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DERIVATION OF THE MAGNETIC EULER-HEISENBERG

ENERGY

PHILIPPE GRAVEJAT, MATHIEU LEWIN, AND ÉRIC SÉRÉ

Abstract. In quantum field theory, the vacuum is a fluctuating medium
which behaves as a nonlinear polarizable material. In this article, we
perform the first rigorous derivation of the magnetic Euler-Heisenberg
effective energy, a nonlinear functional that describes the effective fluc-
tuations of the quantum vacuum in a classical magnetic field.

We start from a classical magnetic field in interaction with a quan-
tized Dirac field in its ground state, and we study a limit in which
the classical magnetic field is slowly varying. After a change of scales,
this is equivalent to a semi-classical limit ~ → 0, with a strong mag-
netic field of order 1/~. In this regime, we prove that the energy of
Dirac’s polarized vacuum converges to the Euler-Heisenberg functional.
The model has ultraviolet divergences, which we regularize using the
Pauli-Villars method. We also discuss how to remove the regularization
of the Euler-Heisenberg effective Lagrangian, using charge renormaliza-
tion, perturbatively to any order of the coupling constant.
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1. Introduction

In quantum field theory, the vacuum is a fluctuating medium which be-
haves as a nonlinear polarizable material [11, 21, 68]. A convenient way of
describing these effects is to use an effective action. In Quantum Electro-
dynamics (QED), this method corresponds to integrating out the electronic
degrees of freedom in the full QED functional integral [58, Chap. 33]. The
effective action is a function of a classical electromagnetic field treated as an
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external one. In the case of a constant electromagnetic field, the effective ac-
tion has a rather simple explicit expression. This effective Euler-Heisenberg

Lagrangian has been used to make spectacular predictions [58, 13]. For in-
stance, the birefringence of the vacuum that was predicted by this theory
has only been confirmed recently [54, 22].

For time-independent fields in the Coulomb gauge, the effective Lagrangian
action has been rigorously defined in [28]. It takes the form

L(A) :=−Fvac(eA) + e

∫

R3

(
jext(x) · A(x)− ρext(x)V (x)

)
dx

+
1

8π

∫

R3

(
|E(x)|2 − |B(x)|2

)
dx

(1)

and gives rise to nonlinear and nonlocal corrections to the classical linear
Maxwell equations







−∆V = 4πe
(
ρvac(eA) + ρext

)
,

−∆A = 4πe
(
jvac(eA) + jext

)
,

divA = div jext = 0.

(2)

Here e is the elementary charge of an electron, A := (V,A) is a classical,
R
4-valued, electromagnetic potential, with corresponding field

F = (E,B) = (−∇V, curlA),
and ρext and jext are given external charge and current densities. The vacuum
charge ρvac(eA) and current jvac(eA) densities are nonlinearly induced by
the electron-positron vacuum according to the formulae

eρvac(eA) :=
∂

∂V
Fvac(eA), and ejvac(eA) := − ∂

∂A
Fvac(eA),

where Fvac(eA) is the energy of a quantized Dirac field in the external four-
potential A, assumed to be in its ground state.

The nonlinear vacuum correction terms ρvac(eA) and jvac(eA) are negligi-
ble in normal conditions and they only start to play a significant role for very
large electromagnetic fields. The critical value at which this starts to happen
is called the Schwinger limit and it is several orders of magnitude above what
can now be produced in the laboratory. The detection of these nonlinear ef-
fects is nevertheless a very active area of experimental research [3, 56]. In
addition, these terms are known to play an important role in neutron stars
with extremely high magnetic fields (magnetars) [2, 51, 7]. The observation
of this effect has been announced very recently [54]. The equations (2) do
not seem to have attracted much attention on the mathematical side.

