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The flag variety of a complex reductive linear algebraic group G is by definition the quotient G/B by a Borel subgroup. It can be regarded as the set of Borel subalgebras of Lie(G). Given a nilpotent element e in Lie(G), one calls Springer fiber the subvariety formed by the Borel subalgebras which e belongs to. Springer fibers have in general a complicated structure (not irreducible, singular). Nevertheless, a theorem by C. De Concini, G. Lusztig, and C. Procesi asserts that, when G is classical, a Springer fiber can always be paved by finitely many subvarieties isomorphic to affine spaces. In this paper, we study varieties generalizing the Springer fibers in two ways: being contained in a partial flag variety G/P (the quotient by a parabolic subgroup, instead of a Borel subgroup) and defined by a more general belonging condition (in terms of an ideal of Lie(P )). These varieties arise for instance as fibers of resolutions of nilpotent orbit closures. The main result of the paper is a generalization of De Concini, Lusztig, and Procesi's theorem to this context.

1. Introduction 1.1. Springer fibers. Let G be a reductive, connected, linear algebraic group over C (or any algebraically closed field of characteristic zero). Let B be the variety of all Borel subalgebras of g := Lie(G). Equivalently, B = G/B 0 is the quotient by a Borel subgroup. This is an algebraic projective variety (the full flag variety).

Let N ⊂ g be the nilpotent variety (the set of nilpotent elements). It is a union of finitely many orbits (nilpotent orbits) for the adjoint action G×g → g, (g, x) → g •x.

Given e ∈ N , the set (1) B e = {b ∈ B : e ∈ b} is a closed (projective) subvariety of B. It is called a Springer fiber as it can be identified with the fiber π -1 2 (e) of the Springer resolution π 2 : T * B = {(b, e) ∈ B × N : e ∈ b} → N , (b, e) → e (see [START_REF] Slodowy | Four Lectures on Simple Groups and Singularities[END_REF][START_REF] Springer | The unipotent variety of a semisimple group[END_REF][START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]). If e = 0, then B e = B. At the other extreme, if e is regular, then B e consists of one point. In general, B e is not irreducible (though always connected). It is equidimensional and one has dim B e = 1 2 (dim Z G (e)rank G), where Z G (e) = {g ∈ G : g • e = e} (see [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF][START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]).

Springer fibers are classical objects in representation theory (see, e.g., [START_REF] Bezrukavnikov | Localization of modules for a semisimple Lie algebra in prime characteristic[END_REF][START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF][START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF]). The goal of this paper is to study certain varieties generalizing Springer fibers in two ways:

• by considering a partial flag variety G/P instead of the flag variety B,

• by replacing the condition e ∈ b in (1) by a more general belonging condition.

1.2. The variety P e,i . Fix a parabolic subgroup P ⊂ G and let n P ⊂ p ⊂ g be the corresponding parabolic subalgebra and its nilradical. Let P = G/P . Equivalently, P can be regarded as the variety of all parabolic subalgebras of g conjugated to p (a partial flag variety).

Our main object of study is introduced in the following definition.

Definition 1. Given e ∈ N and a P -stable subspace i ⊂ p, we define P e,i = {gP ∈ P : g -1 • e ∈ i}.

Clearly P e,i is a closed subvariety of P, nonempty if and only if e ∈ G • i. The next examples correspond to particular cases of P e,i , all related to resolutions of the nilpotent variety or of nilpotent orbit closures (or of their covers).

Example 1. (a) P e,p (corresponding to i = p) was studied by R. Steinberg [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] and is sometimes called a Steinberg variety. It can be identified with the fiber over e of the map {(gP, x) ∈ P × N : g -1 • x ∈ p} → N , (gP, x) → x, which is a partial resolution of the nilpotent variety N in the sense of [START_REF] Borho | Partial resolutions of nilpotent orbits[END_REF]. (b) P e,nP (corresponding to i = n P ) is called a Spaltenstein variety (cf. [START_REF] Spaltenstein | The fixed point set of a unipotent transformation on the flag manifold[END_REF][START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF]). It can be identified with a fiber of the map π ′ : G × P n P → G • n P , (g, x) → g • x.

Note that G • n P is the closure of the Richardson nilpotent orbit attached to P . The map π ′ is proper, surjective, generically finite, and is a resolution of G • n P under some conditions on the stabilizer of e in G to ensure that π ′ is birational (see [START_REF] Borho | Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen[END_REF][START_REF] Borho | Partial resolutions of nilpotent orbits[END_REF]). Spaltenstein varieties for G = SL n (C) arise in various problems such as the study of Springer representations (cf. [START_REF] Braverman | On Ginzburg's Lagrangian construction of the representations of GL(n)[END_REF][START_REF] Ginzburg | Lagrangian construction of the enveloping algebra U (sln)[END_REF]), crystals ( [START_REF] Malkin | Tensor product varieties and crystals, GL case[END_REF]), or quiver varieties ( [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF][START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF]).

Note that P e,p and P e,nP both coincide with the Springer fiber B e in the particular case where P = B 0 is a Borel subgroup. In general, P e,p and P e,nP may not coincide (for instance, P e,p is always nonempty, unlike P e,nP ). (c) Varieties of the form P e,i also arise as fibers of resolutions of general nilpotent orbit closures. Let a Z-grading g = i∈Z g i (in particular, [g i , g j ] ⊂ g i+j for all i, j) with g 0 containing the center of g. Set g ≥j = i≥j g i . There is a parabolic subgroup P ⊂ G of Lie algebra g ≥0 . Let e ∈ N . A grading such that e ∈ g 2 and g e := {x ∈ g : [e, x] = 0} ⊂ g ≥0 is said to be good for e (see [START_REF] Elashvili | Classification of good gradings of simple Lie algebras[END_REF]). Then, one has G • g ≥2 = G • e and the map π e : G × P g ≥2 → G • e, (g, x) → g • x is proper, surjective, generically finite (see [START_REF] Broer | Normal nilpotent varieties in F 4[END_REF]), and its fiber over e ′ is isomorphic to P e ′ ,g ≥2 . The map π e is birational for instance if the grading is a Dynkin grading (i.e., g i = {x ∈ g : [h, x] = ix} for h coming from a standard triple (e, h, f ); see [START_REF] Panyushev | Rationality of singularities and the Gorenstein property of nilpotent orbits[END_REF]), and in that case π e is referred to the "standard" resolution of G • e.

More generally, for every j ≥ 1, the image G • g ≥j is the closure of a nilpotent orbit and the map G × P g ≥j → G • g ≥j is proper, surjective, of fiber isomorphic to P e ′ ,g ≥j , and under good conditions this map may be generically finite (see [START_REF] Broer | Normal nilpotent varieties in F 4[END_REF]).

Remark 1. If e ∈ g is a regular nilpotent element, then the variety P e,i consists of at most one point. Indeed, in that case there is a unique Borel subalgebra b ⊂ g containing e. Let B ⊂ G be the Borel subgroup of Lie algebra b. Up to conjugation we may assume that B ⊂ P . If gP ∈ P e,i , then g -1 • e ∈ p, and we get g -1 • b ⊂ p. Since b and g -1 • b are two Borel subalgebras of p, there is p ∈ P such that pg -1 • b = b. Thus pg -1 ∈ B (because B is self-normalizing). Hence g ∈ P . We conclude that P e,i ⊂ {P } and this shows our claim.

1.3. Statement of main result. Let X be an algebraic variety. A partition of X into subsets that can be indexed X 1 , . . . , X k so that X 1 ∪ . . . ∪ X l is closed for every l ∈ {1, . . . , k} is called an α-partition (cf. [START_REF] Concini | Homology of the zero-set of a nilpotent vector field on a flag manifold[END_REF]). We say that an α-partition is a smooth paving (resp. an affine paving) if every subset X l is a smooth subvariety of X (resp. is isomorphic to an affine space C d l ).

The existence of an affine paving guarantees good (co)homological properties for the variety X (see [9, §1.6-1.10]). It is an especially desirable property for varieties that arise as fibers of a resolution (see [16, §2.4

, §4.3.2]).

There are classical constructions of affine pavings:

Example 2. (a) If B ⊂ G is a Borel subgroup, then the partition of the variety P = G/P into the various B-orbits is an affine paving (the Schubert decomposition).

(b) (Bialynicki-Birula's theorem) Let X be a projective variety equipped with an algebraic action of C * . This action gives rise to a fixed point set X C * ⊂ X and a well-defined retraction map

ξ : X → X C * , x → lim t→0 t • x,
which is not algebraic in general. Let Y ⊂ X C * be a connected component such that every y ∈ Y is a regular point of X. Then the restriction ξ : ξ -1 (Y ) → Y is an algebraic affine bundle (i.e., a fiber bundle of typical fiber isomorphic to an affine space) (see [START_REF] Bialynicki-Birula | Some theorems on actions of algebraic groups[END_REF]). In particular, if X is a smooth projective variety and the fixed point set X C * is finite, then the decomposition X = y∈X C * {x ∈ X : lim t→0 t • x = y} is an affine paving (see [9, §1.2-1.3]).

However, showing the existence of an affine paving for the variety P e,i requires other methods: though P e,i is a subset of P, it is not in general stable by any Borel subgroup, so it is not a union of Schubert cells. Moreover, since P e,i is not smooth in general and since there is in general no known action of C * on P e,i with a finite number of fixed points, Bialynicki-Birula's theorem cannot be directly applied.

In some situations, it is already known that Springer fibers admit affine pavings. This was first shown by N. Spaltenstein [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF]§II.5] for Springer fibers in the case of G = SL n (C). Other constructions of affine pavings for Springer fibers in the case of SL n (C) are given in [START_REF] Fresse | Betti numbers of Springer fibers in type A[END_REF][START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF][START_REF] Xi | A partition of the Springer fibers B N for type A n-1 , B 2 , G 2 and some applications[END_REF]. In fact, C. De Concini, G. Lusztig and C. Procesi [START_REF] Concini | Homology of the zero-set of a nilpotent vector field on a flag manifold[END_REF] showed that B e admits an affine paving whenever G is a classical simple algebraic group (see also [15, §11]). The same property holds when G is of type G 2 , F 4 , or E 6 (see [START_REF] Concini | Homology of the zero-set of a nilpotent vector field on a flag manifold[END_REF][START_REF] Spaltenstein | On unipotent and nilpotent elements of groups of type E 6[END_REF][START_REF] Xi | A partition of the Springer fibers B N for type A n-1 , B 2 , G 2 and some applications[END_REF]) and one can expect it also for G of type E 7 or E 8 . Finally, it is known that Steinberg varieties P e,p and Spaltenstein varieties P e,nP admit affine pavings in the case of G = SL n (C) (see [START_REF] Brundan | Cohomology of Spaltenstein varieties[END_REF][START_REF] Shimomura | The fixed point subvarieties of unipotent transformations on the flag varieties[END_REF]).

In this paper, we extend the previous results to the case of the varieties P e,i and for G classical: Theorem 1. Let P, e, i be as in Definition 1. Assume that the minimal Levi subalgebra of g containing e has no nonregular component of exceptional type. Then, the variety P e,i admits an affine paving.

Let us explain the assumption made in the theorem. For e ∈ g nilpotent, there is a minimal Levi subalgebra ĝ ⊂ g containing e, which is unique up to conjugation. Its semisimple part decomposes as [ĝ, ĝ] = s 1 × • • • × s k with s i simple Lie algebras.

We have e = (e 1 , . . . , e k ), where each e i is a distinguished nilpotent element of s i . By saying in the theorem that ĝ has no nonregular component of exceptional type, we mean that s i is of type A-D whenever e i is not regular in s i . This assumption is more general than assuming that the semisimple part of g itself has no component of exceptional type. In particular, the theorem is valid when

G is GL n (C), SL n (C), Sp 2m (C), SO n (C).
The recent work [START_REF] Fresse | Borel subgroups adapted to nilpotent elements of standard Levi type[END_REF] of the author contains a proof of Theorem 1 in the case where e is regular in ĝ. The result shown in [START_REF] Fresse | Borel subgroups adapted to nilpotent elements of standard Levi type[END_REF] (in that special case) is actually more precise: the affine paving is obtained by considering intersections of P e,i with the orbits on G/P of an explicit Borel subgroup B ⊂ G. It also concerns more general varieties P e,i : the P -stable subspace i is not necessarily contained in the parabolic subalgebra p. The latter fact relates [START_REF] Fresse | Borel subgroups adapted to nilpotent elements of standard Levi type[END_REF] to earlier, similar results on so-called Hessenberg varieties (see [START_REF] Precup | Affine pavings of Hessenberg varieties for semisimple groups[END_REF][START_REF] Tymoczko | Linear conditions imposed on flag varieties[END_REF]).

In light of Example 1 (c), Theorem 1 answers affirmatively Question 4.19 in [START_REF] Juteau | Parity Sheaves[END_REF] for nilpotent orbits of classical type. More precisely, it shows that the map π e of Example 1 (c) is even in the sense of [START_REF] Juteau | Parity Sheaves[END_REF]. When π e is the "standard" resolution of G • e, this property ensures the existence of parity sheaves with constant local systems on corresponding nilpotent orbits G•e. For other choices of π e , the existence of parity sheaves extending other local systems can also be obtained. I would like to thank Daniel Juteau, Carl Mautner, and Geordie Williamson who informed me of this application of the theorem.

1.4. Organization of the paper. The remainder of the paper comprises seven sections and is organized as follows. Section 2 contains preliminary facts on parabolic orbits in partial flag varieties, which will be basic ingredients in the next sections. In Section 3, we construct a smooth paving of the variety P e,i and show that P e,i will have an affine paving provided that its fixed point set (P e,i ) S under a certain torus S does. The main fact pointed out in Section 4 is that the proof of Theorem 1 can be reduced to the case of distinguished nilpotent elements. Moreover, in Section 5, we explain how the proof can be reduced to the case of almost simple groups.

In Section 6, we recall the description of partial flag varieties in the classical cases, that is, in terms of partial flags (in type A) and isotropic partial flags (in types B, C, D). In Section 7, we describe the form taken by the P -stable subspaces i ⊂ p in the classical cases. The conclusion of Sections 6-7 is that the variety P e,i takes an elementary form in the classical cases.

Finally, Section 8 contains a proof by induction of Theorem 1 for distinguished nilpotent elements and almost simple classical groups, relying on the elementary form of the variety P e,i in this situation. This final argument is easy in type A but quite involved in the other classical types.

The proof of Theorem 1 that we give here is broadly inspired by the proof given in [START_REF] Concini | Homology of the zero-set of a nilpotent vector field on a flag manifold[END_REF] in the case of Springer fibers. In Sections 3-5, the arguments follow the same scheme as in [START_REF] Concini | Homology of the zero-set of a nilpotent vector field on a flag manifold[END_REF]. The final computational argument given in Section 8 is however more involved here than in the case of Springer fibers.

In what follows, unless otherwise specified, G is a reductive connected linear algebraic group.

Preliminaries on parabolic orbits

In this section, we recall (for later use) elementary properties of parabolic subgroups Q ⊂ G and well-known properties of Q-orbits of the partial flag variety P = G/P . Proofs are provided for the sake of completeness.

2.1. Parabolic subgroups, cocharacters, and Z-gradings. Recall that a parabolic subgroup Q ⊂ G admits a Levi decomposition

Q = L Q ⋉ U Q (with U Q ⊂ Q the unipotent radical and L Q ⊂ Q a Levi factor).
2.1.1. A (Levi decomposition of a) parabolic subgroup can always be induced by a cocharacter: given a Levi decomposition as above, we can find a cocharacter λ :

C * → G (that is, a morphism of algebraic groups) such that Q, L Q , U Q are characterized by: Q = {g ∈ G : lim t→0 λ(t)gλ(t) -1 exists}, (2) 
U Q = {g ∈ G : lim t→0 λ(t)gλ(t) -1 = 1 G }, (3) 
L Q = {g ∈ G : λ(t)gλ(t) -1 = g, ∀t ∈ C * } (4) (cf. [31, §8.4]).
2.1.2. A (Levi decomposition of a) parabolic subgroup can also be induced by a Z-grading

g = i∈Z g i .
Here, [g i , g j ] ⊂ g i+j for all i, j. We assume that g 0 contains the center of g (by convention, all gradings in the rest of the paper will be subject to this assumption). Write g ≥j = i≥j g i . Then g ≥0 ⊂ g is a parabolic subalgebra with Levi decomposition g ≥0 = g 0 ⊕ g ≥1 , and there is a parabolic subgroup

Q ⊂ G with Levi decomposition Q = L Q ⋉ U Q such that the Lie algebras of Q, U Q , L Q are respectively g ≥0 , g ≥1 , g 0 .
The map d : g → g defined by d(x) = ix for x ∈ g i is a derivation of g, which restricts to a derivation of [g, g]. Since any derivation of [g, g] is inner and the center of g lies in g 0 , there is h ∈ [g, g] such that [h, x] = ix for all x ∈ g i , i ∈ Z, and we find a cocharacter λ : C * → G with λ ′ (t) = th, so (5)

g i = {x ∈ g : λ(t) • x = t i x, ∀t ∈ C * }, ∀i ∈ Z.
Clearly, Q, U Q , L Q correspond to the cocharacter λ in the sense of relations (2)-(4).

