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ABSTRACT 

A classification model based on the Majority Rule Sorting method has been previously 

proposed by the authors to evaluate the vulnerability of safety-critical systems (e.g., nuclear 

power plants) with respect to malevolent intentional acts. 

In this paper, we consider a classification model previously proposed by the authors based on 

the Majority Rule Sorting method to evaluate the vulnerability of safety-critical systems (e.g., 

nuclear power plants) with respect to malevolent intentional acts. The model is here used as 

the basis for solving an inverse classification problem aimed at determining a set of protective 

actions to reduce the level of vulnerability of the safety-critical system under consideration.  

To guide the choice of the set of protective actions, sensitivity indicators are originally 

introduced as measures of the variation in the vulnerability class that a safety-critical system 

is expected to undergo after the application of a given set of protective actions. These 

indicators form the basis of an algorithm to rank different combinations of actions according 

to their effectiveness in reducing the safety-critical systems vulnerability. Results obtained 

using these indicators are presented with regard to the application of: (i) one identified action 
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at a time, (ii) all identified actions at the same time or (iii) a random combination of identified 

actions. The results are presented with reference to a fictitious example considering nuclear 

power plants as the safety-critical systems object of the analysis. 

  

KEYWORDS: safety-critical system, malevolent intentional attacks, vulnerability analysis, 

protective actions, Majority Rule Sorting (MR-Sort), classification model, inverse 

classification problem, sensitivity indicator 

 

Notations 

     subcriterion j 

                                    main criterion i  

    Nuclear power plant i 

     vulnerability category i 

     protective action k 

     weight of the influence of action k on attribute j 

     after action subcriterion j 

     limited budget 

     number of NPPs that are improved after the action(s) 

     estimate of the percentage of new NPPs that can be  

    expected to be improved 

      number of NPPs that are expected to be deteriorated after 

    the action(s) 

     estimate of the percentage of new NPPs that can be  

    expected to be deteriorated 

   expected “net” amount of ameliorated NPPs 

    total variation of category underwent by the ameliorated 
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NPPs 

    variation in vulnerability category that a new ameliorated 

    plant is  expected to undergo 

     total variation of category underwent by the deteriorated  

    NPPs 

     variation in vulnerability category that a new deteriorated 

    plant is  expected to undergo 

 “net” variation in vulnerability category that a newly  

    analyzed NPP is expected to undergo. 

     ratio between the sums of the variations of vulnerability  

    category underwent by the ameliorated NPPs and the sum of 

    the corresponding maximum possible category variations 

     level of action j applied on system i 

 

 

  

1. INTRODUCTION 

The vulnerability of safety-critical systems and infrastructures (e.g., nuclear power plants) is 

of great concern, given the multiple and diverse hazards that they are exposed to (e.g., 

intentional, random, natural etc.) [1] and the potential large-scale consequences. This justifies 

the increased attention for analyses aimed at (i) the systematic identification of the sources of 

system vulnerability, (ii) the qualitative and quantitative assessment of system vulnerability 

[2][3] and (iii) the definition of effective actions of vulnerability reduction.  

In a previous work [6], we have proposed an empirical classification framework to tackle the 

issue (ii) of assessing vulnerability to malevolent intentional acts. Specifically, we have 
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adopted a classification model based on the Majority Rule Sorting (MR-Sort) method [7] to 

assign an alternative (i.e., a safety-critical system) to a given (vulnerability) class (or 

category). The MR-Sort classification model contains a group of (adjustable) parameters that 

are calibrated by means of a set of empirical classification examples (also called training set), 

i.e., a set of alternatives with the corresponding pre-assigned vulnerability classes [6][7]. For 

further details on this method, the interested reader can refer to the Appendix A at the end of 

the paper. It is worth mentioning that other majority rule voting methods are widely used in 

technical decision making problems for vulnerability analysis of systems, see, e.g., [21]. 

In this paper, we are still only concerned with intentional hazards (i.e., those related to 

malevolent acts) and address issue (iii) above (i.e., the definition of the actions to undertake 

for reducing the level of system vulnerability). This issue is difficult to be resolved by 

traditional risk assessment methods [1][4][5]. On the contrary, the base model developed in 

Ref. [6] can be extended to address the problem relates to the problem of optimal risk 

reduction, e.g. by optimization of protective measures [29][30][31]. In other words, an 

inverse classification problem [8][9][10] of determining a set of protective actions that can 

effectively reduce the level of vulnerability of a safety-critical system [11], taking into 

account a specified set of constraints (e.g., budget limits) [8].  

