1—7')2d7’, t<u<l.

Since 7" and V27, are decreasing, this relation combined with (5.58) implies
ch < CVI=t(|c}| + EXY +EYY) (5.59)

with X" = / —VAn (S (1 =) 2npdmy >0,
t

n
T
e
Y= / — (219 (B — V250 (5)Au(S)) I (1~ )%t 0.
t
We first focus on the process Y" and, since n"* is decreasing, observe that

0 < Y"<|nPf? / 21V (S7) |2 = V25, (S )7 (S )) (1-r)2dal.  (5.60)

Applying Ito’s formula to the process ((1 - u)27r3/§n(§3)2) ey O get
t<u<l

(1L-w’mp  (-0)’nf _ / <3|v%<§?>|2 _v?%@)) i Fn (S
' (

Fn(SmE el B Aasme ) A=)

u )2 u n -~ n\ |2
/ L= r)m dr—l—/ - dw;‘—Q/ AL W]”(:q’”)' dr — NY |
£ [An(SP)? ¢t [An(ST)I2 ¢ (L=7)72 |3,(5m)2

where N is a local martingale given by N¥ := [/ 2(1=7) 22V (S2) /An (SH)2dW;..
Plugging 2dny = V2§n(§]} )'f?n(gff )dr in the previous equality provides

u ~ rany|2 2~ ran

= 1/ (1—r)*m (2‘Y%~(S“)| - VAV"SST)) dr (5.61)
2 t |’7n(S7ZL)|2 FY'IL(S;L)
_ 2_n _4\2.n u _ n

— (£ ’li) T - (1A t) Zt +/ QMdT—i— Nqi/ , t<u< 1. (562)
‘7”(33)‘2 |’7n(x)| + |’Yn(s7@)‘2
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s
Let pick v € [t,1] and define for r € [v,1], N := / Ny du. By virtue of Theorem
v
65, IV-6, [12], (N;);c[v,1] is a local martingale. Moreover, (5.62) implies that

/Urﬂﬂdug/v ([1%?;12)'2 / / m(s ”Tdd + N}

u)7ru "
o [ AR (569
Besides, observe that
1 _ n 1
wdr = % —(1=r)da? < %(14)75?. (5.64)
yn (ST)12 Vi Vi

This estimate together with (5.63) and " > 0 imply that (N7),c[, 1 is a su-
permartingale, as a local martingale bounded from below. Therefore, since 8" is
increasing, we deduce from (5.63) and (5.64) that

Eﬁﬁgl—E/ Budu <—(1—t)7rt7 t<v<l1.

As v — 1, using the Fatou lemma since 8" > 0, we derive
EYP < 2 (2 ERY < 6(1— el (5.65)
We now focus on the term X7' and observe from (5.44) that
() AV30BE) gy _ VAR g
s 4n (S7)I? 2

so that b™ /7" is increasing and therefore 2d|b} /n| < —V3,(SP)dr. Hence, Ito’s
formula implies directly

n ~ b?‘ n|2 “ qn ‘b |
Xt < Vi) =i - [T 03601
t

|7TT| dr

-/ 1950 (80 I (1L r)2dn? + / “’"'(1— P 2avAa (8D

for t < wu < 1. Plugging (5.49) in this expression, we deduce

0 < %x;} < V()L = B0 + Y+ NX, t<u<l, (5.66)

where N¥ is a local martingale. Since EY{" < oo, we deduce that N Xisa super-
martingale so that EN{* < 0. Hence, combining (5.59) together with (5.65) and
(5.66) provides

C5 < OVI=1 (e} + VAn(2)(1 = O} 27 + (1= )| )

__C (IVQ%(z)I 4 3Vm@P | 1 )
VI=t\ Pn(x)l An(@)P (1 =t)An(@)?
Since |V275 [An(x) < Cyn/z, VAn/An(z) < C/x and 1/ (x) < C\/vnz, this yields
C 1 1
3 < . 5.67
S VIt <:1:5/2 + %x3/2> (5.67)

Plugging (5.54), (5.57) and (5.67) in (5.51) and (5.53) provides (4.25). ]
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5.4 Estimate (4.26) on the crossed derivative

This subsection is dedicated to the obtention of (4.26). This finer estimate is nec-
essary in order to consider transaction costs coefficients which do not vanish as
the number of trading dates n goes to infinity. It requires the obtention of stronger
estimates on (C%,) and (Cly,) which are made possible via the control (3.7) on
the sequence of payoff functions (h™)p.

