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Abstract 

This paper investigates the effectiveness of Continuous Spindle Speed Variation (CSSV) technique as a 
chatter suppression strategy in milling process. On this purpose, a twofold study was carried out: on the one 
hand, a simulation analysis, and on the other, experimental tests. First, Semidiscretization method has been 
extended to n-mode systems in any spatial directions and modified to include simulation capabilities 
concerning spindle speed variation with different waveforms. . A new kind of stability map for different 
amplitude and frequency variations is proposed in order to optimise the parameter selection when machining. 
Finally, the effectiveness of CSSV technique is verified through experimental tests. 
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1 INTRODUCTION 

The productivity of milling operations is often constrained 
by the regenerative chatter. This occurs when relative 
vibrations between the cutting tool and the workpiece feed 
back the cutting force, leading to self-excited vibrations. 
Depending on cutting conditions and dynamic properties, 
the vibration feed back can lead to a decreasing vibration 
(stable cut) or to an increasing vibration resulting in chatter 
(unstable cut). This affects the quality of the machined 
surface, along with excessive tool wear or tool breakage. 
Thereby the material removal rate is limited. 

In order to increase the material removal rate a chatter 
suppression method based on Continuous Spindle Speed 
Variation (CSSV) is analysed. This technique consists in a 
continuous variation of the tooth passing frequency, 
yielding a continuous variation of the phase between the 
tool-workpiece relative displacement and the tooth passing 
cycle. This is an ‘electronic’ or software way to 
continuously change the phase lag, comparable to the 
‘mechanic’ or hardware way of using uneven pitch mills. 

2 STATE OF THE ART 

Knowledge of chatter vibration has been progressing since 
the first papers by Tobias [1] and Tlusty[2]. The basic 
theory did not advance significantly until the research by 
Altintas and Budak [3], were the general single frequency 
multimodal solution was developed [4], and Budak and 
Altintas [5] were the general solution for milling was 
obtained by using multifrequency [6]. 

Later, some new ways of obtaining the lobe diagram for 
milling were proposed. Fundamental papers were those of 
Davies et al. [7], Insperger et al. [8], and Baily et al. [9]. In 
these papers the uprising of a new chatter situation in 
milling was shown: that of period doubling, which appears 
mainly at high cutting speeds and low radial immersions. 
Merdol and Altintas [10] proved that multifrequency theory 
also explains the emergence of this chatter mechanism. 

Variable pitch mills have been used since many years ago 
to increase the stable limit depth of cut. Probably a paper 
by Slavicek [11] is the oldest one showing this effect. 

Outstanding papers in this direction are those by Stone 
[12], Altintas et al. [13], and Budak [14]. 

Continuous speed variation might be considered as an 
equivalent for variable pitch mills in single cutting edge 
processes, like turning. In milling, speed variation provides 
a more flexible solution than variable pitch mills, as 
proposed by Stone [15]. 

Inamura and Sata [16] produced a simple function for the 
study of the stability with variable spindle speed for the 
turning process. Their experimental results were not as 
good as those calculated by their theory. 

Takemura et al. [17] analysed the stability of turning with 
variable speed by means of an energy balance. The 
analysis was performed for triangular, rectangular and 
sinusoidal speed variations. 

Sexton and Stone [18], disagreed with previous works, like 
[16], showing that the results for variable speed machining 
are not spectacular. The theoretically good results of 
previous works were due to oversimplified models of the 
system. 

De Canniere et al. [19] used the perturbation analysis for 
the determination of the stability in turning with CSSV. 
This analysis is only valid for small speed and frequency 
variations. With these conditions, they showed that the 
speed modulation is equivalent to the modulation of the 
time lag. This fact was also used by Altintas and Chan 
[20], who developed a system based on the modulation of 
the speed for stabilisation of chatter vibration. 

Tsao et al. [21] used the angle domain to analyse variable 
speed machining. It was shown that this technique is very 
sensitive to the number of samples used in the 
discretization of the time system, and the conclusions 
were not trustworthy. 

Jayaram et al. [22] developed a Fourier expansion of the 
equations of the process of turning. They used an 
approximation of the delayed vibration and obtained a 
system of an infinite number of frequencies, which could 
be solved approximately by truncation to a number of 
frequencies close to the main frequency only. The 
mathematics behind this approach resemble the method 
of Multifrequency [5] for constant speed milling. 



This development was extended by Sastry et al. [23] for 
the process of face milling. Again, an infinite order system 
is found, which has to be truncated to be solved. This is 
the most advanced approach, up to now, to the application 
of CSSV in milling, but it still applies some simplifications 
to the problem. 

