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Abstract. In the online version of Self-Organizing Maps, the results ob-
tained from different instances of the algorithm can be rather different. In
this paper, we explore a novel approach which aggregates several results
of the SOM algorithm to increase their quality and reduce the variability
of the results. This approach uses the variability of the algorithm that is
due to different initialization states. We use simulations to show that our
result is efficient to improve the performance of a single SOM algorithm
and to decrease the variability of the final solution. Comparison with
existing methods for bagging SOMs also show competitive results.
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1 Introduction

Self-Organizing Maps (SOM), [1] have been shown to be powerful methods for
analyzing high dimensional and complex data (see, for instance, [2] for applica-
tions of the method to many different areas). However, the method suffers from
its lack of good convergence properties. In its original version, the theoretical
convergence of the algorithm has only be proved in very limited cases [3] and
even in the modified version in which the training of the SOM is expressed as an
energy minimization problem [4], different runs of the algorithm give different
results, that can be very dependent on the initialization. This problem is even
more critical when the data set to be analyzed is complex or high dimensional.

This paper addresses the issue of aggregating several results of the SOM
algorithm, all obtained on the same data set. Several attempts to combine SOMs
while preserving their topological properties have been proposed in the literature
[5–9]. In this paper, we present a novel method to combine several SOMs while
preserving their topology. The proposed method combines several ideas taken
from the different methods and allows to explore initialization states. It is both
simple and efficient. We present a full comparison of the different options to
aggregate the results of different SOMs and discuss the most relevant choices.
Finally, we show that our approach is a competitive alternative to the existing
methods on real data applications.

The remainder of the paper is organized as follows: in Section 2, an overview
of aggregation methods for SOMs is presented. In Section 3, the proposed method
is described. Finally, Section 4 presents experimental results and comparisons.



2

2 An overview of aggregation methods for SOMs

Suppose that B results of the SOM algorithm are given for the items (xi)i=1,...,n,
(Mb)b=1,...,B . Each of these results, Mb is well defined by its set of prototypes
(pbu)u=1,...,U and comes with an associated clustering function φb : x ∈ Rd →
arg minu=1,...,U ‖x − pbu‖2. For the b-th SOM, the clusters will be denoted by
(Cbu)u=1,...,U , where Cbu =

{
xi : φb(xi) = u

}
. The purpose is to build a fused or

a merged map, M∗, with prototypes (p∗u)u=1,...,U and a clustering function φ∗

which improves and summarizes the B maps into a unique consensual map. Note
that all SOMs have been trained from the same data (xi)i=1,...,n or from a subset
(e.g., a bootstrap sample) of this data set. They can also have been trained from
different descriptors of the observations (e.g., from different sets of variables
observed on the same items): in this case, the fused map thus corresponds to a
map integrating the different descriptors. However, for the sake of simplicity, we
will restrict our description and simulation to the first case (same observations, or
eventually, bootstrap samples from the same observations and same descriptors).

As already explained in [5] in the context of a one-dimensional grid, there
is no ground truth for cluster labelling in the unsupervised framework. A first
strategy to overcome this issue is to perform a re-labelling of the clusters based
on the clustering only: [6] merge together the clusters of different maps with
a majority vote scheme. A “fused” prototype is defined as the centroid of the
grouped cluster prototypes over b = 1, . . . , B and a topology is deduced posterior
to the definition of the clusters. Another approach that uses the different maps
in an indirect way is described in [10]: in this paper, we proposed to use a subset
of (xi)i, using the most representative observations of the set of B maps, to
train a final SOM from a simpler and more robust data set. This method is well
suited to handle very large data sets. However, both approaches do not necessary
produce a map with a topology similar to the B merged SOMs and make use of
only a small part of the information provided by the B learned SOMs.

