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ABSTRACT

A classification model based on the Majority Rulert®ig method has been previously
proposed by the authors to evaluate the vulnetalafi safety-critical systems (e.g., nuclear
power plants) with respect to malevolent intentiaus.

In this paper, we consider a classification modeljpusly proposed by the authors based on
the Majority Rule Sorting method to evaluate thinetability of safety-critical systems (e.g.,
nuclear power plants) with respect to malevoletg¢ntional acts. The model is here used as
the basis for solving an inverse classificatiorbpem aimed at determining a set of protective
actions to reduce the level of vulnerability of 8adety-critical system under consideration.

To guide the choice of the set of protective adjosensitivity indicators are originally
introduced as measures of the variation in theeralnility class that a safety-critical system
is expected to undergo after the application ofiaerg set of protective actions. These
indicators form the basis of an algorithm to raifkedent combinations of actions according
to their effectiveness in reducing the safety-caitisystems vulnerability. Results obtained

using these indicators are presented with regatidet@pplication of: (i) one identified action



at a time, (ii) all identified actions at the satime or (iii) a random combination of identified
actions. The results are presented with referemcefictitious example considering nuclear

power plants as the safety-critical systems olgétte analysis.

KEYWORDS: safety-critical system, malevolent intentionabekis, vulnerability analysis,
protective actions, Majority Rule Sorting (MR-Sortglassification model, inverse

classification problem, sensitivity indicator

Notations

crit! subcriterion j

Ly main criteribn

NPP; Nuclear power plant i

Ci vulnerability category i

act® protective action k

coef f*7 weight of the influence of action k on atttie

crit”? after action subcriterion j

B limited budget

N1 number of NPPs that are improved after thmag)

N1t

N’ estimate of the percentage of new NPPs thabea
expected to be improved

N number of NPPs that are expected to be detded after
the action(s)

N

N/ estimate of the percentage of new NPPs tmbea
expected to be deteriorated

Av_ Nt N

N’ N’ expected “net” amount of ameliorated NPPs
AM t total variation of category underwent by theeharated



AM T
N/ variation in vulnerability category that a neuneliorated
plant is expected to undergo

AM | total variation of category underwent by tle¢ediorated
NPPs

AM |

N’ variation in vulnerability category that a neleteriorated
plant is expected to undergo

AN — AMtT AM|

N’ N’ “net” variation in vulnerability category that awly
analyzed NPP is expected to undergo.

AS 1t ratio between the sums of the variations ¢hexability
category underwent by the ameliorated NPPstlamdum of
the corresponding maximum possible categoriatians

lzj level of action j applied on system i

1. INTRODUCTION

The vulnerability of safety-critical systems andrastructures (e.g., nuclear power plants) is
of great concern, given the multiple and diverseahds that they are exposed to (e.g.,
intentional, random, natural etc.) [1] and the pt&d large-scale consequences. This justifies
the increased attention for analyses aimed aléilststematic identification of the sources of
system vulnerability, (ii) the qualitative and qtitative assessment of system vulnerability
[2][3] and (iii) the definition of effective acti@of vulnerability reduction.

In a previous work [6], we have proposed an emgliitassification framework to tackle the

issue (ii) of assessing vulnerability to malevol@mientional acts. Specifically, we have



adopted a classification model based on the Mgjdtiille Sorting (MR-Sort) method [7] to
assign an alternative (i.e., a safety-critical aygt to a given (vulnerability) class (or
category). The MR-Sort classification model corgaingroup of (adjustable) parameters that
are calibrated by means of a set of empirical flaason examples (also called training set),
i.e., a set of alternatives with the correspongirgrassigned vulnerability classes [6][7]. For
further details on this method, the interested eeadn refer to the Appendix A at the end of
the paper. It is worth mentioning that other majorule voting methods are widely used in
technical decision making problems for vulnerapidihalysis of systems, see, e.g., [21].

In this paper, we are still only concerned withemional hazards (i.e., those related to
malevolent acts) and address issue (iii) above the definition of the actions to undertake
for reducing the level of system vulnerability). iFHssue is difficult to be resolved by
traditional risk assessment methods [1][4][5]. @a tontrary, the base model developed in
Ref. [6] can be extended to address the probleate®lto the problem of optimal risk
reduction, e.g. by optimization of protective measu[29][30][31]. In other words, an
inverse classificatiorproblem [8][9][10] of determining a set of protieet actions that can
effectively reduce the level of vulnerability of safety-critical system [11], taking into
account a specified set of constraints (e.g., buidgés) [8].