2.1.3. Basic setting. We will often consider the following situation, which combines the previous remarks:

(a) Q = L Q ⋉ U Q is a Levi decomposition of a parabolic subgroup of G. (b) λ : C * →
G is a cocharacter inducing this Levi decomposition, in the sense of ( 2)-( 4). Let S = {λ(t) : t ∈ C * }, so that L Q is the centralizer of S in G. (c) g = i∈Z g i is the Z-grading corresponding to λ in the sense of (5).

2.2.

Parabolic orbits of a partial flag variety. A parabolic subgroup Q ⊂ G acts on the partial flag variety P = G/P with finitely many orbits. In what follows, we describe the structure of these orbits.

Let

Q = L Q ⋉ U Q , λ : C * → G,
and S = {λ(t) : t ∈ C * } be as in Section 2.1.3. In particular the cocharacter λ gives rise to an algebraic action of C * on P. Since P is smooth, projective, we obtain a map ρ : P → P S := {gP ∈ P : s(gP ) = gP, ∀s ∈ S}, gP → lim t→0 λ(t)gP which, by Bialynicki-Birula's theorem (cf. Example 2 (b)), is an algebraic affine bundle over each connected component of the fixed point set P S . Proposition 1 below gives a different proof of this property, and shows in addition that ρ is locally trivial over each connected component of P S and is intimately related to the structure of the Q-orbits.

Given a Q-orbit O ⊂ P, we let O S := {gP ∈ O : s(gP ) = gP, ∀s ∈ S} be its S-fixed point set. The structure of O S is described in the next lemma.

Lemma 1.

(a) One has O S = ∅. Fix an element g 0 P ∈ O S . Hence P 0 := g 0 P g -1 0 contains S and L Q ∩ P 0 is a parabolic subgroup of L Q (cf. [31, §6.4.7]).

(b) O S consists of a unique L Q -orbit. In fact, the map

ξ : L Q /(L Q ∩ P 0 ) → O S , ℓ(L Q ∩ P 0 ) → ℓ(g 0 P )
is well defined and is an isomorphism of algebraic varieties. (c) In particular, O S is a partial flag variety of L Q (thus a smooth, connected, projective variety). Hence, the subsets O S , corresponding to the Q-orbits O ⊂ P, are exactly the connected components of P S .

Proof. (a) Let T ⊂ B ⊂ Q be a maximal torus and a Borel subgroup such that S ⊂ T . Let g ∈ G be such that B ⊂ gP g -1 . By the Bruhat decomposition, the orbit O takes the form O = QwgP with w ∈ N G (T ). For all s ∈ S, one has swgP = w(w -1 sw)gP = wgP . Thus, wgP ∈ O S . (b) The inclusion {ℓ(g 0 P ) : ℓ ∈ L Q } ⊂ O S is easy. Conversely, suppose q(g 0 P ) ∈ O S (where q ∈ Q). Write q = ℓu with ℓ ∈ L Q and u ∈ U Q . Since g 0 P and q(g 0 P ) are fixed by S (and using (4)), we deduce the equality q(g 0 P ) = ℓλ(t)uλ(t) -1 (g 0 P ), ∀t ∈ C * .

Finally letting t → 0 (and using (3)) we infer that q(g 0 P ) = ℓ(g 0 P ). This shows the equality O S = {ℓ(g 0 P ) :

ℓ ∈ L Q }.
This equality implies that the map L Q → O S , ℓ → ℓ(g 0 P ) is surjective. Note that L Q ∩ P 0 = {ℓ ∈ L Q : ℓ(g 0 P ) = g 0 P }. This readily implies that ξ is a welldefined isomorphism (see [32, §2.11] for instance).

As in Lemma 1, we fix g 0 P ∈ O S and let P 0 = g 0 P g -1 0 . In addition to the isomorphism ξ : L Q /(L Q ∩ P 0 ) → O S of Lemma 1 (b), we dispose of the surjective maps

ϕ : Q = L Q ⋉ U Q → L Q /(L Q ∩ P 0 ), ℓu → ℓ(L Q ∩ P 0 )
and ψ : Q → O, q → q(g 0 P ).

Proposition 1.

(a) There is a (unique 

) map ζ : O → O S such that the dia- gram Q ψ -→ O ϕ ↓ ↓ ζ L Q /(L Q ∩ P 0 ) ξ -→ O S commutes
P ∈ O S ),
• ρ is a locally trivial algebraic affine bundle over each connected component of P S .

Proof. (a) Observe that we have Q ∩ P 0 = {q ∈ Q : q(g 0 P ) = g 0 P }. Hence the map ψ : Q → O induces an isomorphism of algebraic varieties

ψ 1 : Q/(Q ∩ P 0 ) → O. We claim that Q ∩ P 0 = (L Q ∩ P 0 ) ⋉ (U Q ∩ P 0 ). It is enough to check the inclusion Q∩P 0 ⊂ (L Q ∩P 0 )(U Q ∩P 0 ). So, take q ∈ Q∩P 0 .
There are ℓ ∈ L Q , u ∈ U Q such that q = ℓu. Since q ∈ P 0 , we have q(g 0 P ) = g 0 P . Furthermore, recall that g 0 P ∈ O S . It follows (by (4)): g 0 P = λ(t)(g 0 P ) = λ(t)q(g 0 P ) = ℓ(λ(t)uλ(t) -1 )(g 0 P ), ∀t ∈ C * .

Letting t → 0 and invoking (3), we get g 0 P = ℓ(q 0 P ). Whence ℓ ∈ L Q ∩ P 0 . We derive u ∈ U Q ∩ P 0 . Thereby, q ∈ (L Q ∩ P 0 )(U Q ∩ P 0 ) and the claim is established.

The relations

Q = L Q ⋉ U Q and Q ∩ P 0 = (L Q ∩ P 0 ) ⋉ (U Q ∩ P 0 ) yield a natural isomorphism ζ 1 : Q/(Q ∩ P 0 ) ∼ → L Q × LQ∩P0 (U Q /(U Q ∩ P 0 )). We get a commutative diagram Q ψ2 -→ Q/(Q ∩ P 0 ) ψ1 -→ O ϕ ↓ ↓ ζ1 O S ξ ←-L Q /(L Q ∩ P 0 ) ζ2 ←-L Q × LQ∩P0 (U Q /(U Q ∩ P 0 ))
where

ψ 2 : Q → Q/(Q∩P 0 ) and ζ 2 : L Q × LQ∩P0 (U Q /(U Q ∩P 0 )) → L Q /(L Q ∩P 0 ) are the natural surjections. Let ζ = ξζ 2 ζ 1 ψ -1 1 .
Recall that the maps ψ 1 , ζ 1 , ξ involved in this composition are isomorphisms of varieties. Note that ζ 2 is a locally trivial fiber bundle whose typical fiber U Q /(U Q ∩ P 0 ) is isomorphic (as a variety) to an affine space. So ζ is a locally trivial (for Zariski topology) algebraic affine bundle.

(b) Let q(g 0 P ) ∈ O. There are ℓ ∈ L Q , u ∈ U Q such that q = ℓu. Then, ρ(q(g 0 P )) = lim t→0 λ(t)q(g 0 P ) = lim t→0 ℓ(λ(t)uλ(t) -1 )(g 0 P ) = ℓ(g 0 P ) = ζ(q(g 0 P )).

(cf. (3), ( 4)). Thus ζ = ρ| O . This implies that ζ does not depend on the choice of g 0 P . Combined with Lemma 1 (c), this implies that ρ is a locally trivial algebraic algebraic affine bundle over each connected component of P S .

Construction of smooth pavings

The purpose of this section is to show the next statement, which will be used in the proof of Theorem 1: The assumptions of the proposition involve the notion of good grading (see Example 1 (c)), which is recalled in Section 3.1. The choice of Q arising from a good grading (like in the proposition) is suitable for applying the results of Section 2 to the study of the variety P e,i . Relying on this observation, Proposition 2 is proved in Section 3.2. The proof of Proposition 2 (a), (b) follows the same reasoning as in [START_REF] Concini | Homology of the zero-set of a nilpotent vector field on a flag manifold[END_REF], the proof of Proposition 2 (c) is somewhat different.

Proposition 2. Let Q, S
3.1. Preliminaries on good gradings. Recall (cf. Example 1 (c)) that a Zgrading g = i∈Z g i , such that g 0 contains the center of g, is said to be good for the nilpotent element e ∈ g if e ∈ g 2 [START_REF] Broer | Normal nilpotent varieties in F 4[END_REF] and g e := {x ∈ g : [e, x] = 0} ⊂ g ≥0 .

(We write g ≥j = i≥j g i .) Good gradings always exist: Example 3. Take h, f ∈ g such that (e, h, f ) is a standard triple (i.e., [h, e] = 2e, [h, f ] = -2f , [e, f ] = h). Then, the grading obtained by letting g i = {x ∈ g : [h, x] = ix} is good for e.

There are equivalent definitions of good gradings (see [START_REF] Elashvili | Classification of good gradings of simple Lie algebras[END_REF]Theorem 1.3]): Lemma 2. Let g = i∈Z g i be a Z-grading such that g 0 contains the center of g and e ∈ g 2 . Then, the following conditions are equivalent: (i) the grading is good for e; (ii) ad e : g i → g i+2 is injective for all i ≤ -1 and surjective for all i ≥ -1; (iii) ad e : g i → g i+2 is injective for all i ≤ -1; (iv) ad e : g i → g i+2 is surjective for all i ≥ -1.

We refer to [START_REF] Elashvili | Classification of good gradings of simple Lie algebras[END_REF] for the main properties of good gradings and classification of good gradings for simple Lie algebras. We just emphasize in the next lemma the two properties that we will need in our study of the varieties P e,i . Lemma 3. Let Q, S, λ be as in Section 2.1.3 (a)-(b). Assume that the grading of Section 2.1.3 (c) is good for e. Then:

(a) Q • e = g ≥2 . In particular, Q • e is a vector subspace of g. (b) λ(t) • e = t 2 e for all t ∈ C * . In particular, the variety P e,i is stable by the natural action of S on P.

Proof. (a) It follows from Section 2.1.3 and relation [START_REF] Broer | Normal nilpotent varieties in F 4[END_REF] that Q • e is a closed subvariety of g ≥2 . By sl 2 -theory, we have dim g e = dim g 0 + dim g 1 . By relation [START_REF] Brundan | Cohomology of Spaltenstein varieties[END_REF], we have g e ⊂ g ≥0 = Lie(Q). This yields dim Q • e = dim g ≥0dim g e = dim g ≥2 . Whence the claimed equality. Part (b) follows from ( 5) and (6).

3.2. Proof of Proposition 2. Let gP ∈ P e,i ∩ O. Thus g -1 • e ∈ i. Lemma 3 (a) guarantees that the intersection (g

• i) ∩ (Q • e) is a smooth, closed, irreducible subvariety of Q • e.
The maps ψ : Q → O, q → q(gP ) and χ : Q → Q • e, q → q -1 • e are algebraic, smooth. Moreover, one has 

ψ -1 (P e,i ∩ O) = χ -1 ((g • i) ∩ (Q • e)) = {q ∈ Q : q -1 • e ∈ g • i}. Since (g • i) ∩ (Q • e)
O S = {ℓ(g 0 P ) : ℓ ∈ L Q }, where P 0 := g 0 P g -1 0 ⊃ S. The map ζ : O → O S of Proposition 1 is such that ζ(ℓu(g 0 P )) = ℓ(g 0 P ) for all ℓ ∈ L Q , u ∈ U Q . Let q(g 0 P ) ∈ P e,i ∩ O. Write q = ℓu with ℓ ∈ L Q , u ∈ U Q . Invoking (4) and Lemma 3 (b), we have ℓ(λ(t)uλ(t) -1 )g 0 P = λ(t)q(g 0 P ) ∈ P e,i , ∀t ∈ C * .
Letting t → 0 and invoking (3), we get ζ(q(g 0 P )) = ℓ(g 0 P ) ∈ (P e,i ∩ O) S . Whence the inclusion ζ(P e,i ∩O) ⊂ (P e,i ∩O) S 

ρ 0 : P e,i ∩ O → (P e,i ∩ O) S , x → lim t→0 λ(t)x.
Recall that the orbit O is open in its closure O, and O\O is a union of finitely many Q-orbits of lower dimension. It easily follows that C is also a connected component of (P e,i ∩ O) S . Moreover, C is contained in P e,i ∩ O, which is a smooth, open subset of P e,i ∩ O, thereby C lies in the regular locus of P e,i ∩ O. This allows us to apply Bialynicki-Birula's theorem, from which we obtain that the restriction of ρ 0 is an algebraic affine bundle ρ

-1 0 (C) → C. According to Proposition 1, for every Q-orbit O ′ ⊂ O, we have ρ 0 (P e,i ∩ O ′ ) ⊂ (P e,i ∩ O ′ ) S . It follows that ρ -1 0 ((P e,i ∩ O) S ) = P e,i ∩ O.
From Proposition 1 (b), we also have that the restriction ρ 0 : P e,i ∩ O → (P e,i ∩ O) S coincides with ζ 0 . In particular, we have ζ -1 0 (C) = ρ -1 0 (C), and the restriction

ζ 0 | ζ -1 0 (C)
is then an algebraic affine bundle. The proof of Proposition 2 is complete.

Reduction to distinguished case

Through Bala-Carter theory, one attaches to a nilpotent element e ∈ g a Levi subgroup Ĝ ⊂ G whose Lie algebra ĝ contains e as a distinguished element. The precise notation is given in Section 4.1. In this section, we combine this classical construction of Bala-Carter theory with the construction of Section 3, which involves a parabolic subgroup Q with Levi factor Z G (S), those data arising from a good grading for e (see Section 3.1). In order to make both constructions compatible, we will assume that Ĝ contains the subtorus S (one always can find Ĝ with this property: see Section 4.1); in this manner, Q contains the center of Ĝ, so that Ĝ ∩ Q is a parabolic subgroup of Ĝ and the datum ( Ĝ ∩ Q, λ, S) corresponds to a good grading of Ĝ.

Our objective in this section is to prove the next proposition, which relates the variety P e,i to a variety called Pe, î , of the same type but relative to the group Ĝ. Proposition 3. Let e, P, i be as in Definition 1. Let Q, λ, S be as in Section 2.1.3 and assume that the grading of Section 2.1.3 (c) is good for e. Let Ĝ ⊂ G be a Levi subgroup whose Lie algebra contains e as a distinguished element and assume that S ⊂ Ĝ. Let Ẑ be the identity component of the center of Ĝ, so that Ĝ = Z G ( Ẑ). Hence S Ẑ is a subtorus of both Q and Ĝ. Then: (a) There is a map

(P e,i ) S → (P e,i ) S Ẑ
which is an algebraic affine bundle over each connected component. (b) For each connected component C ⊂ P Ẑ , there are

• a parabolic subgroup P ⊂ Ĝ and a P -stable subspace î ⊂ Lie( P ), giving rise to a variety Pe, î = {g P ∈ Ĝ/ P : g -1 • e ∈ î} ⊂ Ĝ/ P ,

• and an isomorphism

C ∩ (P e,i ) S Ẑ → ( Pe, î) S .
In particular, if we know that the variety ( Pe, î) S admits an affine paving for all choices of P , î, then we can conclude that the variety (P e,i ) S itself admits an affine paving.

