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Binary Continuous Phase Modulations Robust to a
Modulation Index Mismatch

Malek Messai, Member, IEEE, Giulio Colavolpe, Senior Member, IEEE, Karine Amis, Member, IEEE,
and Frédéric Guilloud, Member, IEEE,

Abstract—We consider binary continuous phase modulation
(CPM) signals used in some recent low-cost and low-power
consumption telecommunications standard. When these signals
are generated through a low-cost transmitter, the real modulation
index can end up being quite different from the nominal value
employed at the receiver and a significant performance degra-
dation is observed, unless proper techniques for the estimation
and compensation are employed. For this reason, we design
new binary schemes with a much higher robustness. They are
based on the concatenation of a suitable precoder with binary
input and a ternary CPM format. The result is a family of
CPM formats whose phase state is constrained to follow a
specific evolution. Two of these precoders are considered. We will
discuss many aspects related to these schemes, such as the power
spectral density, the spectral efficiency, simplified detection, the
minimum distance, and the uncoded performance. The adopted
precoders do not change the recursive nature of CPM schemes.
So these schemes are still suited for serial concatenation, through
a pseudo-random interleaver, with an outer channel encoder.

Index Terms—Continuous phase modulation, modulation index
mismatch, precoding.

I. INTRODUCTION

Continuous-phase modulation (CPMs) signals [1] are very
interesting modulation formats which combine a constant
signal envelope and excellent spectral efficiency properties [2].
In particular, the constant envelope makes these modulations
insensitive to nonlinear distortions and thus very attractive for
an employment in satellite communications and in low-cost
and low-power consumption transmitter standards. An analog
implementation of the CPM modulator allows to further reduce
the transmitter cost, at the expense of possible variations of
the CPM waveform parameters around their nominal values. In
particular, the modulation index will vary since it depends on
the not well calibrated gain of the employed voltage-controlled
oscillator (VCO). As an example, in Bluetooth operating in
Basic Rate (BR) and Low Energy (LE) modes, the modulation
index is specified to be in the intervals [0.28, 0.35] and
[0.45, 0.55], respectively [3]. The interval of the modulation
index for the Ultra Low Energy (ULE) mode of the Digital
Enhanced Cordless Telecommunication (DECT) standard is
[0.35, 0.7] [4]. In the Automatic Identification System (AIS),
the modulation index is nominally equal to 0.5 but due to the
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imperfections of the AIS equipments, a variation of ±10% is
typically admitted [5].

On the other hand, the optimal maximum a-posteriori
(MAP) sequence or symbol detectors for CPMs described
in the literature, and implemented through the Viterbi or the
BCJR algorithm, respectively, require a perfect knowledge of
the modulation index at the receiver. When a modulation index
mismatch is present, a significant performance degradation is
observed.

One possible solution can be the adoption of a noncoherent
detector (e.g., see [6]–[9] and references therein), due to its
robustness to the phase uncertainty induced by the imperfect
knowledge of the modulation index. As an example, in [6]
noncoherent detection of continuous-phase frequency shift
keying (CPFSK) signals is carried over a sliding window
and decision is made only on the middle bit of this window.
This allows to limit the accumulated phase error due to the
modulation index error.

Another alternative can be represented by the adoption at
the receiver of an algorithm for the estimation of the modu-
lation index [10] coupled with the low-complexity algorithms
described in [11] or in [12] which properly compensate the
estimated error on the modulation index by using a per-
survivor processing. More recently, the very general problem
of soft-input soft-output (SISO) detection of a binary CPM
signal with an unknown modulation index transmitted over a
channel with phase noise has been considered in [13].

