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ABSTRACT

In this work, we propose a novel non parametric method for
the temporally-consistent inpainting of dynamic texture se-
quences. The inpainting of texture image sequences is stated
as a stochastic assimilation issue, for which a novel model-
free and data-driven Ensemble Kalman method is introduced.
Our model is inspired by the Analog Ensemble Kalman Fil-
ter (AnEnKF) recently proposed for the assimilation of geo-
physical space-time dynamics, where the physical model is
replaced by the use of statistical analogs or nearest neigh-
bours. Such a non-parametric framework is of key interest
for image processing applications, as prior models are sel-
dom available in general. We present experimental evidence
for real dynamic texture that using only a catalog database
of historical data and without having any assumption on the
model, the proposed method provides relevant dynamically-
consistent interpolation and outperforms the classical para-
metric (autoregressive) dynamical prior.

Index Terms— Data assimilation, Dynamic textures, In-
painting, Ensemble kalman filter, Nearest-Neighbors, Data
mining.

1. INTRODUCTION

We are interested in the analysis of dynamic textures (DTs),
which can be defined as image sequences characterized by
repetitive space-time patterns. Examples of dynamic textures
include sea waves, fire flames, moving flags, etc... The in-
terested reader can refer to [1] and the references therein for
characterizations and examples of DTs. Recent studies have
mainly focused on DT modelling, synthesis and recoginition.
Here, we address the dynamically-consistent reconstruction
of DT sequence from noisy observations, possibly involving
missing data.

Let x(tx)g=1...- be the sequence of images to be inferred
and suppose we have y(ty)g=1...- incomplete and noisy mea-
surements of x(ty) at each time k. This inverse problem can
be formulated by the following equation:

y(tx) = Hx(tr) + e(ty) €))
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where H is an observation operator representing a mask (0
for unavailable data, 1 for presence) and ¢ a random per-
turbation which takes into consideration observation model-
ing error, acquisition noise and other sources of uncertainty.
These measurements are one source of information about the
sequence x(t).

Within a classical Bayesian state-space setting (REF), a
second source of information about this sequence is provided
by the dynamical model that controls the evolution of the DT
in time:

z(tit1) = M(z(te)) +n(te) (2)

where M denotes the dynamical model and 7 a random
noise representing the uncertainty about the model between
two consecutive times. The mathematical resolution of the
state-space model (1)-(2) refers to data assimilation in the
geoscience community or more commonly stochastic filter-
ing.

Here, we focus on a flexible and efficient sequential
Monte Carlo technique: the Ensemble Kalman method (see
[2] for a review of widely used data assimilation methods).
In its classical form, it proceeds sequentially as follows. One
first runs the dynamical model M given in Eq.(2) at each
time step to simulate ensemble members corresponding to
representative set of forecast scenarios. The second step
amounts to reweighting the different members according to
their agreement to the new observation. This classical setting
requires the knowledge of the dynamical model, what may be
complex especially for visual image sequences for which no
underlying fluid-dynamics-like interpretation can be derived.
By contrast, we exploit a new data-driven methodology which
makes use of a database of model-simulated or observation-
based scenarios to emulate the dynamical model: this recent
methodology is called the Analog Ensemble Kalman Filter
and Smoother (AnEnKF and AnENKS) and has been in-
troduced in [4]. In this previous work, experiments using
Analog ensemble methods were done in the Lorenz-63 model
in which the state of the system is a 3-dimensional vector [5].
The results indicate that the AnEnKF and AnEnKS are able
to retrieve the chaotic behaviour of such model. Our contri-



bution consists in applying and extending this non-parametric
method to reconstruct a priori unknown complex dynamic
textures from partial and noisy observations sequence and
addresses the curse of dimensionality.

The paper is organized as follows. Section II presents the
AnEnKF/AnEnKS algorithm. Section III describes our DTs
data and the dimensionality reduction method. In Section IV,
the application to a reference DTs database is evaluated. We
further discuss and summarize the key results of our investi-
gations in Section V.

2. ANALOG ENSEMBLE KALMAN
FILTER/SMOOTHER (ANENKF/ANENKS)

Limitations of stochastic data assimilation and especially dif-
ficulties faced to explicitly model the dynamics and state the
parametrizations of the system were the motivation behind de-
veloping the AnEnKF/AnEnKS [5]. The core idea consists in
combining machine learning and stochastic filtering methods.
It exploits previously acquired datasets which contain exam-
ples of the time evolution of the state and explores implicit
data-driven models. In the subsequent we assume a catalog is
built from previously observed states of the system (referred
to as analogs) along with the associated following states (suc-
cessors).