Hereafter we fix e, P, i like in the proposition. The group Ĝ involved in the statement of the proposition is unique up to conjugation. In Section 4.1 we review the construction of Ĝ and fix the notation. The proof of the proposition is then given in Section 4.2.

Notation and preliminary facts.

To start with, we recall the construction of a minimal Levi subalgebra of g containing the nilpotent element e. We refer to [8, §3 and §8] and [15, §4] for more details.

First, we embed e in a standard triple φ = (e, h, f ), so that [h, e] = 2e, [h, f ] = -2f , and [e, f ] = h. Then,

z g (φ) := {x ∈ g : [x, y] = 0, ∀y ∈ {e, h, f }}, Z G (φ) := {g ∈ G : g • y = y, ∀y ∈ {e, h, f }}
are a reductive Lie subalgebra of g (the quotient of z g (e) := {x ∈ g : [x, e] = 0} by its nilradical) and a reductive subgroup of G, respectively. Let Z G (φ) 0 denote the identity component. Pick a maximal torus

T φ ⊂ Z G (φ) 0 . Thus t φ := Lie(T φ ) is a maximal toral subalgebra of z g (φ). Let Z G (T φ ) ⊂ G (resp. z g (t φ ) ⊂ g) be the corresponding centralizers. Lemma 4. Ĝ := Z G (T φ ) is a Levi subgroup of G whose Lie algebra ĝ := z g (t φ
) contains e as a distinguished element.

The next lemma shows how to adapt the construction of the group Ĝ to the parabolic subgroup Q and the subtorus S ⊂ Q arising from a good grading for e, involved in the constructions of Section 3 and in the statement of Proposition 3.

Lemma 5. Let Q, λ, S be as in Section 2.1.3 and assume that the grading of Section 2.1.3 (c) is good for e. Then, there is a Levi subgroup Ĝ ⊂ G whose Lie algebra contains e as a distinguished element and which satisfies S ⊂ Ĝ.

Proof. Let g = i∈Z g i be the grading of Section 2.1.3 (c). By assumption, e ∈ g 2 . By [10, Lemma 1.1], we can choose a standard triple φ = (e, h, f ) with h ∈ g 0 and f ∈ g -2 . Let T φ ⊂ Z G (φ), t φ ⊂ z g (φ) be a maximal torus and its Lie algebra, as above Lemma 4. In particular, [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF] h ∈ z g (t φ ).

Letting

H = λ ′ (1) ∈ g, relation (5) implies g i = {x ∈ g : [H, x] = ix} for all i ∈ Z. By [10, Theorem 1.1], H -h lies in the center of z g (φ). This ensures that (9) H -h ∈ z g (t φ ).
Combining ( 8) and ( 9), we obtain H ∈ z g (t φ ). Since H generates the Lie algebra of S, this implies that the tori S and T φ commute. By Lemma 4, Ĝ := Z G (T φ ) satisfies the desired properties.

Let Ĝ ⊂ G be a Levi subgroup satisfying the conditions of Lemma 5. Saying that Ĝ is a Levi subgroup of G means that it arises as a Levi factor of some parabolic subgroup Q ⊂ G. Let U Q be the unipotent radical of Q, so that we have the Levi

decomposition Q = Ĝ ⋉ U Q.
We fix a cocharacter λ : C * → G that induces this Levi decomposition in the sense of Section 2.1.

1. Let Ŝ = { λ(t) : t ∈ C * }. Thus, Ĝ = Z G ( Ŝ).
The fact that S is contained in Ĝ implies that [START_REF] Elashvili | Classification of good gradings of simple Lie algebras[END_REF] the tori S and Ŝ commute, thus they generate a torus S Ŝ ⊂ Ĝ. It also implies that the adjoint action of Ŝ fixes every element of the Lie algebra ĝ. In particular, s • e = e for all s ∈ Ŝ. Consequently, [START_REF] Fresse | Betti numbers of Springer fibers in type A[END_REF] the action of Ŝ on P = G/P leaves the subvariety P e,i stable.

We will need the following lemma.

Lemma 6. We have the following equality between fixed point sets P Ŝ = P Ẑ .

Proof. We check the equality O Ẑ = O Ŝ for each Q-orbit O ⊂ P. The inclusion ⊂ is immediate. For checking the other inclusion, we first note as in the proof of Lemma 1 (a) that the orbit O contains at least one element x 0 fixed by Ẑ. Then, Lemma 1 (b) implies that O Ŝ is exactly the Ĝ-orbit of x 0 . Since Ĝ = Z G ( Ẑ), this yields the desired inclusion O Ŝ ⊂ O Ẑ .

4.2. Proof of Proposition 3. Part (a) of the statement is established as follows.

From Proposition 2, we know that the variety (P e,i ) S is projective and smooth. Moreover, by ( 10) and [START_REF] Fresse | Betti numbers of Springer fibers in type A[END_REF] ), we know that there is g 0 P ∈ P Ŝ such that C = Ĝg 0 P . The fact that g 0 P is Ŝ-fixed implies that the parabolic subgroup g 0 P g -1 0 contains the torus Ŝ. Thereby, P :

= Ĝ ∩ g 0 P g -1 0 is a parabolic subgroup of Ĝ = Z G ( Ŝ). Set î = ĝ ∩ (g 0 • i).
This is clearly a P -stable subspace of p := Lie( P ) = ĝ ∩ (g 0 • p). From Lemma 1 (b), we know that the map ξ : Ĝ/ P → C, ĝ P → ĝg 0 P is an isomorphism of algebraic varieties. The map ξ is clearly S-equivariant, hence it satisfied [START_REF] Fresse | Borel subgroups adapted to nilpotent elements of standard Levi type[END_REF] ξ(( Ĝ/ P ) S ) = C S .

Given ĝ P ∈ Ĝ/ P , we have

(13) ĝ P ∈ Pe, î ⇔ ĝ-1 • e ∈ ĝ ∩ (g 0 • i) ⇔ (ĝg 0 ) -1 • e ∈ i ⇔ ĝg 0 P ∈ P e,i
where we use that e ∈ ĝ (so every ĝ ∈ Ĝ satisfies that ĝ-1 • e ∈ ĝ). Relations ( 12) and ( 13) imply that ξ restricts to an isomorphism between ( Pe, î) S and (P e,i ) S ∩ C. This completes the proof of (b).

Reduction to almost simple classical groups

It is convenient to formalize the following property:

Definition 2. Given a reductive, connected group G and a nilpotent element e in its Lie algebra g, we say that property P(G, e) is satisfied if, for some (or any) standard triple {e, h, f } ⊂ g, letting S = {λ(t) : t ∈ C * } ⊂ G be the subtorus corresponding to h in the sense of Section 2.1.2, for every parabolic subgroup P ⊂ G and every P -stable subspace i ⊂ p = Lie(P ), the variety (P e,i ) S admits an affine paving.

Remark 2. Two standard triples containing e are conjugate under Z G (e) (see, e.g., [8, §3.4]), hence Definition 2 is independent of the choice of the triple {e, h, f }.

In these terms, Proposition 3 and Example 3 show that P( Ĝ, e) implies P(G, e), whereas Proposition 2 implies that Theorem 1 will be proved once we know that property P(G, e) holds for all e such that Lie( Ĝ) has no nonregular component of exceptional type. The purpose of this section is to point out other situations where property P(G, e) is transmitted from a pair (G, e) to another. 5.1. Products. Here we assume that G = G 1 × • • • × G k where G 1 , . . . , G k are reductive connected groups. Then, letting g j be the Lie algebra of G j , we have g = g 1 × • • • × g k . Thus, any element e ∈ g can be uniquely written e = (e 1 , . . . , e k ) and e is nilpotent if and only if e j is nilpotent for all j ∈ {1, . . . , k}. It is also clear that e is distinguished in g if and only if e j is distinguished in g j for all j ∈ {1, . . . , k}.

Proposition 4. Let G = G 1 × • • • × G k
and e = (e 1 , . . . , e k ) ∈ g nilpotent. Then, P(G, e) holds whenever P(G j , e j ) holds for all j ∈ {1, . . . , k}.

Proof. For every j ∈ {1, . . . , k}, fix a standard triple {e j , h j , f j } ⊂ g j containing e j and a cocharacter λ j : C * → G j , of image S j = {λ j (t) : t ∈ C * }, which corresponds to h j in the sense of Section 2.1.2. Then, letting h = (h 1 , . . . , h k ) and f = (f 1 , . . . , f k ), the elements {e, h, f } form a standard triple of g and the cocharacter λ := (λ 1 , . . . , λ k ) :

C * → G corresponds to h. Let S := {λ(t) : t ∈ C * } ⊂ S 1 × • • • × S k .
Any parabolic subgroup P ⊂ G can be written P = P 1 ו • •×P k where P j ⊂ G j are parabolic subgroups and any P -stable subspace i ⊂ Lie(P ) can be written i = i 1 × • • • × i k where i j ⊂ Lie(P j ) are P j -stable subspaces. For j ∈ {1, . . . , k}, let P j e j ,i j = {gP j ∈ G j /P j : g -1 • e j ∈ i j }. The map Φ :

G 1 /P 1 × • • • × G k /P k → G/P, (g 1 P 1 , . . . , g k P k ) → (g 1 , . . . , g k )P is an isomorphism. It is easy to check that Φ((P 1 e 1 ,i 1 ) S 1 × • • • × (P k e k ,i k ) S k ) = (P e,i ) S .
Therefore, if (P j e j ,i j ) S j admits an affine paving for all j, then (P e,i ) S admits an affine paving, too. This shows the proposition. 5.2. Central extensions. Let Ǧ be another reductive, connected, linear algebraic group over C, equipped with a surjective morphism of algebraic groups π : G → Ǧ whose kernel is contained in the center of G. By derivation, we get a surjective morphism of Lie algebras dπ : g → ǧ = Lie( Ǧ) whose kernel lies in the center of g. This implies that dπ restricts to an isomorphism between the semisimple Lie algebras [g, g] and [ǧ, ǧ]. Thus, dπ restricts to a bijection between the nilpotent cones N ⊂ g and Ň ⊂ ǧ, and we have that e ∈ N is distinguished in g if and only if ě := dπ(e) ∈ Ň is distinguished in ǧ.

Proposition 5. Let π : G → Ǧ and dπ : g → ǧ be central extensions as above. Let e ∈ g be nilpotent and ě = dπ(e). Then, P(G, e) holds if and only if P( Ǧ, ě) holds.

Proof. The maps P → π(P ) and P → π -1 ( P ) are pairwise inverse bijections between the set of closed subgroups of G containing the center Z(G) and the set of closed subgroups of Ǧ containing the center Z( Ǧ). Moreover, if P = π(P ), then π induces a bijection morphism of varieties ϕ : G/P → Ǧ/ P . Similarly, the map p → p = dπ(p) is a bijection between the set of subalgebras of g containing the center of g and the set of subalgebras of ǧ containing the center of ǧ, and the induced linear morphism g/p → ǧ/p is bijective. By [31, §5.3.2 (iii) and §6.2.1], P is a parabolic (resp. Borel) subgroup of G if and only if P is a parabolic (resp. Borel) subgroup of Ǧ, and in this case the map ϕ : G/P → Ǧ/ P , gP → π(g) P is an isomorphism of G-homogeneous varieties. We fix P ⊂ G and P = π(P ) ⊂ Ǧ parabolic, and write p = Lie(P ) and p = dπ(p) = Lie( P ).

If ǐ ⊂ p is a P -stable subspace, then dπ -1 ( ǐ) ⊂ p is a P -stable subspace and we have ǐ = dπ(dπ -1 ( ǐ)). Conversely, if i ⊂ p is a P -stable subspace, then dπ(i) ⊂ p is a P -stable subspace, and we have dπ -1 (dπ(i)) = i + ker dπ. More generally, fix subspaces i ⊂ p and ǐ ⊂ p, respectively P -and P -stable, such that i ⊂ dπ -1 ( ǐ) ⊂ i + ker dπ. We claim that ( 14)

N ∩ i = N ∩ (i + ker dπ).
The inclusion ⊂ is immediate. For checking the other inclusion, let x ∈ i, z ∈ ker dπ, assume that x + z is nilpotent, and let us show that x + z ∈ i. Note that x + z is a nilpotent element of p, hence it is contained in the nilradical n of some Borel subalgebra b ⊂ p. Fix a Cartan subalgebra t with b = t ⊕ n and let g = t ⊕ α∈Φ g α be the root space decomposition with respect to t. Thus n = α∈Φ + g α for a system of positive roots Φ + . We can write x + z = α∈I x α where x α ∈ g α , x α = 0, for a subset I ⊂ Φ + . Hence i ∋ x = -z + α∈I x α and we know that -z ∈ t. Note that, being P -stable, i is also t-stable, so it is the sum of its root spaces. This yields g α ⊂ i for all α ∈ I. Whence x + z ∈ i. The checking of ( 14) is complete. By virtue of ( 14), for gP ∈ G/P , we have

g -1 • e ∈ i ⇔ dπ(g -1 • e) ∈ dπ(i) ⇔ π(g) -1 • ě ∈ ǐ, thereby ϕ(P e,i ) = Pě, ǐ := {ǧ P ∈ Ǧ/ P : ǧ-1 • ě ∈ ǐ}.
If S ⊂ G is any closed subgroup and Š = π(S), then we clearly have ϕ((G/P ) S ) = ( Ǧ/ P ) Š , so ϕ restricts to an isomorphism [START_REF] Jantzen | Nilpotent orbits in representation theory[END_REF] P e,i ∩ (G/P ) S ∼ → Pě, ǐ ∩ ( Ǧ/ P ) Š .

Let {e, h, f } ⊂ g be a standard triple and let λ : C * → G be a cocharacter corresponding to h in the sense of Section 2.1. [START_REF] Jantzen | Nilpotent orbits in representation theory[END_REF], the varieties (P e,i ) S and ( Pě, ǐ) Š are isomorphic, hence one admits an affine paving if and only if the other one does. Conditions P(G, e) and P( Ǧ, ě) are therefore equivalent.

2. Let S = {λ(t) : t ∈ C * }. Setting ȟ = dπ(h) and f = dπ(f ), it is clear that {ě, ȟ, f } is a standard triple in ǧ. The cocharacter corresponding to ȟ is λ = π • λ : C * → Ǧ. Let Š = π(S) = { λ(t) : t ∈ C * }. By

Conclusion. The conclusion of this section is the following:

Proposition 6. In order to prove Theorem 1, it suffices to show that property

P(G, e) is satisfied whenever G is SL(V ) (for V = C n ), Sp(V, ω) (for V = C 2n
endowed with a symplectic form ω), or SO(V, ω) (for V = C m endowed with a nondegenerate symmetric form ω), and e ∈ Lie(G) is a distinguished nilpotent element.

Proof. As observed at the beginning of Section 5, Propositions 2 and 3 imply that, in order to prove Theorem 1, it suffices to know that P(G, e) holds whenever G is reductive connected, e ∈ Lie(G) is a distinguished nilpotent element, and Lie(G) has no nonregular component of exceptional type with respect to e (in the sense of Theorem 1). By [31, §8.1.5], there is a central extension

G 1 × • • • × G k → G
where, for every i ∈ {1, . . . , k}, G i is either a torus or an almost simple group. Thus, by Propositions 4 and 5, we may assume that G itself is a torus or an almost simple group. If G is a torus, then every partial flag variety G/P is a single point, so property P(G, e) is trivially true. If G is an almost simple group whose Lie algebra is of exceptional type, then by assumption e is regular in Lie(G), so the variety P e,i is at most one point (see Remark 1) and thus property P(G, e) is trivially true. If G is an almost simple group whose Lie algebra is of type A-D, then invoking again Proposition 5, we may assume that G is of the form SL(V ), Sp(V, ω), or SO(V, ω). The proof of the proposition is then complete.

From now on, we focus on the case where G is one of the classical groups SL(V ), Sp(V, ω), and SO(V, ω). The structure of these groups is recalled in the next section.

