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Introduction

In quantum field theory, the vacuum is a fluctuating medium which behaves as a nonlinear polarizable material [START_REF]Discussion of the infinite distribution of electrons in the theory of the positron[END_REF][START_REF] Euler | Über die Streuung von Licht an Licht nach der Diracschen Theorie[END_REF][START_REF] Weisskopf | Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons[END_REF]. A convenient way of describing these effects is to use an effective action. In Quantum Electrodynamics (QED), this method corresponds to integrating out the electronic degrees of freedom in the full QED functional integral [START_REF] Schwartz | Quantum Field Theory and the Standard Model[END_REF]Chap. 33]. The effective action is a function of a classical electromagnetic field treated as an Date: June 9, 2017. 1 external one. In the case of a constant electromagnetic field, the effective action has a rather simple explicit expression. This effective Euler-Heisenberg Lagrangian has been used to make spectacular predictions [START_REF] Schwartz | Quantum Field Theory and the Standard Model[END_REF][START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF]. For instance, the birefringence of the vacuum that was predicted by this theory has only been confirmed recently [START_REF] Mignani | Evidence for vacuum birefringence from the first opticalpolarimetry measurement of the isolated neutron star RX J1856[END_REF][START_REF] Fan | The OVAL experiment: A new experiment to measure vacuum magnetic birefringence using high repetition pulsed magnets[END_REF].

For time-independent fields in the Coulomb gauge, the effective Lagrangian action has been rigorously defined in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF]. It takes the form

L(A) := -F vac (eA) + e R 3 j ext (x) • A(x) -ρ ext (x)V (x) dx + 1 8π R 3 |E(x)| 2 -|B(x)| 2 dx (1) 
and gives rise to nonlinear and nonlocal corrections to the classical linear Maxwell equations

    
-∆V = 4πe ρ vac (eA) + ρ ext , -∆A = 4πe j vac (eA) + j ext , div A = div j ext = 0.

(

) 2 
Here e is the elementary charge of an electron, A := (V, A) is a classical, R 4 -valued, electromagnetic potential, with corresponding field where F vac (eA) is the energy of a quantized Dirac field in the external fourpotential A, assumed to be in its ground state. The nonlinear vacuum correction terms ρ vac (eA) and j vac (eA) are negligible in normal conditions and they only start to play a significant role for very large electromagnetic fields. The critical value at which this starts to happen is called the Schwinger limit and it is several orders of magnitude above what can now be produced in the laboratory. The detection of these nonlinear effects is nevertheless a very active area of experimental research [START_REF] Burke | Positron Production in Multiphoton Light-by-Light Scattering[END_REF][START_REF] Mourou | Optics in the relativistic regime[END_REF]. In addition, these terms are known to play an important role in neutron stars with extremely high magnetic fields (magnetars) [START_REF] Baring | Photon splitting and pair creation in highly magnetized pulsars[END_REF][START_REF] Marklund | Electromagnetic wave collapse in a radiation background[END_REF][START_REF] Denisov | Vacuum nonlinear electrodynamics curvature of photon trajectories in pulsars and magnetars[END_REF]. The observation of this effect has been announced very recently [START_REF] Mignani | Evidence for vacuum birefringence from the first opticalpolarimetry measurement of the isolated neutron star RX J1856[END_REF]. The equations [START_REF] Baring | Photon splitting and pair creation in highly magnetized pulsars[END_REF] do not seem to have attracted much attention on the mathematical side.

The exact vacuum energy F vac (eA) is a very complicated nonlocal functional of A which, in addition, has well-known divergences. Its precise definition will be recalled in Section 2.1 below. A simple and useful approximation, often used in the Physics literature, consists in replacing the complicated functional F vac (eA) by a superposition of local independent problems, that is,

F vac (eA) ≃ R 3 f vac eE(x), eB(x) dx (3) 
where f vac eE, eB is the energy per unit volume, found for an electromagnetic field F = (E, B) which is constant everywhere in space (hence for a linear electromagnetic potential A). Our purpose in this article is to justify the approximation (3) in a limit where the electromagnetic field F is slowly varying.

The (appropriately renormalized) function f vac eE, eB has been computed by Euler and Heisenberg in a famous article [START_REF] Heisenberg | Folgerungen aus der Diracschen Theorie des Positrons[END_REF] and it is given by the expression

f vac (eE, eB) = 1 8π 2 ∞ 0 e -sm 2 s 3 e 2 s 2 3 |E| 2 -|B| 2 -1 + e 2 s 2 E • B Re cosh es |B| 2 -|E| 2 + iE • B 1 2
Im cosh es

|B| 2 -|E| 2 + iE • B 1 2 ds. ( 4 
)
Here m is the mass of the electron and we work in a system of units such that the reduced Planck constant and the speed of light c are equal to 1.

An alternative computation of the Euler-Heisenberg formula (4) has been discussed later by Weisskopf [START_REF] Weisskopf | Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons[END_REF] and Schwinger [START_REF] Schwinger | On gauge invariance and vacuum polarization[END_REF]. For weak fields the leading correction to the usual Maxwell Lagrangian is given by

f vac (eE, eB) = - e 4 360π 2 m 4 (|E| 2 -|B| 2 ) 2 + 7(E • B) 2 + o(|E| 4 + |B| 4 ).
This expression has a form similar to the first-order Born-Infeld theory [START_REF] Kiessling | Electromagnetic field theory without divergence problems. I. The Born legacy[END_REF][START_REF]Electromagnetic field theory without divergence problems. II. A least invasively quantized theory[END_REF] and it has played an important role in the understanding of nonlinear effects on the propagation and dispersion of light [START_REF] Karplus | Non-linear interactions between electromagnetic fields[END_REF][START_REF] Minguzzi | Non-linear effects in the vacuum polarization[END_REF][START_REF] Mckenna | Nonlinear interaction of light in a vacuum[END_REF][START_REF] Klein | Birefringence of the vacuum[END_REF].

It is well-known that the Euler-Heisenberg vacuum energy in formula (4) has to be handled with care, since the integrand may have poles on the real line. The proper definition requires to replace s by s + iη and to take the limit η → 0 [START_REF] Schwinger | On gauge invariance and vacuum polarization[END_REF][START_REF] Jentschura | Qed effective action revisited[END_REF]. The function f vac (eE, eB) defined in this way may have an exponentially small non-zero imaginary part, which is interpreted as the electron-positron pair production rate and corresponds to the instability of the vacuum (see [START_REF] Greiner | Quantum electrodynamics[END_REF]Paragraph 7.3] and [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF][START_REF] Jentschura | Qed effective action revisited[END_REF][START_REF] Dunne | Heisenberg-Euler effective Lagrangians: Basics and extensions[END_REF][START_REF] Dunne | The Heisenberg-Euler effective action: 75 years on[END_REF]). However, under the additional constraints that E •B = 0 and |E| < |B|, then there is no pole, the integral in (4) converges absolutely and the vacuum energy f vac (eE, eB) is real, as expected. In particular, this is the case for a purely magnetic field, E ≡ 0, that will be the object of our paper.

The purely magnetic case has been particularly discussed in the Physics literature [START_REF] Adler | Photon splitting and photon dispersion in a strong magnetic field[END_REF][START_REF] Constantinescu | Vacuum polarization in magnetic field[END_REF][START_REF] Tsai | Photon pair creation in intense magnetic fields[END_REF][START_REF]Propagation of photons in homogeneous magnetic fields: Index of refraction[END_REF][START_REF] Melrose | Vacuum polarization and photon propagation in a magnetic field[END_REF]. The corresponding energy is independent of the direction of the magnetic field B and simplifies to

f vac (0, eB) = 1 8π 2 ∞ 0 e -sm 2 s 3 es|B| coth es|B| -1 - e 2 s 2 |B| 2 3 ds. ( 5 
)
This function is concave-decreasing and negative, which corresponds to the usual picture that, after renormalization, the vacuum polarization enhances an external field instead of screening it as one would have naturally expected at first sight. As an illustration, the function behaves as

f vac (0, eB) ∼        - e 4 360π 2 m 4 |B| 4 for |B| → 0, - e 2 |B| 2 24π 2 log e|B| m 2 for |B| → ∞. (6) 
Note that the energy diverges faster than |B| 2 at infinity. The total energy

1 8π R 3 |B(x)| 2 dx + R 3 f vac 0, e|B(x)| dx
is unbounded from below. The implications of this instability for strong magnetic fields were studied by Haba in [START_REF] Haba | Behavior in strong fields of Euclidean gauge theories[END_REF][START_REF]Behavior in strong fields of Euclidean gauge theories. II[END_REF]. The instability of the model is due to charge renormalization. The function |B| → f vac (0, eB) has a non-convergent Taylor series in powers of B. In fact, the series is

m 4 8π 2 n≥2 B 2n 2n(2n -1)(2n -2) 2e|B| m 2 2n
and the Bernoulli numbers

B 2n = (-1) n+1 (2n)! (2π) 2n ζ(2n) (with ζ
the Riemann zeta function) diverge extremely fast. This phenomenon has played an important historical role in quantum field theory, where perturbative arguments are often used. It can nevertheless be shown that f vac (0, eB) is the Borel sum of its Taylor expansion [START_REF] Chadha | On Borel singularities in quantum field theory[END_REF].

Our main goal in this paper is to provide a rigorous derivation of the purely magnetic Euler-Heisenberg vacuum energy in [START_REF] Cohen-Tannoudji | Photons and Atoms: Introduction to Quantum Electrodynamics[END_REF], starting from the vacuum energy F vac of a quantized Dirac field, in the regime where B varies slowly in space. To be more precise, we assume that the magnetic field takes the form B(εx) with a fixed smooth function B (which corresponds to the strong magnetic potential A ε (x) = ε -1 A(εx)) and then look at the limit ε → 0. The expectation is that the vacuum energy is locally given by the Euler-Heisenberg formula, leading to the limit

F vac 0, eA ε ∼ ε→0 R 3 f vac (0, eB(εx)) dx = ε -3 R 3 f vac (0, eB(x)) dx. (7)
After a change of scale, the problem coincides with a semiclassical limit = ε → 0 with a very strong magnetic field of order B ∼ 1/ . This magnetic field strength is critical: any B ≪ 1/ would disappear in the leading order of the semi-classical limit. Here B does contribute, and deriving the exact form of the energy is a very delicate matter. This regime of strong magnetic fields has been the object of several recent studies in different situations [START_REF] Lieb | Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions[END_REF][START_REF] Fushiki | Matter in a magnetic field in the Thomas-Fermi and related theories[END_REF][START_REF] Sobolev | Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field[END_REF][START_REF] Yngvason | Thomas-Fermi theory for matter in a magnetic field as a limit of quantum mechanics[END_REF][START_REF] Erdös | Dia-and paramagnetism for nonhomogeneous magnetic fields[END_REF][START_REF] Erdös | Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates[END_REF][START_REF]Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate[END_REF][START_REF]Uniform Lieb-Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field[END_REF][START_REF]Semiclassics of the quantum current in a strong constant magnetic field[END_REF][START_REF] Fournais | On the semiclassical asymptotics of the current and magnetic moment of a non-interacting electron gas at zero temperature in a strong constant magnetic field[END_REF][START_REF] Fournais | Semiclassics of the quantum current in very strong magnetic fields[END_REF][START_REF] Helffer | Magnetic Wells in Dimension Three[END_REF], none of them covering the continuous spectrum of the Dirac operator, to our knowledge. A result similar to [START_REF] Denisov | Vacuum nonlinear electrodynamics curvature of photon trajectories in pulsars and magnetars[END_REF] has recently been obtained in the simpler case of a scalar field in [START_REF] Lampart | Semi-classical Dirac vacuum polarisation in a scalar field[END_REF], which is a more conventional semiclassical limit.