All these schemes, however, operate at the receiver side and
no attempt to increase the intrinsic robustness of the generated
signal is made. This problem is addressed here. In other words,
we will define new binary formats for which the performance
degradation is very limited even when there is a significant
modulation index mismatch between the transmitter and the
receiver. These new schemes are based on the concatenation
of a precoder with binary input and ternary output, and a
ternary CPM scheme. The aim of the precoder is to constrain
the evolution of the CPM phase state. Two precoders will be
described and investigated in this paper. We will show the
properties of the power spectral density of these schemes and
also study the uncoded performance and the spectral efficiency,
which provides a benchmark on the coded performance, as
discussed later. Suboptimal detection will be also considered.
These schemes preserve the recursive nature of CPM formats
which makes them very attractive when serially concatenated,
through a pseudo-random interleaver, with an outer channel
encoder. In fact, it is well known that, when the inner modu-
lator/encoder is recursive, an interleaver gain is observed [14].
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The paper is organized as follows. In Section II we will
review binary and ternary CPM signals and their Laurent
decomposition. The proposed schemes and the corresponding
detectors are described in Section III. Section IV sheds some
light on the power spectral density of these schemes and
describes how the spectral efficiency is defined and computed.
The performance analysis in case of uncoded transmission is
investigated in Section V. Simulation results are reported in
Section VI, whereas conclusions are drawn in Section VII.

II. CPM SIGNALS AND LAURENT DECOMPOSITION

In this section, we will briefly review binary and ternary
CPMs and their Laurent decompositions [15], [16] since they
have relevance for the schemes proposed in this paper.

The complex envelope of a CPM signal can be expressed
as [1]

s(t,a, h) =

√
ES
T

exp
{
2πh

∑
n

anq(t− nT )
}
, (1)

where ES is the energy per information symbol, T the symbol
interval, h the modulation index, the function q(t) is the phase
response, and its derivative is the frequency pulse, assumed of
duration LT and integral 1/2. The information symbols a =
{an}, assumed independent, belong to the alphabet {±1} in
the case of binary CPMs and to the alphabet {0,±2} in the
case of ternary CPMs.

The modulation index is usually written as h = r/p (where
r and p are relatively prime integers). In this case, it can
be shown [17] that the CPM signal in the generic time
interval [nT, (n+1)T ] is completely defined by the symbol an,
the correlative state

ωn = (an−1, an−2, . . . , an−L+1)

and the phase state φn−L, which takes on p values and can
be recursively defined as

φn−L = [φn−L−1 + πhan−L]2π , (2)

where [·]2π denotes the “modulo 2π” operator.
Based on Laurent representation, the complex envelope of

a binary or a ternary CPM signal may be exactly expressed
as [15], [16]

s(t,a, h) =

K−1∑
k=0

∑
n

αk,npk(t− nT ) (3)

where K represents the number of linearly-modulated compo-
nents in the representation. It results to be K = 2(L−1) [15] or
K = 2 · 3(L−1) [16] for binary or ternary CPMs, respectively.
The expressions of pulses {pk(t)} as a function of q(t) and h
and those of symbols {αk,n} as a function of the information
symbol sequence {an} and h may be found in [15], [16].
By truncating the summation in (3) considering only the first
K < 2(L−1) terms, we obtain an approximation of s(t,a, h).

In the binary case, most of the signal power is concentrated
in the first component, i.e., that associated with pulse p0(t),
which is called principal component [15]. As a consequence,
the principal component may be used in (3) to attain a very

good trade-off between approximation quality and number of
signal components [18], [19]. In this case, it holds

α0,n = α0,n−1e
πhan (4)

Symbols {α0,n} take on p values [15] and it can be easily
observed from (2) and (4) that α0,n = eφn .

In the ternary case, most of the signal power is concentrated
in two principal components, corresponding to pulses p0(t)
and p1(t). In this case, the corresponding symbols can be
expressed as

α0,n = eπhanα0,n−1 (5)

α1,n =
1

2

[
eπhγ0,n + eπhγ1,n

]
α0,n−1 (6)

where γ0,n and γ1,n belong to the alphabet ±1 and are such
that an = γ0,n + γ1,n [16]. In this ternary case, it is again
α0,n = eφn .

In low cost transmitters, the value of the modulation index
is often different from its nominal value which is instead
assumed at the receiver. In the following, we will express
the modulation index at the transmitter as h = hrx + he,
where hrx is the nominal value known at the receiver and he
accounts for the mismatch between transmitter and receiver
and is assumed unknown. This mismatch has a catastrophic
effect on the performance. As observed in [10], the pulses of
the principal components weakly depend on the value of the
modulation index and thus on he. On the contrary, the effect
of he is cumulative in the phase state (2) and thus in α0,n.
This observation motivates the schemes proposed in the next
section.