Classical partial flag varieties

In the case where the group G is classical, a partial flag variety of the form P = G/P can be identified with a set of partial flags. This well-known fact is recalled in this section.

6.1. Partial flag variety of type A. Let G = SL(V ) be the group of linear automorphisms of the space V := C n of determinant 1. Its Lie algebra g = sl(V ) consists of all linear endomorphisms of V of trace 0. A partial flag of V is a chain of subspaces Here we consider the space V = C m equipped with a nondegenerate bilinear form ω which is either symmetric, or skew-symmetric (i.e., symplectic). Let G ⊂ SL(V ) be the subgroup of automorphisms g preserving ω (i.e., ω(gv, gv ′ ) = ω(v, v ′ ) for all v, v ′ ∈ V ). Its Lie algebra g ⊂ sl(V ) is the subspace of endomorphisms x that are antiadjoint with respect to ω (i.e., ω(xv, v ′ ) = -ω(v, xv ′ ) for all v, v ′ ∈ V ). If the form ω is symmetric, then G (resp. g) is denoted by SO(V, ω) (resp. so(V, ω)) and called a special orthogonal group (resp. Lie algebra): a classical group of type B or D depending on whether dim V is odd or even. If the form ω is symplectic (which forces dim V to be even), then G (resp. g) is denoted by Sp(V, ω) (resp. sp(V, ω)) and called symplectic group (resp. Lie algebra): a classical group of type C.

(V 0 = 0 ⊂ V 1 ⊂ . . . ⊂ V k = V ). Given a sequence d = (d 0 = 0 < d 1 < . . . < d k = n),
For a subspace V ′ ⊂ V , we set

V ′⊥ := {v ∈ V : ω(v, v ′ ) = 0, ∀v ′ ∈ V ′ }. An isotropic partial flag of (V, ω) is a chain of subspaces (V 0 = 0 ⊂ V 1 ⊂ . . . ⊂ V k-1 )
such that V p is isotropic for all p = 0, . . . , k -1, i.e., we have

V p ⊂ V ⊥ p . Given a sequence of integers d = (d 0 = 0 < d 1 < . . . < d k-1 ≤ dim V
2 ), we denote by F ω d the set of all isotropic partial flags of (V, ω) such that dim V p = d p for all p ∈ {0, . . . , k-1}. The set F ω d has a natural structure of algebraic projective variety.

If G is of type B or C (i.e., dim V is odd or ω is symplectic) or d k-1 < dim V 2 , then F ω d is connected and G-homogeneous. If G is of type D and d k-1 = dim V 2 , then F ω d
has exactly two connected components, which are G-homogeneous.

Proposition 8. Let (V, ω), G, and g be as above.

(a) If F = (V 0 , . . . , V k-1
) is an isotropic partial flag of (V, ω), then

P F := {g ∈ G : g(V p ) = V p , ∀p = 0, . . . , k -1} is a parabolic subgroup of G. Its Lie algebra is p F := {x ∈ g : x(V p ) ⊂ V p , ∀p = 0, . . . , k -1}. Any parabolic subgroup of G (resp. any parabolic subalgebra of g) is of this form. (b) Assume that ω is symplectic or d k-1 < dim V 2 .
Then, for F ∈ F ω d , the map gP F → g(F ) is an isomorphism of G-homogeneous varieties between the partial flag variety G/P F and the variety of isotropic partial flags 

F ω d . (c) Assume that ω is symmetric and d k-1 = dim V 2 . Then, for F ∈ F ω d , the map gP F → g(F ) is an isomorphism of G-
k-1 = dim V
2 , for every flag F ∈ F ω d , there is exactly one element F ∈ F ω d different from F such that P F = P F . Then, the maps gP F → g(F ) and gP F → g( F ) are isomorphisms between G/P F and the two connected components of F ω d . The flags F, F are explicitly described in terms of adapted bases in Remark 5. 6.3. Notation for standard parabolic subalgebras. Let G be a reductive group, let g be its Lie algebra with Cartan subalgebra t, corresponding root system Φ = Φ(g, t), and root space decomposition

g = t ⊕ α∈Φ g α .
Let ∆ ⊂ Φ be a basis and Φ + ⊂ Φ the corresponding set of positive roots. Given a subset I ⊂ ∆, we let Φ I = Φ ∩ I R . Then, [START_REF] Juteau | Parity Sheaves[END_REF] p

I := t ⊕ α∈ΦI ∪Φ + g α , l I := t ⊕ α∈ΦI g α , and 
n I := α∈Φ + \ΦI g α
are respectively a parabolic subalgebra of g, a Levi factor of it, and its nilradical. The parabolic subalgebra p I is called standard with respect to the basis ∆. Let P I ⊂ G be the corresponding parabolic subgroup. Any parabolic subalgebra of g (resp. subgroup of G) is conjugate to a standard one.

6.4. Proof of Propositions 7 and 8. We briefly review the matrix representation, the root systems, and the form of the parabolic subalgebras of the classical groups and Lie algebras. This description easily yields Propositions 7 (a) and 8 (a), which, in turn, imply Propositions 7 (b) and 8 (b)-(c). It will also be useful in Section 7.

6.4.1. Notation for matrices. By ε i (h) we denote the i-th coefficient of a diagonal matrix h. Let E i,j be the elementary matrix with 1 in the position (i, j) and 0's elsewhere. Given a matrix x = (x i,j ) ∈ M n (C), we denote by t x := (x j,i ) its transpose by the diagonal and by δ x := (x n-j+1,n-i+1 ) its symmetric by the antidiagonal. Let I n , J n ∈ M n (C) respectively denote the identity matrix and the matrix with 1's on the antidiagonal and 0's elsewhere. Clearly, J n t xJ n = δ x.

6.4.2. Type A case. Via the natural basis (v 1 , . . . , v n ) of V = C n , the group SL(V ) is isomorphic to SL n (C). The Lie algebra is sl n (C) := {x ∈ M n (C) : Tr x = 0}
, the space of (n × n)-sized matrices of trace zero. A Cartan subalgebra t is formed by the diagonal matrices of trace zero. Then, the root system Φ = Φ(sl n (C), t) consists of the roots ε iε j for 1 ≤ i = j ≤ n, with corresponding root vectors E i,j .

A basis of Φ is ∆ := {α 1 , . . . , α n-1 }, where

α i = ε i -ε i+1 . A subset I ⊂ ∆ is equivalent to the datum of a sequence of integers d = (d 0 = 0 < d 1 < . . . < d k = n) such that I = I d := {α i : i ∈ {1, . . . , n} \ {d 1 , . . . , d k }}.
Then, the standard parabolic subalgebra p d := p I is the space of blockwise upper triangular matrices of trace zero, whose blocks along the diagonal have respective sizes d pd p-1 (for p = 1, . . . , k). The standard parabolic group P d is the subgroup of SL n (C) with the same form.

Set V p = v i : 1 ≤ i ≤ d p C and F = (V 0 , . . . , V k ). Then, we have p d = p F and P d = P F , where p F and P F are the parabolic subalgebra and the parabolic subgroup corresponding to F in the sense of Proposition 7 (a). 6.4.3. Type C case. The space V = C 2n is endowed with a symplectic form ω. There exists a basis (v 1 , . . . , v 2n ) of V such that ω(v i , v 2n+1-i ) = 1 = -ω(v 2n+1-i,i ) for i ∈ {1, . . . , n} and ω(v i , v j ) = 0 for any other couple (i, j). Via the basis (v 1 , . . . , v 2n ), we identify Sp(V, ω) with the subgroup Sp 2n (C) := {g ∈ SL 2n (C) : t gK n g = K n }, where

K n = 0 J n -J n 0 .
In turn, sp(V, ω) identifies with the Lie algebra sp 2n (C) := {x ∈ sl 2n (C) :

t xK n + K n x = 0}. Thus, an element x ∈ sp 2n (C) is a matrix of the form x = A B C D with A, B, C, D ∈ M n (C), B = δ B, C = δ C, and D = -δ A.
A Cartan subalgebra t ⊂ sp 2n (C) is formed by the diagonal matrices of sp 2n (C). The root system Φ = Φ(sp 2n (C), t) consists of the following roots: ±(ε i ± ε j ) (for 1 ≤ i < j ≤ n) and ±2ε i (for 1 ≤ i ≤ n). A root vector corresponding to ε iε j is E i,j -E 2n-j+1,2n-i+1 . Root vectors corresponding to ε i + ε j and -(ε i + ε j ) are respectively E i,2n-j+1 + E j,2n-i+1 and its transpose. Root vectors corresponding to 2ε i and -2ε i are respectively E i,2n-i+1 and its transpose. A basis of Φ is ∆ = {α 1 , . . . , α n } where α i = ε iε i+1 for i ∈ {1, . . . , n -1} and α n = 2ε n .

Any subset I ⊂ ∆ can be written

I = I d := {α i : i ∈ {1, . . . , n} \ {d 1 , . . . , d k-1 }} for a sequence d = (d 0 = 0 < d 1 < . . . < d k-1 ≤ n}.
Then, the parabolic subalgebra p d := p I is the space of blockwise matrices of the form [START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF] x(A, B, C)

=           A 1,1 • • • A 1,k B 1,k • • • B 1,1 0 . . . . . . . . . . . . 0 0 A k,k B k,k • • • B k,1 0 0 C k,k -δ A k,k • • • -δ A 1,k 0 0 0 0 . . . . . . 0 0 0 0 0 -δ A 1,1          
where A p,q ∈ M dp-dp-1,dq-dq-1 (C) (using the convention 

d k = n), B ∈ M n (C) and C k,k ∈ M n-d k-1 (C) satisfy δ B = B and δ C k,k = C k,k .
V p = v i : 1 ≤ i ≤ d p C . Thus, F := (V 0 , . . . , V k-1 ) ∈ F ω d .
Then, we have p d = p F and P d = P F , where p F and P F correspond to F in the sense of Proposition 8 (a). 6.4.4. Types B and D cases. The space V = C m is endowed with a nondegenerate symmetric bilinear form ω. There is a basis (v 1 , . . . , v m ) of V such that ( 18)

ω(v i , v j ) = 1 if i + j = m + 1 and ω(v i , v j ) = 0 otherwise.
Through the basis (v 1 , . . . , v m ), the group SO(V, ω) identifies with the group of matrices SO m (C) := {g ∈ SL m (C) : t gJ m g = J m }. Its Lie algebra is the orthogonal Lie algebra so m (C) = {x ∈ sl m (C) : -δ x = x}, formed by matrices which are antisymmetric by the antidiagonal. A Cartan subalgebra t ⊂ so m (C) is formed by the diagonal matrices of so m (C). Let n = ⌊ m 2 ⌋. The root system Φ = Φ(so m (C), t) consists of the following roots: ±(ε i ± ε j ) (for 1 ≤ i < j ≤ n), and ±ε i (for 1 ≤ i ≤ n but only in the case where m is odd, i.e., m = 2n + 1). A root vector corresponding to ε iε j is E i,j -E m-j+1,m-i+1 . Root vectors corresponding to ε i + ε j and -(ε i + ε j ) are E i,m-j+1 -E j,m-i+1 and its transpose. Root vectors corresponding to ε i and -ε i (in the case m = 2n + 1) are E i,n+1 -E n+1,m-i+1 and its transpose. A basis of Φ is ∆ = {α 1 , . . . , α n } where α i = ε iε i+1 (for i ∈ {1, . . . , n -1}) and

α n = ε n (if m = 2n + 1) or α n = ε n-1 + ε n (if m = 2n).
A subset I ⊂ ∆ can be written

I = I d := {α i : i ∈ {1, . . . , n} \ {d 1 , . . . , d k-1 }} for a sequence d = (d 0 = 0 < d 1 < . . . < d k-1 ≤ n).
In the case where m is even (i.e., m = 2n), the group SO(V, ω) and the Lie algebra so(V, ω) can as well be identified to SO m (C) and so m (C) through the basis (v 1 , . . . , v n-1 , v n+1 , v n , v n+2 , . . . , v 2n ) (obtained by switching v n and v n+1 ). This change of basis induces an automorphism of so m (C), which exchanges the simple roots α n and α n-1 . Thereby, up to invoking this automorphism, we may assume without loss of generality that the set I d fulfills the property:

α n ∈ I d ⇒ α n-1 ∈ I d .
In other words, [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF] in the case where m is even, we may assume that d k-1 = n -1.

In the general case (with the assumption made in ( 19)), the parabolic subalgebra p d := p I is then the subalgebra of blockwise upper triangular matrices of the form [START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF] x

(B) =         B 1,2k-1 • • • B 1,k • • • B 1,1 0 . . . . . . . . . 0 0 B k,k • • • B k,1 0 . . . 0 . . . . . . 0 0 0 0 B 2k-1,1        
where the diagonal blocks B p,2k-p have sizes d pd p-1 for p ∈ {1, . . . , k -1} and where the full matrix is antisymmetric with respect to the antidiagonal, i.e., -δ B = B, in particular we have B 2k-p,p = -δ B p,2k-p for all p. In particular, the diagonal block B k,k has size m -2d k-1 . In the case where d k-1 = n and m is even (i.e., m = 2n), the blocks B p,k and B k,q are all empty. The parabolic group P d := P I is the subgroup of SO m (C) with the same frame. For p ∈ {0, . . . , k -1}, set 

V p = v i : 1 ≤ i ≤ d p C . Then, letting F = (V 0 , . . . , V k-1 ), we have F ∈ F ω d ,
k-1 = n. Let φ : V → V be the linear automorphism such that φ(v i ) = v i for all i / ∈ {n, n + 1}, φ(v n ) = v n+1
, and φ(v n+1 ) = v n . Set Ṽp = φ(V p ) and F = ( Ṽ0 , . . . , Ṽk-1 ). Then, we have F ∈ F ω d and it is readily seen that P d = P F . As mentioned in Remark 4, F and F are the only two flags such that P d = P F = P F .

Parabolic ideals and classical form of the variety P e,i

Let G be a reductive connected group over C. Apart from a parabolic subgroup P ⊂ G, its Lie algebra p ⊂ g, and a nilpotent element e ∈ g, the definition of the variety P e,i studied in this paper also involves a P -stable subspace i ⊂ p. The purpose of this section is to describe the form taken by such subspaces i. In particular, the following fact will be noticed (see Section 7.2).

Lemma 7. Given a linear subspace i ⊂ p, the following conditions are equivalent: (i) i is stable by the adjoint action of P (i.e., P • i ⊂ i); (ii) i is an ideal of p (i.e., [p, i] ⊂ i).

In the classical cases, we can propose a description of the ideals i based on the elementary form of the parabolic subgroups and subalgebras in terms of automorphisms and endomorphisms preserving a given partial flag (see . Relying on the interpretation of partial flag varieties as varieties of partial flags, we also deduce an elementary description of the corresponding variety P e,i . The first statement focuses on the type A case. (b) Moreover, any ideal is essentially of this form in the sense that: for any P -stable subspace i ⊂ p, we can find a sequence c such that the sets of nilpotent elements of i and i F c coincide. This implies P e,i = P e,i F c . For stating an analogous result in the other three classical cases, we need to introduce a piece of notation. Given F = (V 0 , . . . , V k-1 ) an isotropic partial flag of a space (V, ω) equipped with a nondegenerate bilinear form, its completion F = (V 0 , . . . , V 2k-1 ) is the sequence given by

Proposition 9. Let G = SL(V ) where V = C n . We consider a partial flag F = (V 0 = 0 ⊂ V 1 ⊂ . . . ⊂ V k = V ) ∈ F d ,
V p = V p for p ∈ {0, . . . , k -1} and V p = V ⊥ 2k-1-p for p ∈ {k, . . . , 2k -1}. If c = (c 0 ≤ . . . ≤ c 2k-1
) is a sequence of integers with 0 ≤ c p ≤ p for all p, then we let c * = (c * 0 ≤ . . . ≤ c * 2k-1 ) be the dual sequence given by c * p = |{q = 1, . . . , 2k -1 : c q ≥ 2k -p}|. It also satisfies 0 ≤ c * p ≤ p for all p. Proposition 10. Let G ⊂ SL(V ) be the subgroup of automorphisms which preserve a nondegenerate symmetric or skew-symmetric bilinear form ω and let g ⊂ sl(V ) be its Lie algebra. We consider an isotropic partial flag F = (V 0 , . . . , V k-1 ) ∈ F ω d , the parabolic subgroup P = P F ⊂ G, and the Lie algebra p = p F ⊂ g (see Proposition 8 (a)). Let e ∈ g be nilpotent (a nilpotent antiadjoint endomorphism of V ). (a) Given a sequence of integers c = (c 0 ≤ . . . ≤ c 2k-1 ) such that 0 ≤ c p ≤ p for all p, the space 

i F c := {x ∈ g : x(V p ) ⊂ V cp , ∀p = 0, . . . , 2k -1} is a P -stable
d k-1 = dim V 2 )
. (b) For every P -stable subspace i ⊂ p, there is a sequence c as above, with c * = c, such that one of the following situations occurs:

(i) ω is symplectic or d k-2 < dim V 2 -1
, and the sets of nilpotent elements of i and i F c coincide. Thus, P e,i = P e,i F c . (ii) ω is symmetric and

d k-2 = dim V 2 -1 (and so d k-1 = dim V
2 ), and the set of nilpotent elements of i coincides with the one of i 7.1. Preliminaries. In this section, we show some general properties of the ideals of parabolic subalgebras in the reductive case. 7.1.1. Notation. We use the notation of Section 6.3, in particular G is a connected reductive group of Lie algebra g. We denote by T ⊂ G a maximal torus, t ⊂ g the corresponding Cartan subalgebra, Φ = Φ(g, t) the root system. Let ∆ ⊂ Φ + ⊂ Φ be a system of positive roots and the corresponding basis.