The present analysis can be considered part ohaongassing business process of safety
management (see, e.g., [22]), where we seek fobebecompromise among risks, costs and
benefits in allocating investments in safety-catisystems in the presence of uncertainties
[28]. Correspondingly, the presented algorithms lbarconsidered part of an encompassing
business process of safety management [22]. Matieaiia speaking, the aim is to identify
how to modify some features of the input patteiires,(the attributes of the safety-critical
system under analysis) such that the resultingscliaschanged as desired (i.e., the
vulnerability category is reduced to a desired llev&o achieve this objective, novel
sensitivity indicators [12] are introduced for qgtifing the variation in the vulnerability
class of a safety-critical system resulting frore #pplication of a given set of protective

actions [13]. Using these indicators as the basisafranking algorithm, changes in system



vulnerability can be achieved considering: (i) dcentified action at a time, (ii) all identified
actions at the same time or (iii) a random comimmadof identified actions. The proposed
indicators also allow different combinations ofiaws to be ranked and their effectiveness in
reducing the vulnerability under specified budgatstraints can be evaluated on a new (test)
set of (unknown) safety-critical systems (i.e.,teys not used before to calibrate/train the
classification model). In this context, it is knowrat existing risk assessment methodologies
may fail to account for unknown and emergent riskat are typical of large-scale
infrastructure investment allocation problems. @& other hand, in modern portfolio theory,
it is well known that a diversified portfolio care lvery effective to reduce non-systematic
risks. The approach of diversification is equahypbrtant in choosing robust portfolios of
infrastructure projects that may be subject to gewtrrand unknown risks [27]. The proposed
methodology is expected to contribute also in thigction of optimal classification of
options/investments and combinations of the same.

The remainder of the paper is structured as foll&estion 2 recalls the modeling framework
for the analysis of vulnerability to intentional Zaads. With reference to that, Section 3
introduces the problem of inverse classificatioact®n 4 describes the sensitivity analysis
indicators introduced to tackle the inverse clasaifon problem of Section 3. Section 5
illustrates their use for the identification of prctive actions. In Section 6, a case study is
proposed to show the application of the methodallinSection 7 gives the discussion and

conclusions of this research.

2 THE CLASSIFICATION MODEL FOR THE ASSESSMENT OF

VULNERABILITY TOINTENTIONAL HAZARDS

We limit the vulnerability analysis of a system ttoe evaluation of the susceptibility to
intentional hazards and adopt the three-layeratgbical model developed in [6] (Figure 1).
The susceptibility to intentional hazards (leveinlFigure 1) is characterized in terms of

attractiveness and accessibility (level 2 in FiglixeThese attributes are hierarchically broken



down into factors which influence them, includingsitience interpreted as pre-attack
protection (which influences on accessibility) goabt-attack recovery (which influences on
attractiveness). The disaggregation is made initerier (level 3 in Figure 1): physical
characteristics (x1), social criticality (x2), pimshty of cascading failures (x3), recovery
means (x4), human preparedness (x5) and level @kgion (x6). These six criteria are
further decomposed into a layer of m=16 basic stdv@ {crit/.; =1,2,...m=16}(level 4 in
Figure 1), for which data and information are ol in terms of quantitative values or
linguistic terms depending on the nature of thecatdrion. The descriptive terms and/ or
values of the fourth layer subcriteria are, theraled to numerical categories. The criteria
included in the layers are defined and assignedfépence directions” for treatment in the
decision-making process. The preference directmmaf given criterion (e.g., a physical
characteristic or parameter of the system) indgcéite state towards which it is desirable to
“move the parameter” in order to reduce systemeqtgaility: in other words, the preference
direction is assigned from the point of view ofdefender” who is concerned with protecting
the system from an attack [16]. Finally, to get tredue of the six third-layer criteria
{z;,i=1,2,..,6}, (i) we assign weights to each subcriterion tadat its importance and (ii)
we apply a simple weighted sum to the categoriedlies of the constituent subcriteria
{erit’,j =1.2,....m =16} Thesem=16 criterialcrit’.j =1,2,...m =16} are evaluated to
assess the vulnerability of a given safety-critisgstem of interest (e.g., a nuclear power

plant — NPP).

For the purposes of the present analydis, 4 levels (or categories) of system vulnerability
{Class = C,C'=1,2,3,4} are considered: 1 = satisfactory, 2 = accept@teproblematic and 4 =
serious.

Then, the assessment of vulnerability corresponda tlassification problem: given the
definition of the characteristics of a critical ®® in terms of the sixteen criteria above,
assign the vulnerability category (or class) tockihthe system belongs.

The classification model is based on the MajorityleR Sorting (MR-Sort) method

[71[14][15]; the model contains a group of (adjus&) parameters that have to be calibrated



by means of a set of empirical classification exim®pthe training set), i.e., a set of
alternatives with the corresponding pre-assigndderability classes. Further details about

the classification model are not reported herebfewity: the interested reader is referred to

[16].
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Figure 1. Hierarchical model for susceptibilityitbentional hazards [16]

3. INVERSE CLASSIFICATION PROBLEM FOR PROTECTIVE

ACTIONSIDENTIFICATION

We define an inverse classification problem aimeédirading a combination of actions

reducing the vulnerability of a (group of) safetjtical system(s) eventually under budget

limitations.
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Figure 2. Schema of direct actions for basic deter