We consider transmission over an additive white Gaussian
noise (AWGN) channel. The complex envelope of the received
signal thus reads

r(t) = s(t,a, hrx + he) + w(t) (7)

where w(t) is a complex-valued white Gaussian noise process
with independent components, each with two-sided power
spectral density N0/2. In the following, we will denote by
r a suitable vector of sufficient statistics extracted from the
continuous-time received signal r(t).

III. PROPOSED SCHEMES AND CORRESPONDING
DETECTORS

Our aim is to improve the robustness of classical binary
CPM schemes to a modulation index mismatch. A classical
binary CPM modulator can be represented as depicted in
Fig. 1(a). Information bits {bn}, belonging to the alphabet
{0, 1} are first mapped into symbols {an} belonging to the
alphabet {±1}, and then go at the input of a binary CPM
modulator. The schemes proposed in this paper are instead
based on the serial concatenation of an outer precoder, which
receives at its input bits {bn} belonging to the alphabet {0, 1}
and provides at its output ternary symbols {an} belonging to
the alphabet {0,±2}, and an inner ternary CPM. This con-
catenation is shown in Fig. 1(b). It is reminiscent of uncoded
shaped-offset quadrature phase-shift keying (SOQPSK) [16]
although the precoder is designed there for different purposes,
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s(t, a, h)
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Fig. 1. Compared schemes. (a) Classical binary CPMs. (b) Proposed scheme.

0/0 0/0

bn/an = 1/2

1/− 2

φn−1 = 0 φn−1 = ϕ

Fig. 2. State diagram of the overall scheme in the case of AMI precoder.

i.e., to allow a simple (albeit suboptimal) symbol-by-symbol
detection architecture and the ternary CPM scheme is generic
here.

We design the precoder to avoid the cumulative effect of he
on the phase state, still keeping its recursive definition. This
latter property is important to have an interleaver gain when
the proposed schemes are concatenated with an outer encoder
through an interleaver.

In order to explain the main ideas behind the proposed
schemes, let us consider the first proposed precoder. It is
simply the classical alternate mark inversion (AMI) precoder
where bit bn = 0 is encoded as an = 0, whereas bn = 1
is encoded alternately as an = 2 or an = −2. By denoting
ϕ = 2πh and assuming that the initial phase state is φ0 = 0,
the arrival of a bit bn = 0 will leave the phase state in the
previous value, i.e., φn = φn−1. On the contrary, the arrival
of a bit bn = 1 will produce a change of phase state according
to the following rule:

φn =

{
ϕ if φn−1 = 0

0 if φn−1 = ϕ .

We thus have the alternation of the phase states 0 and ϕ
according to the state diagram shown in Fig. 2. In this state
diagram, the values of an are also shown. Thus, there is no
accumulation effect and a possible error on h has a very
limited impact on the performance, as shown in Section VI.

As we will see in Section IV, unless h = 1/2, 3/2, . . . , the
power spectral density of the signal resulting from the previous
scheme has impulses at harmonics of the signaling rate 1/T .
They are present when E{α0,n} = E{eφn} 6= 0 (and this
explains that when h = 1/2, 3/2, . . . , i.e., ϕ = π, 3π, . . . ,
these impulses are not present). These impulses can be used
to help timing and frequency synchronization. In case they are
considered as undesirable, another precoder can be used. This
precoder must be defined such that all phase states{

0, ϕ, 2ϕ, . . . ,
(
p− 1

)
ϕ
}

ϕ

0/0

ϕ

0/0

φn−1 = 0

bn/an = 0/0

0/0

0/0

0/0

(p − 1)ϕ

(p − 1)ϕ

pϕ

1/2

1/− 2 1/− 2

1/21/2

1/− 2 1/− 2

Fig. 3. State diagram of the overall scheme in the case of second proposed
precoder.