Zatarain et al. [24] presented the general theory for 
analysis of milling with CSSV in the frequency domain and 
for any speed variation strategy. The results were 
compared with those obtained by Semidiscretization and 
time integration, as well as with those obtained by 
experiments. 

Insperger and Stépán [25] used Semidiscretization to 
obtain lobe diagrams for turning processes with CSSV. 
Three kinds of speed variation schemes are investigated: 
Sinusoidal, increasing saw teeth, and decreasing saw 
teeth. They concluded that the best solution was that of 
sinusoidal speed variation. 

3 CONTENT OF THE PAPER 

Semidiscretization method has been well documented for 
systems with a single modes in X and Y directions. This 
paper will present the way to enhance the 
Semidiscretization method to n-mode systems in any 
spatial directions. Also, CSSV will be considered with 
different spindle speed variation strategies, and results of 
experimental tests that have been carried out for 
verification of the effectiveness of CSSV technique will be 
shown. 

The arrangement of this paper is as follows. In section 4, 
machining conditions used for illustration of the theoretical 
developments and for the experiments are summarised. In 
section 5 the theoretical development of CSSV using 
extended Semidiscretization method is included. In section 
6 CSSV parameter optimisation charts are shown. In 
section 7, the evolution of eigenvalues during CSSV 
simulation is analysed. Afterwards in section 8, 
experimental tests are detailed to demonstrate the utility of 
the SSV in milling. 

4 PARAMETERS OF SYSTEM USED. 

The developments that will be presented in this paper will 
be applied to a system with a flexible part support. The 
system has a clearly dominant mode in Y direction 
(perpendicular to feed), with parameters ωn=95.6 Hz, 
stiffness=49N/μm, ζ=0.6%. Cutting conditions are: Tool 

diameter 80 mm, 3 flutes, lead angle 45º, half immersion, 
down milling. Specific cutting coefficients: Tangential 1889 
MPa, Radial 776 MPa, Axial 364 MPa. 

5 THEORETICAL DEVELOPMENT USING 
SEMIDISCRETIZATION 

The Semidiscretization method is a well-known technique 
in the analysis of rigid solids, or in the fluid mechanics. 
The application of this theory to stability modelling of the 
cutting process was carried out by Insperger and Stépán 
[26], and fully detailed for milling and turning processes 
with a single mode in X and Y directions by Insperger [27]. 

In this section the Semidiscretization method is enhanced 
to n-mode systems in any spatial directions and the CSSV 
with different waveforms is proposed. 

5.1 Semidiscretization for n-modes of excitation 

The first step to develop Semidiscretization method 

consists in the definition of the time interval [ti, ti+1) of Δt 

increments for i=0,1…n. So that the time increment at step 

can be expressed as Δt = τ / m where τ is the time delay 
and m is the approximation parameter of the 
Semidiscretization method. 

The mechanical model of the milling process can be seen 
in the Figure 1, where the dynamical parameters are 
defined as m mass of the system, c damping coefficient, 
and k spring stiffness. The angular spindle speed is 
expressed as Ω in rad/s, and the cutting force in modal 
direction as Fm. 

 
Figure 1: Mechanical model of milling process. 

The cutting angle is divided into sufficiently small arcs, 
according to the defined time increment. So that, the 
cutting angle achieves from φ0 to φn, then the arcs are φ0, 
φ1, φ2, φ3… φn. At each of these positions the 
displacement vectors of the tool at the previous pass are 
stored (1). These would represent the trajectory of tool tip 
in the previous pass.
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Starting with the tool tip at the last angle, it is needed to 
know the state at that position, that is, the modal 
displacement and velocity for all the modes. For that 
position, these variables will be stored instead of the 
displacements, because the displacements do not contain 
all the necessary information of the state. 

With position and speed defined by the parameters with 
sub index ‘n’, the state when the tool tip reaches the angle 
‘0’ is obtained again by calculating the free trajectory 
defined by modal coefficients, 
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Where A11 and A12 represent the damped free oscillation 
from ‘n’ to ‘0’ position. And A21, A22 correspond to its 

derivate. 

Now, at angle ‘0’ chip width is calculated as, 
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Cutting force at state q0 is,  
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Projection of force into the mode is, 
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If a more accurate solution was needed, the position 
between 0 and 1 could be obtained by including the 
velocity at position 0 for interpolation. Similarly, excess 
material from previous pass could be obtained by linear 
interpolation between 0 and 1. 

Now the new state at position 1 can be calculated, 
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Where A11 and A12 represent the damped free oscillation 
from one position to the next one. And A21, A22 

correspond to its derivate.  