Let P ⊂ G be a parabolic subgroup of Lie algebra p ⊂ g. Up to conjugation, we may assume that P and p are standard, i.e., P = P I and p = p I for some subset I ⊂ ∆. We have the Levi decomposition p I = l I ⊕ n I (see ( 16)). We abbreviate l = l I . The Levi subalgebra l decomposes as

l = z ⊕ [l, l] = z ⊕ l 1 ⊕ . . . ⊕ l k
where z denotes the center of l and l i ⊂ l (for i ∈ {1, . . . , k}) are the simple ideals of the semisimple Lie algebra [l, l]. Set t i = t ∩ l i . We have

l i = t i ⊕ α∈ΦI i g α
where I = I 1 ⊔ . . . ⊔ I k is a partition into (nonempty) pairwise orthogonal maximal subsets.

An ideal i ⊂ p is in particular stable by the adjoint action of the Cartan subalgebra t. We conclude that i admits a decomposition into weight spaces:

(21) i = t ∩ i ⊕ α∈Φ(i)
g α where we write Φ(i) = {α ∈ Φ : g α ⊂ i}.

7.1.2. Elementary ideals. Given α ∈ Φ + ∪ Φ I , we denote by p(g α ) ⊂ p the smallest ideal containing g α . Our aim is to describe p(g α ). We distinguish two cases depending on whether α ∈ Φ I or α ∈ Φ + \ Φ I . First, assume that α ∈ Φ I . So, there is i ∈ {1, . . . , k} such that α ∈ Φ Ii ; equivalently, g α ⊂ l i . The simplicity of l i imposes l i ⊂ p(g α ). Thus p(g α ) is also the smallest ideal of p that contains l i . Set

I ⊥ i = {β ∈ ∆ : (β, γ) = 0 for all γ ∈ I i } and let ni = β∈Φ + \Φ I i ∪I ⊥ i g β ,
which is the nilradical of the standard parabolic subalgebra pi := p

Ii∪I ⊥ i . Lemma 8. Assume α ∈ Φ Ii . Then, p(g α ) = l i ⊕ ni .
Proof. Note that p ⊂ pi and ni ⊂ n I . The space l i ⊕ ni is an ideal in pi hence it is a fortiori an ideal in p. Thereby, p(g α ) ⊂ l i ⊕ ni . It remains to show the inverse inclusion. The inclusion l i ⊂ p(g α ) is noticed above. Now, take

β ∈ Φ + \ Φ Ii∪I ⊥ i . Since β ∈ Φ + \ Φ I ⊥ i , we can find γ ∈ I i such that (β, γ) < 0. This implies that β + γ ∈ Φ + . Since -γ, β + γ, β all belong to Φ, we conclude that g β = [g β+γ , g -γ ] ⊂ [p, l i ] ⊂ p(g α ). Therefore, ni ⊂ p(g α ).
The proof is complete.

Second, assume that α ∈ Φ + \ Φ I ; equivalently, g α ⊂ n I , and so p(g α ) ⊂ n I . We describe p(g α ) in terms of a partial order p on roots: write α p β if there exist γ 1 , . . . , γ m ∈ Φ + ∪ Φ I (m ≥ 0) such that [START_REF] Precup | Affine pavings of Hessenberg varieties for semisimple groups[END_REF] α + p i=1 γ i ∈ Φ for all p ∈ {1, . . . , m} and β = α + γ 1 + . . . + γ m .

Set Φ p (α) = {β ∈ Φ : α p β}.

Lemma 9. Assume that α ∈ Φ + \ Φ I . Then,

p(g α ) = β∈Φp(α) g β .
Proof. Let β ∈ Φ p (α) and take γ 1 , . . . , γ m ∈ Φ + ∪ Φ I satisfying [START_REF] Precup | Affine pavings of Hessenberg varieties for semisimple groups[END_REF]. The two relations in [START_REF] Precup | Affine pavings of Hessenberg varieties for semisimple groups[END_REF] imply

g β = [g γm , [g γm-1 , [. . . , [g γ1 , g α ] . . .]]] ⊂ [p, [p, [. . . , [p, g α ] . . .]]] ⊂ p(g α ).
This establishes the inclusion V := β∈Φp(α) g β ⊂ p(g α ). Note that this inclusion yields in particular g β ⊂ n I for all β ∈ Φ p (α), hence

Φ p (α) ⊂ Φ + \ Φ I . (23) 
In order to show the desired equality, it remains to check that the space V is p-stable. Let β ∈ Φ p (α) and γ ∈ Φ + ∪ Φ I . Since β ∈ Φ + \ Φ I (by ( 23)), we have β + γ = 0. Then, either β + γ is not a root, in which case [g γ , g β ] = 0, or β + γ is a root, in which case β + γ ∈ Φ p (α) (by definition of the order p ) and so [g γ ,

g β ] = g β+γ ⊂ V . In both cases, we conclude that [g γ , V ] ⊂ V for all γ ∈ Φ + ∪ Φ I , so [p, V ] ⊂ V .
The proof is now complete.

Remark 7. If i ⊂ p is an ideal, then the proof of Lemma 9 shows that the set Φ(i) is stable by the order p in the sense that, if α p β and α ∈ Φ(i), then β ∈ Φ(i).

In other words, Φ p (α) ⊂ Φ(i) whenever α ∈ Φ(i).

7.1.3. General ideals. Given a subset J ⊂ Φ + ∪Φ I , the space α∈J p(g α ) is an ideal of p that we can describe thanks to Lemmas 8-9. The next result shows that any ideal of p is of this form, up to a subspace of the center z of the Levi subalgebra l.

Lemma 10. (a) Let i ⊂ p be an ideal. Then

i = z ∩ i ⊕ α∈Φ(i) p(g α ),
where as before Φ(i) = {α ∈ Φ : g α ⊂ i} and z denotes the center of l.

(b) Let i, i ′ ⊂ p be ideals such that i + z = i ′ + z. Let x ∈ g be nilpotent. Then, x ∈ i if and only if x ∈ i ′ . Proof. (a) The inclusion z ∩ i ⊕ α∈Φ(i) p(g α ) ⊂ i is immediate.
For showing the inverse inclusion, according to [START_REF] Panyushev | Rationality of singularities and the Gorenstein property of nilpotent orbits[END_REF], it suffices to check that t ∩ i ⊂ z ∩ i ⊕ α∈Φ(i) p(g α ). So, let h ∈ t ∩ i, that we can write h = z + h 1 + . . . + h k , where z ∈ z and h i ∈ t i for all i ∈ {1, . . . , k}.

We claim that h 1 , . . . , h k ∈ α∈Φ(i) p(g α ). For h i = 0, the center of l i being trivial, we find

α ∈ Φ Ii such that [h i , g α ] = 0. So g α = [h i , g α ] = [h, g α ] ⊂ [h, p] ⊂ i.
Thus, α ∈ Φ(i). The fact that p(g α ) ∩ l i is a nontrivial ideal of l i and the simplicity of l i force l i ⊂ p(g α ), hence h i ∈ p(g α ). This establishes our claim.

From the claim, we get h 1 , . . . ,

h k ∈ i, whence z = h -h 1 -. . . -h k ∈ i. Thus h ∈ z ∩ i ⊕ α∈Φ(i) p(g α ). The proof of (a) is complete. (b)
The assumption, together with part (a) and Lemmas 8 and 9, implies that ([l, l] ⊕ n I ) ∩ i = ([l, l] ⊕ n I ) ∩ i ′ =: j. Let x ∈ g be nilpotent and assume that x ∈ i. In particular, x ∈ p. Let L ⊂ P be the Levi factor of Lie algebra l. Since all the Borel subalgebras of p are conjugate under the adjoint action of L, we can find

ℓ ∈ L such that ℓ • x ∈ α∈Φ + g α ⊂ [l, l] ⊕ n I . The fact that [l, l] and n I are both L-stable yields x ∈ [l, l] ⊕ n I . Whence x ∈ j ⊂ i ′ . This establishes (b). 7.2. Proof of Lemma 7. The implication (i) ⇒ (ii) is obtained by differentiation.
Let us show the implication (ii) ⇒ (i). So we assume that i is an ideal of p.

We use the notation of Section 7.1.1. For each root β ∈ Φ, there is a unique closed unipotent subgroup U β ⊂ G such that Lie(U β ) = g β . The torus T and the subgroups {U β } β∈∆∪(-I) generate P . In order to check that i is P -stable, it suffices to check that i is stable by U β whenever β ∈ ∆ ∪ (-I). To do this, in view of ( 21), we need to check that ( 24)

U β • (t ∩ i) ⊂ i and U β • g α ⊂ i for all α ∈ Φ(i). Let h ∈ t ∩ i. If β(h) = 0, then we have u • h = h for all u ∈ U β . If β(h) = 0, then we get on one hand g β = [g β , h] ⊂ [p, i] ⊂ i and we have on the other hand U β • h ⊂ h + g β (see [32, §3.3]), so U β • h ⊂ i. In both cases, we obtain U β • h ⊂ i.
This shows the first part of [START_REF] Slodowy | Four Lectures on Simple Groups and Singularities[END_REF].

Let α ∈ Φ(i). In particular α ∈ Φ + or α ∈ Φ I . We distinguish two cases depending on whether α + β = 0 or α + β = 0. The case α + β = 0 may occur only if α ∈ Φ I , so α ∈ Φ Ii for some i ∈ {1, . . . , k}. In this case, we know from Lemmas 8 and 10 that g α ⊂ l i ⊂ i, whereas the fact that β = -α ∈ Φ Ii ensures that l i is U β -stable. Whence, U β • g α ⊂ i in this case. Next, assume that α + β = 0. Then, there is an integer k ≥ 1 such that α + iβ is a root for all i ∈ {0, . . . , k} and α + iβ is not a root for i > k (see [14, §9.4]). Moreover we have (see [32, §3.3])

U β • g α ⊂ k i=0 g α+iβ = g α + [g β , g α ] + . . . + [g β , [. . . , [g β k terms , g α ] . . .]].
Since g β ⊂ p and g α ⊂ i, we conclude that U β • g α ⊂ i in this case, too. This shows the second part of [START_REF] Slodowy | Four Lectures on Simple Groups and Singularities[END_REF]. The proof of Lemma 7 is now complete. 7.3. Proof of Proposition 9 (b). We first notice that the ideals i F c from Proposition 9 (a) satisfy the following rule. Given two sequences c = (c 0 ≤ . . . ≤ c k ) and

c ′ = (c ′ 0 ≤ . . . ≤ c ′ k ) such that c p , c ′ p ∈ {0, 1, . . . , p} for all p, we denote by max{c, c ′ } the sequence (max{c 0 , c ′ 0 } ≤ . . . ≤ max{c k , c ′ k }). It is straightforward to check that (25) i F c + i F c ′ = i F max{c,c ′ } .
In view of relation [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF] and Lemma 10, in order to prove Proposition 9 (b), it suffices to show that every elementary ideal p(g α ) coincides with i F c for some sequence c.

Here, as in Section 6.4.2, we identify SL(V ) with the group SL n (C), its Lie algebra with the space sl n (C) of matrices of trace zero, and p F with the subspace of blockwise upper triangular matrices with blocks of sizes d pd p-1 along the diagonal. This parabolic subalgebra corresponds to the set of simple roots I d = {α i : i ∈ {1, . . . , n-1}\{d 1 , . . . , d k }}. Let α = ε i -ε j , with i, j ∈ {1, . . . , n}, i = j, so that the root space g α is generated by the elementary matrix E i,j . For ℓ ∈ {1, . . . , n}, let p(ℓ) ∈ {1, . . . , k} be the unique number such that d p(ℓ)-1 < ℓ ≤ d p(ℓ) . Recall that α ∈ Φ + ∪ Φ I d . We distinguish two cases.

First, assume that α ∈ Φ I d . Equivalently, we have p(i) = p(j) =: p. Then, it follows from Lemma 8 that we have p(g α ) = i F c where c = (c 0 , . . . , c k ) is given by c q = 0 for q < p and c q = p for q ≥ p.

Second, assume that α ∈ Φ + \ Φ I d . Equivalently, p(i) < p(j). It is easy to see that the set Φ p (α) consists of the roots ε i ′ε j ′ with 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) ≥ p(j). Therefore, from Lemma 9, we see that p(g α ) = i F c where the sequence c = (c 0 , . . . , c k ) is given by c q = 0 if q < p(j) and c q = p(i) if q ≥ p(j). The proof of Proposition 9 (b) is complete. 

′ = (c ′ 0 ≤ . . . ≤ c ′ 2k-1
) such that c p , c ′ p ∈ {0, 1, . . . , p} for all p and assume that c = c * and c ′ = c ′ * . As in Section 7.3, we let max{c, c ′ } = (max{c p , c ′ p }) 2k-1 p=0 . Then, it is easy to see that max{c, c ′ } = max{c, c ′ } * . We claim that [START_REF] Spaltenstein | The fixed point set of a unipotent transformation on the flag manifold[END_REF] i

F c + i F c ′ = i F max{c,c ′ } .
Note that the completion (V 0 , . . . , V 2k-1 ) of the isotropic partial flag F and the sequence c also give rise to a parabolic subalgebra of sl(V ) denoted by q F := {x ∈ sl(V ) : x(V p ) ⊂ V p for all p = 0, . . . , 2k -1} and to an ideal j F c := {x ∈ sl(V ) : x(V p ) ⊂ V cp for all p} of q F . Given x ∈ sl(V ), let x * be its adjoint with respect to the form ω. Then, the property that c = c * implies that j F c is stable by the map x → x * . This property (also applied to c ′ ), combined with [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF] and the equalities i F c = j F c ∩ g and i F c ′ = j F c ′ ∩ g, easily yields relation [START_REF] Spaltenstein | The fixed point set of a unipotent transformation on the flag manifold[END_REF]. In view of [START_REF] Spaltenstein | The fixed point set of a unipotent transformation on the flag manifold[END_REF] and Lemma 10, the proof of Proposition 10 (b) can be carried out through a careful analysis of the elementary ideals p(g α ). The proof is done in the following subsections. 7.4.1. Type C case. As in Section 6.4.3, we assume that the bilinear form ω is symplectic and we identify the Lie algebra g = sp(V, ω) with sp 2n (C). The parabolic subalgebra p = p F coincides with the blockwise upper triangular subalgebra p d described in relation [START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF] and corresponding to the sequence d = (d 0 = 0 < . . . < d k-1 ≤ n), that is, to the subset of simple roots I d = {α i : i ∈ {1, . . . , n} \ {d 1 , . . . , d k-1 }}.