occur with the same probability. In this way, it will be
E{α0,n} = E{eφn} = 0 since equally spaced discrete values
on the unit circles are taken by the phase state. One possible
solution is the adoption of a precoder based on this simple rule:
bit bn = 0 is again encoded as an = 0, and thus leaves the
CPM signal into the same state, whereas bit bn = 1 is encoded
as an = 2 or an = −2. This time, however, the encoder
provides at its output a block of p symbols an = 2 followed
by a block of p symbols an = −2, one after the other. Without
loss of generality, let us assume that the initial phase state of
the modulator is φ0 = 0. The state of the overall scheme
is not only related to the actual CPM phase state φn−1 but
also to the sign of the block of symbols we are transmitting.
Starting from the phase state φ0 = 0, the first p input bits 1
will drive the phase state to the state pϕ = 0 passing through
the states ϕ, 2ϕ, . . . , (p−1)ϕ. Then, the successive block of p
input bits 1 will take back the phase state to the initial value.
Thus, these phase states are taken with the same probability
and E{α0,n} = E{eφn} = 0. The state diagram of the
overall scheme is shown in Fig. 3, where states φn−1 = 0 and
φn−1 = pϕ, which are the same phase state, have been split
because conceptually different (the beginning and the ending
state of a symbols block an = 2).

As far as detection is concerned, we could implement
the optimal receivers through a bank of suitable matched
filters followed by a Viterbi [20] or a BCJR [21] algorithm
with a proper number of states.1 However, a low-complexity
suboptimal receiver with practically optimal performance can
be implemented through a bank of two filters matched to
pulses p0(t) and p1(t), followed by a Viterbi or a BCJR
algorithm with branch metrics [18], [19]2

λn(bn, φn−1) =<
[
x0,nα

∗
0,n + x1,nα

∗
1,n

]
=<

{
e−φn−1

[
x0,ne

−πhan

+ x1,n

(e−πhγ0,n + e−πhγ1,n

2

)]}
(8)

1The Viterbi and the BCJR algorithms are used for the implementation
of the maximum a posteriori (MAP) sequence and symbol detection criteria,
respectively.

2Among many algorithms proposed in the literature for suboptimal detec-
tion of CPM signals (as an example, see the references in [18], [19]), we here
consider only those based on the Laurent decomposition since, thanks to the
property mentioned before that pulses of the principal components weakly
depend on he, they can employ fixed front end filters.
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x0,n and x1,n being the outputs at time nT of the two
matched filters, having impulse response p0(−t) and p1(−t),
respectively, an is a function of φn−1 and bn, as shown in
Fig. 2 or in Fig. 3, and, as previously stated, γ0,n and γ1,n
are such that an = γ0,n + γ1,n. These algorithms thus work
on a trellis with only 2 states, independently of the value of
h, in the case of the AMI precoder, whereas in the case of the
second proposed encoder the number of states is 2p.

From a complexity point of view of a suboptimal detector,
let us compare a classical binary CPM with the proposed
precoders for a same modulation index and frequency pulse.
For classical binary CPMs a single matched filter is required
whereas in the case of the proposed schemes, two matched
filters of the same length are employed. The front end com-
plexity is thus doubled.

Let us now consider the computational complexity in each
trellis section. For the proposed precoders, the computation
of a single branch metric requires to compute two terms
x0,nα

∗
0,n+x1,nα

∗
1,n instead of a single term x0,nα

∗
0,n. So the

complexity for each trellis branch is doubled. Regarding the
number of branches in a single trellis section, which directly
influences the receiver complexity and is given by the number
of trellis states times the number of branches at the output
of each state (2 in any case), this will be p × 2 = 2p in the
case of a classical CPM, 2 · 2 = 4 for the AMI precoder,
and 2p× 2 = 4p for the second precoder. As a consequence,
we can conclude that in the case of the AMI precoder the
computational complexity in each trellis section is 4/p times
that for a classical CPM, whereas for the second proposed
precoder it is 4 times that for a classical CPM.

We can now explain why the proposed schemes are more
robust in the case of modulation index mismatch, as an
example with reference to the second precoder. Since the phase
state starts from a certain value, evolves as a consequence of
the arrival of p input bits equal to one, and then comes back to
that original value, the phase errors due to a modulation index
mismatch do not accumulate and will be undone after 2p input
bits equal to one. We can also expect the AMI precoder to be
more robust than the second proposed precoder since the range
of phase values, and thus the possible phase errors, is much
more limited.