The term B01 of equation (6) is calculated as, 
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In the same way, the term C01 of equation (6) is expressed 

as, 
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Now, the new displacements of the tool/part will be, 
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Writing down the complete vector for position 0, 
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And for position 1,  
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The last step consists in determining the state transition 

matrix Φ over the principal period T= k·Δt. The transition 
matrix links the last displacement to the first one, δk to δ0, 
in the form, δk= Φ·δ0. 
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The stability analysis of the system reduces to obtain the 
eigenvalue of maximum amplitude of the transition matrix 
(12). If any eigenvalue has a magnitude larger than 1, then 
the system is unstable, whereas when all magnitudes are 
lower than 1 the system is stable. 

5.2 Development for different continuous spindle 
speed variation waveforms 

The sinusoidal spindle speed variation method consists in 
adding a sinusoidal component to the constant spindle 
speed according to equation (13). For constant speed 

machining the time delay τ takes a constant value, but for 

variable speed cutting this time lag is time dependent: 

τ=τ(t). Calling Ω the instantaneous speed, a sinusoidal 

speed variation can be represented by, 

 tsin  0

 
(5) 

where Ω0 represents the average speed, Δ is the 

maximum speed variation, and γ is the speed variation 

frequency. 

The adaptation of Semidiscretization to continuous spindle 
speed variation is straightforward, with the condition that 
the period of the speed variation is an integer multiple of 
the tooth pass period: It suffices to calculate the transition 
matrix over the speed variation period, that is, an integer 
number of tooth pass periods. Again, the magnitude of the 
eigenvalues of this matrix will define the stability of the 
system. 

Another speed variation law can be considered to analyse 
CSSV strategy to eliminate chatter: trapezoidal waveform. 
This law permits obtaining particular cases like triangular 
and square variations, but also many more possibilities. In 
this paper only sinusoidal and triangular variation are 
considered, although other variation laws can be analysed 
in the same way. 

6 OPTIMIZATION OF SSV PARAMETERS 

In fact, if an operator dials the speed override knob back 
and forth, chatter sometimes vanishes. But not all kind of 
variations permit avoiding chatter. The effectiveness of the 
spindle speed variation method depends on the forcing 
input signal, and on its parameters (amplitude and 



frequency). Continuous Spindle Speed Variation can be 
considered as a way of avoiding chatter vibration when 
chip load is too large and cutting velocity corresponds to a 
high order lobe. In this case it is more interesting to 
optimise speed variation parameters rather than using 
lobe diagrams for selecting an optimal constant speed. 
Figure 2 shows the limit depth of cut for different 
frequencies and amplitudes of the sinusoidal speed 
variation at the speed 525 r/min. The figure has been 
obtained by the analysis in the frequency domain [24]. 
Considering a plane (in yellow) at 4mm axial depth of cut 
that sections the map of limit depth of cut, an excellent 
view of unstable areas (in dark blue) below the yellow 
plane could be obtained. 

 

Figure 2: Map of limit depth of cut for sinusoidal spindle 
speed variation. 

Semidiscretization calculates a stability level for each 
depth of cut. In order to obtain a map similar to the one 
shown in Figure 2, Semidiscretization simulation would 
require to evaluate a very large amount of levels along 
axial depth of cut. This is not a practical approach due to 
the large time of computation required. Therefore, a new 
approach is proposed: representation of the stability level 
for different frequencies and amplitudes of the SSV at a 
defined axial depth of cut. The stability level is defined by 
the magnitude of the maximum eigenvalue for the whole 
transition matrix. Figure 3 shows inverted eigenvalues to 
permit an easier comparison with the map of depth of cut 
in Figure 2. Considering that the stability limit is denoted 
by the unit (λ=1), a plane (in yellow) will divide up stable 
areas (in red) from unstable areas (in dark blue). 

 

Figure 3: Semidiscretization map of the degree of stability 
for sinusoidal speed variation. 

Comparing figures 2 and 3 it can be deducted that both of 
them give very similar information. The system becomes 
stable from amplitude variations of 10%. In addition, some 
unstable areas appear for amplitude variations from 40% 
to 50%. 

It becomes clear that speed variation ratio is a more 
influent parameter than frequency. As a general rule, 
stability grows with the amplitude of speed variation, 

although there are some areas of local optimum solutions. 
In this particular example, optimum values of speed 
variation ratio are at 15% and 30%. In the practice, 30% 
variation should already be considered too large, and also 
it should be analysed whether the spindle is able to get the 
acceleration required. 