Set by convention d k = n. Given a number i ∈ {1, . . . , n}, we denote by p(i) ∈ {1, . . . , k} the unique number such that d p(i)-1 < i ≤ d p(i) . Then, the set Φ I d consists of the elements ±(ε iε j ) for 1 ≤ i < j ≤ n such that p(i) = p(j), and

±(ε i + ε j ) for 1 ≤ i ≤ j ≤ n such that p(i) = p(j) = k.
We focus on the elementary ideal p(g α ) for α ∈ Φ + ∪ Φ I d . We distinguish two cases.

First, assume that α ∈ Φ I d . By Lemma 8, we may as well assume that α ∈ I d , thus α = α i for some i / ∈ {d 1 , . . . , d k-1 }. If i < n, then the root space g α has components in the blocks A p(i),p(i) and -δ A p(i),p(i) in the blockwise upper-triangular matrix representation of p (see [START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF]), whereas if i = n, then g α is comprised in the block B k,k . Applying Lemma 8, we deduce that p(g α ) = i F c where c = (c 0 , . . . , c 2k-1 ) is

given by c q = 0 if q < p(i), c q = p(i) if p(i) ≤ q < 2kp(i), and c q = 2kp(i) if 2kp(i) ≤ q ≤ 2k -1.

Next, assume that α ∈ Φ + \ Φ I d . We distinguish two subcases. First, suppose that α = ε iε j for 1 ≤ i < j ≤ n such that p(i) < p(j); equivalently the root space g α has components in the blocks A p(i),p(j) and -δ A p(i),p(j) of the representation of p given in [START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF]. In this situation, the set Φ p (α) consists of the following elements: ε i ′ -ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) < p(j) ≤ p(j ′ ); and ε i ′ + ε j ′ for 1 ≤ i ′ ≤ j ′ ≤ n such that p(i ′ ) ≤ p(i). We conclude (in the light of ( 17)) that we have p(g α ) = i F c where c = (c 0 , . . . , c 2k-1 ) is such that c q = 0 if 0 ≤ q < p(j), c q = p(i) if p(j) ≤ q < 2kp(i), and c q = 2kp(j) if 2kp(i) ≤ q ≤ 2k -1.

Second, suppose that α = ε i + ε j for 1 ≤ i ≤ j ≤ n such that p(i) < k; equivalently g α has components in the blocks B p(i),p(j) and B p(j),p(i) of the representation of p given in [START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF]. Here, the set Φ p (α) consists of the elements: ε i ′ + ε j ′ for 1 ≤ i ′ ≤ j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) ≤ p(j); and ε i ′ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) = p(j) = k (only in the case where p(j) = k). Thus, by [START_REF] Kazhdan | Proof of the Deligne-Langlands conjecture for Hecke algebras[END_REF], we see that p(g α ) = i F c for c = (c 0 , . . . , c 2k-1 ) such that c q = 0 if 0 ≤ q < 2kp(j), c q = p(i) if 2kp(j) ≤ q < 2kp(i), and c q = p(j) if 2kp(i) ≤ q ≤ 2k -1.

In each case, we obtain that p(g α ) is of the form i F c for some sequence c with c = c * . By [START_REF] Spaltenstein | The fixed point set of a unipotent transformation on the flag manifold[END_REF] and Lemma 10, this yields Proposition 10 (b) in the case where ω is symplectic. 7.4.2. Types B and D cases. In this section, we assume that the bilinear form ω is symmetric. As in Section 6.4.4, the Lie algebra so(V, ω) is identified with the orthogonal Lie algebra so m (C) and the parabolic subalgebra p = p F is the standard parabolic subalgebra corresponding to the set of simple roots I d = {α i : i ∈ {1, . . . , n} \ {d 1 , . . . , d k-1 }}, for a sequence d = (d 0 = 0 < d 1 < . . . < d k-1 ≤ n), with n = ⌊ m 2 ⌋. Moreover, in the case where m is even, we may assume that d k-1 = n -1 (see [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF]), so that p coincides with the subalgebra p d of blockwise upper triangular matrices described in [START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF].

Set by convention d k = n. Given i ∈ {1, . . . , n}, we let p(i) ∈ {1, . . . , k} be the unique number such that d p(i)-1 < i ≤ d p(i) . Then, the set Φ I d consists of the roots: ±(ε iε j ) for 1 ≤ i < j ≤ n such that p(i) = p(j); ±(ε i + ε j ) for 1 ≤ i < j ≤ n such that p(i) = p(j) = k; and, only in the case where m is odd, i.e., m = 2n + 1:

±ε i for 1 ≤ i ≤ n such that p(i) = k.
We consider the elementary ideal p(g α ) for α ∈ Φ + ∪ Φ I d . We distinguish two cases.

First, assume that α ∈ Φ I d . Thus, according to Lemma 8, we may also assume that α ∈ I d , so α = α i for some i ∈ {1, . . . , n} \ {d 1 , . . . , d k-1 }. Then, each element in the root space g α has components in the blocks B p(i),2k-p(i) and B 2k-p(i),p(i) of the blockwise decomposition of p given in [START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF]. Applying Lemma 8, we obtain that p(g α ) = i F c where the sequence c = (c 0 , . . . , c 2k-1 ) is defined by letting c q = 0 if q < p(i), c q = p(i) if p(i) ≤ q < 2k-p(i), and c q = 2k-p(i) if 2k-p(i) ≤ q ≤ 2k-1.

Next, assume that α ∈ Φ + \ Φ I d . There are three subcases depending on the form of the root α.

To start with, suppose that α = ε i + ε j for 1 ≤ i < j ≤ n such that p(i) < k. Then, the root space g α has components in the blocks B p(i),p(j) and B p(j),p(i) of the decomposition [START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF]. The set Φ p (α) consists of the roots: ε i ′ + ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) ≤ p(j); ε i ′ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) = p(j) = k (only in the case where p(j) = k); and ε i ′ for 1 ≤ i ′ ≤ n such that p(i ′ ) ≤ p(i) (only in the case where p(j) = k and m = 2n + 1). We easily obtain p(g α ) = i F c , where the sequence c = (c 0 , . . . , c 2k-1 ) is given by c q = 0 for 1 ≤ q < 2kp(j), c q = p(i) for 2kp(j) ≤ q < 2kp(i), and c q = p(j) for 2kp(i) ≤ q ≤ 2k -1.

Second, suppose that α = ε i for 1 ≤ i ≤ n such that p(i) < k (this case occurs only if m = 2n + 1). So, the root space g α has components in the blocks B p(i),k and B k,p(i) of the decomposition [START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF]. In this situation, the set Φ p (α) comprises the following roots:

ε i ′ for 1 ≤ i ′ ≤ n such that p(i ′ ) ≤ p(i); ε i ′ + ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i); ε i ′ -ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) = k.
Then, we can see that p(g α ) = i F c for c = (c 0 , . . . , c 2k-1 ) given by c q = 0 if 1 ≤ q < k, c q = p(i) if k ≤ q < 2kp(i), and

c q = k if 2k -p(i) ≤ q ≤ 2k -1.
Third, suppose that α = ε iε j for 1 ≤ i < j ≤ n such that p(i) < p(j). Thus, the root space g α has components in the blocks B p(i),2k-p(j) and B 2k-p(j),p(i) of the decomposition [START_REF] Nakajima | Homology of moduli spaces of instantons on ALE spaces I[END_REF]. The study of p(g α ) in this case requires more care, in particular we need to distinguish the two situations (i)

d k-2 < m 2 -1; equivalently, m = 2n + 1 or (m = 2n and d k-2 < n -1); (ii) d k-2 = m 2 -1; equivalently, m = 2n and d k-2 = n -1. If m = 2n, then (knowing that we assume d k-1 = n -1 in this case) condition (i) is equivalent to saying that n -1 / ∈ {d 1 , . . . , d k-1 }, thus α n-1 ∈ I d , whereas condition (ii) is equivalent to saying that α n-1 / ∈ I d .
Taking this into account, one can check that the set Φ p (α) consists of the following roots: ε i ′ε j ′ for 1 ≤ i ′ < j ′ ≤ n such that p(i ′ ) ≤ p(i) and p(j ′ ) ≥ p(j); ε i ′ + ε j ′ for 1 ≤ i ′ < j ′ < n such that p(i ′ ) ≤ p(i); only if (i) holds or j < n: ε i ′ + ε n for 1 ≤ i ′ < n such that p(i ′ ) ≤ p(i); and only in the case where m = 2n + 1: ε i ′ for 1 ≤ i ′ ≤ n such that p(i ′ ) ≤ p(i). Let c = (c 0 , . . . , c 2k-1 ) be given by c q = 0 for 0 ≤ q < p(j), c q = p(i) for p(j) ≤ q < 2kp(i), and c q = 2kp(j) for 2kp(i) ≤ q ≤ 2k -1. If (i) holds or j < n, then we obtain p(g α ) = i F c . If (ii) holds and j = n, then, using the above description of the set Φ p (α) for α := ε i + ε n , we can see that p(g α ) + p(g α) = i F c . Finally, we have shown: for every root α ∈ Φ + ∪ Φ I d , there is a sequence c with c = c * such that [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF] p Lemma 10,[START_REF] Spaltenstein | The fixed point set of a unipotent transformation on the flag manifold[END_REF], and [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF]. It remains to prove Proposition 10 (b) (ii). So, we assume that m = 2n and d k-2 = n -1.

(g α ) = i F c if d k-2 < m 2 -1 or α / ∈ {ε i -ε n } n-1 i=1 , p(g α ) + p(g α) = i F c if d k-2 = m 2 -1 and α = ε i -ε n , for α := ε i + ε n . Proposition 10 (b) (i) follows by combining
As before, given the ideal i ⊂ p, we write Φ(i) = {α ∈ Φ : g α ⊂ i}. Assume for the moment that the following condition holds: [START_REF] Spaltenstein | On unipotent and nilpotent elements of groups of type E 6[END_REF] i 0 := max{i :

ε i -ε n ∈ Φ(i)} ≤ j 0 := max{i : ε i + ε n ∈ Φ(i)}.
Under this condition, we can see that, for every i ∈ {1, . . . , n -1}, we have

(29) ε i -ε n ∈ Φ(i) ⇒ ε i + ε n ∈ Φ(i).
Indeed, if ε iε n ∈ Φ(i), then i ≤ i 0 ≤ j 0 (by [START_REF] Spaltenstein | On unipotent and nilpotent elements of groups of type E 6[END_REF]). This implies that ε Remark 7), which establishes [START_REF] Springer | The unipotent variety of a semisimple group[END_REF]. From Lemma 10, ( 26), [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF], and (29), we conclude that there is a sequence c with c = c * such that i and i F c have the same nilpotent elements. Whence Proposition 10 (b) (ii) in this case.

i + ε n ∈ Φ p (ε j0 + ε n ), thus ε i + ε n ∈ Φ(i) (see
Finally, it remains to treat the case where (28) does not hold. As in Section 6.4.4, we can find a basis (v 1 , . . . , v 2n ) of the space V satisfying (18), and which is adapted to the flag F in the sense that F = (

v i : 1 ≤ i ≤ d p C ) k-1 p=0 . The automorphism φ : V → V given by φ(v n ) = v n+1 , φ(v n+1 ) = v n , and φ(v i ) = v i for i / ∈ {n, n + 1},
induces involutive automorphisms ξ : SO(V, ω) → SO(V, ω), g → φgφ and dξ : so(V, ω) → so(V, ω).

We have F = φ(F ) (with F as in the statement of Proposition 10 (b) (ii) or as described in Remark 5), so that ξ preserves the parabolic subgroup P = P F = P F and dξ stabilizes the Lie algebra p = p F = p F . Thus ĩ := dξ(i) is again an ideal of p. On the other hand, the automorphism ξ exchanges the simple roots α n and α n+1 , hence it exchanges the roots ε iε n and ε i + ε n . It follows that the ideal ĩ satisfies condition (28) (because (28) is not valid for i), thereby we can find a sequence c = c * such that ĩ and i F c have the same nilpotent elements. Hence, the sets of nilpotent elements of the ideals i = dξ( ĩ) and i F c = dξ(i F c ) coincide. The proof of Proposition 10 (b) is now complete.

Calculations for classical groups

By Proposition 6, the proof of Theorem 1 will be complete once we show:

Proposition 11. Let G be one of the groups SL(V ) (for V = C n , n ≥ 2), Sp(V, ω) (for V = C 2n , n ≥ 2, and ω : V × V → C a symplectic form), or SO(V, ω) (for V = C m ,
m ≥ 3, and ω : V × V → C a nondegenerate symmetric bilinear form). Let e ∈ g = Lie(G) be a distinguished nilpotent element. Then, property P(G, e) is satisfied.

The remainder of this section is devoted to the proof of Proposition 11. First, we deal with the case where G = SL(V ). From [8, Theorem 8.2.14 (i)], we know that any distinguished nilpotent element e ∈ sl(V ) is regular. Then, by Remark 1, the variety P e,i is either empty or a single point. Therefore, property P(G, e) trivially holds in this case.

The study of the cases where G = Sp(V, ω) or G = SO(V, ω) is much more involved. We deal with these two cases simultaneously. In the remainder of this section, we assume that the space V = C m (m ≥ 1) is equipped with a nondegenerate bilinear form ω, which can be symmetric or antisymmetric. Let G ⊂ SL(V ) be the subgroup of automorphisms that preserve ω and let g ⊂ End(V ) be its Lie algebra, that is, the subspace of endomorphisms that are antiadjoint with respect to ω. A nilpotent element e ∈ g is an antiadjoint nilpotent endomorphism. The proof occupies several subsections. 8.1. Review on nilpotent elements in types B, C, D. Let h, f ∈ g be such that {e, h, f } form a standard triple. Let s be the Lie subalgebra generated by e, h, f . Then, the space V decomposes as direct sums

V = i∈Z, i≥0 M (i) = j∈Z E j 8.5.2.
The variety Xj . We apply the construction of Section 8.4 to the choice of ℓ made in the Claim of Section 8.5.1 (note that we have µ ℓ ≥ 2 as required in Section 8.4). As in Section 8.4, we deal with the space Ṽ = v q i : (q, i) = (ℓ, ±(µ ℓ -1) C , the nilpotent element ẽ = πeι (where ι : Ṽ → V and π : V → Ṽ are respectively the inclusion and the orthogonal projection), and the torus S = { λ(t) : t ∈ C * } where λ(t) = πλ(t)ι = λ(t)| Ṽ . For later use, we note that the definition of ẽ guarantees that [START_REF] Tymoczko | Linear conditions imposed on flag varieties[END_REF] Im(e| ,d,c ) S admits an affine paving.

Ṽ -ẽ) ⊂ v ℓ µ ℓ -1 C . Let d = ( d0 = 0 ≤ d1 < . . . <
Remark 8. Hereafter we make a slight abuse of notation since in Section 8.4 the variety F ω ẽ, d,c is considered for an increasing sequence d whereas, here, the sequence d may satisfy d0 = d1 . However, this is harmless since the definition of F ω ẽ, d,c still makes sense and the proof of Lemma 12 remains valid. Actually, if d1 = d0 , then we have F ω ẽ, d,c = F ω ẽ,d ′ ,c ′ where d ′ := ( d0 = 0, d2 , d3 , . . . , dk-1 ) and c ′ := (c 0 , c 2 -1, c 3 -1, . . . , c 2k-2 -1), so that we retrieve the situation of an increasing sequence d ′ . A similar abuse of notation will be made in Section 8.6 below.

The set

Zj := {(W 0 , . . . , W k-1 ) ∈ ( F ω d ) S : E j ′ ∩ W 1 = 0, ∀j ′ > j}
is clearly stable by the subgroup L := Z G( S). Hence, [START_REF] Xi | A partition of the Springer fibers B N for type A n-1 , B 2 , G 2 and some applications[END_REF] and Lemma 11 imply that (36) the subvariety Xj := Zj ∩ ( F ω ẽ, d,c ) S admits an affine paving.