To illustrate the methodology, we consider a sétl dfPPs N PP;,i € {1,2,..,N} ) characterized
by m = 16 basic featureserit’.j € {1.2,...m} ). On the basis of thesel6 features, the
NPPs are assigned M=4 pre-definedcategoriesC; € {1,2,...M},i € {1,2,..,N} ), whelC; =1
represents the best situation, i.e., lowest vubiliya Let act = {act’,act?, ..act”} denote the
available set of actions, each of which can infageenone or more basic criteria
erit’,j € {1,2,...m} (Figure 2) with different intensity, as measurgdabset of coefficients
feoef 9,k € {12, Fhj e {1.2..m}}. In other wordscoef ¥ is the “weight” of the influencd
actionk on attributej (the higher the absolute valuecoe/f * | the stronger dffect of
actionk on attributej). Notice that a positive (resp. negative) coediitcoe * means that
actionk has an ameliorative, positive (resp. deterioratngative) effect on attribujethat is,

it changes the corresponding value towards (respy drom) the “preference direction” of
attributej; on the contraryif coeff* is equal to zero, then criterignis not influenced by
action k. “Negative” relationships objectively exiéctually, taking one action to improve
the performance of one specific criterion may léadh “negative” change in some of the
others. For example, increasing the number of fadamponents on site may lead to an
increased number of workers to operate and mainttaém, which may increase the

possibility of a larger number of injuries of thegple exposed to an attack. If the analyst who



builds the inverse classification model were ndé &b identify and quantify these “negative”

connections (i.e., the coefficiercoef f* ), then thesiiee) effect of a given combination of
actions on a system could be overestimated, witfouse drawbacks on the process of
resources allocation for system protection.

Significant efforts have been made to assign nurakxialues to the impacts of actions, in
order to represent the problem as realisticallypassible. However in a non-fictitious
situation, the task is expected to be more com@etually, the relations between the actions
and the criteria taking into account the depend=nof different attributes and systems are
always difficult to identify: in such cases, resugtto the judgment of real experts and
possibly to real historical data will be mandatory.

The implementation of one or more actions modifiesattribute valuecrit’,j € {1,2,...,m}
and as a result, the vulnerability of the system,(the assignment by the classification model)
may change. In this paper, we assume that the éffiatt of the available set of actions

act = {act',act?, ..., act™} on criterionj is obtained by a linear superposition of the effexf

each actiowact® :

F
eritd = erit? + Z coef f*9 « act®;
k=1
ke {1‘2~,F}77 € {1,2 ..‘,WL}‘ (1)

wherecrit”? is the value of attribugafter the identified set of available actions hasn
implemented.

Also, letCost(NPP;,act'’),act’ Cact denote the cost of the combination dicasact’ applied to
NPP;. The inverse classification problem can then entdated as follows: identify the set

of actionsacti(Cact),i=12,...N that improve the vulnerability of thgsem to a demanded

vulnerability categor\,ciA while minimizing the cosg.,

N
min (Z Cost(NPP;, act})), act; C act;
i=1

s.t. classify(NPP;, actl) = C2

i

i€ {1,2,...,N}: (2)
Alternatively, if it is known that the budg®t is limited for each planiPR, the formulation

becomes: improve the systems to the best possiblénenability category



CX,0) e{1,2,...M},i € {1,2,... N} while keeping the cost below the available budiyet

maz(classify(N PPy, actl));
s.t. Cost(NPP;, act}) < By, act, C act;
1€ {1,2,..,N}. (3)

To address the inverse classification problem, Wept a pragmatic approach based on
sensitivity analysis [17][18][19], introducing iraditors that quantify the variation in the
vulnerability class that a safety-critical systemekpected to undergo upon implementation of

a given set of actions.

4SENSITIVITY INDICATORSFOR DRIVING THE INVERSE

CLASSIFICATION PROBLEM

We consider the group df’ vulnerability-class labeled known (available) sgfetitical
systems (NPPs) used to train the MR-Sort classidicanodel and study the sensitivity of
their categories of vulnerability to the implemdita of the available protective actions. We
denote the original categories of these NPPC:.Cie{1,2,... M} i€ {1,2,..N'} d tla@ new
categories resulting from the application of a sef protective actions as
c}Cre{1,2,..,M},i€{1,2,..,N'},

LetN 1 be the number of NPPs that are improved #feaction(s):

N/
N1=> A,ieN
i=1
A;=1, if C;>CH
A; =0, if C;<C}. (4)

N7T
Then, N’ can be interpreted as an estimate of theepege of new (i.e., different from the

ones of the training set) NPPs that can be expactbd improved after such action(s) is (are)
implemented on them.

