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1 INTRODUCTION  

The response of a dynamic engineered system under 
nominal and accident conditions can be studied by 
resorting to mathematical models and computer 
codes that describe and reproduce the dynamic be-
havior of the system of interest (Smidts & 
Devooght, 1992), (Gao & Dougal, 2002), (Hansen 
et al., 2004). When the system is complex, as is typ-
ically the case in practice, simulation is used. The 
outcomes of the system model simulations allow 
studying, analyzing and understanding the possible 
evolutions (i.e. scenarios) that the system can un-
dergo and the corresponding end states. In this re-
spect, a framework of combination of event tree 
analysis (for the identification of event sequences) 
and the mathematical models of the dynamic of the 
physical phenomena developing along the sequenc-
es, allows determining the end states that can be 
reached and deriving causality relations among 
events and processes, in a comprehensive way that 
account for both the logic of the system and the 
physic of the process therein (Siu, 1994), (Aldemir, 
2013). 

In this respect, works on Dynamic Event Trees 
(DETs) (Cojazzi, 1996), (Hsueh & Mosleh, 1996), 
(Labeau et al., 2000), (Cepin & Mavko, 2002), 
(Kloos & Peschke, 2006), (Hakobyan et al., 2008), 

have highlighted that, indeed, the end states reached 
by a system as a result of an accident scenario do 
not depend only on the order of occurrence of the 
events in the sequence, but also on the time at 
which these events occur and their magnitude 
(Devooght & Smidts, 1992), (Aldemir, 2013), (Di 
Maio et al., 2014). For example, it has been shown 
that the same order of occurrence of events (i.e. the 
same scenario) may lead to different end states, de-
pending on the different occurrence times (Di Maio 
et al., 2014). On the other hand, the introduction of 
the time dimension into the analysis leads to a dra-
matic increase in the size of the system state space, 
which makes its thorough exploration impossible in 
practical cases of real engineered system character-
ized by thousands of components and associated 
physical quantities. Furthermore, the computational 
cost associated to the simulation of a single dynam-
ic scenario can be very high: for example, the com-
puter code RELAP can take long times for simulat-
ing the thermal-hydraulics of nuclear systems under 
specific accident conditions (Idaho National Labor-
atory, 2005), (Fong et al., 2009), (Perez et al., 
2011). Indeed, in IDPSA the computational cost is 
always an issue (Rutt et al., 2006), (Catalyurek et 
al., 2010), (Zio, 2014). 

On the other hand, in spite of the above chal-
lenges, IDPSA is considered the way to account for 
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time-dependences in the development of accident 
sequences and to probe the scenario space for iden-
tifying undiscovered plant unreliability, unexpected 
scenarios, surprises (Zio, 2014). For this latter 
point, in the present paper, an automatic procedure 
for efficiently probing the space of the event se-
quences in a dynamic system, which relies on an 
entropy-based criterion (Shannon, 2001), is pro-
posed. More specifically, given an event tree of the 
logic of the accident sequences for the system of in-
terest, a function of the entropy is used as a measure 
of the uncertainty in the end states (i.e. in the possi-
ble outcomes) of each scenario; then, intuitively, the 
more uncertain the outcome, the higher the number 
of simulations needed to probe the space for the 
event sequences associated to that scenario (Hu et 
al., 2004). Thus, the proposed procedure utilizes the 
entropy measure for efficiently allocating the simu-
lation efforts among the different scenarios of the 
system event tree, with the specific objective of fa-
voring those characterized by higher uncertainty. 
The approach consists of two steps: (i) one of the 
possible scenarios is chosen according to the entro-
py measure and (ii) a simulation of the system is 
run, conditioned to the selected scenario. 

The performance of the proposed method has 
been verified on a simple, but representative, case 
of a dynamic system made by a gas transmission 
pipe (actively controlled by a valve), which is con-
nected in series to two pipes in parallel; all the 
components are subject to stochastic failures de-
scribed by proper probability distributions. 

The rest of the paper is organized as follows. In 
Section 2, a mathematical formulation of the meth-
od is provided. In Section 3, suggestions on how to 
implement the method are given. In Section 4, the 
case study and the associated results are presented. 
Finally, in Section 5, concluding remarks and direc-
tions to future research are given. 