IV. SPECTRUM AND SPECTRAL EFFICIENCY

In order to gain a deeper understanding of the effect of
these precoders on the overall signal, we now consider the
power spectral density (PSD) of the transmitted signal in
our proposed schemes. Instead of considering the exact PSD,
we will consider the PSD of the signal resulting from the
approximation of the transmitted signal with its two principal
components.3 Hence, we approximate the transmitted signal
as

s(t,a, h) ' s(t,a, h) =
∑
n

α0,np0(t−nT )+
∑
n

α1,np1(t−nT )
(9)

3When L = 1, this representation with only two components turns out to
be exact, i.e., in (3) only two components are present in this case.

whose PSD can be expressed as

Ws(f) =
Wα0

(f)

T
|P0(f)|2 +

Wα1
(f)

T
|P1(f)|2

+
2

T
<
{
Wα0,α1

(f)P0(f)P
∗
1 (f)

}
(10)

where Wα0
(f), Wα1

(f), and Wα0,α1
(f) are the Fourier

transforms of the autocorrelations and crosscorrelations
Rα0(m) = E{α0,n+mα

∗
0,n}, Rα1(m) = E{α1,n+mα

∗
1,n},

and Rα0,α1(m) = E{α0,n+mα
∗
1,n}, respectively, whereas

P0(f) and P1(f) are the Fourier transforms of pulses p0(t)
and p1(t), respectively. The first two terms in (10) represent
the PSD of the two components whereas the remaining one
takes into consideration the correlation between the two com-
ponents. It is straightforward to prove that, for the precoder
in Fig. 2 it is

Rα0
(m) =

 1, for m = 0

1

2
(1 + cos 2πh), otherwise

(11)

Rα1
(m) =



1

2
+

1

2
cos2 πh, for m = 0

1

4
+

3

4
cos2 πh, for m = ±1

cos2 πh

2
(1 + cos 2πh), otherwise

(12)

and

Rα0,α1
(m) =

 cosπh, for m = 0,−1
3

4
cosπh+

1

4
cosπh cos 2πh, otherwise.

(13)
As mentioned in the previous section, this PSD presents

some impulses, generated by the fact that, unless h is such
that cosπh = 0, it is, according to the autocorrelation function
properties [22],

lim
m→∞

Rα0
(m) = |E{α0,n}|2 6= 0

lim
m→∞

Rα1(m) = |E{α1,n}|2 6= 0

lim
m→∞

Rα0,α1
(m) = E{α0,n}E{α∗1,n} 6= 0 .

However, it is sufficient to adopt a precoder such that in
Fig. 3 that makes E{α0,n} = 0 to avoid the presence of such
impulses. In fact, for ternary CPMs, by considering all symbols
{αk,n} (not only those corresponding to principal components)
it can be easily shown that they can be expressed as [16]

αk,n = α0,n−`f(an, . . . , an−`+1)

for a suitable `, where f(·) is a suitable (nonlinear)
function. Since α0,n−` is independent of future symbols
an, . . . , an−`+1, E{α0,n} = 0 is a sufficient condition for
having E{αk,n} = 0, ∀k. Thus we have

lim
m→∞

Rαk
(m) = |E{αk,n}|2 = 0

lim
m→∞

Rαk1
,αk2

(m) = E{αk1,n}E{α∗k2,n} = 0

and no impulses will be present in the resulting PSD. The
computation of the PSD when the precoder in Fig. 3 is used
is much more involved and is not reported here.
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The precoder has effect not only on the PSD but also on
the performance of the overall resulting scheme. In order to
gain a deeper understanding of the schemes resulting from
the proposed concatenations, we also evaluated their spectral
efficiency (SE). The spectral efficiency η is defined as

η =
I

BT
, [bit/s/Hz] (14)

where I is the information rate, i.e., the amount of information
transmitted per channel use, and B is the bandwidth occupied
by the transmitted signal. This normalization is required to
capture the different bandwidth occupancy of different mod-
ulation formats. In other words, by considering the spectral
efficiency, i.e., the amount of information transmitted per unity
of time and per unity of bandwidth, we are also considering
the effect of the precoding on the bandwidth occupancy. Our
aim is to understand if the proposed binary schemes have a
SE comparable with that of the classical binary schemes for a
same frequency pulse and modulation index, and thus a similar
performance has to be expected when the proposed signals are
employed in coded systems.