We recall that the initial condition (¢,z) is fixed and E¢ ; denotes E[. | SP =zl
Let us first derive some a priori estimates on (S™), and (VS™)n.

Lemma 5.1 There exist a constant C' and a continuous function f on (0,00) which
do not depend on n such that

E:.VSy <C, t<u<l, (5.68)
Ei .S < Cf(z), t<u<l, (5.69)

~ 12
B . |VSy| <Cf(z), t<u<l, (5.70)
E:o|STP2 < Cf(x), t<u<l, (5.71)
Et 2|52 < CyAnf(z), t<u<l, (5.72)

Proof. We fix n € N and u € [t,1] in order to verify each estimate separately. O

Proof of (5.68).
Recall that VS™ satisfies

dVST = VA (ST)VSTAW,, + 02V Sdu.

Using the dynamic of S™ and the Ito formula, we verify easily that S™ has finite
moments of all orders. As VS = (1 — t)7,(5%) , we deduce that VS has also
finite moments of all orders. We also know that the process VS™ is positive and
I VA (S1)VSHdW, is a local martingale which turns out to be a martingale once

k,n

stopped by a sequence of stopping times 77" — oo a.s. as k — oco. By the Fatou

Lemma, we deduce that
. ko _ u N
EVS] < 1+lirr}€ianE/ o?VStdu < 1+IE/ o2V Stdr .,
t t
Using the Gronwall lemma, we conclude about (5.68). O

Proof of (5.69). N N
By virtue of (5.68), we have 0 < V.E; .S = E;,VSy; < C. Hence, a Taylor
expansion directly leads to

Etmgg = Etxgg *Et,ogg < Cz.

O
Proof of (5.70)
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From the s.d.e. satisfied by gﬁ, we deduce that there is a constant C' such
that E|S%|? < Cyng(x) for some continuous function g. To do so, it suffices to use
inequality (5.69) and apply the Gronwall lemma. Recall that

VS™ = 7" (1 = )7 (S™) = 7" (1 — £)1/ 02| S"|2 + onS".

As 7" < 7}, we conclude about (5.70). O

Proof of (5.71).

We have VxEt7m|§3|3/2 = (3/2)Et7m|§3|1/2V§3. Using the Cauchy-Schwarz in-
equality and Inequalities (5.69) and (5.70), we deduce that 0 < VB¢ .|S23/2 <
Cyg(z), for some continuous function g. Hence (5.69) follows from a Taylor expan-
sion. O

Proof of (5.72).

We have VwEt7x|§Z|2 = 2Et7x§ZV§Zf. We then use the Cauchy—Schwarz in-
equality with Inequality (5.70) and the inequality Et7m|§3|2 < Cyng(z). The con-
clusion follows as previously. O

We now provide finer estimates on (6!;1) and (aﬁm)

Lemma 5.2 There exists a continuous function f such that

= (14)5/(;)”111(”) o (t2) €[0,1] x(0,00), meN.

Proof. Fix n € N. From (4.17) and (5.34), we compute

(EITL] _ Oy o
-0 = -9

|égx(ta x)

Cra(t, ) = E[V?R"(S7)VST] =E [v%"(@) E[r7],
since VZh" vanishes outside a compact subset of (0, 00) which does not depend of
n and hence V2h"(ST)7,(S7) is bounded by C\/7n||VZh"||sc.

We now look towards a sharp estimate of E[x]']. The expression of 7™ given in
(5.34) together with Jensen inequality yield

- I (l—t)ff“r% 71_77,,772 1 _ - (1—t)5427%
E[x}] < : t t/tEe swn(sgnﬁdug(lt_zy/t[g I%(Sg)IQe 1617 (SO | du, (5.73)

where we used the bound ze™® < C, x > 0, for the last inequality. We split the
expectation of the r.h.s. in the expression above in two parts. The first one is
bounded for n large enough as follows, by virtue of (5.69) and (5.72):

(1-t)o22

. {'%@We !