Several attempts to explicitly take advantage of the prior (common) struc-
ture of the maps have been proposed in the literature. A first method consists in
constraining the B SOMs to be as similar as possible by a common initialization.
This initialization can be derived, for instance, from a PCA of (xi)i. Then, the
different maps are fused by averaging the prototypes of the clusters situated at
the same position the B SOMs [7] or by using a majority vote scheme to classify
the observations [5]. Alternatively, [5, 8] also propose to make the B SOMs sim-
ilar by initializing the b-th SOM with the final prototypes of the previous one.
[8] improves this approach by weighting the averaging of the prototypes by a
cluster quality index. Similarly, [11] uses a similar strategy to handle streaming
or large data sets, splitting the data into several patches that are sequentially
processed by a different SOM algorithm initialized with the result of the pre-
vious one. However, these methods do not allow to explore the possibilities of
different initializations, which can be an issue in SOM. Moreover, a sequential
initialization of the B SOMs prevents from training them in parallel, which can
be an important issue if B is large: using a large B is advised for stabilizing the
result of the algorithm.
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Another approach to preserve the topology property of the map is to align
the different maps on one of them, which serves as a reference for the topology:
in [12], the map is chosen arbitrarily, and the other maps are fused sequentially
to this first one, averaging the prototypes (pbu)u of the current map to the closest
prototypes of the current fused map (p∗u)u. To leverage the problem of the choice
of the map that is used to align the other maps, [9] proposes to choose a refer-
ence map that is the best one according to a given clustering quality criterion.
However, this method makes the result strongly dependent on the choice of the
first map because only its topology is used, whereas the topologies of the next
maps are not utilized as such.

3 Description of the optimal transformation method

It is well known that the quality of the SOM strongly depends on its initializa-
tion. Given different maps obtained from different (random) initializations, we
propose to find the “best” transformation that can be used to obtain two compa-
rable results between two distinct maps. The optimal one-to-one transformation
between prototypes in general might be difficult to define so we restrict ourselves
to transformations that strictly preserve the topology of the map, i.e. the set
of linear isometric transformations (rotation and/or symmetry). To do so, only
square maps with m rows and columns are considered (i.e., using the notations
introduced in the previous section, U = m2): in these maps, the clusters are
supposed to be positioned on a 2D grid at coordinates {(k1, k2)}k1, k2=1,...,m.

Then, T denotes the set of all transformations, T : R2 → R2, that let the
map globally invariant: more precisely, T is composed of the set of rotations
{rθ}θ∈{0,π/2,π,3π/2} and of the transformations {rθ ◦ s}θ, with s the symmetry

with respect to the axis passing by the points
(
m+1
2 , 0

)
and

(
m+1
2 ,m

)
. For a

given map M with prototypes (pu)u and a given T ∈ T , the transformed map
T (M) is the map in which the unit u, with coordinates (ku1 , k

u
2 ) in N2, has a

prototype denoted by pTu which is the prototype pu′ of the original map, u′ being
the unit located at T−1(ku1 , k

u
2 ).

When comparing two maps, the mean of the squared distances (in Rd) be-
tween the prototypes of the two maps that are located at the same position
is calculated. For two maps M and M′, with respective prototypes (pu)u and
(p′u)u, we define a distance between two maps as the distance between their
respective prototypes positionned at the same coordinates:

D (M,M′) =
1

m2

m2∑
u=1

‖pu − p′u‖2. (1)

The best transformation between the current fused map and the next map to be
fused is chosen according to this distance. The two maps are then fused using
the optimal transformation before they are merged, as described in Algorithm 1.
The optimal transformation is found by computing the distance between the
maps to be fused, T ∗b (Mb), and a reference map, which can be the first of the
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Algorithm 1 Optimal transformation

Initialization M∗,1 ←M1

for b : 2→ B do
Optimal transformation

T ∗b := arg min
T∈T

D
(
M∗,b−1, T (Mb)

)
Fusion between M∗,b−1 and T ∗b (Mb). Provides: M∗,b

end for
Return M∗ :=M∗,B

list, M1, for instance1. The fusion between the map is performed as suggested
in [7] by averaging the prototypes located at the same position:

∀u = 1, . . . ,m2, p∗u :=
1

B

B∑
b=1

pb,Tu . (2)

In the method described in the previous section, all maps are fused in an
arbitrary order. However, as pointed out in [9], the maps may have very different
qualities and may also be very different: merging a very peculiar map with a poor
quality might lead to deterioration of the the results instead of improving them.
In this section, two strategies are presented to leverage this problem.

The first one uses a measure of quality of the maps and first rank the maps
from the one with the best quality to the one with the worse quality: M(1),
. . . , M(B). Standard quality measures for SOM can be used to perform this

ranking [13]: i) the quantization error (QE),
∑m2

u=1

∑
i: xi∈C∗u

‖xi−p∗u‖2, which is

a clustering quality measure, disregarding the map topology; ii) the topographic
error (TE) which is the simplest of the topographic preservation measure: it
counts the ratio of second best matching units that are in the direct neighborhood
on the map of the best matching units for every (xi)i. However, for small maps
and relatively simple problems, this measure has a small variability and can lead
to many equally ranked maps.

