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Abstract: The well known HOG (Histogram of Oriented Gradients) of Dalal and Triggs is
commonly used for pedestrian detection from 2d moving embedded cameras (driving assistance)
or static cameras (video surveillance). In this paper we show how to use and improve the HOG
detector in the UAV context. In order to increase the elevation angular robustness we propose
to use a more appropriate training dataset and sliding windows. We show results on synthetic

images.
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1. INTRODUCTION

With the general lowering of UAVS’ price and the recent
progresses in this field, this technology is becoming more
democratic for laboratories and companies of every size.
UAVs are more and more used for various tasks. Nowadays
they are currently considering using UAVs for searching
and rescuing people or guarding specific areas such as
nuclear plants or other sensitive areas. For these tasks
embedded human detection algorithms are required in
order to automatically detect people from the air.

1.1 Detection with background substraction

The detection of moving objects is obtained from the
difference between the current frame and a reference
frame, often called background image. The moving regions
are analysed in order to classify the moving objects.
The analysis can be done using a visual codebook (Zhou
and Hoang, 2005), by using a contour shape matching
(Toth and Aach, 2003) or by using other complementary
information such as a depth-map and perform tests to
reject objects not looking and not behaving like a human
being (Xu and Kikuo, 2003). In complement to motion the
thermal imagery is an interesting cue to identify human
beings (Han and Bhanu, 2007). Hoewever, these methods
are not suitable for human detection using a moving
camera.

1.2 Visible-only detection

Human detection is also possible using the visible informa-
tion of one camera. Gavrila and Giebel (2002) proposed to
use a hierachy of human contour templates obtained after a
training. This hierachy is used with the chamfer matching
algorithm to detect people. More discriminative meth-
ods based on powerful descriptors were also developed.
Descriptors permit to locally extract visual information.
The collected information is compared to a general model

of the object with a classifier. Papageoriou and Poggio
(2000) were among the first to propose such a pipeline.
They used wavelet descriptors, a sliding-window method
to exhaustively scan the image and a SVM classifier. Many
of nowadays’ object detectors are still based on this ap-
proach. Viola and Jones (2001) based their work on the
work of Papageoriou and Poggio (2000) and proposed the
use of integral images and a cascade classifier to speed up
the computation of Haar-like wavelets features and reach
real-time performances for face detection. The Histogram
of Oriented Gradients (HOG) detector (Dalal and Triggs,
2005) is an efficient people detector using a variant of the
very well-known and quite efficient SIFT descriptor (Lowe,
1999). Visual information are extracted using SIFT-like
descriptors over a sliding-window and compared to a gen-
eral model using a linear SVM classifier trained on people
images. This detector follows the classic pipeline. Zhu et al.
(2006) proposed to use integral images and a cascade of
HOGs to speed up the computation. Wang et al. (2009)
proposed a more robust detector by using local binary
patterns in complement with the HOG. The SIFT-like
HOG descriptor is still one of the most descriminative
descriptor for object detection.

1.3 Multiple information approach for detection

There are approaches combining multiple descriptors, im-
age features and/or cues to increase the detection rate.
Wojek and Schiele (2008) showed that combining HOG,
Haar-like descriptors, shaplets and the shape context out-
perform the HOG detector alone. Dollar et al. (2009)
proposed a mix between the detector of Viola and Jones
(2001) and the HOG detector. This detector computes
very simple rectangular features on integral images of
several image channels : LUV, gradient magnitude and
six "HOGs channels”. A fast soft-cascade classifier is used
to classify. Benenson et al. (2012) proposed another variant
of the detector of Dolldr et al. (2009) but running at



100Hz by both using stereo information and a multi-scale
learning.

1.4 Multiple parts detection

The human body can be considered as a set of parts
instead of one big monolithic part. Felzenszwalb and
Huttenlocher (2005) proposed a method to detect people
by parts and re-build human models from these parts by
using a pictural structure reprensentation. Each part of the
human model has to be separately learned and an incorrect
labelling of human parts could decrease the performances
of the detector (Felzenszwalb et al., 2010). Felzenszwalb
et al. (2010) introduced the latent SVM classfier : during
the training phase the most discriminative information are
selected so that the final trained classifier be more robust
(Felzenszwalb et al., 2010).