In addition to the criticality of the magnetic field strength, we have to face the other difficulty that the vacuum energy F vac has divergences that must be regularized. Different regularization schemes are possible. In this article we use the Pauli-Villars method as in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] and obtain a result similar to [START_REF] Denisov | Vacuum nonlinear electrodynamics curvature of photon trajectories in pulsars and magnetars[END_REF], with a Pauli-Villars-regulated function f PV vac (0, eB). An advantage of the regularized model is that it is stable, contrary to the original Euler-Heisenberg f vac (0, eB). After charge renormalization, the function f PV vac (0, eB) coincides with f vac (0, eB) up to an exponentially small error, but the model becomes unstable.

In the next section we properly define the Dirac vacuum energy F vac using the Pauli-Villars scheme, before we are able to state our main results.

Main results

2.1. The Pauli-Villars-regulated vacuum energy. We start by recalling the definition of the Pauli-Villars-regulated vacuum energy [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF] which was rigorously studied in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] (see also [START_REF] Gravejat | Two Hartree-Fock models for the vacuum polarization[END_REF][START_REF] Lewin | A nonlinear variational problem in relativistic quantum mechanics[END_REF]).

The vacuum energy F vac (eA) in ( 1) is given by the formal expression

F vac (eA) := - 1 2 tr D m,eA . (8) 
In this formula,

D m,eA := α • -i ∇ -eA + eV + m β, (9) 
is the Dirac operator for one electron in the classical electromagnetic field

A = (V, A 1 , A 2 , A 3 ) [65, 20], a self-adjoint operator acting on L 2 (R 3 , C 4 ).
The four Dirac matrices α = (α 1 , α 2 , α 3 ) and β are given by

α k := 0 σ k σ k 0 , and 
β := I 2 0 0 -I 2 ,
with Pauli matrices σ 1 , σ 2 and σ 3 equal to

σ 1 := 0 1 1 0 , σ 2 := 0 -i i 0
, and σ 3 := 1 0 0 -1 .

The Dirac matrices satisfy the following anti-commutation relations

α j α k + α k α j = 2δ j,k I 4 , α j β + β α j = 0, and β 2 = I 4 . (10) 
The trace in [START_REF] Dirac | The quantum theory of the electron[END_REF] means that all the negative energy states are filled by virtual electrons, according to Dirac's picture [START_REF] Dirac | The quantum theory of the electron[END_REF][START_REF]The quantum theory of the electron. II[END_REF][START_REF]A theory of electrons and protons[END_REF][START_REF]Théorie du positron[END_REF][START_REF]Discussion of the infinite distribution of electrons in the theory of the positron[END_REF]. The operator

- 1 2 D m,eA = D m,eA 1(D m,eA ≤ 0) -1(D m,eA ≥ 0)
2 in the trace arises from the constraint that the system must be chargeconjugation invariant. We refer to [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF][START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] for detailed explanations.

Of course, the trace in ( 8) is infinite. In order to give a proper meaning to F vac (eA), we start by subtracting an infinite constant, namely the free vacuum energy corresponding to A ≡ 0 given by

F vac (0) = - 1 2 tr D m,0 .
We therefore consider the relative vacuum energy

F vac (eA) -F vac (0) = 1 2 tr D m,0 -D m,eA . (11) 
Removing an (infinite) constant does not change the variational problem in which we are interested, as well as the resulting equations.

For most electromagnetic potentials A, however, the relative vacuum energy in [START_REF]Discussion of the infinite distribution of electrons in the theory of the positron[END_REF] is not yet well defined due to ultraviolet divergences. This additional difficulty can be overcome by applying a suitable regularization. Various methods are employed in the literature, among which are the famous dimensional regularization [START_REF] Hooft | Regularization and renormalization of gauge fields[END_REF] and the lattice regularization [START_REF] Wilson | Confinement of quarks[END_REF]. Here we are going to use the Pauli-Villars method [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF] which was studied in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF]. This technique consists in adding fictitious particles with high masses m j ≫ 1 in the model. These particles have no physical significance, but their introduction provides an ultraviolet regularization, which is sufficient to rigorously define the vacuum energy. More precisely, we consider the so-called Pauli-Villars-regulated vacuum energy given by the formula

F PV vac (eA) := 1 2 tr 2 j=0 c j D m j ,0 -D m j ,eA . (12) 
In this expression, the coefficient c 0 and the mass m 0 are respectively equal to 1 and m. The corresponding term is exactly the relative vacuum energy in [START_REF]Discussion of the infinite distribution of electrons in the theory of the positron[END_REF]. The ultraviolet divergences are removed if the coefficients c 1 and c 2 satisfy the Pauli-Villars conditions

2 j=0 c j = 2 j=0 c j m 2 j = 0, (13) 
which amounts to choosing them as

c 1 = - m 2 2 -m 2 0 m 2 2 -m 2 1
, and

c 2 = m 2 1 -m 2 0 m 2 2 -m 2 1 .
In the following we always assume that m = m 0 < m 1 < m 2 for simplicity, hence c 1 < 0 and c 2 > 0.

We now describe some known mathematical properties of F PV vac . Throughout the article we work in the electromagnetic field energy space, namely, we assume that E, B ∈ L 2 (R 3 ). This amounts to assuming that

V ∈ Ḣ1 (R 3 ) := V ∈ L 6 (R 3 , R) : ∇V 2 L 2 < ∞ and A ∈ Ḣ1 div (R 3 ) := A ∈ L 6 (R 3 , R 3 ) : div A = 0 and curl A 2 L 2 < ∞ .
The precise result proved in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] is the following.

Theorem 1 (Definition of F PV vac in energy space [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF]). Assume that the coefficients c 0 = 1, c 1 and c 2 , and the masses 0 < m = m 0 < m 1 < m 2 satisfy the Pauli-Villars conditions [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF].

(i) When V ∈ Ḣ1 (R 3 ) and A ∈ Ḣ1 div (R 3
), the operator

T A := 2 j=0 c j D m j ,0 -D m j ,A (14) 
is compact.

(ii) When V ∈ L 1 (R 3 ) ∩ Ḣ1 (R 3 ) and A ∈ L 1 (R 3 ) ∩ Ḣ1 div (R 3 ), we have tr |tr C 4 T A | < ∞, hence F PV vac (A) := 1 2 tr (tr C 4 T A )
is well-defined. Moreover, F PV vac can be uniquely extended to a continuous mapping on

Ḣ1 (R 3 ) × Ḣ1 div (R 3 ). (iii) When V = 0, and A ∈ L 1 (R 3 ) ∩ Ḣ1 div (R 3 ), the operator T 0,A is trace- class on L 2 (R 3 , C 4 ), that is, tr |T 0,A | < ∞, hence F PV vac (0, A) = tr(T 0,A )/2.
The result says that the vacuum energy F PV vac (A) is well defined by a trace (possibly first doing the C 4 trace), when A and V are smooth and integrable, and that it has a unique continuous extension to the energy space, still denoted by F PV vac (A). In the case V = 0, we do not believe the operator T A to be trace-class without taking first the C 4 -trace. But the terms in T A which are (possibly) not trace-class do not contribute to the final value of F PV vac (A), due to gauge-invariance. With F PV vac at hand, it is now possible to define the associated Lagrangian action, in external charge and current densities,

L PV (A) := -F PV vac (eA) + e R 3 j ext (x) • A(x) -ρ ext (x)V (x) dx + 1 8π R 3 |∇V (x)| 2 -| curl A(x)| 2 dx. (15) 
provided that div j ext = 0 and

ρ ext * 1 |x| ∈ Ḣ1 (R 3 ), j ext * 1 |x| ∈ Ḣ1 div (R 3 ).
In [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] we have constructed the electromagnetic field F = (E, B), in presence of time-independent, weak enough, external charge density ρ ext and current density j ext , as a local min-max critical point of L PV . The corresponding four-potential A = (V, A) satisfies the nonlinear Maxwell equations in [START_REF] Baring | Photon splitting and pair creation in highly magnetized pulsars[END_REF]. We refer to [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF][START_REF] Lewin | A nonlinear variational problem in relativistic quantum mechanics[END_REF][START_REF] Gravejat | Two Hartree-Fock models for the vacuum polarization[END_REF] for more details.

2.2. Derivation of the Euler-Heisenberg vacuum energy. We now come to our rigorous derivation of the Euler-Heisenberg vacuum energy in [START_REF] Cohen-Tannoudji | Photons and Atoms: Introduction to Quantum Electrodynamics[END_REF] starting from the Pauli-Villars-regulated vacuum energy.

As announced we restrict our attention to purely magnetic fields by setting

V ≡ 0.
We next consider a scaled magnetic field of the form B ε (x) = B(εx), with a given B = curl A ∈ L 2 (R 3 ), and A ∈ Ḣ1 div (R 3 ). Our main result requires a bit more regularity.

Theorem 2 (Derivation of the Euler-Heisenberg vacuum energy). Let B ∈ C 0 (R 3 , R 3 ) be such that div B = 0 and

B ∈ L 1 (R 3 ) ∩ L ∞ (R 3 ), ∇B ∈ L 1 (R 3 ) ∩ L 6 (R 3 ), (16) 
and let A be the associated magnetic potential in Ḣ1 div (R 3 ). Set finally A ε (x) = ε -1 A(εx). Then, we have

ε 3 F PV vac (0, eA ε ) = R 3 f PV vac e|B(x)| dx + O(ε) (17) 
where

f PV vac (b) := 1 8π 2 ∞ 0 2 j=0 c j e -sm 2 j sb coth sb -1 ds s 3 (18) 
is the Pauli-Villars-regulated Euler-Heisenberg vacuum energy.