2 NEGATIVE ENTROPY-DRIVEN METHOD 
FOR EXPLORING SCENARIOS IN 
DYNAMIC EVENT TREES 

Within the context of interest of the present paper, a 
scenario defines a specific sequence (order) of 
events in the life evolution of the dynamic system, 
which may involve a particular group of compo-
nents, safety functions or actions (e.g. mechanical 
failures, activation of safety systems and human de-
cisions). A same scenario (i.e. same sequence of 
events) may bring the dynamic system to different 
final outcomes, hereafter also called End States 
(ESs), for different times of occurrence of the 
events. For example, consider a scenario of reduc-
tion of gas flow in a network due to a failure of a 
valve: the ES of the amount of gas supplied to the 

consumers within a given time depends on the time 
of valve failure. 

In the context of the present work, Dynamic 
Event Tree (DET) is used as the logical modeling 
technique to derive, by means of simulations, the 
scenarios that can arise in the life evolution of a dy-
namic system as a result of a sequence of successes 
and failures of different components and functions 
within the system itself (Mercurio et al, 2009). 
Softwares for DET analyses such as Dynamic Logi-
cal Analytical Methodology (DYLAM) (Cojazzi, 
1996), Accident Dynamic Simulator (ADS) (Hsueh 
& Mosleh, 1996) and Monte Carlo Dynamic Event 
Tree (MCDET) (Kloos & Peschke, 2006), are avail-
able and, in principle, all possible scenarios that 
can occur in the system can be extracted. However, 
not all possible different time sequences within a 
given scenario can be explored, by reason of the ex-
tremely high computational costs needed for simu-
lating all of them (Di Maio et al., 2014). 

To contribute to the solution of this issue, we 
here propose a technique for efficiently exploring 
the variability in the ESs that can be reached within 
each scenario, due to different event timings. The 
driving criterion for the search is the following: the 
higher is the uncertainty (i.e. the lack of infor-
mation) of the analyst about the possible ESs of a 
scenario, the higher is the “exploration effort” allo-
cated for that scenario. The scheme of the algorithm 
consists of two steps: 1) selection of the scenario 
that is worth to be deeply explored according to an 
“information gain” criterion; 2) simulation of the 
evolution of the system (conditioned to the selected 
scenario) and updating of the knowledge about the 
selected scenario according to the end state reached 
by the simulation. 

2.1 Scenario selection 

Assume that for each a-priori available scenario 𝑆𝑗 
only a limited number NjES of ESs can be reached. 
Each 𝐸𝑆𝑖 with 𝑖 = 1, … , 𝑁𝑗

𝐸𝑆 has its unknown prob-
ability of occurring 𝜇𝑗𝑖. Thus, the outcome of a 
simulation of the system behavior conditioned to a 
certain scenario 𝑆𝑗 follows a multinomial distribu-
tion with unknown parameter vector 𝝁𝑗 =
(𝜇𝑗1, … , 𝜇𝑗𝑁𝑗

𝐸𝑆). In this view, our knowledge about 
the system and, in particular, about scenario 𝑆𝑗 in-
creases with the confidence about its parameters 𝝁𝑗; 
in other words, our knowledge increases the more 
we know how many ESs can be reached (NjES) and 
with what probability (𝜇𝑗1, … , 𝜇𝑗𝑁𝑗

𝐸𝑆). Within a 
Bayesian framework (Bayes, 1763), the uncertainty 
of the analyst about the vector of probabilities 
𝝁𝑗 can be described by a prior distribution on the 
parameter vector 𝝁𝑗: the characteristics (i.e. the pa-
rameters) of such distribution can be updated when 
new pieces of information about the end states be-
come available from new system simulations per-



 

formed. In this context, the Negative Differential 
Entropy 𝐼(𝝁𝑗) (MacKay, 1992), (Loredo & 
Chernoff, 2003), (Hu et al., 2004), (Hu, 2005), 
(Cover & Thomas, 2012) has been considered as 
measure of the current information available about 
parameter 𝝁𝑗 of scenario 𝑆𝑗, where the higher 
𝐼(𝝁𝑗), the higher the information about parameter 
𝝁𝑗: 

𝐼(𝝁𝑗) = 𝐸 [log (𝑓(𝝁𝑗))] 

= ∫ log (𝑓(𝝁𝑗)) 𝑓(𝝁𝑗)𝑑𝝁𝑗 , 
(1) 

with 𝑓(∙) being the probability density function of 
the parameter vector 𝝁𝑗. Since the value of the neg-
ative differential entropy is affected by the unit of 
measure, it is important to consider dimensionless 
quantities or assure that the different parameters in-
volved are coherent (i.e. they have the same order 
of magnitude) (MacKay, 1992). 