The present analysis can be considered part of an encompassing business process of safety 

management (see, e.g., [22]), where we seek for the best compromise among risks, costs and 

benefits in allocating investments in safety-critical systems in the presence of uncertainties 

[28]. Correspondingly, the presented algorithms can be considered part of an encompassing 

business process of safety management [22]. Mathematically speaking, the aim is to identify 

how to modify some features of the input patterns (i.e., the attributes of the safety-critical 

system under analysis) such that the resulting class is changed as desired (i.e., the 

vulnerability category is reduced to a desired level). To achieve this objective, novel 

sensitivity indicators [12] are introduced for quantifying the variation in the vulnerability 

class of a safety-critical system resulting from the application of a given set of protective 

actions [13]. Using these indicators as the basis for a ranking algorithm, changes in system 
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vulnerability can be achieved considering: (i) one identified action at a time, (ii) all identified 

actions at the same time or (iii) a random combination of identified actions. The proposed 

indicators also allow different combinations of actions to be ranked and their effectiveness in 

reducing the vulnerability under specified budget constraints can be evaluated on a new (test) 

set of (unknown) safety-critical systems (i.e., systems not used before to calibrate/train the 

classification model). In this context, it is known that existing risk assessment methodologies 

may fail to account for unknown and emergent risks that are typical of large-scale 

infrastructure investment allocation problems. On the other hand, in modern portfolio theory, 

it is well known that a diversified portfolio can be very effective to reduce non-systematic 

risks. The approach of diversification is equally important in choosing robust portfolios of 

infrastructure projects that may be subject to emergent and unknown risks [27]. The proposed 

methodology is expected to contribute also in this direction of optimal classification of 

options/investments and combinations of the same. 

The remainder of the paper is structured as follows. Section 2 recalls the modeling framework 

for the analysis of vulnerability to intentional hazards. With reference to that, Section 3 

introduces the problem of inverse classification. Section 4 describes the sensitivity analysis 

indicators introduced to tackle the inverse classification problem of Section 3. Section 5 

illustrates their use for the identification of protective actions. In Section 6, a case study is 

proposed to show the application of the method. Finally, Section 7 gives the discussion and 

conclusions of this research. 

 

2 THE CLASSIFICATION MODEL FOR THE ASSESSMENT OF 

VULNERABILITY TO INTENTIONAL HAZARDS  

We limit the vulnerability analysis of a system to the evaluation of the susceptibility to 

intentional hazards and adopt the three-layers hierarchical model developed in [6] (Figure 1). 

The susceptibility to intentional hazards (level 1 in Figure 1) is characterized in terms of 

attractiveness and accessibility (level 2 in Figure 1). These attributes are hierarchically broken 
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down into factors which influence them, including resilience interpreted as pre-attack 

protection (which influences on accessibility) and post-attack recovery (which influences on 

attractiveness). The disaggregation is made in 6 criteria (level 3 in Figure 1): physical 

characteristics (x1), social criticality (x2), possibility of cascading failures (x3), recovery 

means (x4), human preparedness (x5) and level of protection (x6). These six criteria are 

further decomposed into a layer of m=16 basic subcriteria { }(level 4 in 

Figure 1), for which data and information are collected in terms of quantitative values or 

linguistic terms depending on the nature of the subcriterion. The descriptive terms and/ or 

values of the fourth layer subcriteria are, then, scaled to numerical categories. The criteria 

included in the layers are defined and assigned “preference directions” for treatment in the 

decision-making process. The preference direction for a given criterion (e.g., a physical 

characteristic or parameter of the system) indicates the state towards which it is desirable to 

“move the parameter” in order to reduce system susceptibility: in other words, the preference 

direction is assigned from the point of view of a “defender” who is concerned with protecting 

the system from an attack [16]. Finally, to get the value of the six third-layer criteria 

, (i) we assign weights to each subcriterion to indicate its importance and (ii) 

we apply a simple weighted sum to the categorical values of the constituent subcriteria 

. These m=16 criteria  are evaluated to 

assess the vulnerability of a given safety-critical system of interest (e.g., a nuclear power 

plant – NPP).  

For the purposes of the present analysis, M = 4 levels (or categories) of system vulnerability 

 are considered: 1 = satisfactory, 2 = acceptable, 3 = problematic and 4 = 
serious. 
Then, the assessment of vulnerability corresponds to a classification problem: given the 

definition of the characteristics of a critical system in terms of the sixteen criteria above, 

assign the vulnerability category (or class) to which the system belongs. 