The exact vacuum energy Fvac(eA) is a very complicated nonlocal func-
tional of A which, in addition, has well-known divergences. Its precise defini-
tion will be recalled in Section 2.1 below. A simple and useful approximation,
often used in the Physics literature, consists in replacing the complicated
functional Fvac(eA) by a superposition of local independent problems, that
is,

Fvac(eA) ≃
∫

R3

fvac
(
eE(x), eB(x)

)
dx (3)
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where fvac
(
eE, eB

)
is the energy per unit volume, found for an electromag-

netic field F = (E,B) which is constant everywhere in space (hence for a
linear electromagnetic potential A). Our purpose in this article is to justify
the approximation (3) in a limit where the electromagnetic field F is slowly
varying.

The (appropriately renormalized) function fvac
(
eE, eB

)
has been com-

puted by Euler and Heisenberg in a famous article [38] and it is given by the
expression

fvac(eE, eB) =
1

8π2

∫ ∞

0

e−sm2

s3

(

e2s2

3

(
|E|2 − |B|2

)
− 1

+ e2s2
(
E · B

) Re cosh
(
es
(
|B|2 − |E|2 + iE · B

) 1
2
)

Im cosh
(
es
(
|B|2 − |E|2 + iE · B

) 1
2
)

)

ds. (4)

Here m is the mass of the electron and we work in a system of units such
that the reduced Planck constant ~ and the speed of light c are equal to 1.
An alternative computation of the Euler-Heisenberg formula (4) has been
discussed later by Weisskopf [68] and Schwinger [59]. For weak fields the
leading correction to the usual Maxwell Lagrangian is given by

fvac(eE, eB) = − e4

360π2m4

(

(|E|2 − |B|2)2 + 7(E · B)2
)

+ o(|E|4 + |B|4).

This expression has a form similar to the first-order Born-Infeld theory [42,
43] and it has played an important role in the understanding of nonlinear
effects on the propagation and dispersion of light [41, 55, 52, 44].

It is well-known that the Euler-Heisenberg vacuum energy in formula (4)
has to be handled with care, since the integrand may have poles on the real
line. The proper definition requires to replace s by s + iη and to take the
limit η → 0 [59, 40]. The function fvac(eE, eB) defined in this way may have
an exponentially small non-zero imaginary part, which is interpreted as the
electron-positron pair production rate and corresponds to the instability of
the vacuum (see [31, Paragraph 7.3] and [13, 40, 14, 15]). However, under
the additional constraints that E ·B = 0 and |E| < |B|, then there is no pole,
the integral in (4) converges absolutely and the vacuum energy fvac(eE, eB)
is real, as expected. In particular, this is the case for a purely magnetic field,
E ≡ 0, that will be the object of our paper.

The purely magnetic case has been particularly discussed in the Physics
literature [1, 6, 66, 67, 53]. The corresponding energy is independent of the
direction of the magnetic field B and simplifies to

fvac(0, eB) =
1

8π2

∫ ∞

0

e−sm2

s3

(

es|B| coth
(
es|B|

)
− 1− e2s2|B|2

3

)

ds. (5)

This function is concave-decreasing and negative, which corresponds to the
usual picture that, after renormalization, the vacuum polarization enhances

an external field instead of screening it as one would have naturally expected
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at first sight. As an illustration, the function behaves as

fvac(0, eB) ∼







− e4

360π2m4
|B|4 for |B| → 0,

−e
2|B|2
24π2

log

(
e|B|
m2

)

for |B| → ∞.

(6)

Note that the energy diverges faster than |B|2 at infinity. The total energy

1

8π

∫

R3

|B(x)|2 dx+

∫

R3

fvac
(
0, e|B(x)|

)
dx

is unbounded from below. The implications of this instability for strong
magnetic fields were studied by Haba in [33, 34]. The instability of the
model is due to charge renormalization.

The function |B| 7→ fvac(0, eB) has a non-convergent Taylor series in
powers of B. In fact, the series is

m4

8π2

∑

n≥2

B2n

2n(2n − 1)(2n − 2)

(
2e|B|
m2

)2n

and the Bernoulli numbers

B2n = (−1)n+1 (2n)!