When new information about the end states is 
available (i.e. when a new system simulation is run 
whose end state is y), the probability distribution 
𝑓(𝝁𝑗) of parameter vector 𝝁𝑗 can be updated in a 
Bayesian framework (Bayes, 1763) to get the corre-
sponding posterior 𝑓(𝝁𝑗|𝑦 ). Then, the information 
𝐼(𝝁𝑗|𝑦), after the simulation outcome y is obtained, 
becomes: 

𝐼(𝝁𝑗|𝑦) = 𝐸 [log (𝑓(𝝁𝑗|𝑦))] 

= ∫ log (𝑓(𝝁𝑗|𝑦)) 𝑓(𝝁𝑗|𝑦)𝑑𝝁𝑗. 
(2) 

The increment of information, i.e. Δ𝐼(𝝁𝑗, 𝑦) =
𝐼(𝝁𝑗|𝑦) − 𝐼(𝝁𝑗), can be used to represent the in-
formation gain due to the last ES y reached by 
simulation. Finally, for taking into account the ran-
domness of the simulation process, the expected in-
formation gain E[Δ𝐼(𝝁𝑗, 𝑌)] provided by a new 
simulation is considered as driving criterion for 
choosing the scenario which, on average, provides 
more additional information: 

E[Δ𝐼(𝝁𝑗, 𝑌)] = ∫Δ𝐼(𝝁𝑗, 𝑦)𝑔(𝑦)𝑑𝑦, (3) 

with 𝑔(𝑦) being the probability density function of 
the outcomes of the system simulation. The next 
simulation to run can, then, be selected by consider-
ing the scenario 𝑆𝑗

∗ which presents the highest value 
of expected information gain: 

𝑆𝑗
∗ = argmax

𝑗
E[Δ𝐼(𝝁𝑗, 𝑌)]. (4) 

For the sake of clarity, in what follows an example 
is proposed where an explicit expression for the in-
crement of information is derived with reference to 
the prior Dirichlet distribution 𝝁𝑗~𝐷𝑖𝑟(𝒖𝑗). This 
modeling choice for the parameter uncertainty is 
straightforward when the distribution of the ESs is 
characterized by a Multinomial distribution. Indeed, 

being the Dirichlet ditribution the Multinomial con-
jugated one, the update of the prior distribution after 
the simulation of a new outcome y consists in up-
dating the parameter vector 𝒖𝑗. In particular 𝑢𝑗𝑖 rep-
resents how many times the 𝐸𝑆𝑖 has been reached in 
scenario 𝑆𝑗. From Equation (1), it follows (Lazo & 
Rathie, 1978), (Hu, 2005) that: 

𝐼(𝝁𝑗|𝒖𝑗) = − ln(
∏ Γ(𝑢𝑗𝑖)
𝑁𝑗
𝐸𝑆

𝑖=1

Γ (∑ 𝑢𝑗𝑖
𝑁𝑗
𝐸𝑆

𝑖=1
)

) 

+∑ (𝑢𝑗𝑖 − 1) ∙

(

 
 
Ψ(𝑢𝑗𝑖) − Ψ(∑ 𝑢𝑗𝑖

𝑁𝑗
𝐸𝑆

𝑖=1

)

)

 
 𝑁𝑗

𝐸𝑆

𝑖=1
, 

(5) 

where Ψ(∙) is the digamma function. For integer 
values of parameters 𝑢𝑗𝑖, Equation (5) can be re-
written as: 

𝐼(𝝁𝑗|𝒖𝑗) = − ln(
∏ Γ(𝑢𝑗𝑖)
𝑁𝑗
𝐸𝑆

𝑖=1

Γ (∑ 𝑢𝑗𝑖
𝑁𝑗
𝐸𝑆

𝑖=1
)

) 