CPM bandwidth is theoretically infinite because the PSD
of a CPM signal has rigorously an infinite support. Hence,
we consider the traditional definition of bandwidth based on
the power concentration, that is the bandwidth that contains
a given fraction of the overall power. Being this fraction a
parameter, we choose to use the 99.9% of the overall power.
This definition is consistent with systems where a limitation
on the out-of-band power exists. To compute this bandwidth,
we need the CPM power spectral density, which cannot be
evaluated analytically in closed form but only numerically.4

An alternative bandwidth definition could be adopted. In par-
ticular, we could refer to the definitions employed in [1], [2].
This would change our considerations only from a quantitative
point of view.

To compute the information rate I in (14), we can use
the simulation-based technique described in [23], which only
requires the existence of an optimal MAP symbol detector for
the considered system. The simulation-based method described
in [23] allows to evaluate the achievable information rate as

I(a, r) = E

{
log

p(r|a)
p(r)

}
, [bit/ch.use] (15)

where the probability density functions p(r|a) and p(r) can
be evaluated recursively through the forward recursion of
the optimal MAP symbol detection algorithm, thus in the
absence of modulation index mismatch. This receiver can
assure communication with arbitrarily small non-zero error
probability when the transmission rate at the CPM modulator
input does not exceed I(a, r) bits per channel use, provided
that a suitable channel code is adopted.

V. UNCODED PERFORMANCE

We consider the performance of the proposed signals when
transmitted over the AWGN channel. We will consider the
asymptotic performance for high values of Eb/N0, Eb being

4In order to avoid approximations, we didn’t use (10). Instead, we adopted
the technique described in [1] for the computation of the PSD.

the mean energy per information bit. No channel coding is
assumed to be used, thus Eb = ES , Let us denote by e =
a − â the sequence representing the difference between the
transmitted sequence a and the erroneous one â. Without loss
of generality, we will assume that any considered error event
starts at time n = 0. We will also denote the normalized
squared Euclidean distance [1]

d2(e) =
1

Eb
||s(t,a)− s(t, â)||2 . (16)

The probability of bit error for the optimal MAP sequence
detector (implemented through the Viterbi algorithm) is well
approximated by [24]

Pb ≈
nemin

memin

2Remin

Q(
√
d2minEb/N0) (17)

where

dmin = min
e
d(e) . (18)

emin = argmin
e
d(e) , (19)

nemin is the number of bit errors (i.e., on the sequence {bn})
caused by the error event emin, memin

= 2
∏Remin

−1
i=0 (2 −

|emin,i|
2 ), Remin

is the span of symbol times where emin is dif-
ferent from zero and Q(x) is the Gaussian Q function. If there
are more sequences e corresponding to dmin, the bit error
probability will have more terms of the form of the right hand
side of (17), each one corresponding to a different sequence
e. The coefficient nemin

memin

2Remin
is often called multiplicity of

the error event with minimum distance [25].
Now, it only remains to identify the error events correspond-

ing to dmin. This can be done by working on the phase tree, as
described in [1]. We considered different modulation formats
and computed the corresponding parameters nemin

, memin
,

Remin
, and dmin, for both the classical binary schemes and

the proposed ones. We considered a modulation format with a
rectangular phase pulse of length L = 1 (1REC) and h = 1/2,
a modulation format with raised cosine frequency pulse of
length L = 2 (2RC) and h = 1/4, and a Gaussian frequency
pulse with normalized 3-dB bandwidth β = 0.5 truncated
to a length L = 2 (2GAU) and h = 1/3 [1]. The results
are reported in Table I. It can be observed that the proposed
schemes do not modify the minimum distance and, at most,
they modify the multiplicity of the error event by a factor
2, although we do not have a formal proof that this always
holds. In particular, the 2nd proposed precoder provides the
same asymptotic performance as the classical scheme except
for h = 1/2, when the multiplicity is halved.