(2π)2n
ζ(2n)

(with ζ the Riemann zeta function) diverge extremely fast. This phenome-
non has played an important historical role in quantum field theory, where
perturbative arguments are often used. It can nevertheless be shown that
fvac(0, eB) is the Borel sum of its Taylor expansion [4].

Our main goal in this paper is to provide a rigorous derivation of the
purely magnetic Euler-Heisenberg vacuum energy in (5), starting from the
vacuum energy Fvac of a quantized Dirac field, in the regime where B varies
slowly in space. To be more precise, we assume that the magnetic field takes
the form B(εx) with a fixed smooth function B (which corresponds to the
strong magnetic potential Aε(x) = ε−1A(εx)) and then look at the limit
ε → 0. The expectation is that the vacuum energy is locally given by the
Euler-Heisenberg formula, leading to the limit

Fvac

(
0, eAε

)
∼

ε→0

∫

R3

fvac(0, eB(εx)) dx = ε−3

∫

R3

fvac(0, eB(x)) dx. (7)

After a change of scale, the problem coincides with a semiclassical limit
~ = ε → 0 with a very strong magnetic field of order B ∼ 1/~. This
magnetic field strength is critical: any B ≪ 1/~ would disappear in the
leading order of the semi-classical limit. Here B does contribute, and deriving
the exact form of the energy is a very delicate matter. This regime of strong
magnetic fields has been the object of several recent studies in different
situations [48, 26, 64, 70, 16, 17, 18, 19, 24, 23, 25, 39], none of them covering
the continuous spectrum of the Dirac operator, to our knowledge. A result
similar to (7) has recently been obtained in the simpler case of a scalar field
in [45], which is a more conventional semiclassical limit.

In addition to the criticality of the magnetic field strength, we have to face
the other difficulty that the vacuum energy Fvac has divergences that must
be regularized. Different regularization schemes are possible. In this article
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we use the Pauli-Villars method as in [28] and obtain a result similar to (7),
with a Pauli-Villars-regulated function fPVvac (0, eB). An advantage of the reg-
ularized model is that it is stable, contrary to the original Euler-Heisenberg
fvac(0, eB). After charge renormalization, the function fPVvac (0, eB) coincides
with fvac(0, eB) up to an exponentially small error, but the model becomes
unstable.

In the next section we properly define the Dirac vacuum energy Fvac using
the Pauli-Villars scheme, before we are able to state our main results.

2. Main results

2.1. The Pauli-Villars-regulated vacuum energy. We start by recalling
the definition of the Pauli-Villars-regulated vacuum energy [57] which was
rigorously studied in [28] (see also [27, 47]).

The vacuum energy Fvac(eA) in (1) is given by the formal expression

Fvac(eA) := −1

2
tr
∣
∣Dm,eA

∣
∣. (8)

In this formula,

Dm,eA := α ·
(
− i∇− eA

)
+ eV +mβ, (9)

is the Dirac operator for one electron in the classical electromagnetic field
A = (V,A1, A2, A3) [65, 20], a self-adjoint operator acting on L2(R3,C4).
The four Dirac matrices α = (α1,α2,α3) and β are given by

αk :=

(
0 σk

σk 0

)

, and β :=

(
I2 0
0 −I2

)

,

with Pauli matrices σ1, σ2 and σ3 equal to

σ1 :=

(
0 1
1 0

)

, σ2 :=

(
0 −i
i 0

)

, and σ3 :=

(
1 0
0 −1

)

.

The Dirac matrices satisfy the following anti-commutation relations

αj αk +αk αj = 2δj,k I4, αj β + βαj = 0, and β2 = I4. (10)

The trace in (8) means that all the negative energy states are filled by virtual
electrons, according to Dirac’s picture [8, 9, 10, 12, 11]. The operator

−1

2

∣
∣Dm,eA

∣
∣ = Dm,eA

1(Dm,eA ≤ 0)− 1(Dm,eA ≥ 0)

2
in the trace arises from the constraint that the system must be charge-
conjugation invariant. We refer to [36, 28] for detailed explanations.