The theorem provides a limit in the same form as in [START_REF] Denisov | Vacuum nonlinear electrodynamics curvature of photon trajectories in pulsars and magnetars[END_REF], except that the effective energy f PV vac (b) still depends on the regularization parameters c 1 , c 2 , m 1 , m 2 . In the next section we discuss the link with the original Euler-Heisenberg energy f vac . We remark that the function f PV vac is non-negative and behaves as

f PV vac (eB) ∼              e 2 |B| 2 24π 2 2 j=0 c j log m -2 j for |B| → 0, e|B| 8π 2 2 j=0 c j m 2 j log m 2 j for |B| → ∞, (19) 
where

2 j=0 c j log m -2 j ≥ 0 and 2 j=0 c j m 2 j log m 2 j ≥ 0,
as we show in Lemma 11 below. Note that the field energy is of the same order ε -3 as the vacuum in this regime,

R 3 |B(εx)| 2 dx = ε -3 R 3 |B(x)| 2 dx.
Therefore, in the limit ε → 0 we get the effective local Lagrangian

-ε -3 1 8π R 3 |B(x)| 2 dx + R 3 f PV vac (e|B(x)|) dx .
The two terms have the same sign, hence the corresponding model is stable, contrary to the renormalized functional based upon the Euler-Heisenberg function f vac .

Remark 3. The technical conditions on B in (16) are certainly not optimal.

It would be interesting to prove [START_REF] Erdös | Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates[END_REF] with O(ε) replaced by o(1), under the sole assumption that

R 3 f PV vac (|B(x)|) dx < ∞. Due to (19), this condition is equivalent to R 3 |B(x)| 2 1 + |B(x)| dx < ∞.

Charge renormalization & the Euler-Heisenberg energy.

The function f PV vac defined in [START_REF]Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate[END_REF] and obtained in the limit ε → 0 is different from the Euler-Heisenberg energy f vac . In particular, f PV vac is positive convex increasing, whereas f vac is negative concave decreasing. The reason is that f PV vac does not include the quadratic term (sb) 2 /3 that is present in the formula (4) of f vac . Indeed, integrating by parts using the first Pauli-Villars condition in [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF], we find

f PV vac (b) = 1 8π 2 ∞ 0 2 j=0 c j e -sm 2 j sb coth sb -1 - (sb) 2 3 ds s 3 + b 2 24π 2 ∞ 0 2 j=0 c j e -sm 2 j ds s = f vac (b) + c 1 m 4 1 m 4 f vac m 2 m 2 1 b + c 2 m 4 2 m 4 f vac m 2 m 2 2 b + log(Λ) 24π 2 b 2 (20) 
where

f vac (b) = 1 8π 2 ∞ 0 e -m 2 s sb coth sb -1 - (sb) 2 3
ds s 3 is the original Euler-Heisenberg energy with mass m, and where the averaged ultraviolet cut-off Λ > 1 is defined by

log Λ := - 2 j=0 c j log m j > 0. (21) 
The second and third terms in [START_REF] Esteban | Variational methods in relativistic quantum mechanics[END_REF] are small since

c j m 4 j m 4 f vac m 2 m 2 j b = O |c j | m 4 j b 4 , j = 1, 2.
In particular, we can take m 1 , m 2 → ∞ while keeping c 1 , c 2 bounded. However, the last term in ( 20) is logarithmically-divergent.

The correct way to remove the divergent term is to include it in the definition of the charge, a procedure called charge renormalization. Here we explain this procedure on the real function b → f PV vac (eb). By superposition, the same holds for the local function

B → R 3 f PV vac e|B(x)| dx
obtained in the semi-classical limit. Following [START_REF] Hainzl | Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics[END_REF][START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF][START_REF] Gravejat | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF][START_REF]Renormalization and asymptotic expansion of Dirac's polarized vacuum[END_REF], we define the physical charge e ph by It is convenient to introduce the renormalization parameter

e 2 ph = e 2 1 + 2e 2 3π log Λ , (22) 
Z 3 := 1 1 + 2e 2 3π log Λ ∈ (0, 1) (23) 
in such a way that e ph = √ Z 3 e and b ph = √ Z 3 b. We would like to take Λ → ∞, which however imposes that

e ph ≤ 3π 2 log Λ → 0.
It is not possible to remove the ultraviolet regularization and keep the physical charge e ph fixed, a phenomenon related to the Landau pole [START_REF] Landau | On the quantum theory of fields[END_REF]. The best we can do is to fix e 2 ph log Λ, which is equivalent to fixing Z 3 , then let e ph go to zero and verify that the chosen value of Z 3 does not appear in the perturbative series in e ph [START_REF]Renormalization and asymptotic expansion of Dirac's polarized vacuum[END_REF]. In this regime, our goal is to compare the total magnetic energy per unit volume

b 2 8π + f PV vac (e b)
with the physical energy involving the Euler-Heisenberg magnetic energy

(b ph ) 2 8π + f vac (e ph b ph ).
The following says that these two energies are exponentially close to each other in a neighborhood of 0. In particular, they have the same Taylor expansion at e ph = 0 which, however, is divergent as we have recalled above.

Theorem 4 (Renormalization of f PV vac ). We have for a universal constant

K b 2 8π + f PV vac (e b) - (b ph ) 2 8π -f vac (e ph b ph ) ≤ K|c 1 | e ph b ph m 4 exp -6π 1-Z 3 (e ph ) 2 . ( 24 
)
Proof. Inserting (20) and using the definition of b ph , we see that the quadratic terms cancel exactly and therefore obtain

b 2 8π + f PV vac (e b) - (b ph ) 2 8π -f vac (e ph b ph ) = c 1 m 4 1 m 4 f vac m 2 m 2 1 eb + c 2 m 4 2 m 4 f vac m 2 m 2 2 eb . ( 25 
)
We set

K := max x≥0 2m 4 |f vac (x)| x 4 .
Although f vac depends on m, it can be seen that K is independent of m. We obtain

b 2 8π + f PV vac (e b) - (b ph ) 2 8π -f vac (e ph b ph ) ≤ K 2 - c 1 (m 1 ) 4 + c 2 (m 2 ) 4 (e ph b ph ) 4 ≤ K|c 1 | (m 1 ) 4 (e ph b ph ) 4 , since c 2 = -1 -c 1 and m 1 < m 2 . Recall that - 3π 2 1 -Z 3 (e ph ) 2 = -log Λ = log m + c 1 log m 1 + c 2 log m 2 ≥ log m + (c 1 + c 2 ) log m 1 = log m m 1 which gives us 1 (m 1 ) 4 ≤ e -6π 1-Z 3 (e ph ) 2
m 4 and concludes the proof.

Our conclusion is that the Pauli-Villars-regulated function f PV vac coincides with the original Euler-Heisenberg energy f vac to any order, after charge renormalization. It would be interesting to relate the original Dirac energy F vac with f vac directly, by performing the charge renormalization at the same time as we take the limit ε → 0. We do not discuss this further, since this would force us to take e → 0.

2.4. The semi-classical limit. Let us now explain the main ideas behind the convergence in [START_REF] Erdös | Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates[END_REF]. We stay here at a formal level. In the next section we give the detailed proof of Theorem 2, which takes a slightly different route. Using that

|D m,0,eA | 2 = P eA + m 2 0 0 P eA + m 2 = P eA + m 2 ⊗ 1 C 2 (26) 
with V = 0 and where

P eA = σ • (-i∇ + eA) 2 = (-i∇ + eA) 2 -e σ • B (27) 
is the Pauli operator, acting on 2-spinors, we can rewrite the vacuum energy as

F PV vac (0, eA ε ) = tr L 2 (R 3 ,C 2 )    2 j=0 c j P 0 + m 2 j -P eAε + m 2 j    .
Next we use the integral formula

2 j=0 c j a + m 2 j = - 1 2 √ π ∞ 0 2 j=0 c j e -sm 2 j e -sa ds s 3/2 , ( 28 
)
for a ≥ 0, which is proved by an integration by parts. Note that the integral on the right converges at s = 0, thanks to the Pauli-Villars condition [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF]. We obtain

F PV vac (0, eA ε ) = 1 2 √ π tr L 2 (R 3 ,C 2 ) ∞ 0 2 j=0 c j e -sm 2 j e -sP eAε -e -sP 0 ds s 3/2 .
Exchanging the trace with the integral, we need an expansion in ε of tr(e -sP eAε -e -sP 0 ). Changing units, we recognize here a semi-classical limit. The idea is, therefore, to replace the trace by an integral over R 3 , of the value of this trace per unit volume for a constant field.

We recall that for a constant magnetic field B, the operator P eA commutes with the translations in the direction of B. For each value ξ of the momentum in this direction, the corresponding fiber Hamiltonian has the energy levels

2n + 1 + ν)e|B| + m 2 + ξ 2
where n ≥ 0 is the index of the Landau band and ν = ±1 is the spin variable. These energies are infinitely degenerate with respect to the angular momentum along the field B. The number of states with fixed energy per unit area in the plane perpendicular to B is e|B|/(2π). Semi-classical analysis then suggests that

tr e -sP eAε -e -sP 0 ≃ R 3 e|B(εx)| 2π ν=±1 n≥0 R e -s(2n+1+ν)e|B(εx)| e -sξ 2 dξ 2π -2 R 3 e -s|p| 2 dp (2π) 3 dx. ( 29 
) Using R d e -s|p| 2 dp = (π/s) d/2 and ν=±1 n≥0 e -s(2n+1+ν)e|B| = (1 + e -2s|B| ) n≥0 e -2sne|B| = coth(es|B|),
we can compute the right side of ( 29) and obtain

tr e -sP eAε -e -sP 0 ≃ ε -3 4π 3/2 s 3/2 R 3 es|B(x)| coth(es|B(x)|)-1 dx. ( 30 
)
Inserting in [START_REF] Gravejat | Ground state and charge renormalization in a nonlinear model of relativistic atoms[END_REF], this is exactly the limit (17) stated in Theorem 2.

There are serious technical difficulties in the rigorous justification of these arguments. The first is that the trace is everywhere formal, since the operators are usually not trace-class. When A is assumed to be integrable, the operators are trace-class and many of our arguments become simpler. But the integrability of A will fail for physically relevant magnetic fields. The second difficulty is of course the justification of the semi-classical limit [START_REF]Renormalization and asymptotic expansion of Dirac's polarized vacuum[END_REF], which involves the whole spectrum of the two Pauli operators and not only the negative eigenvalues.