8.5.3. An isomorphism between X j and Xj . In view of (33), we have X j = Z ′ j ∩ (F ω e,d,c ) S where we denote

Z ′ j = {(V 0 , . . . , V k-1 ) ∈ Z j : v ℓ µ ℓ -1 ∈ V 1 }. The maps Φ : Z ′ j → Zj , F → (V 0 ∩ Ṽ , . . . , V k-1 ∩ Ṽ ) and Ψ : Zj → Z ′ j , (W 0 , . . . , W k-1 ) → (W 0 , v ℓ µ ℓ -1 C + W 1 , . . . , v ℓ µ ℓ -1 C + W k-1
) are mutually inverse isomorphisms of algebraic varieties. We claim that (37) Φ(X j ) = Xj (i.e., Φ restricts to an isomorphism X j ∼ → Xj ).

To see this, take F = (V 0 , . . . , V k-1 ) ∈ Z ′ j and Φ(F ) = (W 0 , . . . , W k-1 ) ∈ Zj . Claim 1: If F belongs to F ω e,d,c , then Φ(F ) belongs to F ω ẽ, d,c .

Proof of Claim 1. As in Proposition 10, we consider the completions of F and Φ(F ) defined by

(V 0 , . . . , V 2k-1 ) := (V 0 , V 1 , . . . , V k-1 , V ⊥ k-1 , . . . , V ⊥ 1 , V ⊥ 0 ) and (W 0 , . . . , W 2k-1 ) := (W 0 , W 1 , . . . , W k-1 , W ⊥ k-1 , . . . , W ⊥ 1 , W ⊥ 0 )
, where the symbols ⊥ and ⊥ stand for the orthogonals in the spaces (V, ω) and ( Ṽ , ω), respectively. Note that (38) 

W p = V p ∩ Ṽ = π(V p ) for all p ∈ {0, . . . , 2k -1} and (39) V 0 = 0, V 2k-1 = V, and V p = W p ⊕ v ℓ µ ℓ -
(W p ) = π(e(V p ∩ Ṽ )) ⊂ π(V cp ) = W cp for all p ∈ {1, . . . , 2k -1}, whence Φ(F ) ∈ F ω ẽ, d,c . Claim 2: If Φ(F ) belongs to F ω ẽ, d,c , then F belongs to F ω e,d,c .
Proof of Claim 2. The assumption on Φ(F ) implies that (41) ẽ(W p ) ⊂ W cp for all p ∈ {1, . . . , 2k -1}.

On the one hand, for p ∈ {1, . . . , 2k -2}, using (39), the fact that v ℓ µ ℓ -1 ∈ ker e, (34), (41), and the fact that c p ≥ c 1 = 1, we obtain

e(V p ) = e(W p + v ℓ µ ℓ -1 C ) ⊂ ẽ(W p ) + v ℓ µ ℓ -1 C ⊂ W cp + v ℓ µ ℓ -1 C = V cp .
On the other hand, by [START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF], we get in particular |{q = 1, . . . , 2k -1 : c q ≥ 2k -1}| = c 1 = 1, which forces c 2k-1 = 2k -1 (because the sequence c is nondecreasing). Therefore, the condition e(V 2k-1 ) ⊂ V c 2k-1 (= V ) is trivially satisfied. Altogether, we have checked that e(V p ) ⊂ V cp for all p ∈ {1, . . . , 2k -1}, whence F ∈ F ω e,d,c .

Relation (37) now follows from Claims 1-2 and the equalities X j = Z ′ j ∩ F ω e,d,c

and Xj = Zj ∩ F ω ẽ, d,c . 8.5.4. Conclusion. From (36)-(37), we obtain that the variety X j admits an affine paving for every j ∈ Z. In view of [START_REF] Steinberg | Conjugacy classes in algebraic groups[END_REF], this guarantees that (F ω e,d,c ) S admits an affine paving, which completes the proof of Proposition 13 in the case where c 1 = 1. 8.6. Proof of Proposition 13 in the case where c 1 = 0. The proof in this case is more involved. 8.6.1. The subvarieties X j ⊂ (F ω e,d,c ) S . For every sequence j = (j 1 , . . . , j k-1 ) ∈ Z k-1 , we define Z j = (V 0 , . . . , V k-1 ) ∈ (F ω d ) S : V p ∩ E jp = V p-1 ∩ E jp and V p ∩ E j ′ = V p-1 ∩ E j ′ , ∀j ′ < j p , ∀p ∈ {1, . . . , k -1} .

(Note a difference with the definition of Z j in Section 8.5.1, where the second condition is required for j ′ > j.) Thus Z j is an L-stable subvariety of (F ω d ) S , which is empty for all but finitely many sequences j, and we have (42) X j admits an affine paving for all j ⇒ (F ω e,d,c ) S admits an affine paving. Hereafter, we fix a sequence j ∈ Z k-1 such that the variety X j is nonempty. We construct a sequence p = (p 1 , . . . , p s ) (depending on j) by the following algorithm:

• Set p 1 = 1;

• Assume that we have constructed p 1 < p 2 < . . . < p t ≤ k -1.

-If there is p ∈ {p t + 1, . . . , k -1} such that j p < j pt and c p < p t , then denote by p t+1 the smallest p with these properties; -Otherwise, set s = t, p = (p 1 , . . . , p t ), and stop the algorithm. Finally we get a sequence of integers 1 = p 1 < p 2 < . . . < p s ≤ k -1.

We describe some properties of the sequences j, p and the subvariety X j .

Claim 1: For all t ∈ {1, . . . , s}, we have j pt < j p for all p ∈ {1, 2, . . . , p t -1}.

Proof of Claim 1. We argue by induction on t ∈ {1, . . . , s} with immediate initialization for t = 1. Assume that Claim 1 is valid until the rank t ∈ {1, . . . , s -1}. From the definition of p t+1 , using also that the sequence c is nondecreasing, we have c p ≤ c pt+1 < p t whenever p t ≤ p < p t+1 . Then, the minimality of p t+1 (in the definition of the sequence p) reads as j p ≥ j pt > j pt+1 whenever p t ≤ p < p t+1 .

By induction hypothesis, we also have j p > j pt > j pt+1 for 1 ≤ p < p t . Hence Claim 1 is valid until the rank t + 1.

Claim 2: For all t ∈ {1, . . . , s}, the following conditions are satisfied: (a) For all (V 0 , . . . , V k-1 ) ∈ Z j we have V p ∩ E j ′ = 0 whenever 1 ≤ p < p t and j ′ ≤ j pt , and V pt ∩ E jp t = 0.

(b) There is ℓ t ∈ {1, . . . , r} such that j pt = µ ℓt-1 and µ ℓt ≥ 2, and we have (43) v ℓt µ ℓ t -1 ∈ V pt for all F = (V 0 , . . . , V k-1 ) ∈ X j (with the notation of Section 8.3).

Proof of Claim 2. Part (a) is an easy consequence of Claim 1, it remains to show part (b). Take v ∈ V pt ∩ E jp t \ {0}. Since F ∈ F ω e,d,c , we get e(v) ∈ V cp t ∩ E jp t +2 . In the case where t = 1, we have by definition p 1 = 1 and by assumption c 1 = 0, hence e(v) ∈ V 0 = {0}. In the case where t > 1, the construction of the sequence p guarantees that c pt < p t-1 and j pt < j pt-1 . In fact, we may note that the integers j pt , j pt-1 have the same parity (both are even if ω is symmetric and odd if ω is symplectic, see Section 8.3). Thus

j pt + 2 ≤ j pt-1 .
Then, part (a) implies that V cp t ∩ E jp t +2 = 0. In both cases, we conclude that e(v) = 0, whence v ∈ V pt ∩ E jp t ∩ ker e.

From Section 8. Since V pt is an isotropic space, v ℓt jp t must be an isotropic vector, thus j pt = 0 (see [START_REF] Springer | Linear algebraic groups[END_REF]) and so µ ℓt ≥ 2. The proof of Claim 2 is complete.

Finally, we note that the last term p s of the sequence p has the following characterization: for all p ∈ {p s + 1, . . . , k -1} such that j p < j ps , we have c p ≥ p s .

Since the sequence c is nondecreasing, this can be rephrased as follows: there is p 0 ∈ {p s + 1, . . . , k} such that (44) j p ≥ j ps and c p < p s for p s ≤ p < p 0 , c p ≥ p s for p 0 ≤ p ≤ k -1.

8.6.2. The variety Xj . We apply the construction of Section 8.4 to the number ℓ := ℓ s given in Claim 2 (b) of Section 8.6.1. Specifically, we deal with the space Ṽ = v q i : (q, i) = (ℓ s , ±(µ ℓs -1)) C , the nilpotent element ẽ = πeι (where again ι : Ṽ → V and π : V → Ṽ denote the inclusion and the orthogonal projection), and the torus S = { λ(t) : t ∈ C * } where λ(t) = πλ(t)ι = λ(t)| Ṽ . Note in particular that the definition of ẽ yields ) S for the space Ṽ ; see also Remark 8). By Lemma 12,(46) the variety ( F ω ẽ, d,c ) S admits an affine paving.

Set Zj = {(W 0 , . . . , W k-1 ) ∈ ( F ω d ) S : W p ∩ E jp = W p-1 ∩ E jp , ∀p = p s , and W p ∩ E j ′ = W p-1 ∩ E j ′ , ∀j ′ < j p , ∀p ∈ {1, . . . , k -1}}.

Thus Zj is stable by L := Z G( S) and, in view of (46) and Lemma 11, we have: (47) the variety Xj := Zj ∩ ( F ω ẽ, d,c ) S admits an affine paving.

8.6.3. An isomorphism between X j and Xj . By (43), we have d,c ) S where Z ′ j := {(V 0 , . . . , V k-1 ) ∈ Z j : v ℓs µ ℓs -1 ∈ V ps }. We define the maps Φ : Z ′ j → Zj , (V 0 , . . . , V k-1 ) → (V 0 ∩ Ṽ , . . . , V k-1 ∩ Ṽ ) and Ψ : Zj → Z ′ j , (W 0 , . . . , W k-1 ) → (W 0 , . . . , W ps-1 , W ps + v ℓs µ ℓs -1 C , . . . , W k-1 + v ℓs µ ℓs -1 C ). It is straightforward to check that Φ and Ψ are well defined, algebraic, and in fact mutually inverse isomorphisms. We claim that (48) Φ(X j ) = Xj (so that Φ restricts to an isomorphism X j ∼ → Xj ).

X j = Z ′ j ∩ (F ω e,
The remainder of this subsection is devoted to the verification of (48). Fix F = (V 0 , . . . , V k-1 ) ∈ Z ′ j and let Φ(F ) = (W 0 , . . . , W k-1 ). Specifically, it is sufficient to show: Proof of Claim 1. Let (V 0 , . . . , V 2k-1 ) and (W 0 , . . . , W 2k-1 ) denote the completions of F and Φ(F ) in the sense of Proposition 10, that is, (V 0 , . . . , V 2k-1 ) := (V 0 , V 1 , . . . , V k-1 , V ⊥ k-1 , . . . , V ⊥ 1 , V ⊥ 0 ) and (W 0 , . . . , W 2k-1 ) := (W 0 , W 1 , . . . , W k-1 , W ⊥ k-1 , . . . , W ⊥ 1 , W ⊥ 0 ), where ⊥ and ⊥ respectively denote the orthogonals in the spaces (V, ω) and ( Ṽ , ω). It is easy to see that The assumption that F belongs to F ω e,d,c means that (51) e(V p ) ⊂ V cp for all p ∈ {1, . . . , 2k -1}.

  . The restriction of ζ to O S being the identity, we obtain in fact ζ(P e,i ∩ O) = (P e,i ∩ O) S . In particular, (P e,i ∩ O) S = ∅. Since P e,i ∩ O is smooth, it follows that (P e,i ∩ O) S is smooth. By Lemma 1 (c), (P e,i ∩ O) S = P e,i ∩ O S is also projective, whence (b). Let ζ 0 : P e,i ∩ O → (P e,i ∩ O) S be the restriction of ζ. For proving part (c), we need to show that, for every connected component C ⊂ (P e,i ∩O) S , the restriction of ζ 0 gives rise to an algebraic affine bundle ζ -1 0 (C) → C. To do this, we aim to apply Bialynicki-Birula's theorem (see Example 2 (b)) to the map
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 62 we denote by F d the set of all partial flags of V such that dim V p = d p for all p ∈ {0, 1, . . . , k}. The set F d has a natural structure of algebraic projective variety, on which the group SL(V ) acts transitively.Proposition 7. (a) If F = (V 0 , . . . , V k ) is a partial flag of V = C n , then P F := {g ∈ SL(V ) : g(V p ) = V p ,∀p = 0, . . . , k} is a parabolic subgroup of SL(V ) and its Lie algebra is p F := {x ∈ sl(V ) : x(V p ) ⊂ V p , ∀p = 0, . . . , k}. Any parabolic subgroup of SL(V ) (resp. any parabolic subalgebra of sl(V )) is of this form. (b) Let F ∈ F d . The map gP F → g(F ) is an isomorphism of SL(V )-homogeneous varieties between the partial flag variety SL(V )/P F and the variety of partial flags F d . Remark 3. Part (b) of the statement (or equivalently the SL(V )-homogeneity of the flag variety F d ) shows that the map F → P F between partial flags of V and parabolic subgroups of SL(V ) is also injective (hence bijective). Partial flag varieties of types B, C, and D.

  homogeneous varieties between G/P F and the connected component of F ω d containing F . Remark 4. (a) In the case where ω is symplectic or d k-1 < dim V 2 , the map F → P F between flags in F ω d and parabolic subgroups of G is injective (this follows from the G-homogeneity of F ω d ). (b) In the case where ω is symmetric and d

  the corresponding parabolic subgroup P = P F ⊂ SL(V ), and the Lie algebra p = p F ⊂ sl(V ) (see Proposition 7 (a)). Let e ∈ sl(V ) be nilpotent (a nilpotent endomorphism of V ). (a) Given a sequence of integers c = (c 0 ≤ . . . ≤ c k ) such that 0 ≤ c p ≤ p for all p, the space i F c := {x ∈ sl(V ) : x(V p ) ⊂ V cp , ∀p = 0, . . . , k} is a P -stable subspace of p. The map gP → g(F ) is an isomorphism between the variety P e,i F c and the variety F e,d,c := {(W 0 , . . . , W k ) ∈ F d : e(W p ) ⊂ W cp , ∀p = 0, . . . , k}.

  subspace of p. The map gP → g(F ) is an isomorphism between the variety P e,i F c and the variety F ω e,d,c := {(W 0 , . . . , W k-1 ) ∈ F ω d : e(W p ) ⊂ W cp , ∀p = 0, . . . , 2k -1}, where F ω d denotes the connected component of F ω d containing F (we have F ω d = F ω d unless ω is symmetric and

.Remark 6 .

 6 F c or the one of i F c , where F ∈ F ω d is the unique element different of F satisfying P = P F (see Remark 4 (b)). Thus, P e,i = P e,i F c or P e,i = P e,i F c The variety F ω e,d,c introduced in Proposition 10 is an open and closed subvariety of F ω e,d,c := {(W 0 , . . . , W k-1 ) ∈ F ω d : e(W p ) ⊂ W cp , ∀p = 0, . . . , 2k -1}. In fact, the equality F ω e,d,c = F ω e,d,c holds unless ω is symmetric and d k-1 = dim V 2 . Propositions 9-10 (a) are easy consequences of Propositions 7-8. The proofs of Propositions 9-10 (b) will be given in Sections 7.3-7.4.

7. 4 .

 4 Proof of Proposition 10 (b). Let two sequences c = (c 0 ≤ . . . ≤ c 2k-1 ) and c

1 Z

 1 j ∩ (F ω e,d,c ) S . Let X j = Z j ∩ (F ω e,d,c) S . By Lemma 11, we get the following implication:

  Ṽẽ) ⊂ v ℓs µ ℓs -1 C . Let d = ( d0 = 0 < d1 < . . . < dps-1 ≤ dps < . . . < dk-1 ) be the sequence given by dp = d p if 0 ≤ p < p s , d p -1 if p s ≤ p ≤ k -1.Corresponding to this sequence, we consider the varieties F ω d , F ω ẽ, d,c , and ( F ω ẽ, d,c ) S (the analogues of F ω d , F ω e,d,c , and (F ω e,d,c

Claim 1 :

 1 If F belongs to F ω e,d,c , then Φ(F ) belongs to F ω ẽ, d,c . Claim 2: If Φ(F ) belongs to F ω ẽ, d,c , then F belongs to F ω e,d,c .