Therefore, another approach is introduced to make a trade-off, while ranking
the maps, between clustering and topographic qualities: the average rank of the
maps is computed as:

rb =
rbquanti + rbtopo

2
(3)

where rbquanti is the rank of the mapMb according to its quantization error (the

best map is ranked first) and similarly for rbtopo with the topographic error and

the maps were finally ranked by increasing order of (rb)b.

1 The current fused map, M∗,b−1 has also been used as a reference map, with no
difference in the final result. Using M1 is thus a better strategy, because optimal
transformation can be computed in parallel.



5

Taking advantage of this ordering of the maps, the previous method can be
modified using two different strategies:

1. the similarity strategy : following an idea similar to [9], the maps are merged
by similarity: the merging process is initialized with the best map: M∗,1 ←
M(1). Then, this map is merged only with the maps that resemble this refer-
ence map. To do so, a simple ascending hierarchical clustering is performed
between the maps (T ∗b (Mb))b=1,...,B , with (T ∗b )b obtained by comparison
with the reference map M1. This clustering is based on the distance intro-
duced in (1) and the hierarchical tree is cut using the method described in
[14]. Finally, the maps in the same cluster as M(1) are fused to M∗,1;

2. the ordering strategy : an alternative approach is performed sequentially by
merging the maps by increasing rankM(1),M(2), . . . The merging process is
stopped atM(B′) with B′ ≤ B (and usually B′ < B) when the quality of the
fused map M∗,B′ would not increase anymore by merging it with M(B′+1)

(actually, two strategies are investigated: stopping when the quality measure
is not increasing or stopping when the quality measure has not increased for
the last 5%B fused maps).

4 Simulations

Methodology. In all the simulations, B = 100 maps are generated using the
standard SOM. The optimal B has not been investigated in this paper and the
number of fused maps was simply taken large enough so that the fusion makes
sense. All maps were built with approximately m =

√
n
10 units and 5 × n iter-

ations of the stochastic algorithm and equipped with a Gaussian neighborhood
controlled with the Euclidean distance between units on the grid. The size of the
neighborhood was progressively decreased during the training. All simulations
have been performed using the R package SOMbrero2. The 100 maps are then
fused using one of the strategies described below and the performance of the dif-
ferent methods are finally assessed using various quality criteria for the resulting
maps M∗: i) two criteria already mentioned in Section 3 that are standard to
measure the quality of the SOM: i) QE and TE; ii) a criterion which uses the
ground truth, when available (i.e., an a priori group for the observations), the
normalized mutual information (NMI) [15] between the unit of the map and the
a priori group. This criterion quantifies the resemblance between the a priori
group and the clustering provided by the SOM (it is comprised between 0 and 1,
a value of 1 indicating a perfect matching between the two classifications). Note
that this criterion must be interpreted with care because if the a priori groups
are split between several units of the map, each of these units being composed of
one group only (which is expected for SOM results), the criterion can be lower
than when the groups are split between less units which are all composed of
several groups (which would be a less expected result). Thus, this criterion has
to be interpreted only together with the QE and the TE values.

2 http://cran.r-project.org/web/packages/sombrero, version 1.0.
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The performance of the method is also assessed in term of stability. It is
expected that several runs of one aggregating method give similar (thus stable)
results. This stability is estimated in terms of: i) the distance between two final

maps obtained from two different runs of the same method. If M∗ and M̃∗
are two maps, the quantity D(M∗, T ∗(M̃∗)), where D is defined as in (1) and

T ∗ := arg minT∈T D(M∗, T (M̃∗)), is computed. This gives an estimation of
the dissemblance between two maps from the prototype (hence the topological)
perspective. If calculated over 250 different final maps, this quantity helps to
quantify the stability of the final prototypes provided by a given aggregation
method; ii) the NMI between the final classes of two final maps obtained from two
different runs of the same method. This gives an estimation of the dissemblance
from the clustering perspective for a given aggregation method.

250 fusions for each method are performed using the methodology described
above. This permits to compute average quality as stability criteria as well as
to have an overview of the distribution of these criteria when the method is
repeated.

Compared methods. The comparisons performed in this section aim at
comparing our approach to existing ones (which are described in Section 2) as
well as to investigate several options of the method (as discussed in Section 3).