The classification model is based on the Majority Rule Sorting (MR-Sort) method 

[7][14][15]; the model contains a group of (adjustable) parameters that have to be calibrated 
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by means of a set of empirical classification examples (the training set), i.e., a set of 

alternatives with the corresponding pre-assigned vulnerability classes. Further details about 

the classification model are not reported here for brevity: the interested reader is referred to 

[16]. 

 

Figure 1. Hierarchical model for susceptibility to intentional hazards [16] 

 

3. INVERSE CLASSIFICATION PROBLEM FOR PROTECTIVE 

ACTIONS IDENTIFICATION 

We define an inverse classification problem aimed at finding a combination of actions 

reducing the vulnerability of a (group of) safety-critical system(s) eventually under budget 

limitations.  
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Figure 2. Schema of direct actions for basic criteria 

To illustrate the methodology, we consider a set of N NPPs ( ) characterized 

by m = 16 basic features ( ). On the basis of these m=16 features, the 

NPPs are assigned to M=4 pre-defined categories ( ), where  

represents the best situation, i.e., lowest vulnerability. Let  denote the 

available set of actions, each of which can influence one or more basic criteria 

 (Figure 2) with different intensity, as measured by a set of coefficients 

. In other words,  is the “weight” of the influence of 

action k on attribute j (the higher the absolute value of , the stronger the effect of 

action k on attribute j). Notice that a positive (resp. negative) coefficient  means that 

action k has an ameliorative, positive (resp. deteriorative, negative) effect on attribute j, that is, 

it changes the corresponding value towards (resp. away from) the “preference direction” of 

attribute j; on the contrary, if  is equal to zero, then criterion j is not influenced by 

action k. “Negative” relationships objectively exist. Actually, taking one action to improve 

the performance of one specific criterion may lead to a “negative” change in some of the 

others. For example, increasing the number of backup components on site may lead to an 

increased number of workers to operate and maintain them, which may increase the 

possibility of a larger number of injuries of the people exposed to an attack. If the analyst who 
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builds the inverse classification model were not able to identify and quantify these “negative” 

connections (i.e., the coefficients ), then the (positive) effect of a given combination of 

actions on a system could be overestimated, with serious drawbacks on the process of 

resources allocation for system protection. 

Significant efforts have been made to assign numerical values to the impacts of actions, in 

order to represent the problem as realistically as possible. However in a non-fictitious 

situation, the task is expected to be more complex. Actually, the relations between the actions 

and the criteria taking into account the dependencies of different attributes and systems are 

always difficult to identify: in such cases, resorting to the judgment of real experts and 

possibly to real historical data will be mandatory. 

The implementation of one or more actions modifies the attribute values  

and as a result, the vulnerability of the system (i.e., the assignment by the classification model) 

may change. In this paper, we assume that the total effect of the available set of actions 

 on criterion j is obtained by a linear superposition of the effects of 

each action : 

         (1) 

where  is the value of attribute j after the identified set of available actions has been 

implemented. 

Also, let  denote the cost of the combination of actions  applied to 

. The inverse classification problem can then be formulated as follows: identify the set 

of actions  that improve the vulnerability of the system to a demanded 

vulnerability category  while minimizing the cost, i.e.,  

        (2) 

Alternatively, if it is known that the budget Bi is limited for each plant NPPi, the formulation 

becomes: improve the systems to the best possible vulnerability category 
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, while keeping the cost below the available budget B: 

       (3) 

To address the inverse classification problem, we adopt a pragmatic approach based on 

sensitivity analysis [17][18][19], introducing indicators that quantify the variation in the 

vulnerability class that a safety-critical system is expected to undergo upon implementation of 

a given set of actions. 

 

4 SENSITIVITY INDICATORS FOR DRIVING THE INVERSE 

CLASSIFICATION PROBLEM 

We consider the group of N’ vulnerability-class labeled known (available) safety-critical 

systems (NPPs) used to train the MR-Sort classification model and study the sensitivity of 

their categories of vulnerability to the implementation of the available protective actions. We 

denote the original categories of these NPPs as  and the new 

categories resulting from the application of a set of protective actions as 

.  

Let  be the number of NPPs that are improved after the action(s): 

        (4) 

Then,  can be interpreted as an estimate of the percentage of new (i.e., different from the 

ones of the training set) NPPs that can be expected to be improved after such action(s) is (are) 

implemented on them. 