Of course, the trace in (8) is infinite. In order to give a proper meaning
to Fvac(eA), we start by subtracting an infinite constant, namely the free
vacuum energy corresponding to A ≡ 0 given by

Fvac(0) = −1

2
tr
∣
∣Dm,0

∣
∣.

We therefore consider the relative vacuum energy

Fvac(eA)−Fvac(0) =
1

2
tr
(∣
∣Dm,0

∣
∣−
∣
∣Dm,eA

∣
∣

)

. (11)

Removing an (infinite) constant does not change the variational problem in
which we are interested, as well as the resulting equations.
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For most electromagnetic potentials A, however, the relative vacuum en-
ergy in (11) is not yet well defined due to ultraviolet divergences. This
additional difficulty can be overcome by applying a suitable regularization.
Various methods are employed in the literature, among which are the famous
dimensional regularization [32] and the lattice regularization [69]. Here we
are going to use the Pauli-Villars method [57] which was studied in [28]. This
technique consists in adding fictitious particles with high masses mj ≫ 1 in
the model. These particles have no physical significance, but their introduc-
tion provides an ultraviolet regularization, which is sufficient to rigorously
define the vacuum energy. More precisely, we consider the so-called Pauli-
Villars-regulated vacuum energy given by the formula

FPV
vac (eA) :=

1

2
tr

2∑

j=0

cj

(∣
∣Dmj ,0

∣
∣−
∣
∣Dmj ,eA

∣
∣

)

. (12)

In this expression, the coefficient c0 and the mass m0 are respectively equal
to 1 and m. The corresponding term is exactly the relative vacuum energy
in (11). The ultraviolet divergences are removed if the coefficients c1 and c2
satisfy the Pauli-Villars conditions

2∑

j=0

cj =

2∑

j=0

cj m
2
j = 0, (13)

which amounts to choosing them as

c1 = −m
2
2 −m2

0

m2
2 −m2

1

, and c2 =
m2

1 −m2
0

m2
2 −m2

1

.

In the following we always assume that m = m0 < m1 < m2 for simplicity,
hence c1 < 0 and c2 > 0.

We now describe some known mathematical properties of FPV
vac . Through-

out the article we work in the electromagnetic field energy space, namely, we
assume that E,B ∈ L2(R3). This amounts to assuming that

V ∈ Ḣ1(R3) :=
{

V ∈ L6(R3,R) : ‖∇V ‖2L2 <∞
}

and

A ∈ Ḣ1
div(R

3) :=
{

A ∈ L6(R3,R3) : divA = 0 and ‖ curlA‖2L2 <∞
}

.

The precise result proved in [28] is the following.

Theorem 1 (Definition of FPV
vac in energy space [28]). Assume that the co-

efficients c0 = 1, c1 and c2, and the masses 0 < m = m0 < m1 < m2 satisfy

the Pauli-Villars conditions (13).

(i) When V ∈ Ḣ1(R3) and A ∈ Ḣ1
div(R

3), the operator

TA :=
2∑

j=0

cj

(∣
∣Dmj ,0

∣
∣−
∣
∣Dmj ,A

∣
∣

)

(14)

is compact.
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(ii) When V ∈ L1(R3) ∩ Ḣ1(R3) and A ∈ L1(R3) ∩ Ḣ1
div(R

3), we have

tr |trC4 TA| <∞, hence

FPV
vac (A) :=

1

2
tr (trC4 TA)

is well-defined. Moreover, FPV
vac can be uniquely extended to a continuous

mapping on Ḣ1(R3)× Ḣ1
div(R

3).