In [START_REF] Haba | Behavior in strong fields of Euclidean gauge theories[END_REF][START_REF]Behavior in strong fields of Euclidean gauge theories. II[END_REF], Haba has used the Feynman-Kac formula to study the limit of the kernel (e -sP eA -e -sP 0 )(x, x) for large fields but he did not state the semi-classical limit [START_REF]Renormalization and asymptotic expansion of Dirac's polarized vacuum[END_REF]. He also used the strong assumption that [START_REF] Haba | Behavior in strong fields of Euclidean gauge theories[END_REF]Thm. 2]).

A ∈ L 1 (R 3 ) ∩ L ∞ (R 3 ) (see
In the literature there are simple variational arguments (e.g. based on coherent states [START_REF] Lieb | The classical limit of quantum spin systems[END_REF][START_REF] Lieb | Thomas-Fermi and related theories of atoms and molecules[END_REF][START_REF] Simon | The classical limit of quantum partition functions[END_REF], including the case of magnetic fields [START_REF] Lieb | Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions[END_REF][START_REF] Fushiki | Matter in a magnetic field in the Thomas-Fermi and related theories[END_REF][START_REF] Yngvason | Thomas-Fermi theory for matter in a magnetic field as a limit of quantum mechanics[END_REF][START_REF] Erdös | Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates[END_REF][START_REF]Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate[END_REF][START_REF]Uniform Lieb-Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field[END_REF][START_REF]Semiclassics of the quantum current in a strong constant magnetic field[END_REF][START_REF] Fournais | On the semiclassical asymptotics of the current and magnetic moment of a non-interacting electron gas at zero temperature in a strong constant magnetic field[END_REF][START_REF] Fournais | Semiclassics of the quantum current in very strong magnetic fields[END_REF]) which provide the first order semi-classical term. So far these seem to have been mainly used for eigenvalues and it is not clear how to adapt them to our particular limit (30) of a difference of two heat kernels. Instead, we will prove Theorem 2 using another integral representation which involves the resolvent of the two Pauli operators instead of their heat kernels, as in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF].

Proof of Theorem 2

In this section we describe the main steps of the proof of Theorem 2. Some technical details will be provided later. Everywhere we use the simpler notation D m,A instead of D m,0,A , since there will be no electric potential V from now on.

Step 1: Estimates on A. We start with an elementary result which provides useful estimates on the magnetic potential A, for a magnetic field B which satisfies the assumptions of Theorem 2.

Lemma 5 (Estimates on A and its derivatives). Let B ∈ C 0 (R 3 , R 3 ) be such that div B = 0 and satisfying the assumptions (16) of Theorem 2. The magnetic potential

A(x) = - 1 4π R 3 y |y| 3 × B(x -y) dy = 1 4π R 3 (curl B)(x -y) |y| dy ( 31 
)
is the unique potential in Ḣ1 div (R 3 ) such that B = curl A. It is in C 1 (R 3 ) and satisfies A ∈ L p (R 3 ) for 3/2 < p ≤ ∞, ∇A ∈ L q (R 3 ) for 1 < q ≤ ∞. Proof. Since y|y| -3 is in L 3/2 w (R 3 ), the Hardy-Littlewood-Sobolev inequality gives that A ∈ L p (R 3 ) for every 3/2 < p < ∞. The case p = ∞ follows from the fact that y|y| -3 ∈ L 1 (R 3 ) + L 2 (R 3 ) and B ∈ L 2 (R 3 ) ∩ L ∞ (R 3 ). Next we write A(x) = 1 4π R 3 1 -e -|y| |y| curl B(x -y) dy + 1 4π R 3 e -|y| |y| curl B(x -y) dy = - 1 4π R 3 ∇ 1 -e -|y| |y| × B(x -y) dy + 1 4π R 3 e -|y| |y| curl B(x -y) dy.
and obtain

∂ j A(x) = - 1 4π R 3 ∂ j ∇ 1 -e -|y| |y| × B(x -y) dy + 1 4π R 3 ∂ j e -|y| |y| curl B(x -y) dy. Since ∂ j |y| -1 e -|y| ∈ L 1 (R 3 ) ∩ L 5/4 (R 3 ) and curl B ∈ L 1 (R 3 ) ∩ L 5 (R 3 ), the second term is in L 1 (R 3 ) ∩ L ∞ (R 3 ). Similarly, ∂ j ∇|y| -1 (1 -e -|y| ) ∈ L p (R 3 )
for all p > 1 and B ∈ L 1 (R 3 ) so the first term is in L p (R 3 ) for all p > 1.

Step 2: Expression in terms of the resolvent of the Pauli operator. Here we summarize some of the findings of [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] which are useful for the proof of the main theorem. Following [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF], we use the integral representation

|x| = 1 π R x 2 x 2 + ω 2 dω = 1 π R 1 - ω 2 x 2 + ω 2 dω
which allows to express the operator T eA as

T eA = 2 j=0 c j D m j ,0 -D m j ,eA = 1 π R 2 j=0 c j 1 D m j ,eA 2 + ω 2 - 1 D m j ,0 2 + ω 2 ω 2 dω. ( 32 
)
Using the two Pauli-Villars conditions in [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF], a calculation gives the following useful formulas:

∀x ≥ 0, 2 j=0 c j 1 x + m 2 j = 2 j=0 c j 1 x + m 2 j - 1 x + m 2 = 2 j=0 c j (m 2 j -m 2 ) 2 1 (x + m 2 j )(x + m 2 ) 2 . ( 33 
) These formulas show how the Pauli-Villars conditions (13) allow to increase the decay at large momenta, since 2 j=0 c j (x+m 2 j ) -1 now behaves like x -3 at infinity instead of x -1 for the unregularized resolvent (x+m 2 ) -1 . Using [START_REF] Haba | Behavior in strong fields of Euclidean gauge theories[END_REF] and the bound |D m j ,eA | 2 ≥ m 2 j following from [START_REF] Fushiki | Matter in a magnetic field in the Thomas-Fermi and related theories[END_REF], we deduce that

2 j=0 c j 1 D m j ,eA 2 + ω 2 - 1 D m j ,0 2 + ω 2 ≤ C (m 2 + ω 2 ) 3 .
Therefore the integral in [START_REF] Hooft | Regularization and renormalization of gauge fields[END_REF] converges in the operator norm. Using [START_REF] Fushiki | Matter in a magnetic field in the Thomas-Fermi and related theories[END_REF], we find that T eA is block-diagonal in the two-spinor basis, which we can rewrite as

T eA = 1 π R ω 2 dω 2 j=0 c j 1 P eA + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 ⊗ 1 C
2 where P eA is the Pauli operator defined in [START_REF] Gravejat | Two Hartree-Fock models for the vacuum polarization[END_REF]. The integral representation used in the previous section has the nice feature that the regularization gives rise to the simple term 2 j=0 c j e -sm 2 j . Here the regularization parameters cannot be separated from the other terms in the integral. Nevertheless, resolvents are simpler to handle and we will be able to apply several estimates proved in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] in this setting.

To be more precise, it was proved in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] that when

A ∈ L 1 (R 3 )∩H 1 div (R 3 ) and B ∈ L 1 (R 3 ) ∩ L 2 (R 3 ), the operator 2 j=0 c j 1 P eA + m 2 j + ω 2 - 1 P 0 + m 2
j + ω 2 is trace-class and that the trace can be integrated over ω:

R tr 2 j=0 c j 1 P eA + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 ω 2 dω
< ∞ which then proved that T eA is itself trace-class, as stated in Theorem 1. In our situation, we have B ∈ L 1 ∩ L ∞ but A is not necessarily integrable, so the operator is not necessarily trace-class. However, the non-trace-class part is easy to extract and happens to be linear in A. This is the content of the following Proposition 6 (Extracting the non-trace-class part). We assume that B satisfies the conditions (16) of Theorem 2 and let A be the unique potential in

H 1 div (R 3 ) such that B = curl A. Then R tr 2 j=0 c j 1 P eA + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 (p • A + A • p) 1 P 0 + m 2 j + ω 2 ω 2 dω < ∞ (34) and 
F PV vac (eA) = 1 π R tr 2 j=0 c j 1 P eA + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 (p • A + A • p) 1 P 0 + m 2 j + ω 2 ω 2 dω, ( 35 
)
where

p := -i∇. If additionally A ∈ L 1 (R 3 ), then tr 2 j=0 c j 1 P 0 + m 2 j + ω 2 (p • A + A • p) 1 P 0 + m 2 j + ω 2 = 0
for every ω ∈ R, where the operator in the trace is trace-class.

Note that p •

A + A • p = 2p • A = 2A • p since div A = 0.
Proof. We only give a sketch of the proof, which relies on the techniques used in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF]. It is based on the 5th-order resolvent expansion

2 j=0 c j 1 P eA + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 = 4 n=1 (-1) n 2 j=0 c j 1 P 0 + m 2 j + ω 2 S eA n 1 P 0 + m 2 j + ω 2 - 2 j=0 c j 1 P 0 + m 2 j + ω 2 S eA 5 1 P eA + m 2 j + ω 2 := 4 n=1 T (n) eA (ω) + T (5) eA (ω). ( 36 
)
where the operator S eA is defined by

S eA := P eA -P 0 = -e(p • A + A • p) + e 2 |A| 2 -eB • σ (37) = -e(σ • p)(σ • A) -e(σ • A)(σ • p) + e 2 |A| 2 . ( 38 
)
We emphasize that T

eA (ω) contains P eA in the last resolvent on the right, whereas T (n) eA (ω) has P 0 for n ≤ 4. This should note generate any confusion, since we will never introduce T (n) eA (ω) for n > 5. For n ≤ 5, it was proved in [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF] that

T (n) eA (ω) is trace-class, with tr T (n) eA (ω) ω 2 dω < ∞ whenever A ∈ L n (R 3 ) ∩ Ḣ1 div (R 3 ) and B ∈ L 2 (R 3 ). From Lemma 5, we have A ∈ L 2 (R 3 ) ∩ L ∞ (R 3 ) and B ∈ L 1 (R 3 ) ∩ L ∞ (R 3 ) hence only the first order term T (1)
eA (ω) is possibly not trace-class under the condition [START_REF] Erdös | Dia-and paramagnetism for nonhomogeneous magnetic fields[END_REF]. All the other terms are trace-class. The term involving p • A + A • p which we have subtracted in the statement is exactly the non-trace-class part of T [START_REF] Adler | Photon splitting and photon dispersion in a strong magnetic field[END_REF] eA , as we will explain below. Formula (35) follows from the continuity of F PV vac in Theorem 1.