−∑ (𝑢𝑗𝑖 − 1) ∙ (∑
1

𝑚

−1+∑  𝑢𝑗𝑖

𝑚=𝑢𝑗𝑖

) ,
𝑁𝑗
𝐸𝑆

𝑖=1
 

(6) 

where Γ(∙) represents the Gamma function. Note 
that, for integer values of the input, Γ(∙) has a facto-
rial trend: then, even with a relatively small input 
argument, it may exceed the machine precision (e.g. 
171! > 1.7977 ∙ 10308, which is the largest positive 
floating-point number in the Matlab software used 
in our calculations). However, assuming that a new 
simulation is run and its outcome 𝑦 = 𝑖, then: 

Δ𝐼(𝝁𝑗, 𝑦 = 𝑖) = 𝐼(𝝁𝑗|𝒖𝑗 , 𝑦 = 𝑖) − 𝐼(𝝁𝑗|𝒖𝑗) 

= ln(
∑ 𝑢𝑗𝑖
𝑁𝑗
𝐸𝑆

𝑖=1

𝑢𝑗𝑖
) +

𝑁𝑗
𝐸𝑆

∑ 𝑢𝑗𝑖
𝑁𝑗
𝐸𝑆

𝑖=1

 

    −
1

𝑢𝑗𝑖
−∑

1

𝑚

∑  𝑢𝑗𝑖

𝑚=𝑢𝑗𝑖+1
, 

(7) 

which contains no Gamma function and, thus, pre-
sents less numerical issues associated to the evalua-
tion of factorials. In the following, for the sake of 
clarity, but with no loss of generality, all the discus-
sion is developed with reference to the above men-
tioned multinomial-Dirichlet framework. 

2.2 System simulation and updating of the 
parameters 

After selecting a scenario 𝑆𝑗 according to the crite-
rion outlined in Section 2.1, a simulation of the sys-
tem is run conditioned to 𝑆𝑗. The ES 𝑦 thereby 
reached is used for updating, within the Bayesian 
framework, the parameters of the Dirichlet distribu-



 

tion: the more simulations are run conditioned to 𝑆𝑗, 
the higher is the confidence gained about the pa-
rameter vector 𝒖𝑗 of the associated Dirichlet distri-
bution and, consequently, about 𝝁𝑗 itself. Since the 
Dirichlet distribution is the conjugate of the Multi-
nomial one (Gelman et al., 2014), the corresponding 
posterior is still a Dirichlet distribution with proper-
ly updated parameters. In particular, for updating on 
the basis of a single simulated ES y, we have: 

𝝁𝑗|𝑦 = 𝑖, 𝒖𝑗~𝐷𝑖𝑟 (𝑢𝑗1, … , 𝑢𝑗𝑖 + 1,… , 𝑢𝑗𝑁𝑗
𝐸𝑆) (8) 

3 IMPLEMENTATION ISSUES AND 
GUIDELINES 

3.1 Prior knowledge and adaptive parameter 
vector 

If prior information regarding a scenario is availa-
ble, it can be embedded in the prior (i.e. in the Di-
richlet parameters). Otherwise, in absence of prior 
knowledge, uninformative priors should be adopted 
for leaving the algorithm free of gathering infor-
mation and knowledge from the future simulations. 
The “type” of prior knowledge that most affects the 
information gain is the number 𝑁𝑗

𝐸𝑆 of End States 
(ESs) that can be reached by simulating a scenario 
𝑆𝑗. This is exemplified in Table 1. Let us assume 
that we have six scenarios 𝑆1, … , 𝑆6 and six end 
states 𝐸𝑆1, … , 𝐸𝑆6, e.g., representing two possible 
safe conditions (𝐸𝑆1, 𝐸𝑆2) and two near misses 
conditions (𝐸𝑆3, 𝐸𝑆4), i.e., outcomes that have al-
most reached the respective failure conditions 
(𝐸𝑆5, 𝐸𝑆6). We also know that not all the scenarios 
can reach all the end states: for example, 𝑆1 can 
reach only the safe condition 𝐸𝑆1, whereas, e.g. 𝑆4 
can reach 𝐸𝑆1, … , 𝐸𝑆4. We assume, in addition, that 
each scenario has been explored with the same 
number of simulations (e.g. 60 in this case). Then, 
the corresponding average information gains for the 
six scenarios (that can reach a different number 𝑁𝑗

𝐸𝑆 
of ESs) are reported in Table 1. It can be seen that 
the larger 𝑁𝑗

𝐸𝑆, the higher the expected information 
gain, given the same number of simulations already 
run. 