(iii) When V = 0, and A ∈ L1(R3) ∩ Ḣ1
div(R

3), the operator T0,A is trace-

class on L2(R3,C4), that is, tr |T0,A| <∞, hence FPV
vac (0, A) = tr(T0,A)/2.

The result says that the vacuum energy FPV
vac (A) is well defined by a trace

(possibly first doing the C
4 trace), when A and V are smooth and integrable,

and that it has a unique continuous extension to the energy space, still
denoted by FPV

vac (A). In the case V 6= 0, we do not believe the operator
TA to be trace-class without taking first the C

4-trace. But the terms in TA
which are (possibly) not trace-class do not contribute to the final value of
FPV
vac (A), due to gauge-invariance.
With FPV

vac at hand, it is now possible to define the associated Lagrangian
action, in external charge and current densities,

LPV(A) :=−FPV
vac (eA) + e

∫

R3

(
jext(x) · A(x)− ρext(x)V (x)

)
dx

+
1

8π

∫

R3

(
|∇V (x)|2 − | curlA(x)|2

)
dx.

(15)

provided that div jext = 0 and

ρext ∗
1

|x| ∈ Ḣ1(R3), jext ∗
1

|x| ∈ Ḣ1
div(R

3).

In [28] we have constructed the electromagnetic field F = (E,B), in presence
of time-independent, weak enough, external charge density ρext and current
density jext, as a local min-max critical point of LPV. The corresponding
four-potential A = (V,A) satisfies the nonlinear Maxwell equations in (2).
We refer to [28, 47, 27] for more details.

2.2. Derivation of the Euler-Heisenberg vacuum energy. We now
come to our rigorous derivation of the Euler-Heisenberg vacuum energy in (5)
starting from the Pauli-Villars-regulated vacuum energy.

As announced we restrict our attention to purely magnetic fields by setting

V ≡ 0.

We next consider a scaled magnetic field of the form Bε(x) = B(εx), with a
given B = curlA ∈ L2(R3), and A ∈ Ḣ1

div(R
3). Our main result requires a

bit more regularity.

Theorem 2 (Derivation of the Euler-Heisenberg vacuum energy). Let B ∈
C0(R3,R3) be such that divB = 0 and

B ∈ L1(R3) ∩ L∞(R3), ∇B ∈ L1(R3) ∩ L6(R3), (16)
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and let A be the associated magnetic potential in Ḣ1
div(R

3). Set finally

Aε(x) = ε−1A(εx). Then, we have

ε3FPV
vac (0, eAε) =

∫

R3

fPVvac

(
e|B(x)|

)
dx+O(ε) (17)

where

fPVvac (b) :=
1

8π2

∫ ∞

0

( 2∑

j=0

cj e
−sm2

j

)(

sb coth
(
sb
)
− 1
)ds

s3
(18)

is the Pauli-Villars-regulated Euler-Heisenberg vacuum energy.

The theorem provides a limit in the same form as in (7), except that
the effective energy fPVvac (b) still depends on the regularization parameters
c1, c2,m1,m2. In the next section we discuss the link with the original Euler-
Heisenberg energy fvac. We remark that the function fPVvac is non-negative
and behaves as

fPVvac (eB) ∼







e2|B|2
24π2

2∑

j=0

cj logm−2
j for |B| → 0,

e|B|
8π2

2∑

j=0

cjm
2
j logm

2
j for |B| → ∞,

(19)

where
2∑

j=0

cj logm−2
j ≥ 0 and

2∑

j=0

cjm
2
j logm

2
j ≥ 0,

as we show in Lemma 11 below. Note that the field energy is of the same
order ε−3 as the vacuum in this regime,

∫

R3

|B(εx)|2 dx = ε−3

∫

R3

|B(x)|2 dx.

Therefore, in the limit ε→ 0 we get the effective local Lagrangian

−ε−3

(
1

8π

∫

R3

|B(x)|2 dx+

∫

R3

fPVvac (e|B(x)|) dx
)

.