Let us briefly explain how to estimate T (n) eA (ω) using ideas from [START_REF]Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields[END_REF]. For the 5th order term, we use directly the Kato-Seiler-Simon inequality (see [START_REF]Trace ideals and their applications[END_REF]Thm. 4

.1]) g(-i∇)f (x) Sp = f (x)g(-i∇) Sp ≤ (2π) -3 p f L p g L p , (39) 
which holds for any number p ≥ 2, and any functions (f, g) ∈ L p (R 3 ) 2 . Here, the notation • Sp stands for the norm of the Schatten class S p (L 2 (R 3 , C 4 )). Using Hölder's inequality in Schatten spaces and the positivity of P eA ≥ 0, we find

T (5) eA (ω) S 1 ≤ 2 j=0 |c j | m 2 j + ω 2 1 P 0 + m 2 j + ω 2 S eA 5 S 5
.

Here it is convenient to use that

S eA = -2ep • A + e 2 |A| 2 -eB • σ (40) 
since div A = 0. By the triangle inequality and the fact that ||•|| Sp ≤ ||•|| Sq for q ≤ p, we obtain

1 P 0 + m 2 j + ω 2 S eA S 5 ≤ 2e p p 2 + m 2 j + ω 2 • A(x) S 5 + e 2 1 p 2 + m 2 j + ω 2 |A(x)| 2 S 3 + e 1 p 2 + m 2 j + ω 2 |B(x)| S 2 e ||A|| L 5 (m 2 j + ω 2 ) 1/5 + e 2 ||A|| 2 L 6 (m 2 j + ω 2 ) 1/2 + e ||B|| L 2 (m 2 j + ω 2 ) 1/4
which, by the Sobolev inequality, gives the final estimate

T (5) eA (ω) S 1 2 j=0 |c j | m 2 + ω 2 e 5 ||A|| 5 H 1 m 2 + ω 2 + e 10 ||A|| 10 H 1 (m 2 + ω 2 ) 5/2
and proves that R T

eA (ω) S 1 ω 2 dω < ∞, as we wanted.

The argument for the lower order terms T

(n) eA (ω) is slightly more complicated, since we need to use the Pauli-Villars condition [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF] in order to increase the decay in momentum. Let us start with the proof for the first order term T

(1) eA (ω). The idea is to insert the resolvent with the mass m = m 0 using the Pauli-Villars conditions [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF]. For shortness, it is convenient to introduce the notation

K j (ω) := P 0 + m 2 j + ω 2 = -∆ + m 2 j + ω 2 , (41) 
for the Klein-Gordon operator. We then use the relation -T

(1)

eA (ω) = 2 j=0 c j 1 K j (ω) S eA 1 K j (ω) = 2 j=1 c j (m 2 j -m 2 ) 2 1 K j (ω)K 0 (ω) S eA 1 K j (ω)K 0 (ω) + 2 j=1 c j (m 2 j -m 2 ) 2 1 K 0 (ω) S eA 1 K j (ω)K 0 (ω) 2 + 2 j=1 c j (m 2 j -m 2 ) 2 1 K j (ω)K 0 (ω) 2 S eA 1 K 0 (ω) . (42) 
Arguing as before using the Kato-Seiler-Simon inequality (39), we obtain that the second and third terms in the definition (37) of S eA are trace-class with

2 j=0 c j 1 K j (ω) e 2 |A| 2 -eB • σ 1 K j (ω) S 1 |c 1 |(m 2 1 -m 2 ) 2 + |c 2 |(m 2 2 -m 2 ) 2 ||A|| 2 L 2 + ||B| | L 1 (m 2 + ω 2 ) 5/2 .
The term involving p • A + A • p can be treated in the same way, but it is only trace-class when A ∈ L 1 (R 3 ). It is not trace-class under our assumptions on A and this is the term which has been subtracted in the statement of the proposition. Fortunately, when A ∈ L 1 (R 3 ) its trace vanishes due to the invariance under complex conjugation. Namely, the operator

2 j=0 c j 1 K j (ω) (p • A + A • p) 1 K j (ω)
is self-adjoint, so its trace is real. Applying complex conjugation we find

2 j=0 c j 1 K j (ω) (p • A + A • p) 1 K j (ω) = - 2 j=0 c j 1 K j (ω) (p • A + A • p) 1 K j (ω)
since p = -p and K j (ω) and A are both real. So its trace is imaginary, and thus equal to 0.

The proof that the second order term T

(2) eA (ω) is trace-class under our assumptions (16) on B is similar and relies on the following identity:

T (2) eA (ω) = 2 j=0 c j (m 2 j -m 2 0 ) 2 1 K j (ω)K 0 (ω) 2 S eA 1 K j (ω) S eA 1 K j (ω) + 1 K 0 (ω) 2 S eA 1 K j (ω)K 0 (ω) S eA 1 K j (ω) + 1 K 0 (ω) 2 S eA 1 K 0 (ω) S eA 1 K j (ω)K 0 (ω) + 1 K 0 (ω) S eA 1 K j (ω)K 0 (ω) 2 S eA 1 K j (ω) + 1 K 0 (ω) S eA 1 K 0 (ω) 2 S eA 1 K j (ω)K 0 (ω) + 1 K 0 (ω) S eA 1 K 0 (ω) S eA 1 K j (ω)K 0 (ω) 2 . ( 43 
)
The third and fourth order terms T

eA (ω) and T

eA (ω) are somewhat easier to handle since only the first Pauli-Villars condition in ( 13) is necessary. For the third-order term we use

T (3) eA (ω) = 2 j=0 c j (m 2 0 -m 2 j ) 1 K j (ω) 1 K 0 (ω) S eA 1 K j (ω) 3 + 1 K 0 (ω) S eA 1 K j (ω) 1 K 0 (ω) S eA 1 K j (ω) 2 + 1 K 0 (ω) S eA 2 1 K j (ω) 1 K 0 (ω) S eA 1 K j (ω) + 1 K 0 (ω) S eA 3 1 K j (ω) 1 K 0 (ω) . (44) 
The fourth order term is similar and this concludes the proof of Proposition 6.

Step 3: Localization. Since we will be considering slowly varying potentials, it will be useful to localize our energy to sets of fixed size ρ, where the magnetic field will be essentially constant. We introduce the Gaussian function G ρ given by

G ρ (x) := (πρ) -3 2 e - |x| 2 
ρ 2 , and recall that

R 3 G ρ (x -y) 2 dy = 1, (45) 
for any x ∈ R 3 , which we interpret as a continuous partition of unity. The following is well-known.

Lemma 7 (Localization of a trace-class operator). Let T be a trace-class selfadjoint operator on L 2 (R 3 , C 2 ) and G ρ (• -y) be the multiplication operator by the function x → G ρ (x -y). Then G ρ (• -y)T G ρ (• -y) is also trace-class with

R 3 tr |G ρ (• -y)T G ρ (• -y)| dy ≤ tr |T | < ∞ and tr T = R 3 tr G ρ (• -y)T G ρ (• -y) dy = R 3 tr G ρ τ -y T τ y G ρ dy
where (τ y f )(x) = f (x-y) is the unitary operator which translates by y ∈ R 3 .

Proof. It is clear that G ρ (• -y)T G ρ (• -y) is trace-class since x → G ρ (x -y)
is bounded, hence defines a bounded operator. Now, we can diagonalize T = j≥1 t j |u j u j | with j≥1 |t j | < ∞ and obtain

G ρ (• -y)T G ρ (• -y) = j≥1 t j |G ρ (• -y)u j u j G ρ (• -y)|
with the sum being convergent in the trace-class. In particular, by the triangle inequality

tr |G ρ (• -y)T G ρ (• -y)| ≤ j≥1 |t j | tr |G ρ (• -y)u j u j G ρ (• -y)| =   G ρ * j≥1 |t j | |u j | 2   (y).
The rest follows from the fact that

R 3 j≥1 |t j | |u j | 2 = j≥1 |t j | = tr |T |.
Using this lemma, we can localize the operator appearing in the parenthesis in [START_REF] Hainzl | Self-consistent solution for the polarized vacuum in a no-photon QED model[END_REF] and obtain, after changing y into εy and using the translationinvariance of P 0 = -∆,

F PV vac (eA ε ) = ε -3 π R ω 2 dω R 3 dy f ω (eA ε,y ) (46) 
with A ε,y (x) = ε -1 A(y + εx) and 34) and Lemma 7 we also know that

f ω (A) = tr L 2 (R 3 ,C 2 ) G ρ 2 j=0 c j 1 P A + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 (p • A + A • p) 1 P 0 + m 2 j + ω 2 G ρ . (47) From (
R ω 2 dω R 3 dy f ω (eA ε,y ) < ∞.
Since the localization length ρ will not play an important role, we do not mention it in our notations.

The reason for subtracting the term with p•A+A•p was that it is not traceclass, although its trace vanishes when A ∈ L 1 (R 3 ). With the localization G ρ , this operator has now become trace-class and it still has a vanishing trace, which simplifies a bit our reasoning. Lemma 8. For every fixed ρ > 0, and every A ∈ H 1 div (R 3 ), the operator

K = 2 j=0 c j G ρ 1 P 0 + m 2 j + ω 2 (p • A + A • p) 1 P 0 + m 2 j + ω 2 G ρ
is trace-class and its trace vanishes.

Proof. Using ( 42) and the Kato-Seiler-Simon inequality [START_REF] Helffer | Magnetic Wells in Dimension Three[END_REF], it is easy to see that K is trace-class. The trace vanishes for the same reason as without G ρ , namely K * = K and K = -K.

As a corollary, we immediately deduce that

f ω (eA ε,y ) = tr L 2 (R 3 ,C 2 ) G ρ 2 j=0 c j 1 P eAε,y + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 G ρ ( 48 
) with the operator being trace-class under our assumptions ( 16) on B.

Step 4: Localized energy with unbounded potentials. Using the localization G ρ , the idea is now to replace in [START_REF] Lieb | Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions[END_REF] the potential A ε,y (x) = A(y + εx)/ε by the potential B(y) × x/2 of the constant field B(y), up to a small error. On the contrary to all the potentials we have considered so far, the latter has a linear growth at infinity. It is therefore necessary to extend the definition of f ω to potentials growing at infinity, which is the content of the following result.

Proposition 9 (Uniformly bounded magnetic fields). Let ρ > 0. Consider a magnetic potential A ∈ C 1 (R 3 , R 3 ) for which B = curl A ∈ L ∞ (R 3 ) and let P A be the Friedrichs extension of the corresponding Pauli operator. Then, for every ω ∈ R the operator

G ρ 2 j=0 c j 1 P A + m 2 j + ω 2 G ρ is trace-class.
In particular, we can define

f ω (A) = tr L 2 (R 3 ,C 2 )    G ρ 2 j=0 c j 1 P A + m 2 j + ω 2 - 1 P 0 + m 2 j + ω 2 G ρ    . ( 49 
)
This is a gauge-invariant functional: for any function

θ ∈ C 2 (R 3 , R), we have f ω (A) = f ω (A + ∇θ). ( 50 
)
Remark 10. Using the exponential decay of G ρ , it is possible to generalize the result to any potential A for which B has a polynomial growth at infinity, but we do not discuss this further.