Dually, , is the number of NPPs that are expected to be deteriorated after the action(s):  
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         (5) 

Notice that a “deterioration” (i.e., an increase in the vulnerability category) is possible 

because some of the actions may have positive effects on some subcriteria but negative 

effects on some others (see Section 3). Then,  can be interpreted as an estimate of the 

percentage of new NPPs (i.e., different from the ones of the training set) that can be expected 

to be deteriorated after such action(s) is (are) implemented on them.   

We consider the quantity  to combine the effects of both positive and 

negative influences of the actions in the expected “net” amount of ameliorated NPPs. 

Considering that the evaluation framework is based on M=4 categories, it seems reasonable to 

consider not only the number of NPPs that are ameliorated or deteriorated, but also the 

amount of variation in category of vulnerability of each of them. To this aim, we introduce 

the following indicators to combine the amount of variation in vulnerability with the number 

of NPPs whose vulnerability category has changed after the actions.  

In particular,  is defined as the total variation of category underwent by the ameliorated 

NPPs: 

       (6) 

Thus,  can be interpreted as the variation in vulnerability category that a new 

ameliorated plant is expected to undergo when the chosen combination of actions is applied. 

Dually,  is defined as: 
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        (7) 

Thus,  can be seen as the variation in vulnerability category that a new deteriorated 

plant is expected to undergo when the chosen combination of actions is applied.  

Finally,  combines the effects of both positive and negative influences 

of the actions and it can be seen as the “net” variation in vulnerability category that a newly 

analyzed NPP is expected to undergo after the application of the given set of actions.  

The net expected variation in vulnerability category  quantifies the influence of the 

actions upon the NPPs. However, this measure does not take into account the original 

category assignment of the NPPs: for example, in practice there is a difference between 

taking a NPP from category 4 to 3 and taking it from 2 to 1, even if the category variation is 1 

in both cases. To consider this, we introduce the indicator , defined as the ratio between 

the sums of the variations of vulnerability category underwent by the ameliorated NPPs and 

the sum of the corresponding maximum possible category variations (i.e., the sum of the 

category variations that the NPPs would undergo if they were ameliorated to the best possible 

vulnerability category): 

        (8) 

The indicator  quantifies the influence of the actions on NPPs, relative to their original 

categories: the lower  is, the higher the influence of the chosen set of actions is on the 

NPPs originally of a relatively low category.  

Based on the above indicators, an algorithm is proposed to rank different combinations of 

actions according to their effectiveness in reducing the vulnerability of safety-critical systems. 
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The actions with positive influences are obviously preferred. On the contrary, concerning the 

ones with negative influences, the rationality of being chosen as ameliorative actions should 

be reconsidered. The analyst may replace/modify/delete them from the original considered 

action set. The algorithm proceeds as follows: 

(1) Rank the (combinations of) actions according to the value of  (the higher the value of 

, the more effective the combination of actions in reducing vulnerability): 

• combinations of actions that have a negative value of  ( <0) are expected to 

increase the vulnerability of a NPP: this is due to the fact that some actions may have 

a deteriorated effect on some of the subcriteria that more than counter balances the 

positive effects on their subcriteria. The identification of the combination of actions 

with <0 allows the analyst to (i) study the mechanisms of influence of the actions 

on the basic subcriteria (Layer 4 in Figures 1 and 2) and (ii) if possible, eliminate the 

“negative connections”, i.e., the negative dependencies between some actions and 

some criteria (e.g., by identifying alternative actions for dealing with these “critical” 

subcriteria);  

• the actions that have a positive value of  ( >0) are expected to reduce the 

vulnerability and are assigned higher rankings (the higher , the higher the 

ranking); 

(2) If several combinations of actions have the same value of , then consider the other 

indicators (i.e.,  and ): depending on the judgment of the DMs, higher importance 

may be given to those actions that produce a larger expected number of improved NPPs ( ) 

or to those that generate a higher “expected class improvement” ( ). 

(3) If some combinations still have the same ranking, analyze indicator  to check which 

actions have stronger impact on the NPPs of low categories.  
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Figure 3. Schema of decision logic for selecting an action  

5 CASE STUDY 

The sensitivity analysis proposed in Section 4 is applied on a case study concerning the 

vulnerability analysis of NPPs [6]. We refer to the n=6 main criteria  of the 

hierarchical modeling presented in [6] and recalled in Section 2: physical characteristics (x1), 

social criticality (x2), possibility of cascading failures (x3), recovery means (x4), human 

preparedness (x5) and level of protection (x6); these criteria are numbers scaled in the range 

[0,1]. Then, the main criteria are successively broken into a layer of m=16 basic criteria 

(Figure 2). Finally, M=4 vulnerability categories  are defined as: 1= 

satisfactory, 2= acceptable, 3= problematic and 4 = serious (Section 2).  