Figure 4 shows the limit depth of cut for different 
frequencies and amplitudes of the triangular speed 
variation at the speed 525 r/min. The figure has been 
obtained by the analysis in the frequency domain [24]. 
Again, a yellow plane at 4mm axial depth of cut sections 
the map, offering a better view of unstable areas (in dark 
blue) below the yellow plane. 

 

Figure 4: Map of limit depth of cut for triangular spindle 
speed variation. 

As explained before for the sinusoidal variation, Figure 5 
shows Semidiscretization map of the degree of stability for 
triangular speed variation. It can be appreciate that the 
process becomes stable for amplitude variations larger 
than 15%, and, opposite to Figure 3, no unstable areas 
appear at higher amplitude and frequencies. From these 
graphs it is possible to select variation parameters that are 
adequate for the cutting conditions required. 

 

Figure 4: Semidiscretization map of the degree of stability 
for triangular speed variation. 

A consequence obtained from comparing Figure 3 and 
Figure 5 is that sinusoidal speed variation is more 
performing than triangular speed variation, as stable area 
is obtained with lower amplitude and frequency variations, 
at least for small amplitude variations. 

7 EVOLUTION OF STABILITY 

A system that varies with time can be stable globally while 
being unstable at some portion of the time. The 
requirement is that any vibration growth in the unstable 
period is damped out during the stable part of the cycle. 
This phenomenon was presented by Zatarain et al. [24] 
and can be analysed by the method of Semidiscretization. 
As explained in section 5, this method produces a 
transition matrix, whose eigenvalues define the stability of 



the system. This matrix is computed along several tooth 
pass periods, up to reaching the speed variation period. 
The evolution of this matrix can be used to analyse the 
progression of stability during the speed variation cycle, 
which means, that it is possible to analyse the evolution of 
the amplitude of the eigenvalues at different moments of 
the cycle. 

 

Figure 7: Experimental results with 15% variation at 3Hz. 

Whenever the speed variation period is not an exact 
multiple of the tooth pass period, the analysis should be 
done on a longer time, a time that is and exact multiple of 
both the speed variation period and the tooth pass period. 
This can produce a beating with this new, longer period. 
Figure 6 shows this effect, obtained with a velocity 
variation frequency of 3 Hz and spindle velocity 525 r/min. 
Tooth pass period is 0.0381s, while velocity change period 
is 0.333s. producing a repetition period of 1.333 seconds 
(= 4x0.333 = 35x0.0381). 

8 COMPARISON WITH EXPERIMENTAL RESULTS 

The industrial implementation of the CSSV method inside 
the kernel of the SORALUCE SV6000 milling machine 
working with a Sinumerik 840D CNC was presented in 
[28,29]. The experimental results are shown in Figure 6, 
where the severity of the vibration is measured instead of 
the amplitude of the chatter peak in the spectrum. The 
reason is that the measurement of chatter peak could lead 
to a mistaken conclusion, since the CSSV excites more 
frequencies than the normal machining but with less 
energy. Experience has shown that the overall vibration 
measured over a fixed range (i.e. 2 to 500 Hz) gives the 
best indication of vibration level. A probable explanation is 
that a given velocity level corresponds to a given energy 
level, so that vibration at low and high frequencies are 
equally weighted from a vibration energy point of view. 

 

Figure 8: Vibration severity obtained in experimental tests. 

Figure 8 represents the vibration severity level for each 
amplitude and frequency of the CSSV. It is evident that for 
variation amplitudes larger than 10%, the vibration level is 
highly reduced. The same conclusion could be obtained 
from the Semidiscretization map – Figure 3- and 
frequency domain map – Figure 2-. It is remarkable that 
there is an optimum area of vibration reduction in the 
range of 15% amplitude variation of spindle speed, as was 
foreseen by the results of frequency domain analysis 
shown in Figure 2, and the Semidiscretization map in 
Figure 3. Although, the further improvement of behavior at 
higher speed variation amplitudes foreseen in Figure 2 
and Figure 3 were not found in experimental results, the 
general tendency agrees. 

9 CONCLUSIONS 

Continuous Spindle Speed Variation is a successful 
technique to reduce the vibration level in milling when the 
system is unstable. It is an appropriate strategy at a high 
order lobe. And although certain vibration level might be 
maintained, the surface quality obtained at the work part is 
improved. 

Modelling milling processes with CSSV with the 
Semidiscretization method gives a good orientation on the 
optimum parameters of the speed variation. For that, a 
new chart representing the degree of stability for a range 
of amplitude and frequency of speed variation is proposed. 
In the simulations done so far, sinusoidal variation shows 
to be more performing than triangular variation. 

In addition, Semidiscretization method has been extended 
to n-mode systems in any spatial directions. 
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