1.5 Euxisting work for detecting human from the air

Detecting human beings from a UAV is a tough task, and
it becomes a tougher task if we take into account the
various possible human poses. Most human detectors focus
on detecting people in upright poses at nearby distances
and from a more or less invariant view-point. The current
two main applications of human detection are the security
watching and the avoidance of pedestrians in the street.
Nowadays little work has been done on detecting human
from a UAV.

Gszezak et al. (2011) proposed to use both thermal and
visible imagery to better detect people and cars, features
extracted on thermal and visible imagery are fused to-
gether boosting the confidence level of detection. Indeed,
the thermal camera is used for extracting Haar-like fea-
tures while the optical camera is used for a contour shape
analysis as a secondary confirmation to better confirm the
detection. This method permits to detect upright people at
about 160m distance, with a fixed camera pitch of minus
45 degrees and in real-time. This method doesn’t seem
suitable for detecting people closer to the UAV.

Rudol and Doherty (2008) also uses both thermal and vis-
ible imagery but in a pipeline way. They first identify high
temperature regions of the thermal image and they reject
the regions not fitting a specific ellipse. The corresponding
regions are then analyzed in the visible using a relaxed
Haar-like detector using the Leinhart extention. Upright
and seated people can be detected with this method.
However the more the UAV is close or at low altitude
the more the thermal imagery become noisy and then
tricky to analyse using only thresholding and ellipse fitting.
Performances seem dependent on the distance.

Reilly et al. (2010) have a different approach. Their
method is based on using shadows of human beings as
a clue to localize human beings. The main problem with
this technique is that we have to make strong assumptions
on weather conditions and it also seems to be de-facto
dependent on altitude.

In a different way Andriluka et al. (2010) evaluate various
existing detection methods for detecting victims at nearby
distances. According to this study, part-based detectors
are better suited for victim detection from a UAV because

they natively take into account the articulation of the
human body. Part-based detection is also better suited for
detecting from complex view-points. The authors propose
to use complementary information using several detectors
and inertial sensor data to reach better detection rate.
However part-based detectors are not real-time (Felzen-
szwalb and Huttenlocher, 2005) and they are not very
suitable for detecting people far from the camera.

1.6 Content of the paper

Automatically detecting people implies to take into ac-
count many different parameters. They are : the position
and the orientation of the embedded camera according to
the target, the distance, the variability of human poses,
the illumination (because it can rapidly change and/or be
different in the same image), the occlusion with objects
of the environment, etc. In this paper we want to detect
upright people in cleared areas and in a 10 to 80m distance
range. This work is mainly about the management of the
distance and the management of the position and the
orientation of the camera according to the target.

This paper is a study of the HOG detector (Dalal and
Triggs, 2005). In the first part, the general principle of
the HOG detector is explained and the key configuration
parameters are discussed. The UAV context is described
and analysed. The second part is about how extend the
boundaries of the detector with what improvements. The
final part is about the analysis of the results obtained with
these improvements.

2. STUDY OF THE HOG DETECTOR IN A UAV
CONTEXT

2.1 The HOG detector

How it works  The detection is performed as it follows :
the image is exhaustively scanned by a sliding detection
window of a specific size and ratio as showed in figure
1b. An object is detected if the combination of all the
histograms computed within this detection window match
a general model of the object class. In order to detect
objects of different sizes we build an image pyramid from
the original input image and we scan all the levels as
showed in figure la. The configuration of this image
pyramid is directly related to the expected sizes of the
objects we are looking for.

For each detection window the histograms are computed in
a very specific manner. The detection window is composed
of overlapped blocks as showed in figure lc (in blue). A
block is composed of a certain number of cells. For each
cell we compute an histogram of the oriented gradients.
Typically a block is composed of four squared cells. The
histogram is divided by bins, typically nine bins from Odeg
to 180deg as recommanded by Dalal and Triggs (2005). All
the histograms of the blocks are finally locally normalized
using the L2-Norm or the L2-Hys Norm.

The data computed within the sliding detection window
is compared to a general model. The general model of the
object class is built using a SVM classifier trained using
the appropriated training images (positive and negative
case images).