VI. SIMULATION RESULTS

We first motivate the adoption of the proposed schemes by
assessing their robustness in the case of a significant modula-
tion index mismatch. We consider uncoded transmissions, both
classical and proposed schemes, and the performance of the
Viterbi-based receiver working on the principal components
of the Laurent decomposition and designed for the nominal
modulation index. In all cases considered in this paper, the
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TABLE I
PARAMETERS FOR THE COMPUTATION OF THE ASYMPTOTIC BIT ERROR PROBABILITY FOR THREE DIFFERENT PHASE PULSES AND MODULATION INDICES.

emin nemin memin d2min Pb

1REC
h = 1/2

classical (2,−2),(2, 2) 2 4 2 2Q
(√

2Eb
N0

)
AMI precod. (2,−2) 2 4 2 2Q

(√
2Eb
N0

)
2nd precod. (2,−2) 2 2 2 Q

(√
2Eb
N0

)
2RC
h = 1/4

classical (2, 0,−2) 2 4 0.66 Q
(√

0.66Eb
N0

)
AMI precod. (2, 0,−2) 2 8 0.66 2Q

(√
0.66Eb

N0

)
2nd precod. (2, 0,−2) 2 4 0.66 Q

(√
0.66Eb

N0

)
2GAU
β = 0.5
h = 1/3

classical (2, 0,−2) 2 4 1.06 Q
(√

1.06Eb
N0

)
AMI precod. (2, 0,−2) 2 8 1.06 2Q

(√
1.06Eb

N0

)
2nd precod. (2, 0,−2) 2 4 1.06 Q

(√
1.06Eb

N0

)
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Fig. 4. Robustness for the case of a 2GAU frequency pulse with β = 0.5.

performance of the suboptimal receivers based on the prin-
cipal components of the Laurent decomposition is practically
indistinguishable from that of the optimal detectors.

As a first example, we consider a case inspired by the
Bluetooth standard, where the 2GAU frequency pulse with
β = 0.5 is employed (third row of Table I). We will consider
both classical and proposed schemes. We will assume that
the modulation index at the transmitter can vary from 0.3 to
0.37 and that the receiver is designed for a nominal value of
hrx = 1/3. No attempt is made at the receiver to compensate
for the modulation index mismatch. In Fig. 4, we show the
performance that is obtained when at the transmitter the
nominal value or the values at the boundaries of the range
is employed (at least for the proposed schemes, whereas
for the case of a classical CPM a much lower mismatch is
considered). It can be observed that, whereas for the classical
binary CPM format a small value of the mismatch produces a
large degradation, for both proposed schemes the degradation
is very limited (at most 2 dB) in the considered range.

Similarly, in Fig. 5 we consider the case of full response
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=7/25=0.28
1RC, 2nd precod., h=0.28, h
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=0.25

1REC, AMI precod., h=h
rx

=0.5
1REC, AMI precod., h=0.55, h

rx
=0.5

1REC, 2nd precod., h=h
rx

=0.5
1REC, 2nd precod., h=0.55, h

rx
=0.5

Fig. 5. Robustness to a modulation index mismatch for 1REC and 1RC
frequency pulses.

CPMs with REC and RC frequency pulses. We remember that
RC pulses attain a higher spectral compactness at the cost of
a lower Euclidean distance. This can be also observed from
the values of the 99.9%-bandwidth reported in Table II. In this
case, the modulation index employed at the transmitter (h) and
that at used to design the receiver (hrx) are explicitly reported
in the caption. The results confirm our intuition about the
robustness of the proposed schemes that exhibit a negligible
performance loss even when the mismatch is large.

The correctness of the proposed asymptotic analysis for
uncoded transmissions is addressed in Fig. 6, where the bit
error rate (BER) performance, computed through simulations,
for some of the modulation formats also considered in Table I
is shown and compared with the asymptotic formulas reported
in the table. There is no modulation index mismatch. and the
receivers considered in the simulations are not the optimal
ones but the simplified receivers based on the Laurent de-
composition. The fact that performance simulations using the
suboptimal receiver is in perfect agreement with the analysis,
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Fig. 6. BER performance in the case of absence of modulation index
mismatch (simulations and closed-form asymptotic expressions).

which has been carried out with reference to the optimal
detector, is a further evidence of what stated before, i.e.,
that the performance of the suboptimal receivers based on
the principal components of the Laurent representation is
practically indistinguishable from that of the optimal detectors.