As shown in Figure 2 and anticipated in Section 3, we define F=13 direct actions 

, each acting on one or more subcriteria (Table 1). All the actions have 

multiple influences on different criteria, with possibly positive or negative effects: for 

example, the action “reduce the number of workers” has an obvious direct influence on the 

subcriterion “Number of workers”, but may also imply, e.g., (i) reducing the number of 

production units, the number of accesses to the plant, the number of installed backup 

components and external emergency measures; (ii) increasing the duration of repair and 

recovery actions; (iii) enhancing the training; (iv) facilitating the safety management and 
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entrancing control and surveillance. The strengths of the influences of the actions on the 

different criteria are quantified by the different weights/coefficients reported in Table 1.  

Also, for each action we consider different levels of implementation (

), representing to what extent/ how far/ in which 

amount action j is applied on system i (notice that =0 means that action j is not applied to 

system i) (Table 1). 

Finally, for simplicity we assume that the cost related to the application of a given action is 

equal to the level  of the action: for example, referring to Table 1, if we choose to reduce the 

number of workers by 20%, the related cost is 1 in arbitrary units (since the action 

corresponds to level =1); on the contrary, if we reduce the number of workers by 30%, the 

cost is 3 (since the action corresponds to level =3). The idea is that the cost of an action 

increases (resp. decreases) with its “level” of “strength” of implementation. Notice that 

however, the levels assigned to the actions are not always strictly “mathematically” 

proportional to the change of value they produce in the corresponding criteria. In fact, for 

different actions, the three levels of “effects” on the corresponding directly influenced criteria 

may be of different notice. Sometimes they may be represented by a quantitative discrete 

number (e.g., for action “reduce number of production units” we have -1 production unit for 

level 1, -2 production units for level 2, -3 production units for level 3); sometimes they may 

be a percentage (as for the number of workers mentioned above). In addition, the costs of an 

action and the corresponding change in a criterion value are not strictly proportional either 

(e.g., the cost of training enhance may be the same for 50 and for 80 people, but different 

for100). In this view, choosing the cost of an action equal to the level lij of implementation of 

the action is a (maybe rough) compromise between simplicity and pragmatic engineering 

sense. Obviously, in reality, the costs should be defined in a more sophisticated way and 

possibly they should be different for different levels of different actions towards different 

criteria. 

Table 1. Available actions and coefficients of influences of the actions on different subcriteria 
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No. Action description 

act1 Reduce number of workers 

act2 Reduce nominal power production 

act3 Reduce number of production units 

act4 Reduce percentage of contribution to the welfare 

act5 Increase number of installed backup components 

act6 Increase external emergency measures 

act7 Increase duration of backup component 

act8 Reduce duration of repair and recovery actions 

act9 Enhance training 

act10 Enhance safety management 

act11 Reduce number of accesses 

act12 Enhance entrance control 

act13 Enhance surveillance 

 

 

 

Number 

of 

workers 

Nominal 

power 

production 

Number 

of 

production 

units 

Percentage 

of 

contribution 

to the 

welfare 

Size 

of 

served 

cities 

Connection 

distance 

Number of 

installed 

backup 

components 

External 

emergency 

measures 

Actions Crit1 Crit2 Crit3 Crit4 Crit5 Crit6 Crit7 Crit8 

act1 1 0 1 0 0 0 -0.4 -1 

act2 0 1 0 1 0 0 0 0 

act3 0.7 1 1 0 0 0 0.6 0 

act4 0 0 0 1 -1 0 0 0 

act5 -0.2 0 0 0 0 0 1 0 

act6 -0.1 0 0 0 0 0 0 1 

act7 0 0 0 0 0 0 0 0 

act8 0 0 0 0 0 0 0 0 
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act9 0 0 0 0 0 0 0 0 

act10 0 0 0 0 0 0 0 0 

act11 0 0 0 0 0 0 0 0 

act12 0 0 0 0 0 0 0 0 

act13 0 0 0 0 0 0 0 0 

 

 