Dually, N |, is the number of NPPs that are expeatdubtdeteriorated after the action(s):

10



N/

N|=) AjieN,
=1

A, =1, if C; < C

A;=0,if C; >C (5)
Notice that a “deterioration” (i.e., an increase tire vulnerability category) is possible

because some of the actions may have positivetgffat some subcriteria but negative

N
effects on some others (see Section 3). TN’), beaimterpreted as an estimate of the

percentage of new NPPs (i.e., different from thesoof the training set) that can be expected

to be deteriorated after such action(s) is (ar@/émented on them.

1 _dd
We consider the quantii% ~ N’ N’ to combine the effectsboth positive and

negative influences of the actions in the expetitet!’ amount of ameliorated NPPs.
Considering that the evaluation framework is baselM=4 categories, it seems reasonable to
consider not only the number of NPPs that are amstd or deteriorated, but also the
amount of variation in category of vulnerability @ach of them. To this aim, we introduce
the following indicators to combine the amount afiation in vulnerability with the number
of NPPs whose vulnerability category has changtat #fe actions.

In particularAM 1 is defined as the total variatidrcategory underwent by ttemeliorated

NPPs:
e
AM 4= (M;* A;)i € N;
i=1
M;=C; - C};
A =1, if C;> C2
A, =0, if C;<C. (6)
AM 1

Thus, N’ can be interpreted as the variation in walpidity category that a new
amelioratedplant is expected to undergo when the chosen catbn of actions is applied.

Dually, AM | is defined as:

11



N/
AM = (M;* A;),i €N

i=1

M; =C; — C};
A;=1, if C; < C}
A; =0, if C; > C. (7)

AM |
Thus, N’ can be seen as the variation in vulnerghiliitegory that a neweteriorated

plant is expected to undergo when the chosen catibimof actions is applied.

AGf AMT AM|
Finally, N N’ combines the effects of both positive amadative influences

of the actions and it can be seen as the “netatian in vulnerability category that a newly
analyzed NPP is expected to undergo after thecgijan of the given set of actions.

The net expected variation in vulnerability catggAM quantifies the influence of the
actions upon the NPPs. However, this measure doedake into account the original
category assignment of the NPPs: for example, actje there is a difference between
taking a NPP from category 4 to 3 and taking itfr® to 1, even if the category variation is 1
in both cases. To consider this, we introduce tidgcatorAS 1, defined as the ratio between
the sums of the variations of vulnerability catgganderwent by the ameliorated NPPs and
the sum of the corresponding maximum possible cayegariations (i.e., the sum of the
category variations that the NPPs would undergloely were ameliorated to the best possible

vulnerability category):

AM 1

AS 1= =7

-
E=) (C;—C*")x A;i € N;
i=1

A; =1,if C; > C;

7

A; =0,if C; < C. (8)
The indicatoAS T quantifies the influence of the acsi on NPPs, relative to their original
categories: the loweAS 1 s, the higher the influent¢he chosen set of actions is on the
NPPs originally of a relatively low category.
Based on the above indicators, an algorithm is ggeg to rank different combinations of

actions according to their effectiveness in redgitive vulnerability of safety-critical systems.

12



The actions with positive influences are obvioysigferred. On the contrary, concerning the
ones with negative influences, the rationality efng chosen as ameliorative actions should
be reconsidered. The analyst may replace/modifgtdehem from the original considered
action set. The algorithm proceeds as follows:
(1) Rank the (combinations of) actions accordingh®value oAM (the higher the value of
AM, the more effective the combination of actionsaducing vulnerability):
* combinations of actions that have a negative valltAM (AN <0) are expected to
increase the vulnerability of a NPP: this is dughe fact that some actions may have
a deteriorated effect on some of the subcriterg thore than counter balances the
positive effects on their subcriteria. The identtion of the combination of actions
with A <0 allows the analyst to (i) study the mecksars of influence of the actions
on the basic subcriteria (Layer 4 in Figures 1 2ndnd (ii) if possible, eliminate the
“negative connections”, i.e., the negative depenigsnbetween some actions and
some criteria (e.g., by identifying alternativeiawes for dealing with these “critical”
subcriteria);
» the actions that have a positive valueAM AM  >0) expected to reduce the
vulnerability and are assigned higher rankings (thgher Ad , the higher the
ranking);

(2) If several combinations of actions have the esamlue ofAAf , then consider the other

N+ AM 1
indicators (i.e. N an N’ ): depending on the judgnafnthe DMs, higher importance

N7
may be given to those actions that produce a laxgeected number of improved NPIN'| )

AM 1t
or to those that generate a higher “expected algzovement” N’ ).

(3) If some combinations still have the same ragkanalyze indicatcAS + to check which

actions have stronger impact on the NPPs of loegrates.

13



Check the (combinations of) actions
according to the value of AM

AM<0 | A >0

N . ‘ Rank the (combinations of)
Do not take the (combinations of) actions actions: if ties in the ranks:

Study the mechanisms of y — —_
influence of the actions Check "\j Check
on the basic subcriteria \ . /

AM T
N?