 
Table 1. Expected increment of information about scenarios 

𝑆𝑗, 𝑗 = 1,… , 6 for different priors 𝑓(𝝁𝒋) given the same num-

ber of simulations. Each row corresponds to a scenario each of 

which can reach a different number of ESs (i.e. from 1 to 6). 

 𝐸𝑆1 𝐸𝑆2 𝐸𝑆3 𝐸𝑆4 𝐸𝑆5 𝐸𝑆6 E[Δ𝐼(𝝁, 𝑌|𝒖)] 

𝑆1 60 0 0 0 0 0 0.000 

𝑆2 30 30 0 0 0 0 0.008 

𝑆3 20 20 20 0 0 0 0.016 

𝑆4 15 15 15 15 0 0 0.025 

𝑆5 12 12 12 12 12 0 0.033 

𝑆6 10 10 10 10 10 10 0.041 

On the other side, if we do not know how many 
ESs a given scenario can reach and we a priori as-
sume that a certain scenario can reach all the ESs 
(even though in reality it cannot), what emerges 
from Table 2 is that, given the same number of sim-
ulations run for each scenario, the expected infor-
mation gains are not so different. 

 
Table 2. Expected increment of information about scenarios 

𝑆𝑗, 𝑗 = 1,… , 6 for different priors 𝑓(𝝁𝒋) given the same num-

ber of simulations. Each row corresponds to a scenario, each 

of which can reach a different number of ESs (i.e. from 1 to 

6). However, we assume an initial uninformative prior for all 

the scenarios considered. 

 𝐸𝑆1 𝐸𝑆2 𝐸𝑆3 𝐸𝑆4 𝐸𝑆5 𝐸𝑆6 E[Δ𝐼(𝝁, 𝑌|𝒖)] 

𝑆1 61 1 1 1 1 1 0.032 

𝑆2 31 31 1 1 1 1 0.033 

𝑆3 21 21 21 1 1 1 0.034 

𝑆4 16 16 16 16 1 1 0.035 

𝑆5 13 13 13 13 13 1 0.036 

𝑆6 11 11 11 11 11 11 0.037 

 
Thus, in order to avoid considering reachable 

ESs that are not, an adaptive Dirichlet parameter 
vector is here proposed in this paper. At the begin-
ning of the analysis, the prior Dirichlet vector con-
tains only the parameters of those ESs that the ana-
lyst is sure the system can reach; then, adaptively, 
once a new ES has been reached for the first time, a 
new component is added to the Dirichlet parameter 
vector. 

3.2 Stopping criteria 

In many cases, the size of the system and the varia-
bility of its behavior (in practice, the number of ESs 
a scenario can reach and the corresponding proba-
bilities), are not known a priori. On the other hand, 
the computational cost associated to a system simu-
lation is typically known (e.g. in terms of average 
time for each simulation). In this view, we assume 
that the total computational effort is imposed as a 
constraint: then, the objective of the proposed 
method is to assure an efficient and intelligent dis-
tribution of the system simulations among the dif-
ferent scenarios, in order to perform the deepest 
possible exploration of the system behavior (which 
is a priori unknown). It must be noticed that the 
proposed method does not guarantee that the whole 
event space is probed. Indeed, if the computational 
capacity available (in practice, the total number of 
simulations that can be run) is small compared to 
the size of the system state space, only a limited 
number of end states can be explored for each sce-
nario, anyway. 



 

3.3 Uniform time space probing 

Typically, the mathematical model describing sys-
tem evolution consists of a system of differential 
equations whose parameters depend on the state of 
the components. Thus, the variability of the model 
output (i.e. of the system ESs) is dependent upon 
the time at which the stochastic transitions among 
the states of the components occur. However, simu-
lating the occurrence of such random events using 
the real probability distributions of the components 
transition times could lead the system simulator to 
visit many times the same ESs (i.e. those with high-
er probability of occurrence) and very few times 
those ESs that are rare, but still possible. In order to 
avoid this problem, we propose exploring the time 
state space of each scenario by uniformly sampling 
on the support defined by the selected scenario, be-
ing aware of modifying the original probability dis-
tribution of the ESs. For the sake of clarity, consider 
a scenario 𝑆𝑗 that involves the change of states of 
two components (namely, A and B) at the corre-
sponding time 𝑇𝐴 and 𝑇𝐵 in a specific order within 
the mission time 𝑇𝑀𝑖𝑠𝑠 (e.g. in this case, 𝑇𝐴 < 𝑇𝐵 ≤
𝑇𝑀𝑖𝑠𝑠): this exemplary situation is illustrated in Fig-
ure 1, where the domain of the scenario 𝑆𝑗 is repre-
sented by the triangular shaded area. Then, in order 
to run a simulation of the dynamic system evolu-
tion, we sample the pair (𝑇𝐴, 𝑇𝐵) from the joint uni-
form distribution on the support defined by 𝑆𝑗 (see 
shaded area in Figure 1). For this purpose, we resort 
to a Markov Chain Monte Carlo (MCMC) Gibbs 
sampling (Robert and Casella, 2005), which can be 
easily implemented. 