  (49)W p = V p ∩ Ṽ = π(V p ) for all p ∈ {0, . . . , 2kp < p s , W p ⊕ v ℓs µ ℓs -1 C for p s ≤ p < 2kp s , W p ⊕ v ℓs µ ℓs -1 , v ℓs -(µ ℓs -1) C for 2kp s ≤ p ≤ 2k -1.

  . Moreover, ζ is a locally trivial algebraic affine bundle. (b) ζ is the restriction to O of the map ρ : P → P S , gP → lim t→0 λ(t)gP . In particular, • ζ is intrinsic (i.e., it does not depend on the choice of g 0

  is smooth, we infer that P e,i ∩ O is smooth. This shows (a). Let L Q , U Q be as in Section 2.1.3. By Lemma 1, we have O = Qg 0 P and

  , this variety is stable by the natural action of the rank one torus Ŝ = { λ(t) : t ∈ C * } on P. Thereby, we can apply Bialynicki-Birula's theorem (see Example 2 (b)) which says that the retraction map ρ : (P e,i ) S → ((P e,i ) S ) Ŝ , gP → lim

t→0 λ(t)gP is an algebraic affine bundle over each connected component. Using Lemma 6, we finally note that ((P e,i ) S ) Ŝ = (P e,i ) S ∩ P Ŝ = (P e,i ) S ∩ P Ẑ = (P e,i ) S Ẑ . The proof of (a) is complete. Now, let us prove part (b) of the statement. Let a connected component C ⊂ P Ẑ . From Lemma 1 (and Lemma 6

  In the case where d k-1 = n, the blocks A p,k , B p,k , B k,p , and C k,k are empty. The parabolic subgroup P d := P I is formed by the blockwise upper triangular matrices of Sp 2n (C) with the same frame.

For p ∈ {0, . . . , k -1}, set

  and it is clear that p d = p F and P d = P F , where p F and P F are as in Proposition 8 (a). If d k-1 < m 2 , then F is the only flag such that P d = P F . Assume now that m = 2n and d

	Remark 5.

  dk-1 ) be the sequence defined by dp = d p -1 for all p ∈ {1, . . . , k -1}.

	Corresponding to this sequence, we consider the varieties F ω d , F ω ẽ, d,c , and ( F ω ẽ, d,c )	S
	(defined like F ω d , F ω e,d,c , and (F ω e,d,c ) S , but for the space Ṽ ). By Lemma 12,
	(35)	the variety ( Fẽ

  1 C for all p ∈ {1, . . . , 2k -2}.

	The assumption that F belongs to F ω e,d,c reads as
	(40) e(V From (38) and (40), we derive
	ẽ

p ) ⊂ V cp for all p ∈ {1, . . . , 2k -1}.

  3, we know that E jp t ∩ ker e is nonzero only if j pt = µ ℓt -1 for some ℓ t ∈ {1, . . . , r}, and in this case we have E jp t ∩ ker e = v ℓt jp t

C . Whence v ℓt jp t ∈ V pt .

Work supported in part by the ISF Grant Nr. 882/10 and by the ANR project NilpOrbRT (ANR-12-PDOC-0031).

where E j is the eigenspace for h corresponding to the eigenvalue j and where each M (i) is a direct sum (possibly zero) of simple s-modules of dimension i + 1 (i.e., of highest weight i). We have e(E j ) ⊂ E j+2 . The subspaces M (i) are pairwise orthogonal in (V, ω) and the restriction of ω to M (i) is nondegenerate.

Each simple summand of M (i) is a Jordan block of e of size i+1. In particular, for i ≥ 0, the number of Jordan blocks of e of size ≥ i+1 coincides with dim(E i +E i+1 ).

The following statement reviews the characterization of admissible Jordan forms and of distinguished nilpotent elements in types B, C, D (see [8, §5.1 and §8.2]).

Proposition 12. (a) Assume that ω is symplectic. Then, M (i) has an even number of summands whenever i is even. Moreover, e is distinguished if and only if M (i) is zero or simple for all i (in particular, the Jordan form of e is of the form µ(e) = (2n 1 > 2n 2 > . . . > 2n r )). (a) Assume that ω is symmetric. Then, M (i) has an even number of summands whenever i is odd. Moreover, e is distinguished if and only if M (i) is zero or simple for all i (in particular, the Jordan form of e is of the form µ(e) = (2n

) with 0 ≤ c p ≤ p for all p ∈ {0, . . . , 2k -1} and c * = c, that is [START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF] c p = c * p := |{q = 1, . . . , 2k -1 : c q ≥ 2k -p}| for all p = 0, . . . , 2k -1. Recall the varieties of isotropic partial flags F ω d and F ω e,d,c introduced in Proposition 8 and Remark 6.

Let λ(t) ∈ G be the element given by λ(t)(v) = t j v whenever v ∈ E j . Thus, S := {λ(t) : t ∈ C * } is a subtorus corresponding to h in the sense of Section 2.1.2. The Levi subgroup L := Z G (S) can be described as

As usual, we denote by (F ω e,d,c ) S ⊂ F ω e,d,c the subvariety of the elements that are fixed by S. In the next statement, e is any nilpotent element (not necessarily distinguished).

Lemma 11. The following conditions are equivalent: (i) The variety (F ω e,d,c ) S admits an affine paving; (ii) For every L-stable subvariety Z ⊂ (F ω d ) S , the variety Z ∩ (F ω e,d,c ) S admits an affine paving; (iii) There are L-stable subvarieties Z 1 , . . . , Z M ⊂ (F ω d ) S such that the varieties d,c ) S (for i = 1, . . . , M ) cover (F ω e,d,c ) S and admit affine pavings.

Proof. By Lemma 1, the fixed point set (F ω d ) S ⊂ F ω d is a union of finitely many L-orbits, and every L-orbit of (F ω d ) S is a connected component of (F ω d ) S (hence is open and closed in (F ω d ) S ). Thus, for every L-stable subset Z ⊂ (F ω d ) S , the intersection Z ∩ (F ω e,d,c ) S is the union of some connected components of (F ω e,d,c ) S . If (i) holds, then each connected component of (F ω e,d,c ) S admits an affine paving, thus Z ∩ (F ω e,d,c ) S admits an affine paving, and this shows that (ii) holds. The implication (ii)⇒(iii) is immediate.

Assume that (iii) holds. In order to show that (i) holds, it suffices to check that every connected component C ⊂ (F ω e,d,c ) S admits an affine paving. There is an d,c ) S admits an affine paving, we conclude that C admits an affine paving. The proof of the lemma is now complete.

In order to show Proposition 11 in the case of Sp(V, ω) and SO(V, ω), in view of Definition 2, Proposition 10, and Remark 6, it is sufficient to establish the following statement.

Proposition 13. Let e ∈ g be distinguished. Then, the variety (F ω e,d,c ) S admits an affine paving.

The remainder of Section 8 is devoted to the proof of Proposition 13. The proof is made by induction on m = dim V ≥ 1. If m ∈ {1, 2}, then any distinguished nilpotent element in g is regular and the property is true by Remark 1. In what follows, let m ≥ 3 such that Proposition 13 holds until m-1. The nilpotent element e ∈ g is now supposed to be distinguished. 8.3. Notation. By Proposition 12, the fact that e is distinguished implies that the sizes of its Jordan blocks form a decreasing sequence

where the µ p 's are even (resp. odd) numbers if ω is symplectic (resp. symmetric). Also by Proposition 12, the space V decomposes as

where M (ℓ) is a simple s-module of dimension µ ℓ . Let I ℓ = {-µ ℓ + 1, -µ ℓ + 3, . . . , µ ℓ -1}. There is a basis

The fact that e, h are antiadjoint with respect to ω implies that [START_REF] Springer | Linear algebraic groups[END_REF] ω(v ℓ i , v q j ) = 0 if and only if ℓ = q and i + j = 0. 8.4. Induction hypothesis. In this section, we point out a preliminary fact, which is a consequence of the induction hypothesis.

We focus on the ℓ-th Jordan block M (ℓ) for ℓ ∈ {1, . . . , r} and on its extremal

, so that we have the orthogonal decomposition

The restriction of ω to Ṽ (still denoted by ω) is nondegenerate. Let G ⊂ SL( Ṽ ) be the subgroup of automorphisms preserving the form ω and let g ⊂ End( Ṽ ) be the subspace of endomorphisms that are antiadjoint with respect to ω. Let ι : Ṽ → V denote the inclusion and let π : V → Ṽ denote the orthogonal projection. The elements e, h induce elements ẽ := πeι, h := πhι in g, and clearly, we can find f ∈ g such that {ẽ, h, f } form a standard triple. Let λ(t) := πλ(t)ι = λ(t)| Ṽ , so that the rank one torus S := { λ(t) : t ∈ C * } ⊂ G corresponds to h in the sense of Section 2.1. ) S admits an affine paving. Proof. By induction hypothesis, Proposition 13 holds until the rank m -1. From this fact and in view of Proposition 10 and Remark 6, we know that property P( Ĝ, ê) (introduced in Definition 2) holds whenever Ĝ is a group of the form SL q (C) (for all q ≥ 1; see the beginning of Section 8), Sp 2q (C) (for 2 ≤ 2q ≤ m -1), or SO q (C) (for 1 ≤ q ≤ m -1), and ê ∈ ĝ := Lie( Ĝ) is a distinguished nilpotent element. By Propositions 4 and 5, it follows that P( Ĝ, ê) holds whenever Ĝ is a Levi subgroup of G. Then, invoking Proposition 3 (and again Proposition 10 and Remark 6) we conclude that ( F ω ẽ, d,c ) S admits an affine paving.

8.5. Proof of Proposition 13 in the case where c 1 = 1. Note that the first terms of the sequence c = (c 0 , c 1 , . . . , c 2k-1 ) satisfy c 0 = 0 and c 1 ∈ {0, 1}. In this section, we show Proposition 13 in the case where c 1 = 1. The case where c 1 = 0 will be addressed in Section 8.6.

8.5.1. The subvarieties X j ⊂ (F ω e,d,c ) S . For every j ∈ Z, we let

Clearly, the set Z j is L-stable, it is empty for all but finitely many j, and we have

For j ∈ Z, we set X j = Z j ∩ (F ω e,d,c ) S . According to Lemma 11, the following implication holds: (32) X j admits an affine paving for all j ⇒ (F ω e,d,c ) S admits an affine paving. Our next goal is then to show that each subvariety X j has an affine paving.

Fix j ∈ Z such that X j is nonempty (otherwise there is nothing to prove). The following claim uses the notation of Section 8.3.

Claim: There is ℓ ∈ {1, . . . , r} such that j = µ ℓ -1 and µ ℓ ≥ 2, and we have

Proof of the Claim.

According to Section 8.3, we have E j ∩ ker e = 0 only if j = µ ℓ -1 for some ℓ ∈ {1, . . . , r} and in this case E j ∩ ker e = v ℓ j C . Relation (33) ensues. By [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF], we get in particular that the vector v ℓ µ ℓ -1 is isotropic, which forces µ ℓ ≥ 2 (see [START_REF] Springer | Linear algebraic groups[END_REF]).

Using (49), (51), and the definition of ẽ = πeι, we obtain that

Proof of Claim 2. Here, we assume that (52) ẽ(W p ) ⊂ W cp for all p ∈ {1, . . . , 2k -1} and we need to show the inclusion (53) e(V p ) ⊂ V cp for all p ∈ {1, . . . , 2k -1}.

Let p ∈ {1, . . . , 2k -1}. Recall the element p 0 ∈ {p s + 1, . . . , k} from (44). We distinguish four cases.

Case 1: 1 ≤ p < p 0 . By Claim 1 of Section 8.6.1 and (44), we have j q ≥ j ps for all q ∈ {1, . . . , p}.

Since Φ(F ) ∈ Zj , this implies

Since e and ẽ coincide on j ′ ≥jp s E j ′ ∩ Ṽ , using also (50), the fact that v ℓs µ ℓs -1 ∈ ker e, and (52), we derive

This shows (53) in Case 1.

By (44), we get c p ≥ p s in this case, whence

Combining (50), the fact that v ℓs µ ℓs -1 ∈ ker e, (45), (52), and (54), we obtain

We claim that the following alternative is valid:

We show (55) by arguing by contradiction, so assuming that c k < p s and µ ℓs ≥ 3 (it was already noticed that µ ℓs ≥ 2, see Claim 2 (b) in Section 8.6.1). Take an element F ′ = (V ′ 0 , . . . , V ′ k-1 ) ∈ X j (it was assumed that the set X j is nonempty). On the one hand, the fact that c k < p s implies (56)

(by Claim 2 in Section 8.6.1). It also implies that j q ≥ j ps for all q ∈ {1, . . . , k -1} (see (44) and Claim 1 in Section 8.6.1), hence (57)

(since F ′ ∈ Z j ). On the other hand, the fact that µ ℓs ≥ 3 implies that the vector v ℓs µ ℓs -3 is orthogonal to E j ′ for all j ′ ≥ j ps (see [START_REF] Springer | Linear algebraic groups[END_REF], recalling that j ps = µ ℓs -1), thus (57) implies (56). Therefore, we have shown (55).

We now distinguish two cases depending on the alternative in (55). First, assume that c k ≥ p s . Thus, c p ≥ p s . This property together with (50), the fact that v ℓs µ ℓs -1 ∈ ker e, (45), and (52), implies that e(V p ) = e(W p ) ⊂ ẽ(W p ) + v ℓs µ ℓs -1 C ⊂ W cp + V ps ⊂ V cp . Second, assume that µ ℓs = 2. This property guarantees that the space Ṽ = v ℓ i : (ℓ, i) = (ℓ s , ±1) C is e-stable, so ẽ = e| Ṽ . Thus, by (50) and (52), we get

In both situations, we obtain that e(V p ) ⊂ V cp , hence (53) holds in Case 3.

First, we check the following relation (58) c 2k-ps ≥ p s .

To show (58), choose any element F ′ = (V ′ 0 , . . . , V ′ k-1 ) ∈ X j (recall that the set X j is assumed to be nonempty). In view of (31) and Claim 2 in Section 8.6.1, we then have

(because the space V ′ c 2k-ps is in particular e-stable). Invoking again Claim 2 in Section 8.6.1, we conclude that (58) holds true.

Our next claim is that the following inclusion holds:

(59) e(v ℓs -(µ ℓs -1) ) ∈ V c 2k-ps . In the case where µ ℓs = 2, then (50) and (58) imply e(v ℓs -(µ ℓs -1) ) = v ℓs µ ℓs -1 ∈ V ps ⊂ V c 2k-ps so that (59) holds in this case. It remains to show (59) in the case where µ ℓs ≥ 3. On the one hand, in view of (55), this relation forces c k ≥ p s , hence c p0 ≥ p s (see (44)). By [START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF], we get p s ≤ c p0 = c * p0 = |{q = 1, . . . , 2k -1 : c q ≥ 2kp 0 }|.

The sequence c being nondecreasing, we derive (60) c 2k-ps ≥ 2kp 0 .

On the other hand, by Claim 1 in Section 8.6.1 and (44), it turns out that j q ≥ j ps for all q ∈ {1, . . . , p 0 -1}, whence (since F ∈ Z j )

By [START_REF] Springer | Linear algebraic groups[END_REF], we deduce (61) e(v ℓs -(µ ℓs -1) ) = v ℓs -(µ ℓs -3) ∈ V ⊥ p0-1 = V 2k-p0. Relation (59) now follows by comparing (60) and (61).

Finally, using (50), the fact that v ℓs µ ℓs -1 ∈ ker e, (45), ( 52), ( 58), (59), and the fact that c 2k-ps ≤ c p (since 2kp s ≤ p), we compute e(V p ) = e(W p + v ℓs -(µ ℓs -1) C ) ⊂ ẽ(W p ) + v ℓs µ ℓs -1 , e(v ℓs -(µ ℓs -1)

This establishes (53) in Case 4 and completes the proof of Claim 2. 8.6.4. Conclusion. The proof of Proposition 13 in the case where c 1 = 0 is achieved by combining (42), (47), and (48). This completes the proof of Proposition 13. Therefore, Proposition 11 is established, and so the proof of Theorem 1 is complete.