We now consider coded transmissions. In order to assess
the ultimate performance limits of coded transmissions, we
consider the spectral efficiency η as defined in (14) instead of
the simple information rate, in order to also capture a possible
bandwidth expansion caused by the considered precoders. In
Figs. 7 and 8 we report the results in the case of a 1REC or a
2RC frequency pulse, respectively, with different modulation
indices. The spectral efficiency will be shown as a function of
ES/N0, which is related to Eb/N0 by

ES
N0

= I
Eb
N0

= ηBT
Eb
N0

.

The second proposed precoder has a spectral efficiency quite
similar to that of classical binary CPMs. On the contrary, a
significant spectral efficiency degradation is observed when
using the AMI precoder. This is due to a bandwidth expansion
related to the use of this precoder which is related to the high
occurrence of the phase transitions generated by the alternation
2 → −2 and vice versa. This can be observed by looking at
Table II, where the values of 99.9%-bandwidth (defined as the
bandwidth that contains 99.9% of the overall signal power) is
reported for the modulation formats considered in Figs. 5 and
6. If, from one side, the use of the second proposed precoder
does not entail significant modifications in the bandwidth
values with respect to the classical binary CPM with the same
modulation index and frequency pulse, a significant bandwidth
expansion is observed with the AMI precoder.

Finally, in Fig. 9 we considered BER simulations for
a coded transmission system. We serially concatenated the
proposed schemes with a binary convolutional encoder with
generators (7, 5) (octal notation) through a pseudo-random

TABLE II
99.9%-BANDWIDTH FOR SOME OF THE CONSIDERED SCHEMES.

B99.9%T for 1REC B99.9%T for 2RC
h 1/7 1/6 2/9 1/8 2/7 1/6 1/5 1/7
Classical 1.21 1.27 1.4 1.18 1.24 1.1 1.16 1.02
AMI prec. 1.51 1.8 2.2 1.39 1.76 1.32 1.43 1.24
2nd prec. 1.22 1.3 1.43 1.03 1.4 1.03 1.2 1.03
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Fig. 7. Spectral efficiency for 1REC modulations with different modulation
indexes.
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Fig. 8. Spectral efficiency for 2RC modulations with different modulation
indexes.

interleaver of length 1024 or 4096 bits. We used a 1REC
frequency pulse with modulation index h = 1/2. We also
report the performance related to the use, in the same concate-
nation, of a classical CPM scheme with the same frequency
pulse and modulation index, corresponding to a minimum
shift keying (MSK) modulation. For all considered schemes,
a number of 16 iterations between detector and decoder is
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Fig. 9. BER performance for a 1REC modulation with h = 1/2 serially
concatenated with a convolutional encoder via a pseudo-random interleaver.

allowed. This figure demonstrates that the proposed schemes
are suitable for such kind of concatenation and an interleaver
gain can be observed due to the preserved recursive nature of
the modulator.

VII. CONCLUSIONS

We proposed new binary CPM schemes for applications
where low-cost transmitters are employed. In these applica-
tions, the modulation index of the transmitter can be much
more different than the nominal one and, if not properly taken
into account at the receiver through the use of techniques
for estimation and compensation, this mismatch can severely
degrade the performance. The proposed new schemes are
based on the concatenation of a precoder with binary input
and ternary output, and a ternary CPM scheme. The aim of
the precoder is to constrain the evolution of the CPM phase
state and this makes them more robust to a modulation index
mismatch. Two precoders have been described and investigated
in this paper. The overall scheme resulting from the adoption
of the first precoder has only two states, independently of the
adopted modulation index but the performance, in terms of
spectral efficiency is worse than that of classical CPM due
to a bandwidth expansion. The second precoder generates an
overall scheme with a number of states which depends on
the modulation index denominator. We studied these schemes
from the point of view of coded and uncoded performance and
spectral characteristics, demonstrating that they can be a valid
solution in these low-cost applications.
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