Eliminate the "negative connections” Check AS 1

Figure 3. Schema of decision logic for selectingetion
5 CASE STUDY

The sensitivity analysis proposed in Section 4gpliad on a case study concerning the
vulnerability analysis of NPPs [6]. We refer to thre6 main criteriet = 1,2,...,n =6 of the
hierarchical modeling presented in [6] and recalte8ection 2: physical characteristics)(x
social criticality (%), possibility of cascading failures sfx recovery means £ human
preparedness {xand level of protection £x these criteria are numbers scaled in the range
[0,1]. Then, the main criteria are successivelykbrointo a layer ofm=16 basic criteria
(Figure 2). Finally, M=4 vulnerability categoriClass =C,C =1,2,3,4 are defined as: 1=
satisfactory, 2= acceptable, 3= problematic andsérious (Section 2).

As shown in Figure 2 and anticipated in Sectionws& define F=13 direct actions
(act = {act', act?, ..,act"}), @@Ch acting on one or more subcriteria (TableAll)the actions have
multiple influences on different criteria, with ®isly positive or negative effects: for
example, the action “reduce the number of worké&@s an obvious direct influence on the
subcriterion “Number of workers”, but may also impk.g., (i) reducing the number of
production units, the number of accesses to thetpkhe number of installed backup
components and external emergency measures; €ieaning the duration of repair and

recovery actions; (iii) enhancing the training;)(facilitating the safety management and

14



entrancing control and surveillance. The strengthshe influences of the actions on the

different criteria are quantified by the differemeights/coefficients reported in Table 1.

Also, for each action we consider different levelsf implementation 4 (
1.1l €{0.1,2.3} i€ {1,2...N}.j € {1,2... F}), representing to what extent/ how far/ in which

amount actior) is applied on systern(notice tha‘lf =0 means that actipis not applied to
system) (Table 1).

Finally, for simplicity we assume that the costatetl to the application of a given action is

equal to the Ievelf of the action: for exampleereng to Table 1, if we choose to reduce the
number of workers by 20%, the related cost is laibitrary units (since the action

1
i

corresponds to levi =1); on the contrary, if weéuee the number of workers by 30%, the

cost is 3 (since the action corresponds to Ilz'lvel). FBe idea is that the cost of an action
increases (resp. decreases) with its “level” ofelsgth” of implementation. Notice that
however, the levels assigned to the actions are ainvays strictly “mathematically”
proportional to the change of value they producéhim corresponding criteria. In fact, for
different actions, the three levels of “effects” thie corresponding directly influenced criteria
may be of different notice. Sometimes they may dygresented by a quantitative discrete
number (e.g., for action “reduce number of produciinits” we have -1 production unit for
level 1, -2 production units for level 2, -3 protloo units for level 3); sometimes they may
be a percentage (as for the number of workers omedi above). In addition, the costs of an
action and the corresponding change in a criteveloe are not strictly proportional either
(e.g., the cost of training enhance may be the damB0 and for 80 people, but different
for100). In this view, choosing the cost of an @ctequal to the level lij of implementation of
the action is a (maybe rough) compromise betwemplgiity and pragmatic engineering
sense. Obviously, in reality, the costs should efndd in a more sophisticated way and
possibly they should bdifferent for different levels of different actions towardslifferent
criteria.

Table 1. Available actions and coefficients of uigfhces of the actions on different subcriteria

15



No. Action description
act Reduce number of workers
act Reduce nominal power production
act Reduce number of production units
act Reduce percentage of contribution to the welfare
act Increase number of installed backup components
act Increase external emergency measures
act Increase duration of backup component
act Reduce duration of repair and recovery actions
acf Enhance training
act® Enhance safety management
act! Reduce number of accesses
act? Enhance entrance control
act?® Enhance surveillance
Percentage
Number Size Number of
Number| Nominal of External
of of Connection| installed
of power contribution emergency
production served| distance backup
workers | production to the measures
units cities components
welfare
Actions Critl Crit2 Crit3 Crit4 Crit5 Crit6 Crit7 Crit8
act 1 0 1 0 0 0 -0.4 -1
acft 0 1 0 1 0 0 0 0
acf 0.7 1 1 0 0 0 0.6 0
acf 0 0 0 1 -1 0 0 0
acP -0.2 0 0 0 0 0 1 0
acf -0.1 0 0 0 0 0 0 1
act 0 0 0 0 0 0 0 0
acf 0 0 0 0 0 0 0 0