Proof of Proposition 9. The proof of Proposition 9 is based on the following observation.

Lemma 11 (Positivity). Assume that the coefficients c 0 = 1, c 1 and c 2 , and the masses 0 < m = m 0 < m 1 < m 2 satisfy the Pauli-Villars conditions [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF]. Then c j e -sm 2 j ≥ 0, for every s ≥ 0.

Proof of Lemma 11. By convexity we have, using the Pauli-Villars condition [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF],

f (m 2 ) + c 2 f (m 2 2 ) ≥ (1 + c 2 )f m 2 + c 2 m 2 2 1 + c 2 = -c 1 f (m 2 1 )
.

By Lemma 11 we have 2 j=0 c j (P A + m 2 j + ω 2 ) -1 ≥ 0, in the sense of operators, and therefore the same is true with G ρ on both sides. The trace is then always well-defined in [0, ∞] and it suffices to estimate it in order to prove that the operator is trace-class. We use [START_REF] Haba | Behavior in strong fields of Euclidean gauge theories[END_REF], c 1 ≤ 0, and obtain

2 j=0 c j 1 x + m 2 j + ω 2 = 2 j=0 c j (m 2 j -m 2 ) 2 1 x + m 2 j + ω 2 1 (x + m 2 + ω 2 ) 2 ≤ c 2 (m 2 2 -m 2 ) 2 m 2 2 + ω 2 1 (x + m 2 + ω 2 ) 2 , hence 2 j=0 c j 1 P A + m 2 j + ω 2 ≤ c 2 (m 2 2 -m 2 ) 2 m 2 2 + ω 2 1 (P A + m 2 + ω 2 ) 2
in the sense of operators. We can multiply by G ρ on both sides without changing the inequality and obtain after taking the trace

tr    G ρ 2 j=0 c j 1 P A + m 2 j + ω 2 G ρ    ≤ c 2 (m 2 2 -m 2 ) 2 m 2 2 + ω 2 G ρ 1 P A + m 2 + ω 2 2 S 2 .
It is therefore sufficient to show that G ρ (P A + m 2 + ω 2 ) -1 is a Hilbert-Schmidt operator, under the assumptions of the proposition. This is the content of the following lemma.

Lemma 12 (Magnetic Kato-Seiler-Simon-type inequality). Consider a magnetic potential

A ∈ C 1 (R 3 , R 3 ) for which B = curl A ∈ L ∞ (R 3
). Then we have, for every 2 ≤ p ≤ ∞ and every µ > 0

f (x)(P A + µ) -1 Sp ≤ 2 -2 p π -1 p 1 + B L ∞ µ 2 p µ 3 2p -1 ||f | | L p . (51) 
Proof. Since P A ≥ 0, we have (P A +µ) -1 ≤ µ -1 and the bound is obvious for p = ∞. For p = 2 we write

1 P A + µ = 1 P A + µ + B L ∞ × P A + µ + B L ∞ P A + µ and use that P A + µ + B L ∞ P A + µ ≤ 1 + B L ∞ µ .
Therefore, it suffices to estimate the Hilbert-Schmidt norm of f

(P A + µ + B L ∞ ) -1
. Now we use the fact that the integral kernel of (P A + µ + B L ∞ ) -1 is pointwise bounded by that of (-∆ + µ) -1 :

(P A + µ + B L ∞ ) -1 (x, y) ∞ ≤ (-∆ + µ) -1 (x, y) ∞ (52) 
where | • | ∞ is the sup norm of 2 × 2 hermitian matrices. The proof of ( 52) is well known and goes as follows. First we reduce it to the similar pointwise bound on the heat kernels

e -s(P A +µ+ B L ∞ ) (x, y) ∞ ≤ e -s(-∆+µ) (x, y) (53) 
using the integral formula H -1 = ∞ 0 e -sH ds. Then, we use Trotter's formula

e -s(P A +µ+ B L ∞ ) (x, y) = lim n→∞ e -s n (-i∇+A) 2 +µ) e -s n (-σ•B+ B L ∞ ) n (x, y) = lim n→∞ R 3 dx 1 • • • R 3 dx n-1 e -s n ((-i∇+A) 2 +µ) (x, x 1 )× × e -s n (-σ•B(x 1 )+ B L ∞ ) e -s n ((-i∇+A) 2 +µ) (x 1 , x 2 ) × • • • • • • × e -s n ((-i∇+A) 2 +µ) (x n-1 , y)e -s n (-σ•B(y)+ B L ∞ ) . (54) 
The estimate [START_REF] Melrose | Vacuum polarization and photon propagation in a magnetic field[END_REF] follows from the diamagnetic inequality [START_REF]Functional integration and quantum physics[END_REF] |e

-s n ((-i∇+A) 2 +µ) (x, y)| ∞ ≤ e -s n (-∆+µ) (x, y) and the fact that |e -s n (-σ•B(x)+ B L ∞ ) | ∞ ≤ 1, since -σ • B(x) + B L ∞ is a non-negative 2 × 2 symmetric matrix for every x ∈ R 3 . We therefore conclude that f (x)(P A + µ + B L ∞ ) -1 2 S 2 = R 3 R 3 |f (x)| 2 (P A + µ + B L ∞ ) -1 (x, y) 2 2 dx dy ≤ 2 f (x)(-∆ + µ) -1 2 S 2 = 2(2π) -3 ||f | | 2 L 2 R 3 dp (p 2 + µ) 2 = ||f || 2 L 2 4π √ µ and f (x)(P A + µ) -1 S 2 ≤ 1 + B L ∞ µ ||f | | L 2 2 √ πµ 1/4 , (55) 
as we wanted. The estimate for 2 < p < ∞ follows by complex interpolation [START_REF]Trace ideals and their applications[END_REF].

We conclude the proof of Proposition 9 by recalling the (time-independent) gauge transformation I θ I θ (ψ) := e iθ ψ.

(56) This is a unitary operator which satisfies [START_REF] Lieb | Thomas-Fermi and related theories of atoms and molecules[END_REF] follows from the invariance of the trace of the first term under conjugation by a unitary operator, and this concludes the proof of Proposition 9.

I θ P A I -1 θ = P A+∇θ and I θ G ρ I -1 θ = G ρ . Therefore,
Step 5: Replacement by an almost constant potential. After these preparations we are ready to start the proof of the semi-classical limit [START_REF] Erdös | Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates[END_REF]. The first step is to replace A ε,y by the potential B(y) × x/2, up to a small error. We would like to express the error only in terms of the magnetic field B, up to a gradient term that will then be dropped using gauge invariance. The following simple formula is well known (see e.g. [5, Compl. D IV ]).

Lemma 13 (Fundamental theorem of calculus in Poincaré gauge). Let A ∈ C 1 (R 3 , R 3 ) be any vector field. Then we have

A(y + x) = ∇ x x • 1 0 A(y + tx) dt -x × 1 0 (curl A)(y + tx) t dt. (57) Proof. Using ∇ x • a = x × (curl a) + (x • ∇)
a + a, we can write the right side of (57) as

∇ x x • 1 0 A(y + tx) dt -x × curl x 1 0 A(y + tx) dt = 1 0 t x • ∇A(y + tx) + A(y + tx) d dt tA(y+tx) dt = A(y + x).
The idea of the decomposition [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF] is that the first gradient term can be dropped using gauge invariance, leading to a new magnetic potential

Ãy (x) = -x × 1 0 (curl A)(y + tx) t dt ≃ B(y) × x/2.
This potential does not belong to the Coulomb gauge anymore, but rather satisfies the Poincaré (also called multipolar and Fock-Schwinger) gauge condition at y x • A(x + y) = 0. Applying formula (57) in our situation gives

A(y + εx) ε = ∇ x x • 1 0 A(y + tεx) ε dt + B(y) × x/2 + ε R ε,y (x) (58) 
where

R ε,y (x) = x × 1 0 B(y) -B(y + tεx) ε t dt (59) 
is an error term.

The following gives some simple properties of the error term R ε,y .

Lemma 14 (Estimates on R ε,y ). Let ρ, ε > 0, and y ∈ R 3 . Then we have for a universal constant

C ||R ε,y (x)|| L p y (R 3 ) + |x| ||curl R ε,y (x)|| L p y (R 3 ) ≤ C|x| min |x| ||∇B|| L p (R 3 ) , ||B|| L p (R 3 ) ε ( 60 
)
and ||div R ε,y (x)|| L p y (R 3 ) ≤ C ||∇B| | L p (R 3 ) |x|. (61) 
Proof. We have

|R ε,y (x)| ≤ |x| 2ε |B(y)| + 2 1 0 |B(y + tεx)| tdt .
Integrating over y gives

||R ε,y (x)|| L p y (R 3 ) ≤ |x| ε ||B|| L p (R 3 ) .
On the other hand, using

B(y) -B(y + tεx) ε = -t 3 j=1 1 0 x j (∂ j B)(y + tsεx) ds,
and the identity

1 0 1 0 f (ts) t 2 dt ds = 1 0 1 -t 2 2 f (t) dt,
we can write

R ε,y (x) = -x × 1 0 1 -t 2 2 3 j=1 x j (∂ j B)(y + tεx) dt (62) 
hence

||R ε,y (x)|| L p (R 3 ) ≤ C|x| 2 ||∇B|| L p (R 3 ) .
Finally, we have

curl R ε,y (x) = B(y + εx) -B(y) ε , div R ε,y (x) = x • 1 0 curl B(y + tεx) t 2 dt
and the estimates are similar.

Since B ∈ L ∞ (R 3 ), we have | curl R ε,y | ≤ C/ε and we can apply Proposition 9. The following is then an immediate consequence of ( 50) and [START_REF] Schwartz | Quantum Field Theory and the Standard Model[END_REF].

Corollary 15 (Replacing by an almost constant field). Assume that B satisfies the conditions (16) of Theorem 2. Then for any ω ∈ R and any y ∈ R 3 , we have

f ω (eA ε,y ) = f ω e 2 B(y) × • + eεR ε,y , (63) 
where we recall that R ε,y is defined in [START_REF] Schwinger | On gauge invariance and vacuum polarization[END_REF].

Step 6: Computation for a constant field. First we discard the error term R ε,y in [START_REF]Functional integration and quantum physics[END_REF] and compute the exact value of the energy. Of course, we find the localized Pauli-Villars-regulated Euler-Heisenberg energy.