Duration 

of backup 

component 

Duration of 

repair and 

recovery 

actions 

Training 
Safety 

management 

Physical 

size of 

the 

system 

Number of 

accesses 

Entrance 

control 
Surveillance 

Actions Crit9 Crit10 Crit11 Crit12 Crit13 Crit14 Crit15 Crit16 

act1 0 -0.2 0.5 0.5 0 1 0.4 0.4 

act2 0 0 0 0.2 0 0 0 0 

act3 0.2 0.3 0.4 0.2 0.7 0 0 0.3 

act4 0 0 0 0.1 0 0 0 0 

act5 0.5 0 -0.2 0.1 0 0 0 -0.15 

act6 0.3 0 -0.1 0.05 -0.3 0 0 -0.05 

act7 1 0 0 0.1 0 0 0 0 

act8 0 1 -0.2 0.1 0 0 0 0 

act9 0 0.5 1 0.2 0 0 0.2 0 

act10 0 0 -0.2 1 0 0 0 0 

act11 0 0 -0.1 0.1 0 1 0.4 0.1 

act12 0 0 -0.1 0.1 0 0 1 0 

act13 0 0 0 0.2 0 0 0 1 

 

 

No. level1 level2 level3 

act1 20% 25% 30% 

act2 20% 30% 40% 

act3 1 2 3 

act4 10% 20% 30% 

act5 1 2 3 

act6 0.5 1 2 

act7 12 24 48 
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act8 6 12 24 

act9 1 3 5 

act10 1 3 5 

act11 1 2 3 

act12 1 2 3 

act13 1 2 3 

 

 

In what follows, two analyses are performed: first, based on the indicators of Section 4, 

different combinations of actions are ranked according to their ability in reducing the 

vulnerability of a group of NPPs (Section 5.1); then, the inverse classification problem of 

Section 3 is tackled using the sensitivity indicators of Section 4 and taking into account the 

action costs and budget limitations (Section 5.2). 

5.1 Ranking different combinations of actions based on  

A set G of N (N=20) NPPs ( ) is available: 10 of them (NPPs from 

No.6 to No.15 ) are selected as a reference set to evaluate the 

sensitivity indicators; the remaining NPPs are regrouped to form a set Gtest 

( ) used to test the combinations of actions 

ranked using . Based on the reference set, we have performed an exhaustive calculation of 

the value of  for all the possible combinations of actions (in total, 4^13=67108864 

combinations). Then, we selected the ones (in total 29940 combinations) that have the (same) 

highest value of  (i.e., =14): these represent the optimal combinations of actions 

according to : in what follows, this set is referred to as .  

All the combinations of actions belonging to the set  are applied to each of 

the N (N=20) NPPs in G: the resulting categories ( ) are reported in Table 2. 

Note that the actions are ranked according to values of  that are evaluated on a group of 

reference plants ( ): in this view, they provide an indication only on the expected 

performance of the actions on new plants and, thus, they may not provide any indications 
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about the combination of actions that is optimal for one particular plant. Thus, in order to 

verify how close these sets of actions are to the combinations that are optimal for a particular 

NPP, we compare the assignments  (Table 2) with the best category that each NPP may 

reach ( ) (in other words,  is the category that NPPi reaches after the 

application of a combination of actions that is the optimal one for that particular plant). In 

order to do so, another exhaustive calculation is done upon the group G with the purpose of 

finding the actions that bring each particular NPP to the best category possible (notice that for 

some NPPs, reaching category 1 may not be possible). All the possible combinations of 

actions are tested on each NPP in order to find the best assignment  for each of them. The 

results are shown in Table 2. The first column of the results shows the original assignments 

for the NPPs in the studied set G. The second column shows the corresponding possibly best 

assignments  and the third column provides the new assignments  after the application 

of the combinations of actions included in .  

Analyzing the best assignments  of the NPPs in the reference set , we 

observe that they coincide perfectly (100%) with the assignments  obtained 

after the application of the actions in . If we take the NPPs in the test set as 

new NPPs and compare the assignments obtained by these two methods with the original 

assignments , we find that:  (i) all the NPPs are stable or 

ameliorated after the application of the combinations of actions in ; (ii) 

there are 2 out of 10 NPPs that are not ameliorated to the best category  (i.e., NPPs 16 and 

19): they remain in the same category; instead, 8 out of 10 NPPs are ameliorated to their best 

possible categories: then, the probability that the combinations of actions  

ameliorate a new NPP to its best possible category  is 80%.  