16




act 0 0 0 0 0 0 0 0
act® 0 0 0 0 0 0 0 0
act? 0 0 0 0 0 0 0 0
act? 0 0 0 0 0 0 0 0
act? 0 0 0 0 0 0 0 0
Duration of Physical
Duration
repair and Safety size of | Number of Entrance
of backup Training Surveillance
recovery management the accesses control
component )
actions system
Actions Crit9 Crit10 Critll Critl2 Critl3 Critl4 €15 Critl6

act 0 -0.2 0.5 0.5 0 1 0.4 0.4
act 0 0 0 0.2 0 0 0 0
acf 0.2 0.3 0.4 0.2 0.7 0 0 0.3
act 0 0 0 0.1 0 0 0 0
acf 0.5 0 0.2 0.1 0 0 0 -0.15
acf 0.3 0 0.1 0.05 0.3 0 0 -0.05
act 1 0 0 0.1 0 0 0 0
acf 0 1 0.2 0.1 0 0 0 0
acf 0 0.5 1 0.2 0 0 0.2 0
act® 0 0 -0.2 1 0 0 0 0
act? 0 0 0.1 0.1 0 1 0.4 0.1
act? 0 0 0.1 0.1 0 0 1 0
act? 0 0 0 0.2 0 0 0 1

No. levell level2 level3

act 20% 25% 30%

act 20% 30% 40%

acf 1 2

acf 10% 20% 30%

acf 1 2

acf 0.5 1

act 12 24
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acf 6 12 24
act 1 3 5
act® 1 3 5
act? 1 2 3
act? 1 2 3
act® 1 2 3

In what follows, two analyses are performed: fitshsed on the indicators of Section 4,
different combinations of actions are ranked adogrdo their ability in reducing the
vulnerability of a group of NPPs (Section 5.1);rthéhe inverse classification problem of
Section 3 is tackled using the sensitivity indicatof Section 4 and taking into account the
action costs and budget limitations (Section 5.2).

5.1 Ranking different combinations of actions baseA M

A setG of N (N=20) NPPs G={NPP,ic{l,2,..,N}} ) is available: 10 of them (NPPs from
No.6 to No0.15¢™ ={NPP.ic{67..15}} ) are selected as a reference setvéduate the
sensitivity indicators; the remaining NPPs are oeged to form a setG*®
(G ={NPP;ic{1,2,..5} U{16,17,...N}}) ysed to test the combinations of actions
ranked using</ . Based on the reference set, wepgerermed an exhaustive calculation of
the value olAM for all the possible combinations aafions (in total, 4713=67108864

combinations). Then, we selected the ones (in 88840 combinations) that have the (same)

highest value oAM (i.eAM =14): these represent dpgmal combinations of actions

. R . . . - . highest
according tcAA7 : in what follows, this set is referte asCombinationyy;

All the combinations of actions belonging to theCombinationZ52™" gre applied to each of
the N (N=20) NPPs inG: the resulting categorieQ?\lvi €{L2,..,N} ) are reported in Table
Note that the actions are ranked according to gatiiAM that are evaluated orgeoup of
referenceplants (¢m/): in this view, they provide an indication onbn the expected

performance of the actions arew plants and, thus, they may not provide any intost
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about the combination of actions thatojstimal for one particular plant. Thus, in order to
verify how close these sets of actions are to tmhinations that are optimal for a particular

NPP, we compare the assignmec*s  (Table 2) withb#s¢ category that each NPP may

reach €71 € {1,2,..N}) (in other word¢® is the category thNRP reaches after the
application of a combination of actions thathig optimal one for that particular plant). In
order to do so, another exhaustive calculatioroisedupon the grou@® with the purpose of
finding the actions that bring each particular NBEhe best category possible (notice that for

some NPPs, reaching category 1 may not be possible}the possible combinations of

actions are tested adachNPP in order to find the best assignn@?n for eddhem. The
results are shown in Table 2. The first columnha tesults shows the original assignments

for the NPPs in the studied g8t The second column shows the corresponding pydsést

assignmentc® and the third column provides the amignmentcx after the application

. . . . . . highest
of the combinations of actions includecC mbination

Analyzing the best assignmerc®  of the NPPs inrdéference seci.ie{67..15) |, we

observe that they coincide perfectly (100%) witk #ssignmenic¥c.i<{.7...,15)  obtained

. . highest
after the application of the actionsCombination . If weaake NPPs in the test set as

new NPPs and compare the assignments obtainedebg tivo methods with the original

assignmentC(Ci,i € {1,2,...,5}u{16,17,...N})  we find that: (i) all the NPPs aable or

. . highest
ameliorated after the application of the combinati®@f actions jiCombinationgz ™" (ii)

there are 2 out of 10 NPPs that are not ameliortatéide best catego_C}A (i.e., NPPs 16 and

19): they remain in the same category; insteadjt®b10 NPPs are ameliorated to their best

. . highes
possible categories: then, the probability thatdbmbinations of actiorCombinationzz®

ameliorate a new NPP to its best possible cate¢»iy 80%.
Table 2. Comparison of assignments: Best possibtggAmenc: and After action

Assignmenc listed with NPPs that are differendgigned highlighted (NPP16, NPP19)
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Best possible Assignment After action Assignment
No. Original Assignment

ct c
NPP1 1 1 1
NPP2 3 3 3
NPP3 2 2 2
NPP4 3 1 1
NPP5 3 2 2
NPP6 2 1 1
NPP7 2 1 1
NPP8 4 2 2
NPP9 4 2 2
NPP10 4 3 3
NPP11 1 1 1
NPP12 2 1 1
NPP13 3 2 2
NPP14 3 1 1
NPP15 4 1 1
NPP16 3 2 3
NPP17 2 2 2
NPP18 3 2 2
NPP19 3 2 3
NPP20 2 1 1