First, our method, which merges several maps obtained from several initial-
ization states, is compared to the standard bagging approach, in which several
maps are trained from bootstrap samples from the similar initialization states.
More precisely, bootstrap strategies are:

– the method denoted by B-Rand, which uses a common random initialization
to learn B = 100 maps from 100 bootstrap samples coming from the original
data set. Then, the prototypes that are positioned at the same coordinates,
are averaged to obtain the final map M∗ (as suggested in [7]);

– the method denoted by B-PCA, which uses a common PCA initialization
to learn B = 100 maps from 100 bootstrap samples coming from the original
data set (as suggested by [5]). The PCA initialization consists of initializing
the prototypes by regularly positioning them along the coordinates of the
projection of the data set on the first two axis of the PCA. Then, the pro-
totypes that are positioned at the same coordinates, are averaged to obtain
the final map M∗;

– the method denoted by B-Seq, which uses a sequential initialization of the
B = 100 maps: the first map is initialized randomly and trained with a
bootstrap sample and the b-th map is initialized with the final prototypes
of the (b − 1)-th map and trained with another bootstrap sample. Finally,
the final map M∗, is obtained by averaging the prototypes of the B = 100
maps, that are positioned at the same coordinates, as suggested in [8].

These strategies are compared with our method and its bootstrap version,
respectively denoted by RoSyF (for “Rotation and Symmetry Fusion”) and B-
RoSyF. RoSyF learns B = 100 maps, each from a different random initial
state and using the whole data set (xi)i=1,...,n and B-RoSyF learns B = 100
maps from 100 bootstrap samples coming from the original data set.
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Table 1. Method performance comparison (mean and standard deviation of different
quality criteria; QE has been multiplied by 100)

B-RandB-PCA B-Seq B-RoSyF RoSyF Best-R Best-QEBest-TE

“Glass”

mean QE 855.10 855.93 854.97 609.84 597.81 595.09 560.69 593.68

sd QE 10.30 9.43 9.24 23.10 9.82 15.52 5.45 13.96

mean TE 11.95% 12.42% 11.77% 0.01% 0.01% 0.10% 0.04% 0.00%

sd TE 6.09% 6.53% 6.45% 0.04% 0.07% 0.24% 0.17% 0.00%

mean NMI 15.80% 15.77% 16.00% 18.92% 17.86%15.64% 16.37% 15.87%

sd NMI 3.38% 3.15% 3.30% 2.09% 1.38% 2.20% 2.03% 2.21%

“Vowel”

mean QE 847.57 847.73 847.91 550.78 545.88 547.44 531.30 548.23

sd QE 11.82 10.88 11.63 5.18 1.01 7.10 2.39 6.72

mean TE 5.89% 6.06% 5.80% 0.07% 0.07% 0.19% 0.20% 0.00%

sd TE 3.62% 3.46% 3.37% 0.10% 0.08% 0.14% 0.14% 0.00%

mean NMI 7.11% 6.76% 7.03% 9.47% 9.57% 9.64% 9.53% 9.53%

sd NMI 1.44% 1.37% 1.49% 0.12% 0.11% 0.66% 0.54% 0.72%

Finally, we also compare RoSyF with the approach consisting in selecting
only one map from the B maps, the map supposed to be the best for instance.
More precisely, using the B = 100 maps generated during the training of the
RoSyF method, we selected one of the B = 100 maps i) randomly (this method
is denoted by Best-R), ii) with the smallest QE (this method is denoted by
Best-QE or iii) with the smallest TE (this method is denoted by Best-TE).

Datasets and results. This section compares the results obtained on two
datasets coming from the UCI Machine Learning Repository3 as available in
the R package mlbench4. More precisely, the data “Glass” (n = 214, d = 10
and 7 a priori groups) [16] and the data “Vowel” (n = 990, d = 10 and 11
a priori groups) [17] are used. The SOM parameters are set to m = 5 and
1 000 iterations for “Glass” and m = 10 with 5 000 iterations for “Vowel”. The
different strategies, and especially the relevance of using different initial states
instead of different bootstrap samples with the same initialization, is evaluated.
The results are provided in Table 1.