2.1. Nonparametric sampler of the dynamics

We consider a non-parametric sampling of state dynamics us-
ing a nearest-neighbour scheme. Let us consider x(t) to be
the state of the system at time ¢. To generate possible fore-
cast states at time t + dt, we search for the nearest neigh-
bors (analogs) of the state in the catalog. This is a classic
method used in data mining [9] that will help us to get to their
matching successors. Then, we use the weighted K-nearest
neighbors (WKNN [10]) to compute a realistic prediction of
the future state (successor). This non-parametric data-driven
sampling of the state dynamics is plugged into a classical en-
semble data assimilation method. In this work, we use the
Ensemble Kalman Filter (EnKF) [3]. Algorithm 1 illustrates
the proposed non-parametric sampler for the statistical emu-
lation of the dynamical systems M.

2.2. Ensemble Kalman Filter and Smoother

In the initial step of the EnKF algorithm, at time ¢ = 1, we
construct the vectors x{ (1) Vi € {1, ..., N} using a multivari-
ate Gaussian random generator with the mean vector x” and
the covariance matrix B, these are a priori information called
the background. Then, we proceed forward from ¢ = 2 to
t = T. In the update step, we apply the nonparametric sam-
pler presented above to generate N samples of x{ (t) from a
multivariate Gaussian random generator with weighted mean

Algorithm 1 Nonparametric sampler of the dynamics

1: for All previous analysis results x?(¢ — dt), i.e. each
member/particle ¢ € {1, ..., N} and for each time analy-
sist € {1,...,T} do

2 Find the K nearest neighbors/analogs using a Kd-tree
procedure
3: Compute the corresponding K Euclidean distances

with x¢ (¢ — dt) and determine the corresponding & nor-
malized weights using an exponential kernel

4: Extract the K corresponding successors for a delayed
time dt¢
5: Use the K successors and the k& normalized weights to

compute the weighted mean fcf (t) and covariance f’f (t)
6: end for

%/ () and covariance P/ (¢). The forecast state is represented

by the sample mean x7 (¢) and the sample covariance P/ ().
In the analysis step, we generate the N samples of yf (t) from
a multivariate Gaussian random generator with mean szf (t)
and covariance R which is the covariance of error € intro-
ducedin 1. Then, the N members of the ensemble are updated
by the observations as x¢(t) = x{ ) +K*(t)(y(t) — y{(t))
where K?(t) = P/ (¢)H'(HP/(t)H’ + R) ™! is the Kalman
filter gain. Finally, the updated Gaussian analyzed state is rep-
resented by the sample mean x*(¢) and the sample covariance
P*(t). An illustration of a time step of the filtering scheme is
given in Fig. 1.

Successors

X(t) 8
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Fig. 1. Tllustration of AnEnKF running in a time step: For
each ensemble member, K nearest neighbors are retrieved
from the analog and a weighted K-nearest neighbors is run
on their corresponding successors, the mean of the results ob-
tained for every ensemble member is the forecast state, the
observation is then used in the analysis step with respect to
EnKF equations.

The backward recursions correspond to the EnKS algo-
rithm proposed by [12]. It uses the results of the EnKF com-



puted above. In the initial step of the EnKS algorithm, at
time t = T, we use the members of the filtered state, Vi €
{1,..., N}, such as x}(T) = x%(T) and P*(T) = P*(T).
Then, we proceed backward fromt¢ =7T'—1to¢t = 1. Ateach
time ¢, we compute x; (t) = x2(¢)+K*(t) (x5 (t+1) —x{(t-i—
1)) where K*(t) = P2(t)M'(Pf(t + 1))~ ! is the Kalman
smoother gain. Finally, the updated Gaussian smoothed state
is represented by the sample mean x*°(¢) and the sample co-
variance P*(¢).

3. DATA DESCRIPTION AND DIMENSIONALITY
REDUCTION

The DT sequences used in this study are from Soatto et al.
paper [1], the database comprises various examples of DTs
(escalator moving, human face talking, sea waves... etc),
some of them were borrowed from the MIT temporal tex-
ture database [6] like the toilet flush sequence. Most of the
examples are composed of 120 frames of size n x m where
100 < n,m < 200, we use the first 100 frames as a training
database and the 20 last as test images. Due to computational
limits we can not use the image as a state of the model, so
we proceed by using Principal Component Analysis (PCA)
commonly used in computer vision (particularily in face
recognition [7] [8]). Every image of the database is consid-
ered as a very long 1D vector by concatenating image pixels
column by column, and we seek to derive eigenvectors of the
covariance matrix of database image vectors, we borrow the
term eigenfaces from face recognition to call them, next we
choose Nbfaces eigenfaces with the largest corresponding
eigenvalues and we project the data on the lower-dimensional
space formed by these eigenfaces.