5.2 Constrained inverse problem: identification tife best combination of actions
considering constraints

In a more realistic case, the cost of the protectistions should be considered. Although in
reality the costs of different actions can be ddfe, and the same action may cost differently

when applied to different NPPs, for simplicity, this paper we define thCost of a

combination of actions (in arbitrary units) as sl of the levell; of the actions:
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N
Cost = Z Cost;;
i=1

F
Cost; = Zlf *Af;
j=1
A = Lif I #0;
A =0,if Il =0;
,[: E {1727 '777N}’j e {1727 "'7F}' (9)
We assume that a budBit is allocated for the ivggnent of the generic power plant
NPP; : the budgetsBiic{L.2...N"} allocated for the NPPs of the test se

G'*' = {NPP, i €{1,2,..,5} U{16,17,... N}} are shown in Table 3.

Table 3. Budgets available for the NPPs belonginify¢ test seB®

No. BudgetB;
NPP1 10
NPP2 25
NPP3 15
NPP4 S
NPP5 16
NPP16 19
NPP17 10
NPP18 23
NPP19 9
NPP20 17

As before, we take the reference ¢/ = {NPP;,i € {6,7,...15}} to calculeevalue oAM for
all possible combinations of actions. Then, forreBl®P in the test sGtest |, we identify the

combination(s) of actions with the highest value AM and whose costs

Cost(i € {1,2,... N%"}) are lower than or equal to the given buddB:ts

Find act; :
Max(AM(N PP;, act;)),
act; C act;

s.t. Cost; < By;

ie{1,2,..,NG). (10)
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The results are shown in Table 4. Among all thesiids combinations of actions, the ones

that present the highest valueAM AN ““ =14 ) have a miminoostCos:™ — 19 . So,

all the NPPs in the test <G*<st  that have a budgéehithan or equal icost™  (i.e., NPP2,

NPP16 and NPP18) can be ameliorated to their quurebng best possible categories (as

presented in Section 4). Five of the remaining N@Res NPP1, NPP3, NPP17, NPP19 and

NPP20) can still be ameliorated to the same cayethat would be obtained by the actions in

the selact(with Cost < 10,15,10,9,17) | even though they have a budget, whiclover than,
Mag

Cost™™ = 19 and a performance lower thAM =14

Table 4. Assignments comparison

Original Best possible Limited Budget
No. Best Assignment
Assignment Assignment Assignment
NPP1 1 1 1 1
NPP2 3 3 3 3
NPP3 2 2 2 2
NPP4 3 1 1 lor2
NPP5 3 2 2 2o0r3
NPP16 3 2 3 3
NPP17 2 2 2 2
NPP18 3 2 2 2
NPP19 3 2 3 3
NPP20 2 1 1 1

The situation is different for NPP4 and NPP5 (Tab)e They are originally assigned to
category 3. NPP4 can be ameliorated by any conibmabf actions belonging to
act(with Cost <'5), Among all the combinations of actions that hawe best value (AM  equal

to 7 and cost limited by the given budget, 73.9% laring NPP4 up to category 2 and 26.09%
can bring it to the best category. Instead, NPPBabe ameliorated to the best category by
any of the combinations: in particular, 18.52% loé tactions leave such NPP in category 3

whereas 81.48% bring it up to category 2.
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Table 5. Assignments for NPP4 and NPP5

Assignment 3 2 1
NPP4 0.00% 73.91% 26.09%
NPP5 18.52% 81.48% 0.00%

6 CONCLUSIONS

In this paper, we have developed a pragmatic ievelessification framework for identifying
ameliorative action(s) to reduce the vulnerabilith respect to intentional hazards of safety-
critical systems (in the example of reference, HaclPower Plants-NPPs). An MR-sort
classification model calibrated on a small-sizetl sle data representing a priori-known
classification examples has been used. Sensitiviligators have been introduced to evaluate
combinations of actions with respect to their &pilo reduce the vulnerability of the safety-
critical systems considered. A case study refertaniyPPs vulnerability to intentional attacks
has been worked out. The results show that therectianked as best according to the
proposed indicators give a satisfactory performanderms of reduction of vulnerability in
test NPPs, even in presence of budget constrdort®€xample, in the case without budget
constraints eight out of ten NPPs are amelioratetheir best possible categories, whereas
two of them remain in the same categories; in trestrained case still six of the ten NPPs are
brought to their best possible vulnerability classe

The proposed methodological framework provides weapful tool for systematically and
pragmatically evaluating the safety and vulnergbdis well as other characteristics of critical
systems.