First, note that for almost all quality criteria and datasets, RoSyF obtain
better results than the methods based on different bootstrap samples (all dif-
ferences are significant according to Wilcoxon test, risk 5%). B-RoSyF slightly
deteriorates RoSyF performances. [18, 19] reported that the SOM algorithm is
highly insensitive to initialization if run on the same data set as compared to

3 http://archive.ics.uci.edu/ml
4 http://cran.r-project.org/web/packages/mlbench
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Table 2. Method stability comparison (mean and standard deviation of different sta-
bility criteria; D has been multiplied by 10 000)

B-RandB-PCA B-Seq B-RoSyF RoSyF Best-R Best-QEBest-TE

“Glass”

mean D 70.85 67.22 67.06 149.65 67.07 2047.14 1302.27 1581.49

sd D 38.62 32.32 31.24 335.14 310.74 1557.08 1170.39 1186.28

mean NMI 64.77% 65.60% 65.88% 83.54% 87.47%49.15% 54.41% 49.86%

sd NMI 6.37% 6.32% 6.23% 5.83% 5.11% 10.81% 9.57% 10.26%

“Vowel”

mean D 59.89 61.33 59.21 15.30 11.07 681.87 535.32 716.81

sd D 31.19 33.33 31.42 5.77 3.87 275.23 185.06 343.41

mean NMI 57.32% 56.83% 57.70% 90.83% 92.39%72.53% 74.94% 72.11%

sd NMI 5.32% 5.21% 5.20% 1.59% 1.33% 3.29% 2.66% 3.37%

what is obtained if bootstrap samples are used. However, it seems that the qual-
ity of the aggregated map is much better when different initial states are used
on the same data set rather than different bootstrap samples with a common
initial state, whatever this initial state is. Second, the TE obtained by RoSyF is
always the lowest, just after the one obtained by Best-TE (which always selects
the map with the lowest TE) but with a better QE and a better NMI. Again,
all these differences are significant according to Wilcoxon tests (risk: 5%). On a
clustering quality point of view, RoSyF is the method that obtains the second
lowest quantization error, just after Best-QE which is designed to select the
map with the lowest QE. Also, from a classification point of view, its perfor-
mance is also very good: in average, RoSyF ranks first for the NMI criterion.
Also note that all quality criteria have a low variability: the standard deviations
is almost always the lowest: RoSyF is the method which has the best coefficient
of variation (mean divided by the standard deviation) for all quality criteria.

Table 2 (and Figure 1 for the dataset “Vowel”) provides a comparison of
the stability criteria. For this data set, RoSyF has the best stability, either in
term of prototype stability (even though B-PCA and B-Seq also have a good
prototype stability) and even more in term of class stability. These differences
are significant according to Wilcoxon tests (risk: 5%). The results indicate that
the method is indeed appropriate to improve the quality of the final map but also
that it is very stable and gives very similar results if used several times, with
different initializations of the prototypes and different training of the merged
maps.

The relevance of stopping the merging process before all the maps have been
fused has also been evaluated5. This comparison shows that there is only a small
benefit in stopping the merging process before all maps have been used: most

5 For the sake of paper length, detailed results are not reported but only described.
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Fig. 1. Normalized mutual information (NMI) between pairs of clusterings obtained
from the 250 final maps generated by the different approaches.

strategies lead to an highly deteriorated TE. Only stopping the training process
when TE increases (TE-Inc) or based on the similarity strategy described in 3
are valid approaches in terms of quality criteria. However, a stability analysis
shows that all these strategies strongly deteriorate the stability of the final map:
merging all maps is the approach that provides the best stability, either in term
of prototype comparison than in term of class comparison, except for TE-Inc
which provides a slightly more stable clustering but very different prototypes. All
these strategies use only few maps (less than 10 maps in average), except again
TE-Inc which uses 89.4 maps in average for the “Glass” dataset and is thus
very close to the maximum number of available maps (100). Actually, additional
simulations (not shown for the sake of paper length) merging more than 100
maps proved that the stability increases with the number of fused maps (up
to a certain number which was for our dataset between 500 to 1000 maps). A
trade-off has thus to be found between computational time required to generate
a large number of maps and stability of the results. This question is still under
study.

Conclusion

Although most work on SOM ensembles are based on bootstrapping techniques,
this paper presents an approach allowing to explore different initial states for
the map. The method improves the stability of the fused map, both in term
of prototypes and in terms of clustering. We are currently investigating how to
choose an optimal number B of maps to fuse as well as weighting schemes based
on various quality criteria: this approach is already promising to improve the
results, especially the stability of the final map.
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