The two terms have the same sign, hence the corresponding model is stable,
contrary to the renormalized functional based upon the Euler-Heisenberg
function fvac.

Remark 3. The technical conditions on B in (16) are certainly not optimal.

It would be interesting to prove (17) with O(ε) replaced by o(1), under the

sole assumption that
∫

R3 f
PV
vac (|B(x)|) dx <∞. Due to (19), this condition is

equivalent to
∫

R3

|B(x)|2
1 + |B(x)| dx <∞.
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2.3. Charge renormalization & the Euler-Heisenberg energy. The
function fPVvac defined in (18) and obtained in the limit ε → 0 is different
from the Euler-Heisenberg energy fvac. In particular, fPVvac is positive convex
increasing, whereas fvac is negative concave decreasing. The reason is that
fPVvac does not include the quadratic term (sb)2/3 that is present in the for-
mula (4) of fvac. Indeed, integrating by parts using the first Pauli-Villars
condition in (13), we find

fPVvac (b) =
1

8π2

∫ ∞

0

( 2∑

j=0

cj e
−sm2

j

)(

sb coth
(
sb
)
− 1− (sb)2

3

)ds

s3

+
b2

24π2

∫ ∞

0

( 2∑

j=0

cj e
−sm2

j

)
ds

s

= fvac(b) + c1
m4

1

m4
fvac

(
m2

m2
1

b

)

+ c2
m4

2

m4
fvac

(
m2

m2
2

b

)

+
log(Λ)

24π2
b2

(20)

where

fvac(b) =
1

8π2

∫ ∞

0
e−m2s

(

sb coth
(
sb
)
− 1− (sb)2

3

)ds

s3

is the original Euler-Heisenberg energy with mass m, and where the averaged
ultraviolet cut-off Λ > 1 is defined by

log Λ := −
2∑

j=0

cj logmj > 0. (21)

The second and third terms in (20) are small since

cj
m4

j

m4
fvac

(

m2

m2
j

b

)

= O

(

|cj |
m4

j

b4

)

, j = 1, 2.

In particular, we can take m1,m2 → ∞ while keeping c1, c2 bounded. How-
ever, the last term in (20) is logarithmically-divergent.

The correct way to remove the divergent term is to include it in the def-
inition of the charge, a procedure called charge renormalization. Here we
explain this procedure on the real function b 7→ fPVvac (eb). By superposition,
the same holds for the local function

B 7→
∫

R3

fPVvac

(
e|B(x)|

)
dx

obtained in the semi-classical limit. Following [37, 35, 29, 30], we define the
physical charge eph by

e2ph =
e2

1 + 2e2

3π log Λ
, (22)

and the physical magnetic field bph by the relation

e b = eph bph.

It is convenient to introduce the renormalization parameter

Z3 :=
1

1 + 2e2

3π log Λ
∈ (0, 1) (23)



10 P. GRAVEJAT, M. LEWIN, AND É. SÉRÉ

in such a way that eph =
√
Z3 e and bph =

√
Z3 b.

We would like to take Λ → ∞, which however imposes that

eph ≤
√

3π

2 log Λ
→ 0.

It is not possible to remove the ultraviolet regularization and keep the phys-
ical charge eph fixed, a phenomenon related to the Landau pole [46]. The
best we can do is to fix e2ph log Λ, which is equivalent to fixing Z3, then let
eph go to zero and verify that the chosen value of Z3 does not appear in the
perturbative series in eph [30]. In this regime, our goal is to compare the
total magnetic energy per unit volume

b2

8π
+ fPVvac (e b)

with the physical energy involving the Euler-Heisenberg magnetic energy

(bph)
2

8π
+ fvac(eph bph).

The following says that these two energies are exponentially close to each
other in a neighborhood of 0. In particular, they have the same Taylor
expansion at eph = 0 which, however, is divergent as we have recalled above.