Fig. 1. Image pyramid, scanning with the sliding window,
computation of the histograms and normalization for
each overlapped block (in blue)

The image pyramid  An image pyramid is required for
finding objects of different sizes. Building the right image
pyramid is very important. Three parameters are required
to build an image pyramid : a number of levels or a scale
factor, the minimum and the maximum scale. If the setting
of the parameters is maladjusted then objects could be
missed. The default implementation of the HOG detector
uses a scale factor of 1.05 between following levels.

The detection window The ratio of the detection window
is important, a vertical one-half ratio is usually chosen in
case we want to detect upright people in a pedestrian-view
scenario. We could think of using an horizontal one-half
ratio to detect cars but this is obviously dependent on
the view-point. The ratio of the detection window should
change with the view-point to better match the shape of
the object, yet it depends on the nature of the object.
Changing the ratio of the detection window often requires
to change the block configuration.

The training images  Detection performances could be
improved by a more judicious choice of the training images.
Indeed, it is possible to chose the negative training images
according to the environment in order to better train
the classifier for the specific hard cases we can encounter
in this environment. Moreover, choosing better positive
training images can also improves the detection rate by
reinforcing the general object model. The training image
dataset should be revelant to the UAV context.

2.2 The UAV Context

Unconventional view-points  UAVs move in a 3d world.
A drone’s camera undergoes rolling, pitching, heading or
a combination of all and this makes the detection more
complex. Even with a camera stabilizer there will always
be an important elevation angle between the scanned area
and the drone. Besides as people can be located at different
places of the scanned area, the elevation angles from the
human beings to the camera can be very different. To
detect people from the air the detector must be capable
of dealing with angles, and especially with the elevation
angle.

Wide distance ranges  People can be far or close to the
drone. The distance range can be very important and
then requires many more scanning with many more scales
(big image pyramid). The bigger the image pyramid is
the more the detection is timeconsuming. Besides, people
can be missed with a too spaced image pyramid. A naive
approach would be to focus the detection process on a
specific distance range and the movement of the UAV
would make possible an exhaustive scanning of the area.

onboard
camera

elevation

altitude

ground

Fig. 2. Using elevation and distance for building image
pyramid

All we need to know is the distance along the camera axis
from the camera to half the average size of people. The
distance can be obtained using the elevation angle and
the altitude of the drone minus half the average size of
people. The principle is illustrated in figure 2, vFOV means
vertical field of view and rvFOV means restricted vertical
field of view. Of course, we have to make the assumption
the ground is flat or almost flat. If we know the average
expected size of human beings at a certain distance then
we can deduce the average expected size of human beings
at any distances and thus build a dense image pyramid
around this scale. A wider image pyramid can be built by
repeating this principle on a restricted vertical field of view
as showed in figure 2.

Changing weather conditions UAVs are outdoor robots,
they are subject to weather conditions. The detection
method should be robust to illumination changes and not
relies on human shadows such as (Reilly et al., 2010) did.
The HOG detector is natively quite robust to illumination
changes because of the local block normalization but a
multi-cues approach could help make the detection even
more robust to this.

3. EXTEND THE BOUNDARIES OF THE
DETECTOR

3.1 Important aspects to improve

Dealing with angles  To be really usable in a UAV context
the HOG detector must be robust to elevation angles
between people in the area and the drone’s camera, as it
is showed in figure 3. This angle cannot be compensated.

Attenuate the impact of people distance  The distance has
too drawbacks : the more people are far from the camera
the more it is possible to miss them during the detection
and it takes more computation time. Indeed, detecting
smaller people requires to build an image pyramid with
bigger image scales, thus more data has to be computed
and compared. The classic HOG implementation is not
appropriate when people are far from the camera, as in a
UAV context.

3.2 The datasets

The synthetic images were generated using POV-Ray. The
human models were generated with Makehuman and the
different poses mimiced using Blender. Eighteen different
human models were generated. Half of the models were
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Fig. 3. Camera position for virtual image training
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Fig. 5. GMVST2 image examples

male, the other half were female. Sub-models were gen-
erated by three times slightly changing the pose of each
model and twice for the last model. At the end there were
sixty different human models for the training images. The
three different poses were : people walking, people making
distress signs and people in relaxed pose. Tweenty other
models were generated for the testing images. They were
generated the same way but using different human models.