_ (1*t)027711,/2
{gggﬁ} < Tne 16 f(l‘) ) (574)

where f is a continuous function which may change from line to line. Observe
that the Cauchy-Schwarz inequality and (5.71) yields E[§31§n>ﬁ] < 7;1/6]1‘(33).

Therefore, the second term is bounded by

(1-t)o3~2

E |[7(80)% o0 1{7,;2\/%}} < (P vAm+ ) f (@) < /0 () . (5.75)
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Together with z'/3¢™% < C, z > 0, plugging (5.74) and (5.75) in (5.73) yields

v T2 W () f(@)
E[r1] < (1—1) (1 —t)1/3 < 72/3(1 7t)7/3 ) (5.76)

Together with (3.7), plugging this estimate in the first inequality of this proof
concludes the proof. O

Lemma 5.3 Fiz n € N. There exists a continuous function f such that

Cht) € s (ko) €D x (0.00) e,

Proof. Fix n € N. As observed in Section 5.2, we have

R - ~ ~ 1

|CPw(t,2)| < VA" |0 AL ? + Bn,  where By :=E {Vh”(S{L) (/ bZquﬂ (5.77)
¢

and (Ap)n and (V™) are respectively given in (5.37) and (5.40). As already ob-
served in (5.38), we have

(s—t)o242

_ 2 —2.n 115 n(Sn)|2
An (|1 b // E |n2|* dsdu < | |”‘ /// Be T rdsdu.
Wn 7

Using the bound zl/2e—7 < C for z > 0, we deduce

Angc( |%t) ? | ? // (s—t)3/2/

Since the exponential on the r.h.s is smaller than 1, we directly deduce from (5.69)
that

v o oLt ') () ()
e [ (@) (1—t)—3/4 S et S - )V n(n) (579

(s—t)o2+2

An(SM)e sAnGHI2 } drdsdu.

We now focus on the second term on the r.h.s. of (5.77) and rewrite

~ 1 _ _ 1 - vgn
Bn = JE/ b V2R (ST) Dy ST du = E/ b V2R (ST) L
t

— = d t<u<l.
\ 1—tm™ "=

Observe from (5.45) that the process b" is given by

n u 2 2o (an
b= Tupp m’j/ S AL WZZVE(ST)W;LQ —r)dr
U t Y2 (ST)

Moreover, recall that VST = 77 (1—t)3,(S}) and V2h" vanishes outside a compact
subset independent of n. Plugging these estimates in the expression of By, we get

1 2 2w (an
Bn < CyAnllV2R"|oo ('bf BE G R + B [ﬁ/ %@(S’“)w?(l fr)er}> .
t 4’Yn(S7tL)
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Recalling the process 8" defined in (5.61), observe that the expression of b to-
gether with |VA,| < 14 |VA,|? and (5.34) lead to

B < Ovmv o (1 - 0Bl + B [wt [~ - et + B et

< ORIV (LS I + (1 - P nPE 7] + B 57

V2R o f (1)

S gyl + CyAnl V2R |oE 71 8T] (5.79)

where the last inequality follows from (5.76).

The rest of the proof is dedicated to the control of E [#'57]. We follow the
notations of the previous section and observe from the monotonicity of 3" together
with (5.63) that

1 1 _ n 1
Ea? 37 < lim En}— / Bldu < lim Ex? (3 (12 LI / NY dr) .
v—1 1—-vJ, v—1 ¢ A2(Sm) 1—-vJ,

Since the first term in the parenthesis is bounded by C7*(1 — t)v;, 2, (5.76) yields

nio_ -2 1
Eal g7 < Mﬂ@ + lim Ex} (%/ Nrydr> . (5.80)
(1 _ t)4/3’7n v—1 v

Regarding the last term, we first observe from (5.63) that

u v 1 (1 —1”)71‘" 5
/ Nrdrzf?)(lfv)/ = Tdr > -C(l—v)riy,, v<u<l.
. ST

This provides an upper bound for ( fv NY dr)~ and the integration by parts formula
yields

u u U
wﬁ/ Nrydrg—C(l—v)wf%:Q/ dw?—l—/ W?Nrydr, v<u<l.
v v JU

Moreover, the last term on the r.h.s is a supermartingale as a bounded from below
local martingale. Hence, by virtue of the Lebesgue theorem, we finally deduce that

1 1 n
lim Er{ L/ NYdr) < C(1 —v)alyn 2 lim IE/ d(T) =o.
v—1 1-w v v—1 v 7r;”

Combining this estimate with (5.77), (5.78), (5.79) and (5.80) and (3.7) concludes
the proof. a

Proof of (4.26).