 

 

4 CASE STUDY 

The case study under analysis is a gas transmission 
subnetwork composed of two pipes in parallel and 
another one in series. The input of each pipe is con-
trolled by a valve. The whole block diagram is 
shown in Figure 2, where each pair valve-pipe is 
considered as a single block. 
 

 
Each pipe can transmit gas with a maximum 

flow rate of [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8,5,5] ∙ 10
4 𝑚3/𝑑𝑎𝑦, 

for pipes a, b, c, respectively. A control system ad-
justs the opening of the valves in order to guarantee 
the equilibrium between the input and output flows. 
Figure 3 shows the event tree containing all the sce-
narios that can occur in the system. If one of the 
pipes in parallel breaks, the control system immedi-
ately closes the corresponding valve and increases 
the flow rate of the remaining pipe to the maximum, 
in order to compensate for the diminished flow. No 
reparation strategies are considered. The system 
presents 8 possible scenarios with different operat-
ing conditions: i) safe, i.e. all pipes are functioning 
correctly; ii) overloaded, i.e. one of the pipes in 
parallel is closed; iii) broken, i.e. no gas is provided 
by the system. 

 
The ESs for each scenario have been defined and 

classified on the basis of two output variables: i) the 
amount of Gas provided in Safe Conditions (𝐺𝑆𝐶), 
i.e. when all the components are functioning cor-
rectly; ii) the amount of Gas provided in Overload-
ed Conditions (𝐺𝑂𝐶), i.e. when one of the two pipes 
in parallel is down and the remaining one works at 
its maximum flow rate. With respect to that, 
𝐺𝑆𝐶𝑚𝑎𝑥 and 𝐺𝑂𝐶𝑚𝑎𝑥 indicate the maximum quanti-
ties of gas that can be provided within the mission 
time 𝑇𝑀𝑖𝑠𝑠 = 900𝑑, in safe and overload conditions, 
respectively, i.e. 𝐺𝑆𝐶𝑚𝑎𝑥 = 𝜙𝑎 ∙ 𝑇𝑀𝑖𝑠𝑠 and 
𝐺𝑂𝐶𝑚𝑎𝑥 = max(𝜙𝑏 , 𝜙𝑐) ∙ 𝑇𝑀𝑖𝑠𝑠. The ESs are, then, 
divided into six classes according to the criteria re-
ported in Figure 4. For example, 
𝐸𝑆4 = {𝐺𝑆𝐶𝑚𝑎𝑥 3⁄ < 𝐺𝑆𝐶 ≤ 2𝐺𝑆𝐶𝑚𝑎𝑥 3⁄ ∩ 0 ≤
𝐺𝑂𝐶 ≤ 𝐺𝑂𝐶𝑚𝑎𝑥 3⁄ }, which means that the system 

Figure 1. Support of the occurrence time of the events A 

and B defining scenario 𝑆𝑗, where 𝑇𝐴 < 𝑇𝐵 ≤ 𝑇𝑀𝑖𝑠𝑠. 

Figure 2. Block diagram of the system under analysis. 

Figure 3 Event tree representation of the 8 scenario that can 

occur, where 𝑇𝑎 , 𝑇𝑏 , 𝑇𝑐 are the times of failures of components 

a, b, c, respectively, and 𝑇𝑀𝑖𝑠𝑠  is the mission time. 