GMVST : Generalized multi-view synthetic training dataset*

The positive training images were taken around the
human models with a 10deg interval. The elevation angle
changes from Odeg to 90deg with an interval of 10deg in
order to cover all the views all around the human models.
Each time an environment was randomly chosen from
five different ones : desert-like sand, algae, sand + algae,
grass and sand + algae. These images were finally cropped
around the human models with a fixed padding of about 10
pixels and resized to 64x128. The negative training images
were generated the same way but without human models.
Several imagets of 64x128 were randomly extracted from
each of these images to get the negative training images.
Examples of positive training images are showed in figure
4. For illustration purpose 4 both the elevation and the
azymuth are changing in figure 4.

GMVST2 : GMVST for multiple detection window sizes'

The training images were generated the same way as
explained for the GMVST images. However here the size
of the training images changes with respect to the elevation
angle. The size is 64x128 when the elevation angle in the
scene is below or equal to 40deg. The size is 64x112 when
the elevation angle is bigger than 40deg and smaller to
70deg. The size is 64x64 when the elevation angle is bigger
than or equal to 70deg. Examples of positive training
images are showed in figure 5.

Test dataset’  The tweenty test models were used for
this dataset. The distance from the virtual camera to the
model changed from 10m to 80m with a step of 10m (after
metric calibration). The elevation from the human models

L http://mis.u-picardie.fr/ p-blondel/papers/data
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Fig. 6. Test image examples

to the camera changed nine times from Odeg to 90deg
with a step of 10deg. The azmyuth angle was randomly
chosen between Odeg and 360deg and an environment was
randomly picked up among the five ones described above.
Examples of test images are showed in figure 6.

INRIA training dataset>  The INRIA training dataset is
composed of real images. These pictures were taken in very
different places so that the trained detector be very robust
to the environment. This dataset contains an important
number of human pictures.

3.8 Tests

Detector implementation and hardware The HOG de-
tector was implemented as described and advised by Dalal
and Triggs (2005). That is with 9 bin histograms, a three-
quarter overlapping of the blocks and four cells by blocks.
However the L2-Norm was prefered for the local block nor-
malization. Indeed, the training was much faster using this
norm, besides the gain obtained using the L2-Hys Norm
instead of the L2-Norm seems minor (Dalal and Triggs,
2005). The tests were performed on a computer with a
Intel i7 2.20GHz processor and having 8Go of memory.

Test 1 : Better image pyramid for speed By default the
HOG detector as described by Dalal and Triggs (2005)
uses a 64x128 sliding detection window to scan all the
levels of the image pyramid. This window size is more
appropriate when people are not that far away from the
camera. People are more likely to be far from the camera
in a UAV context. And looking for small or far objects
requires to upsample a lot the images of the image pyramid
with the default window size, and this is costly. This test
is about speeding up the detector without degrading the
performances by using a smaller sliding detection window.
The test was performed on a four times downsampled
INRIA test dataset. Three different trainings were done
using differently sized INRIA training images. During the
test the corresponding training was selected according to
the sliding detection window size. The performances of
three sliding detection window sizes were compared, with
the following configurations : 64x128 window with sixty-
four pixels by cell, 48x96 window with thirty-six pixels by
cell and 32x64 window with sixteen pixels by cell. The
number of pixels by cell was chosen so that the final result
vectors have the same dimension whatever the window size
in order to allow in theory the same data diversity. In Table
1 are exposed the three image pyramid configurations.
Each detector was bootstrapped once by following the
recommandations available on the INRIA website?. To

2 http://pascal.inrialpes.fr/data/human/



be sure the boostrapping was proceeded in a similar way
for the three detectors, the negative images used for the
bootstrapping were resized by a three-quarter factor for
the 48x96 detector and by a one-half factor for the 32x64
detector.