The catalog of analogs and successors that we need
for AnEnKF/AnEnKS is constructed by gathering the 1D
columns of projections of every database image in an analogs’
matrix, and putting the corresponding successors (which are
for every image the next image in the video sequence) in a
successors’ matrix of the same dimension. Fig. 2 illustrates
the scheme followed to construct the catalog.

Matrix of size
(Nbfaces, NbD)

Matrix of size
(m*n, NbD)

Database image sequence

NbD=number of images

PCA

—

Fig. 2. Construction of the analogs’ matrix, the successors’
matrix is obtained by rearranging columns so that every ana-
log has its successor at the same index, the example taken is
the escalator sequence.

Thus to avoid computational costs, we consider the state
vector used in AnEnKS to be the projection of the inferred
image into the lower dimensional coordinate system (size
of z(ty) = Nbfaces). For the observations we faced two
choices:

e Reducing observation dimension. The algorithm will
be relatively simple and fast, but given that these are
noncomplete and noisy, running PCA by eliminating
missing data will cause a loss in the texture details (For
further reading about methods of running PCA on data
with missing values see [11]).

o Using the observation as it is and assimilating it into the
model. This will result in heavy computational costs
but will give intuitively better results than the previous
choice because we do not compress the observations.

In this work we prefered simplicity and execution time and
followed the first way, aiming at a proof concept of the
methodology.

4. EXPERIMENTS

A Matlab® simulation was developed to test the algorithm
on some noisy incomplete sequence of DTs. For every test
image we added white noise then a square of random size and
random position occulted a part of the image. The catalog
is built by compressing the database images as explained in
section III. For the considered sequences, about 100 Principal
components were necessary to account for 99% of the total
variance.

We run the AnEnKF/AnEnKS using 100 ensemble mem-
bers for the EnKF and k¥ = 10 nearest neighbors for the
exhaustive search in the analog database. Our algorithm will
be compared with reference assimilation model using a para-
metric autoregressive process. The AR(1) linearly models the
temporal relationship between the analogs and the successors
presented in the catalogs.

For each experiment, we compute the Root Mean Square
Error (RMSE) between the true images (complete and with-
out noise) and estimated smoothed states of DT after PCA re-
construction. RMSE will be calculated only on the indices of
missing pixels in the observations. We vary the percentage of
energy accounted for by PCA and analyze the impact on the
data assimilation performance using two examples from the
database: toilet and escalator sequences. Fig. 3 shows that
our algorithm results in better RMSE when data are less com-
pressed, the two sequences have redundance in the database
and thus results give a real-closed dynamic texture. Whereas
Fig. 4 illustrates the difference map between the real image
and results of the two algorithms. We see how our algorithm
outperforms the AR model based one.
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Fig. 3. Comparison between RMSE resulting from our data-
driven based model algorithm and the AR model based one
after a Monte Carlo simulation.
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Fig. 4. From the left to the right: noisy and noncomplete ob-
servation. Difference map between the real image and result
of AR model based algorithm. Difference map between the
real image and result of our data-driven model based algo-
rithm

Fig.5 shows visual results of the two algorithms on face
sequence. We notice that for AR model based algorithm some
inferred images are not closed to the true ones, and may be
blurred or involve local artefacts. By contrast, our algorithm
reconstructs relevant and realistic face images. The two al-
gorithms also fail in some moments to retrieve the real in-
ferred image. This is explained by the fact that the test images
present a new scenario which does not exist in the database.

The smoothing effect presenting in the infered images
comes from the PCA compression and also from the WKNN
algorithm, in future work we plan to consider the weights
obtained after WKNN procedure and instead of multiplying
them with the compressed versions of the database images,
we will use directly the high resolution versions of database
images.

5. CONCLUSION

This study presents a new methodology combining stochastic
filtering and machine learning to handle denoising and image
interpolation in the context of dynamic textures. We success-
fully retrieve complex dynamics of a sequence without any
explicit parametric model but just a database containing previ-
ous scenarios. We have shown that our algorithm is better and
gives more realistic results than autoregressive model based
data assimilation algorithm. It demonstrates the feasibility of
the non-parametric data-driven reconstruction of image dy-
namics, when the spatial image patterns can be projected onto
a lower-dimensional space (up to ~ 100 dimensions).

Among others, future work will also investigate patch-
based extensions of the proposed methodology. Patch-based
models can be expected to improve applications to more com-
plex spatial patterns, which may be complex to be accounted
for using PCA-based decomposition. We will also investigate
the use of other filtering methods especially particle filters
and since the algorithm is appealing for fields where huge
amount of data is available we aim at testing our model on
more bigger database sizes such as those of remote sensing
applications.

Fig. 5. face sequence. Algorithms are run conserving 99%
of image energy for PCA. The first images are observations,
second row shows results of AR model based data assimi-
lation algorithm and the third row highlights results of our
data-driven model based algorithm.
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