 

has operated for a medium period of time in safe 
conditions (𝐺𝑆𝐶𝑚𝑎𝑥 3⁄ < 𝐺𝑆𝐶 ≤ 2𝐺𝑆𝐶𝑚𝑎𝑥 3⁄ ) and, 
then, once it goes in overloaded conditions, it 
breaks down (0 ≤ 𝐺𝑂𝐶 ≤ 𝐺𝑂𝐶𝑚𝑎𝑥 3⁄ ). 

 

 
It must be noticed that not all the ESs can be 

reached by all scenarios: Table 3 (left matrix) re-
ports those ESs that can be reached by a given sce-
nario (indicated by 1) and those that cannot (indi-
cated by 0): each column in the Table represents an 
ES and each row represents a scenario. This infor-
mation is usually not available a priori and in gen-
eral its retrieval represents one of the objectives of 
the state space exploration. However, it is used here 
to analyze the performance of the proposed method. 
In Table 3(middle and right), two additional matri-
ces show the ESs reachable for two sets of different 
gas flow rates, e.g. [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8, 3.67, 5] ∙
104 𝑚3/𝑑𝑎𝑦 and [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] = [8, 3, 5] ∙
104 𝑚3/𝑑𝑎𝑦, respectively. These values have been 
chosen in order to analyze the performance of the 
method for different parameters values, which im-
ply that the number of reachable ESs varies. 

To evaluate the performance of the proposed 

method, two indices are introduced: i) the Number 
of simulations needed for the First complete Explo-
ration (NFE), i.e. the number of simulations that 
should be run to visit at least once all the reachable 
ESs for all the scenarios; ii) the Number of simula-
tions needed for the Second complete Exploration 
(NSE), i.e. the number of simulations that should be 
run to visit at least twice all the reachable ESs for 
all the scenarios. NFE gives information about the 
number of simulations needed to explore all the 
events defined by the pairs {Scenario, End-State} = 
{S, ES}, when the matrices shown in Table 3 (i.e. 
the ESs) are not known yet. On the contrary, NSE 
gives information about how the simulations are ef-
ficiently distributed among the different scenarios, 
once the matrices in Table 3 (i.e. the ESs) start to be 
known as a result of the initial exploration. The em-
pirical cumulative density functions, built on 1000 
experiments, are reported for the different configu-
rations of the parameters [𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐] and for indi-
ces NFE and NSE in Figure 5, left and right, respec-
tively. The results have been compared to those 
obtained by a crude Monte Carlo simulation method 
(MC), which randomly chooses the scenario and, 
then, simulates the proper transition times according 
to the criterion proposed in Section 3.3. The results 
show that the entropy-driven approach improves the 
exploration performance with respect to both NFE 
and NSE, as it is confirmed by Figure 5 (top and 
middle). Looking at NSE, it is evident that the capa-
bility of the method of intelligently distributing the 
simulations among the scenarios is superior to that 
of crude MC: the cdfs of NSE produced by the en-
tropy-driven method are “shifted” to the left with 
respect to those of crude MC. On the other hand, it 
must be taken into account that the performance of 
the entropy-driven method is strongly related to the 
system conditions, as confirmed by Figure 5 (bot-
tom). Indeed, when [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8,3,5]  ∙
104 𝑚3/𝑑𝑎𝑦, there is no statistical evidence for 
maintaining that the entropy-driven exploration 
outperforms the crude MC exploration with respect 
to NFE. This is due to fact that in the present con-
figuration the rarest events {𝑆4, 𝐸𝑆5} and, analo-

Figure 4. Classification of the End States (ESs) accord-

ing to the 2 output variables GSC and GOC. 

Table 3. Matrices of the end states that the system can reach for each scenario for different sets of flow rate parameters 

ues: [𝜙
𝑎
, 𝜙

𝑏
, 𝜙

𝑐
] = [8,5,5] ∙ 104 𝑚3/𝑑𝑎𝑦 (left); [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8, 3.67, 5] ∙ 10

4 𝑚3/𝑑𝑎𝑦 (middle) and [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8, 3, 5] ∙

104 𝑚3/𝑑𝑎𝑦 (right). 