Table 1. Image pyramid configurations

detector nscales minscale maxscale
64x128 64 0.6 4.26
48x96 64 0.45 3.2
32x64 64 0.3 2.13

Test 2 : Other window ratios and trainings for angular
robustness  The purpose of this test is the robustness to
the elevation angle. The HOG detector has been trained
with three different training datasets : the INRIA dataset,
the GMVST dataset, and the GMVST2 dataset. The
sliding detection window changes with respect to the
elevation when using the GMVST2 training. The window
size is 64x128 with 64 pixels by cell for an elevation angle
below or equal to 40deg, the window size is 64x112 with 36
pixels by cells for an elevation angle above 40 and below
70 deg and the window size is 64x64 with 16 pixels by
cell for an elevation angle above or equal to 70deg. The
number of pixels by cell for the 64x112 and 64x64 windows
were chosen so that the number of blocks be bigger than
the number of blocks of the default HOG configuration.
Thus, the dimension of the final result vectors are never
smaller than the dimension of the vector obtained using
the 64x128 detection window. The image pyramid was
built for the three cases as proposed in part 2.2. This test
was performed on the test dataset.

4. RESULTS
4.1 Test 1 : Better image pyramid for speed

The ROC curves showed in figure 8 were generated follow-
ing Dollar’s recommendations (Dollar et al., 2009) : the
miss rate is plotted against the false positives per image
(FPPI). As Dollar et al. (2009) we decided to use the miss
rate at 1 FPPI as a common reference point to compare
the detectors. As it is showed in figure 7, the performances
of the three detectors are quite similar in this case. Using
a more appropriatly sized sliding detection window does
not decrease the performances so much if the number of
blocks is the same and the number of pixels by cell is
superior than the number of bins. We could think of using
different sliding detection windows for different distances
and thus easily reduce the computation time while keeping
relatively equivalent performances.

4.2 Test 2 : Other window ratios and trainings for angular
robustness

Results obtained with the INRIA dataset?  The average
detection rate falls significantly for an elevation angle of
about 50deg and whatever the distance (figure 8a). The
rate is about zero for an elevation angle bigger than 80deg.
The time spent for the computation increases uniformly
with the distance, reaching about 40 seconds by image for
a distance of 80m (figure 8b). The FPPI number increases
uniformly with the distance and reaches about 20 to 30 for
a distance of 80m (figure 8c).

64x128 HOG —+— |
48%96 HOG —s—
32%64 HOG —s%—

Miss Rate

0.1 L L
0.01 0.1 1 10

False Positives Per Image

Fig. 7. Performances using different detection window sizes

Results obtained with the GMVST dataset?  The average
detection rate is almost the same whatever the elevation
angle and the distance (figure 9a). People are detected in
every configuration. The time spent for the computation
increases more with this training dataset because the non-
maximum suppression algorithm has more detections to
treat and because the number of false positives is bigger
(figure 9b and 9c). More complex datasets such as the
INRTIA dataset permits to train a detector quite robust to
the surrounding environment because of the diversity of
the INRIA negative training images.

Results obtained with the GMVST2 dataset?  The aver-
age detection rate is almost the same although it slightly
falls for a distances bigger than 70m. Nevertheless people
are detected whatever the elevation angle and the distance
(figure 10a). This time the FPPI number and the time
spent on computation increase both with respect to the el-
evation and the distance (figure 10b and 10c). The 64x112
and 64x64 detection windows have more blocks and this
slows down the classification. The FPPI number increases
because the algorithm analyses smaller surfaces.

Synthesis  Reducing the size of the sliding detection
window does not decrease so much the performances and
has the effect of reducing the size of the image pyramid
levels and lighten the computation. Keeping the same
block configuration is important. The block configuration
was 7x15 and the number of pixels by cell was always
bigger than the number of bins. We also pointed out that
classic datasets are not appropriate in a UAV context.
With multi-view datasets we better deal with the elevation
angle and detect people in many angular configurations.
Adujsting the size and the ratio of the detection window
with respect to the elevation is costly and it increases
the FPPI number. This is partially due to the changing
number of blocks. Still, this last solution seems interesting
for cluttered environments.

5. CONCLUSION

This work shows we can use the HOG detector to per-
form human detection from a UAV. The results show
that adjusting the detection window with respect to the
distance make senses. The results also show that multi-
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view training datasets extend the angular robustness to
the elevation angle. Similar tests have to be performed on
real images : the average detection rates should be smaller
and FPPI numbers bigger. This study mainly focuses on
the detection of upright people. The next objective is to
detect people with complex poses.
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