In order to derive the upper bound (4.26), it suffices to derive the expression
of C%%(t,z) from C™(t,z) and CPyy(t,z) by differentiating the p.d.c. (en) and to
plug the estimates of Lemma 5.2 and Lemma 5.3 . O
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6 Appendix: proof of Proposition 3.3

Note that we cannot immediately conclude about the existence of a solution of
(en) because the operator is not uniformly parabolic on |0, co[®[0, 1[. That’s why,
we shall bring the problem back to another one the domain of which satisfies the
required uniform parabolicity.

Fix n € N. By virtue of Lemma 3.1, recall that S™ is the unique solution of the
stochastic equation

gr(tr) H/ (SN aw, . t<s<1, (t,x)€[0,1] x (0,00),
t

where we use the overscript (¢,z) in order to emphasize the initial condition.
Introducing 35" : @ — /0222 + oyn|z| + m~1, we denote by S™™ the solution of

S
grmi(te) _ o +/ e haw, . t<s<1, () el0,1] x (0,00),
t

for any m > 0. Since ||75" — Ynlloo < m =12, for m > 0, hence §f’m’(t’x) — :S'\;l’(t’x)

in L?(£2, P) as m goes to oo, uniformly in (t,z) € [0,1 x (0,00). We deduce that
C™™ o (t @) e Eth”(é\?’m’(t’w)) converges uniformly to C™ : (t,z) — Eth"(é\?’(t’w)).

Applying Lemma 3.3 p 112 with Condition (A’) p 113 [3], implies, together
with [VA"| < L, that

~ ~, ~ 2
Cmm (tw) = O ()| < L \/ E|Sp @0 - g

< Ky(z—y)2+[t—uf,
form > 0,0 <tu<1andzy < |R| for a given R € (0,00), where the constant
K depends on n, m and R. We deduce that C™™ is continuous for any m > 0 and
hence so is C".

Fix m > 0. We use arguments of Section 6.3 in [3] and try to follow their
notations. Let us consider the following sets

Q= O (Gm) o B o= (1 (m)
Tm = {0} x (%,m) , Sm = 10,1) x {%,m} ,

For each y € Sp, it is easy to observe that there exists a closed ball Kj* such that
KJ'NQm =0 and K" N Qm = {y}. It follows that the function W, proposed p
134 [3] defines a barrier for each y € Sy,. Besides, C™ and B™ are continuous and
or is Lipschitz on Qmn,. By virtue of Theorem 3.6 p 138 [3], we deduce that the
Dirichlet problem

ur(t,x) + 305 (x)r ues (t,2) =0 (t,z) € QmUTH
u(T,z) = h"(x) z € Bm
’U,(t, l‘) = Cn(t,{lj) (tv‘r) € Sm
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admits a unique solution u™

n,m
Uy

™ continuous on Q,, with continuous derivatives

s Ui ” O Qm U Trm. Moreover, Theorem 5.2 p 147 [3] implies that «™" has

the following stochastic representation

W) = B[O S Lot + 1SN | L (4,3) € Qi

where 7™ is the first time where S™®%) exits Q. The definition of C™ implies

-~

W () :E[@”(Tmﬁf;é”))] = E{h"(é‘\?(t’z))} = C"(t,z), (Lz)€ Qm .

As m — oo, we deduce that C™ solves the PDE (en). Moreover, C" : (t,y) —

cn (t,eY) solves the following uniformly parabolic PDE
'Ut(tv y) + %a’r?l(ey)vyy(tv y) - %Eﬁ(ey)vy(t, y) = 07 (t7 y) € [07 1) xR
v(L,y) = h(e¥), yeR '

By virtue of Theorem 3.6 [3], C" is also the unique solution of the same PDE

restr

icted to an arbitrary smooth bounded domain. Moreover, Theorem 5.2 p 147

[3], implies that C™ has a unique probabilistic representation. We deduce that o

is the unique solution of (en). ]
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