Proposition 16 (Constant field). If B is constant and A(x) = B × x/2, then the function defined in (49) equals

f ω (B × x/2) = 1 4π 3/2 ∞ 0 e -sω 2 2 j=0 c j e -sm 2 j s|B| coth s|B| -1 ds s 3/2 . ( 64 
)
Note that the value does not depend on the localization parameter ρ > 0. From (64), we obtain after integrating over ω that

1 π R f ω (B × x/2) ω 2 dω = f PV vac (|B|), (65) 
the Pauli-Villars-regulated Euler-Heisenberg energy defined in [START_REF]Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate[END_REF]. The integral over y then gives f PV vac (|B(y)|) dy as we wanted. The proof of Proposition 16 is merely a computation, explained in Section 4 below.

Step 7: Bound on the error. At this step of the proof, we have shown in [START_REF] Landau | On the quantum theory of fields[END_REF], ( 63) and ( 64) that

ε 3 F PV vac (A ε ) = 1 π R 3 dy R ω 2 dω f ω (eA ε,y ) = 1 π R 3 dy R ω 2 dω f ω e 2 B(y) × • + eεR ε,y = R 3 f PV vac |B(y)| dy + 1 π R 3 dy R ω 2 dω f ω e 2 B(y) × • + eεR ε,y -f ω e 2 B(y) × •
and there only remains to evaluate the error term. The difficulty is, of course, to have an estimate on the integrand that can be integrated over y and ω. This is the content of the following result.

Proposition 17 (Bound on the error term). Assume that B satisfies the conditions of Theorem 2. Then we have for every 0 < ε ≤ 1

R 3 dy f ω e 2 B(y) × • + eεR ε,y -f ω e 2 B(y) × • ≤ C ε (m 2 + ω 2 ) 2 , (66)
with a constant C which only depends on B, on ρ and on the c j 's and m j 's.

Integrating over ω we find

R ω 2 dω R 3 dy f ω e 2 B(y) × • + eεR ε,y -f ω e 2 B(y) × • ≤ Cε,
which ends the outline of the proof of Theorem 2. The proof of Proposition 17 is the most tedious part of the proof of our main result, and it is provided later in Section 5. The next section is devoted to the proof of Proposition 16, whereas Appendix A gathers some important estimates for the resolvent of the Pauli operator with constant magnetic field.

Computation for a constant field: proof of Proposition 16

Applying a rotation and using the invariance of -∆ as well as the Gaussian G ρ , we can always assume that B is parallel to e 3 , B = (0, 0, b), which we will do for the rest of the proof.

Since we have shown in Proposition 9 that the two terms are separately trace-class, we can compute their trace separately. The computation is easier if we go back to heat kernels using H -1 = ∞ 0 e -sH ds:

2 j=0 c j 1 H + m 2 j = ∞ 0 2 j=0 c j e -sm 2 j e -sH ds. ( 67 
)
We recall from Lemma 11 that 2 j=0 c j e -sm 2 j ≥ 0. We conclude that

tr    G ρ 2 j=0 c j H + ω 2 + m 2 j G ρ    = ∞ 0 e -sω 2   2 j=0 c j e -sm 2 j   tr G ρ e -sH G ρ ds ≥ 0
which will be used for H = -∆ and H = P B×x/2 .

For the Laplacian, we have

tr G ρ e s∆ G ρ = 2 G 2 ρ 1 (2π) 3 R 3 e -sp 2 dp = 1 4π 3/2 s 3/2 , so tr    G ρ 2 j=0 c j -∆ + ω 2 + m 2 j G ρ    = 1 4π 3/2 ∞ 0 e -sω 2   2 j=0 c j e -sm 2 j   ds s 3/2 .
On the other hand, we recall in (82) (Appendix A) that the heat kernel of the Pauli operator with constant magnetic field B = b e 3 is e -sP B×x/2 (x, y) = b

8π 3/2 s 1 2 sinh(bs) × × e -b 4 coth(bs)|x ⊥ -y ⊥ | 2 e -1 4s (x 3 -y 3 ) 2 e -ib 2 x ⊥ ×y ⊥ e bs 0 0 e -bs (68) 
where x ⊥ = (x 1 , x 2 ) and y ⊥ = (y 1 , y 2 ), which gives us

tr C 2 e -sP B×x/2 (x, y) = sb coth(sb) 4π 3/2 s 3 2 × × e -b 4 coth(bs)|x ⊥ -y ⊥ | 2 e -1 4s (x 3 -y 3 ) 2 e -ib 2
x ⊥ ×y ⊥ (69) and therefore, the function being continuous at x = y, we deduce from [61, Thm. 2.12] that tr G ρ e -sP B×x/2 G ρ = sb coth(sb)

4π 3/2 s 3 2
, which ends the proof of Proposition 16.

Bound on the error term: proof of Proposition 17

We follow here the same strategy as in the proof of Proposition 9, with P 0 = -∆ replaced everywhere by the Pauli operator P eB(y)ו/2 with constant magnetic field B(y). We will use pointwise estimates on the kernel of the resolvent of P eB(y)ו/2 which are recalled in Appendix A, that will essentially reduce the problem to the free case, up to a multiplicative constant. This method cannot be easily coupled to operators bounds, which forces us to use a 6th order expansion. In particular we will use that the operators appearing in the 6th order have a sign.

In order to simplify our notation, we introduce the Klein-Gordon operator with constant magnetic field B(y) K j (ω, y) := P eB(y)ו/2 + m 2 j + ω 2 . Using the resolvent expansion as in [START_REF] Hainzl | The mean-field approximation in quantum electrodynamics. The no-photon case[END_REF], we have to estimate the trace of

T (ω, y) = G ρ 2 j=0 c j K j (ω, y) + S ε,y -1 -K j (ω, y) -1 G ρ = G ρ 5 n=1 (-1) n 2 j=0 c j 1 K j (ω, y) S ε,y n 1 K j (ω, y) G ρ + G ρ 2 j=0 c j 1 K j (ω, y) S ε,y 3 
1 P eB(y)ו/2+eεRε,y + m 2 j + ω 2 × × S ε,y 1 K j (ω, y) 3 G ρ := 5 n=1 T (n) (ω, y) + T (6) (ω, y),
where the operator S ε,y is defined by

S ε,y :=P eB(y)ו/2+eεRε,y -P eB(y)ו/2 =e 2 ε 2 |R ε,y | 2 -eε(σ • p y )(σ • R ε,y ) -eε(σ • R ε,y )(σ • p y ) =e 2 ε 2 |R ε,y | 2 -eε(p y • R ε,y + R ε,y • p y ) -eεσ • curl R y,ε ,
with p y = p -eB(y) × •/2 the magnetic momentum. The main result of this section is the estimate

R R 3 T (n) (ω, y) S 1 dy ω 2 dω ≤ Cε n , 1 ≤ n ≤ 6, (70) 
where the constant depends on B, on ρ and on the c j 's and m j 's, which clearly ends the proof of Proposition 17.

In order to prove (70), we will use pointwise kernel estimates, and in particular the fact that when T and T ′ are two trace-class operators such that |T (x, x ′ )| ≤ T ′ (x, x ′ ) with the kernel of T ′ being continuous in a neighborhood of the diagonal, then | tr(T )| ≤ tr(T ′ ) = R 3 T ′ (x, x) dx.

Our proof will rely on the following pointwise estimates on the kernels of the resolvents of the Pauli operator with constant magnetic field, proved in Proposition 18 in Appendix A:

K j (ω, y) -1 (x, x ′ ) ≤ C(1 + e B L ∞ ) g ω (x -x ′ ) (71) 
and

p y K j (ω, y) -1 (x, x ′ ) ≤ C m j m (1 + e 2 B 2 L ∞ ) h ω (x -x ′ ), (72) 
with the functions

g ω (x) = 1 |x| + 1 √ m 2 + ω 2 e - √ m 2 +ω 2 |x| (73) 
and

h ω (x) = 1 |x| 2 + |x| 2 + 1 m 2 + ω 2 + m 2 + ω 2 e - √ m 2 +ω 2 |x| . (74) 
Note that

||g ω || L p (R 3 ) ≤ C p (m 2 + ω 2 ) 3/p-1 2 , ||h ω || L p (R 3 ) ≤ C p (m 2 + ω 2 ) 3/p-2 2 , (75) 
for all 1 ≤ p < ∞. There are similar estimates for |x| α g ω and |x| α h ω , with a better decay in ω when α > 0.

Sixth order term. We start by estimating the kernel of the 6th order term T (6) (ω, y). We are going to estimate the trace of each of the terms in the sum over j = 0, 1, 2, which involves a non-negative operator and is thus always well defined. We first use the operator bound

1 P eB(y)ו/2+εRε,y + m 2 j + ω 2 ≤ 1 + µ m 2 1 P eB(y)ו/2+εRε,y + m 2 j + ω 2 + µ as in the proof of Lemma 12, with µ := eB(y) + eε curl R ε,y L ∞ (R 3 ) ≤ 2e B L ∞ (R 3 )
where the last estimate follows from Lemma 14. We obtain

R ω 2 dω R 3 dy T (6) (ω, y) S 1 ≤ 1 + 2e B L ∞ (R 3 ) m 2 2 j=0 |c j | R ω 2 dω R 3 dy tr T (6) j (ω, y)
where

T (6) j (ω, y) = G ρ 1 K j (ω, y) S ε,y 3 × × 1 P eB(y)ו/2+eεRε,y + m 2 j + ω 2 + µ S ε,y 1 K j (ω, y) 3 G ρ ≥ 0.
We estimate the kernel of T 

S ε,y = e 2 ε 2 |R ε,y | 2 -eε(2p y • R ε,y + i div R ε,y ) -eεσ • curl R y,ε ,
for the term on the left and using 2R ε,y • p y -i div R ε,y for the term on the right. We also use the diamagnetic-type inequality (52)

P eB(y)ו/2+eεRε,y + m 2 j + ω 2 + µ -1 (x, x ′ ) ∞ ≤ -∆ + m 2 j + ω 2 -1 (x, x ′ ) ∞ = e - √ m 2 +ω 2 |x-x ′ | 4π|x -x ′ | ≤ g ω (x -x ′ )
4π for the kernel of the middle operator, as well as g ω ≤ Ch ω to simplify our bounds. We find

|T (6) j (ω, y)(x, x ′ )| ≤ C G ρ (x) R 3 dz 1 • • • R 3 dz 6 h ω (x -z 1 ) 5 k=1 h ε,y (z k )h ω (z k -z k+1 )h ε,y (z 6 )h ω (z 6 -x ′ )G ρ (x ′ ) with h ε,y (z) := eε|R ε,y (z)| + eε| div R ε,y (z)| + eε| curl R ε,y (z)| + e 2 ε 2 |R ε,y (z)| 2 ≤ eε 1 + e B L ∞ (R 3 ) |z| |R ε,y (z)| + eε| div R ε,y (z)| + eε| curl R ε,y (z)|.
Using Lemma 14 together with the assumption that B, ∇B ∈ L p (R 3 ) for 1 ≤ p ≤ 6, we obtain

∀1 ≤ p ≤ 6, ||h ε,y (z)|| L p y (R 3 ) ≤ Cε(1 + |z| 3 ). (76) 
Next we integrate over y, use Hölder's inequality and the bound (76) for p = 6. We arrive at

R 3 |T (6) j (ω, y)(x, x ′ )| dy ≤ Cε 6 G ρ (x) R 3 dz 1 • • • R 3 dz 6 h ω (x -z 1 )× × 5 k=1 (1 + |z k | 3 )h ω (z k -z k+1 )(1 + |z 6 | 3 )h ω (z 6 -x ′ )G ρ (x ′ ).
We can put the polynomial terms together with the functions h ω using that

J k=1 (1+|z k | 3 ) ≤ C J J-1 k=1 (1+|z k -z k+1 | 3 )(1+|z J -x ′ | 3 )(1+|x-x ′ | 3 )(1+|x-z 1 | 3 ) (77) and (1+|x-x ′ | 3 )G ρ (x)G ρ (x ′ ) = (πρ) -3 (1+|x-x ′ | 3 )e - |x+x ′ | 2 +|x-x ′ | 2 2ρ 2 ≤ Ce - |x+x ′ | 2 2ρ 2
.