Table 2. Comparison of assignments: Best possible Assignment  and After action 

Assignment  listed with NPPs that are differently assigned highlighted (NPP16, NPP19) 
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No. Original Assignment 
Best possible Assignment 

��
� 

After action Assignment 

��
�
′ 

NPP1 1 1 1 

NPP2 3 3 3 

NPP3 2 2 2 

NPP4 3 1 1 

NPP5 3 2 2 

NPP6 2 1 1 

NPP7 2 1 1 

NPP8 4 2 2 

NPP9 4 2 2 

NPP10 4 3 3 

NPP11 1 1 1 

NPP12 2 1 1 

NPP13 3 2 2 

NPP14 3 1 1 

NPP15 4 1 1 

NPP16 3 2 3 

NPP17 2 2 2 

NPP18 3 2 2 

NPP19 3 2 3 

NPP20 2 1 1 

 

 

5.2 Constrained inverse problem: identification of the best combination of actions 

considering constraints 

In a more realistic case, the cost of the protective actions should be considered. Although in 

reality the costs of different actions can be different, and the same action may cost differently 

when applied to different NPPs, for simplicity, in this paper we define the  of a 

combination of actions (in arbitrary units) as the sum of the levels  of the actions: 
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        (9) 

We assume that a budget  is allocated for the improvement of the generic power plant 

: the budgets allocated for the NPPs of the test set 

 are shown in Table 3.  

Table 3. Budgets available for the NPPs belonging to the test set Gtest 

No. Budget �� 

NPP1 10 

NPP2 25 

NPP3 15 

NPP4 5 

NPP5 16 

NPP16 19 

NPP17 10 

NPP18 23 

NPP19 9 

NPP20 17 

 

 

As before, we take the reference set  to calculate the value of  for 

all possible combinations of actions. Then, for each NPP in the test set , we identify the 

combination(s) of actions with the highest value of  and whose costs 

 are lower than or equal to the given budgets : 

        (10) 



 22

The results are shown in Table 4. Among all the possible combinations of actions, the ones 

that present the highest value of  ( ) have a minimum cost . So, 

all the NPPs in the test set  that have a budget higher than or equal to  (i.e., NPP2, 

NPP16 and NPP18) can be ameliorated to their corresponding best possible categories (as 

presented in Section 4). Five of the remaining NPPs (i.e., NPP1, NPP3, NPP17, NPP19 and 

NPP20) can still be ameliorated to the same category that would be obtained by the actions in 

the set , even though they have a budget, which is lower than, 

 and a performance lower than . 

Table 4. Assignments comparison 

No. 
Original 

Assignment 

Best possible 

Assignment 
Best Assignment 

Limited Budget 

Assignment 

NPP1 1 1 1 1 

NPP2 3 3 3 3 

NPP3 2 2 2 2 

NPP4 3 1 1 1 or 2 

NPP5 3 2 2 2 or 3 

NPP16 3 2 3 3 

NPP17 2 2 2 2 

NPP18 3 2 2 2 

NPP19 3 2 3 3 

NPP20 2 1 1 1 

 

The situation is different for NPP4 and NPP5 (Table 5). They are originally assigned to 

category 3. NPP4 can be ameliorated by any combination of actions belonging to 

. Among all the combinations of actions that have the best value of  equal 

to 7 and cost limited by the given budget, 73.91% can bring NPP4 up to category 2 and 26.09% 

can bring it to the best category. Instead, NPP5 cannot be ameliorated to the best category by 

any of the combinations: in particular, 18.52% of the actions leave such NPP in category 3 

whereas 81.48% bring it up to category 2. 
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Table 5. Assignments for NPP4 and NPP5 

Assignment 3 2 1 

NPP4 o.oo% 73.91% 26.09% 

NPP5 18.52% 81.48% 0.00% 

 

 

6 CONCLUSIONS 

In this paper, we have developed a pragmatic inverse classification framework for identifying 

ameliorative action(s) to reduce the vulnerability with respect to intentional hazards of safety-

critical systems (in the example of reference, Nuclear Power Plants-NPPs). An MR-sort 

classification model calibrated on a small-sized set of data representing a priori-known 

classification examples has been used. Sensitivity indicators have been introduced to evaluate 

combinations of actions with respect to their ability to reduce the vulnerability of the safety-

critical systems considered. A case study referring to NPPs vulnerability to intentional attacks 

has been worked out. The results show that the actions ranked as best according to the 

proposed indicators give a satisfactory performance in terms of reduction of vulnerability in 

test NPPs, even in presence of budget constraints: for example, in the case without budget 

constraints eight out of ten NPPs are ameliorated to their best possible categories, whereas 

two of them remain in the same categories; in the constrained case still six of the ten NPPs are 

brought to their best possible vulnerability classes. 