 𝐸𝑆1 𝐸𝑆2 𝐸𝑆3 𝐸𝑆4 𝐸𝑆5 𝐸𝑆6 𝐸𝑆1 𝐸𝑆2 𝐸𝑆3 𝐸𝑆4 𝐸𝑆5 𝐸𝑆6 𝐸𝑆1 𝐸𝑆2 𝐸𝑆3 𝐸𝑆4 𝐸𝑆5 𝐸𝑆6 

𝑆1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

𝑆2 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 

𝑆3 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 

𝑆4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

𝑆5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

𝑆6 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 

𝑆7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

𝑆8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 



 

gously, {𝑆5, 𝐸𝑆5} (which are very difficult to be 
“spotted out” by a crude MC sampling and which 
obviously “determine” the value of NFE) occur in 
scenarios 𝑆4 or 𝑆5 that do not give rise to many ESs. 
As shown for an analytical representative situation 
in Table 4, the entropy-driven exploration tends to 
“visit” more frequently those scenarios that can 
reach more ESs and less frequently those that give 
rise to few end states (this is expected, since the 
highest computational effort is devoted to those 
scenarios whose outcomes are “more uncertain”). 

 
Table 4. Average number of simulated scenarios that end in 

configuration {S, ES}, given a computational effort of 500 

simulations with flow rate parameters [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8, 3, 5] ∙
104 𝑚3/𝑑𝑎𝑦, for 1000 experiments. 

 𝐸𝑆1 𝐸𝑆2 𝐸𝑆3 𝐸𝑆4 𝐸𝑆5 𝐸𝑆6 Tot 

𝑆1 0.0 0.0 0.0 0.0 0.0 16.1 16.1 

𝑆2 13.8 0.0 0.0 13.5 0.0 13.5 40.8 

𝑆3 0.0 19.9 0.0 13.3 6.6 19.9 59.7 

𝑆4 26.0 12.9 0.0 22.9 1.0 8.2 71 

𝑆5 26.1 12.9 0.0 22.6 0.9 8.2 70.7 

𝑆6 0.0 0.0 13.1 0.0 13.2 13.2 39.5 

𝑆7 22.5 22.3 11.4 22.5 11.2 11.2 111.1 

𝑆8 22.5 22.4 11.4 22.3 11.3 11.2 111.1 

Thus, in a configuration like the one exemplified, 

the behavior of the entropy-driven approach is not 

so different from that of a crude MC. 

5 CONCLUSIONS 

The complexity of modern engineered systems is 
challenging the classical methods of risk analysis 
for discovering vulnerability and identifying possi-
ble accident scenarios, in order to prevent them 
and/or prepare for protection and mitigation of their 
consequences. On the other hand, given the large 
impact that accidents may have in certain industries, 
there is a responsible will to know as much as pos-
sible of these scenarios and leave out only little of 
unexpected. Under these premises, IDPSA seems a 
valid approach for improving safety. In this context, 
with the objective of thoroughly exploring the re-
sponse of dynamic systems subject to stochastic 
state transitions, an original entropy-driven method 
has been proposed to efficiently distribute the sys-
tem simulation efforts among the possible scenari-
os. The proposed method allocates more simulation 
efforts to visiting those scenarios that can reach a 
larger number of ESs, i.e. those scenarios whose 
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Figure 5. Empirical cdfs of the NFE (left) and of the NSE (right) for crude MC (light line) and for the entropy-driven method 

(dark dashed line) with flow rate parameters  [𝜙
𝑎
, 𝜙

𝑏
, 𝜙

𝑐
] = [8,5,5] ∙ 104 𝑚3/𝑑𝑎𝑦 (top), [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8, 3.67, 5] ∙

104 𝑚3/𝑑𝑎𝑦  (middle), [𝜙𝑎, 𝜙𝑏 , 𝜙𝑐] = [8, 3, 5] ∙ 10
4 𝑚3/𝑑𝑎𝑦 (bottom). 



 

outcomes are more uncertain. 
Application to a simple case study has shown 

that the performance is promising: the expected 
number of simulations needed to explore all possi-
ble end states of the system is consistently lower 
than that of a standard Monte Carlo technique, in 
the majority of the cases considered. However, the 
exploration performance decreases when the rarest 
events occur in scenarios that can reach a small 
number of ESs. Future research works will focus on 
the possibility of embedding specific preferences of 
the analyst in the exploration method, such as the 
interest in exploring those scenarios which can 
reach a specific ES, e.g. extremely unlikely or ex-
tremely critical from a risk perspective. Other 
points of interest are the opportunity of (i) including 
the uncertainty brought into the analysis by possible 
different failure magnitudes and (ii) assessing the 
probability of the events emerged during the explo-
ration. 
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