The above bound becomes

R 3 |T (6) j (ω, y)(x, x ′ )| dy ≤ Cε 6 e - |x+x ′ | 2 2ρ 2 (1 + | • | 3 )h ω * 7 (x -x ′ )
where f * n is the n-fold convolution of a function f . By Young's inequality and (75) we find

R 3 tr T (6) j (ω, y) dy ≤ Cε 6 (1 + | • | 3 )h ω 2 L 2 (R 3 ) (1 + | • | 3 )h ω 5 L 1 (R 3 ) ≤ Cε 6 (m 2 + ω 2 ) 2 .
Since S ε,y contains only one operator p y , estimating the kernel of the above operators will involve one function h ω and three functions g ω . The argument is exactly the same as before, using this time ||h ε,y (z)|| L 1 y (R 3 ) , with the final bound

R 3 |T (1) (ω, y)(x, x ′ )| dy ≤ C ε e - |x+x ′ | 2 2ρ 2 {(1+|•| 3 )h ω } * {(1+|•| 3 )g ω } * 3 (x-x ′ )
and thus R 3

tr T (1) (ω, y) dy

≤ Cε (1 + | • | 3 )h ω L 1 (R 3 ) (1 + | • | 3 )g ω L 1 (R 3 ) (1 + | • | 3 )g ω 2 L 2 (R 3 ) ≤ C ε (m 2 + ω 2 ) 2
which proves [START_REF] Yngvason | Thomas-Fermi theory for matter in a magnetic field as a limit of quantum mechanics[END_REF] for n = 1. and estimate its kernel as before. There are three functions h ω , two functions g ω , and the L 3 y norm of h ε,y . We get

R 3
tr T (3) (ω, y) dy

≤ Cε 3 (1 + | • | 3 )h ω 3 L 1 (R 3 ) (1 + | • | 3 )g ω 2 L 2 (R 3 ) ≤ C ε 3 (m 2 + ω 2 ) 2 .
The argument for the fourth and fifth order term is exactly the same. This ends the proof of Proposition 17.

Appendix A. The Pauli operator with constant magnetic field

In this appendix, we gather some useful properties of the Pauli operator with constant magnetic field B ∈ R 3

P Bו/2 = σ • (-i∇ -B × x/2) 2 . ( 79 
)
The Pauli operator naturally splits into a two-dimensional Pauli operator in the plane orthogonal to B and a Laplacian in the direction of B. Here as in the sequel, we denote by x ⊥ the projection of any vector x ∈ R 3 on this plane.

In the text we need the following pointwise estimates on the kernel of the resolvent of P Bו/2 as well as on (-i∂ j -(B × x) j /2) times the resolvent. Proof. For the proof of the proposition we can assume, after applying a suitable rotation, that B = |B|e 3 and then rewrite

P Bו/2 = -(∂ 1 + i|B|x 2 /2) 2 -(∂ 2 -i|B|x 1 /2) 2 -∂ 2 3 -|B|σ 3 .
Next we express the resolvent using the heat kernel as follows P Bו/2 + µ 2 -1 (x, y) = ∞ 0 e -sP Bו/2 (x, y)e -sµ 2 ds.

Note that the operators |B|σ 3 and ∂ 2 3 commute with each other, as well as with the first two terms. Hence e -sP Bו/2 (x, y) = e s(∂ 1 +i|B|x 2 /2) 2 +s(∂ 2 -i|B|x 1 /2) 2 (x ⊥ , y ⊥ ) e - . and the proof of (81) for j = 2, 3 is similar. This completes the proof of Proposition 18.

F

  = (E, B) = (-∇V, curl A), and ρ ext and j ext are given external charge and current densities. The vacuum charge ρ vac (eA) and current j vac (eA) densities are nonlinearly induced by the electron-positron vacuum according to the formulae eρ vac (eA) := ∂ ∂V F vac (eA), and ej vac (eA) := -∂ ∂A F vac (eA),

  and the physical magnetic field b ph by the relation e b = e ph b ph .

2 j=0c

 2 j f (m 2 j ) ≥ 0 for every convex function on [0, ∞). In particular

( 6 )

 6 j (ω, y) by writing

Proposition 18 (

 18 Pointwise estimates for a constant magnetic field). Let B ∈ R 3 be a constant magnetic field. Then we have the pointwise estimatesP Bו/2 + µ 2 -1 (x, y) j -(B × x) j /2) P Bו/2 + µ 2 -1 (x, y) |x ⊥ -y ⊥ | e -µ|x-y| (81)for every µ > 0 and j = 1, 2, 3, where|M | ∞ = sup x -1 M x is the sup norm of 2 × 2 matrices.Similar estimates were derived in[START_REF]Uniform Lieb-Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field[END_REF] Lemma A.10]. We have already shown a pointwise bound in Lemma 12 for the resolvent (80), but the estimate (81) requires a bit more work.

(x 3 -y 3 P. 2 ee -µ 2 s ds s 1 2ee. 1 2= (y 3 -x 3 )

 3321133 with x ⊥ = (x 1 , x 2 ). The kernel of the two-dimensional Pauli operator ise s(∂ 1 +i|B|x 2 /2) 2 +s(∂ 2 -i|B|x 1 /2) 2 (x ⊥ , y ⊥ ) = |B| 4π sinh(|B|s) e -|B| 4 coth(|B|s)|x ⊥ -y ⊥ | 2 e -i|B| 2 x ⊥ ×y ⊥(see e.g.[START_REF] Simon | Functional integration and quantum physics[END_REF] Chapter 15]). As a consequence, we finde -sP Bו/2 (x, y) = |B| 8π 3/2 √ s sinh(|B|s) e -|B| 4 coth(|B|s)|x ⊥ -y ⊥ | 2 × × e -i|B| 2 x ⊥ ×y ⊥ e -(x 3 -y 3 Bו/2 +µ 2 -1 (x, y) = e -i|B| 2 x ⊥ ×y ⊥ |B| 4 coth(|B|s)|x ⊥ -y ⊥ | 2 e -(x 3 -y 3 ) 2 4se -sµ 2 ds. (83)In order to bound this quantity, we split the domain of integration into two pieces. When |B|s ≤ 1, we use the inequalities |B|s ≤ sinh(|B|s), |B|s coth(|B|s) ≥ 1 and exp(|B|s) ≤ 1 + (e -1)s|B| ≤ 1 + 4s|B|. When |B|s ≥ 1, we also use the inequality |B|s coth(|B|s) ≥ 1, as well as the bound exp(|B|s) ≤ 4 sinh(|B|s). This givesP Bו/2 + µ 2 -1 (x, y) 2 e -|x-y| 2 4tIt then remains to recall the following formulae for the kernels of the resolvent of the one-dimensional and three-dimensional Laplace operators -µ 2 s e -r 2 4s = e -µr 4πr ,(85)in order to obtain the estimate (80).Concerning (81), we first derive from (83) that(-i∂ 1 + |B|x 2 ) P Bו/2 + µ 2 -1 (x, y) 4 coth(|B|s)|x ⊥ -y ⊥ | 2 e -(x 3 -y 3 x 2 -y 2 + i(x 1 -y 1 ) coth(|B|s) sinh(|B|s).Arguing as in the proof of (80), and applying the inequalities |B|s exp(|B|s) coth(|B|s) ≤ 8 for |B|s ≤ 1, respectively coth(|B|s) ≤ 4 for |B|s ≥ 1, we are led to the estimate(-i∂ 1 + |B|x 2 ) P Bו/2 + µ 2 -1 (x, y) ∞ ≤ |x ⊥ -y ⊥ | 2|B| -µ 2 s e -|x-y| 2 4s -µ 2 s e -|x-y| 2 4s 2 s e -|x-y| 2 4s Inequality (81) then follows from (84), (85), as well as the identity derived from (84) and (85) by integrating by parts. Finally, the kernels of the two other operators are given by (-i∂ 2 -|B|x 1 ) P Bו/2 + µ 2 -1 (x, y) 4 coth(|B|s)|x ⊥ -y ⊥ | 2 e -(x 3 -y 3 y 1 -x 1 + i(x 2 -y 2 ) coth(bt) e -µ 2 s ds s sinh(|B|s) . and (-i∂ 3 ) P Bו/2 + µ 2 -1 (x, y) 4 coth(|B|s)|x ⊥ -y ⊥ | 2 e -(x 3 -y 3
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Suming over j, we have proved that R R 3 T (6) (ω, y) S 1 dy ω 2 dω ≤ Cε 6 , as we wanted, where the constant depends on B, on ρ and on the c j 's and m j 's.

The proof for the other terms is very similar, and relies on the Pauli-Villars condition [START_REF] Dittrich | Probing the Quantum Vacuum: Perturbative Effective Action Approach in Quantum Electrodynamics and its Application[END_REF], exactly as in the proof of Proposition 6. We only sketch it.

First order term. We write -T (1) 

Second order term. For the second order term, we use as in ( 43)

and apply the same argument. There are two functions h ω , three functions g ω , and the L 2 y norm of h ε,y . We get

tr T (2) (ω, y) dy

.

Third, fourth and fifth order terms. For the other terms we only use the first Pauli-Villars condition, in order to simplify the argument. For instance, we write

S ε,y 1 K j (ω, y)