The proposed methodological framework provides a powerful tool for systematically and 

pragmatically evaluating the safety and vulnerability as well as other characteristics of critical 

systems. 

For future research, the following issues will be considered. Since one set of weights is 

usually an insufficient basis for giving priorities, the sensitivity of investment priorities to the 

weights of criteria can be tackle: for example, in [22][23][24] a "scenario" is introduced that 

reflects a set of weights for each stakeholder, such as emphasis on particular aspects of safety 

in the aftermath of a major nuclear incident.  
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As presented in [25], an influential set of weights can suggest R&D priorities in protection of 

energy systems.  

Moreover, a set of weights can also be brought by other stakeholders, such as owners, 

operators and users etc: each set of weights presumably leads to variation in the preferred 

safety investments [26].  

In addition, although in this work significant efforts have been made to assign numerical 

values to the impacts of actions (in order to represent the problem as realistically as possible), 

in a non-fictitious situation the task is expected to be more complex. Actually, the relations 

between the actions and the criteria taking into account the dependencies of different 

attributes and systems are always difficult to identify: in such cases, resorting to the judgment 

of real experts and possibly to real historical data will be mandatory. 

Finally, the inverse classification problem could be tackled within an optimization framework. 

Proper optimization algorithms could be considered for the optimal selection of protective 

actions to apply to each considered safety-critical systems (e.g., NPP). The results can, then, 

be compared with the ones obtained by the sensitivity indicators proposed in the present paper. 
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APPENDIX A CLASSIFICATION MODEL FOR VULNERABILITY 

ANALYSIS: THE MAJORITY RULE SORTING (MR-SORT) METHOD 

The Majority Rule Sorting Model (MR-Sort) method is a simplified version of ELECTRE Tri, 

an outranking sorting procedure in which the assignment of an alternative to a given category 

is determined using a complex concordance non-discordance rule (14)(15). We assume that 

the alternative to be classified (in this paper, a safety- critical system or infrastructure of 

interests, e.g., a nuclear power plant) can be described by an n-tuple of elements x = {x1, x2, ..., 

xi, ..., xn}, which represent the evaluation of the alternative with respect to a set of n criteria 

(by way of example, in the present paper the criteria used to evaluate the vulnerability of a 

safety critical system of interest may include its physical characteristics, social criticality, 

level of protection and so on: see Section 2). We denote the set of criteria by N = {1, 2, ..., 

i, ..., n} and assume that the values xi of criterion i range in the set Xi (20) (for example, in the 

present paper all the criteria range in [0, 1]). The MR-Sort procedure allows assigning any 

alternative  to a particular 

pre-defined category (in this paper, a class of vulnerability), in a given ordered set of 

categories, {Ch : h = 1, 2, ..., M}; as mentioned in Section 2, M = 4 categories are considered 
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in this work: A1 = satisfactory, A2 = acceptable, A3 = problematic, A4 = serious. 

To this aim, the model is further specialized in the following way: 

• We assume that Xi is a subset of  for all  and the sub-intervals 

 of  are compatible with the order on the real numbers, i.e., for all 

, we have . We assume 

furthermore that each interval  has a smallest element , which implies 

that . The vector  (containing the lower bounds of in the 

intervals  of criteria  in correspondence of category h) represents the 

lower limit profile of category . 

• There is a weight  associated with each criterion , quantifying the 

relative importance of criterion i in the vulnerability assessment process; notice that the 

weights are normalized such that . 

In this framework, a given alternative  is assigned to category 

, iff� 

      (A.1) 

where λ is a threshold (0 ≤ λ ≤ 1, e.g., in this paper λ=0.9) chosen by the analyst. Rule 

(A.1) is interpreted as follows. An alternative x belongs to category  if: 1) its 

evaluations in correspondence of the n criteria (i.e., the values ) are at 

least as good as  ( lower limit of category Ah with respect to criterion i), , 

on a subset of criteria that has sufficient importance (in other words, on a subset of 

criteria that has a weight larger than or equal to the threshold λ chosen by the analyst); 

and at the same time 2) the weight of the subset of criteria on which the evaluations 

 are at least as good as  (lower limit of the successive category  

with respect to criterion i ), , is not sufficient to justify the assignment of x 

to the successive category .� 

Notice that alternative x is assigned to the best category  if  and it 
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is assigned to the worst category  if . Finally, it is 

straightforward to notice that the parameters of such a model are the (M-1) · n lower 

limit profiles (n limits for each of the M-1 categories), the n weights of the criteria 

, and the threshold λ, for a total of (n·M+1) parameters. 

 

 