For future research, the following issues will bengidered. Since one set of weights is
usually an insufficient basis for giving prioritighe sensitivity of investment priorities to the
weights of criteria can be tackle: for example[28][23][24] a "scenario” is introduced that
reflects a set of weights for each stakeholderh siscemphasis on particular aspects of safety

in the aftermath of a major nuclear incident.
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As presented in [25], an influential set of weigtds suggest R&D priorities in protection of
energy systems.

Moreover, a set of weights can also be brought therostakeholders, such as owners,
operators and users etc: each set of weights pedgdyrteads to variation in the preferred
safety investments [26].

In addition, although in this work significant effe have been made to assign numerical
values to the impacts of actions (in order to repné the problem as realistically as possible),
in a non-fictitious situation the task is expectetbe more complex. Actually, the relations
between the actions and the criteria taking intcoant the dependencies of different
attributes and systems are always difficult to tdgnin such cases, resorting to the judgment
of real experts and possibly to real historicabdaill be mandatory.

Finally, the inverse classification problem coutlthckled within an optimization framework.
Proper optimization algorithms could be considei@dthe optimal selection of protective
actions to apply to each considered safety-crisgatems (e.g., NPP). The results can, then,

be compared with the ones obtained by the sergitidlicators proposed in the present paper.
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APPENDIX A CLASSIFICATION MODEL FOR VULNERABILITY
ANALYSIS: THE MAJORITY RULE SORTING (MR-SORT) METHOD

The Majority Rule Sorting Model (MR-Sort) methodaisimplified version of ELECTRE Tri,
an outranking sorting procedure in which the assigmt of an alternative to a given category
is determined using a complex concordance non-discce rule (14)(15). We assume that
the alternative to be classified (in this papesafety- critical system or infrastructure of
interests, e.g., a nuclear power plant) can beridbestby an n-tuple of elements= {x,, %, ...,

X, ---, %}, which represent the evaluation of the alternaiwith respect to a set af criteria
(by way of example, in the present paper the ¢aitesed to evaluate the vulnerability of a
safety critical system of interest may include ptsysical characteristics, social criticality,
level of protection and so on: see Section 2). \Meotk the set of criteria by N = {1, 2, ...,
i, ..., N} and assume that the valuesf criterioni range in the séX; (20) (for example, in the
present paper all the criteria range in [0, 1])eTWR-Sort procedure allows assigning any
alternative = {1, 22, ...,z 2, EX =X X Xox . x X; X .. x X, t0 a particular
pre-defined category (in this paper, a class ohendbility), in a given ordered set of

categories, {€: h =1, 2, ..., M}; as mentioned in Section\2= 4 categories are considered
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in this work:A! = satisfactoryA® = acceptabled® = problematicA* = serious.
To this aim, the model is further specialized ie tbllowing way:
» We assume thatX; is a subset ofR for ali € N and the sub-intervals
(xtx7,..xl ., xM) of X; are compatible with the order on the real nerapi.e., for all
steXlaleXx? . ateXx! 2Mex™ | we have sz >2i>.>2!>.>z¥ | We assume
furthermore that each intenx/.n=12....M -1 has a smallest e, which implies
that=! > > 2" | The vecto" = {v,05,...0!,...05}  (containing the lower boundsrothe
intervalsx! of criteriegc =1,2,..,n in correspondence of catggb) represents the
lower limit profile of category” .

» There is a weighW; associated with each critei =1,2,...,n, quantifying the

relative importance of criterionin the vulnerability assessment process; notiaettie

w; = 1
weights are normalized such thi=1.

In this framework, a given alternativ = {z1,22,...z;,...22}  iS assigriedcategory

CMh=23,..M-1, iff(]

Z w; > A and Z w; < A,

iEN:z; > bl i€Nz; >bl Tt (A.1)
wherel is a threshold (& A < 1, e.g., in this pape=0.9) chosen by the analyst. Rule
(A.1) is interpreted as follows. An alternative belongs to categor¢™ if: 1) its

evaluations in correspondence of the n criter@, (the value{z:, 2, ....,zi, ..z} ) are at

least as good ot ( lower limit of category Ah witspect to criterion),?=1,2,...,n,

on a subset of criteria that has sufficient impaeta (in other words, on a subset of
criteria that has a weight larger than or equah&threshold. chosen by the analyst);
and at the same time 2) the weight of the subsetitiria on which the evaluations
{z1,22,...2;,...2n} @re at least as good® 5  (lower limit of the ss®iwe categorg”—
with respect to criterion),? =1,2,...,nis not sufficient to justify the assignmeifitxo
to the successive categwch—! [J .

W 2 A
Notice that alternative is assigned to the best categC.l,/ i€N:z; >b} and it
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Z w; < A

is assigned to the worst categoC™  iema>pM . Finally, ig
straightforward to notice that the parameters @hsa model are théM-1) - nlower
limit profiles (n limits for each of theM-1 categories), the n weights of the criteria

Wi, W2, ..., Wi, ..., Wn, and the thresholl for a total of f-M+1) parameters.
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