Theorem 4 (Renormalization of fPVvac ). We have for a universal constant K

∣
∣
∣
∣

b2

8π
+ fPVvac (e b) −

(bph)
2

8π
− fvac(eph bph)

∣
∣
∣
∣

≤ K|c1|
(
ephbph
m

)4

exp
(

−6π 1−Z3

(eph)2

)

. (24)

Proof. Inserting (20) and using the definition of bph, we see that the quadratic
terms cancel exactly and therefore obtain

b2

8π
+ fPVvac (e b)−

(bph)
2

8π
− fvac(eph bph)

= c1
m4

1

m4
fvac

(
m2

m2
1

eb

)

+ c2
m4

2

m4
fvac

(
m2

m2
2

eb

)

. (25)

We set

K := max
x≥0

2m4|fvac(x)|
x4

.

Although fvac depends on m, it can be seen that K is independent of m. We
obtain
∣
∣
∣
∣

b2

8π
+ fPVvac (e b)−

(bph)
2

8π
− fvac(eph bph)

∣
∣
∣
∣
≤ K

2

(

− c1
(m1)4

+
c2

(m2)4

)

(ephbph)
4

≤ K|c1|
(m1)4

(ephbph)
4,
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since c2 = −1− c1 and m1 < m2. Recall that

−3π

2

1− Z3

(eph)2
= − log Λ = logm+ c1 logm1 + c2 logm2

≥ logm+ (c1 + c2) logm1 = log
m

m1

which gives us

1

(m1)4
≤ e

−6π
1−Z3
(eph)

2

m4

and concludes the proof. �

Our conclusion is that the Pauli-Villars-regulated function fPVvac coincides
with the original Euler-Heisenberg energy fvac to any order, after charge
renormalization. It would be interesting to relate the original Dirac energy
Fvac with fvac directly, by performing the charge renormalization at the same
time as we take the limit ε → 0. We do not discuss this further, since this
would force us to take e→ 0.

2.4. The semi-classical limit. Let us now explain the main ideas behind
the convergence in (17). We stay here at a formal level. In the next section
we give the detailed proof of Theorem 2, which takes a slightly different
route. Using that

|Dm,0,eA|2 =
(

PeA +m2 0
0 PeA +m2

)

=
(
PeA +m2

)
⊗ 1C2 (26)

with V = 0 and where

PeA =
(

σ · (−i∇ + eA)
)2

= (−i∇ + eA)2 − eσ · B (27)

is the Pauli operator, acting on 2-spinors, we can rewrite the vacuum energy
as

FPV
vac (0, eAε) = trL2(R3,C2)







2∑

j=0

cj

(√

P0 +m2
j −

√

PeAε +m2
j

)






.

Next we use the integral formula

2∑

j=0

cj

√

a+m2
j = − 1

2
√
π

∫ ∞

0

( 2∑

j=0

cje
−sm2

j

)

e−sa ds

s3/2
, (28)

for a ≥ 0, which is proved by an integration by parts. Note that the integral
on the right converges at s = 0, thanks to the Pauli-Villars condition (13).
We obtain

FPV
vac (0, eAε) =

1

2
√
π
trL2(R3,C2)

∫ ∞

0

( 2∑

j=0

cje
−sm2

j

)(

e−sPeAε − e−sP0

) ds

s3/2
.

Exchanging the trace with the integral, we need an expansion in ε of
tr(e−sPeAε − e−sP0). Changing units, we recognize here a semi-classical
limit. The idea is, therefore, to replace the trace by an integral over R

3, of
the value of this trace per unit volume for a constant field.
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We recall that for a constant magnetic field B, the operator PeA com-
mutes with the translations in the direction of B. For each value ξ of the
momentum in this direction, the corresponding fiber Hamiltonian has the
energy levels

(
2n+ 1 + ν)e|B|+m2 + ξ2

where n ≥ 0 is the index of the Landau band and ν = ±1 is the spin variable.
These energies are infinitely degenerate with respect to the angular momen-
tum along the field B. The number of states with fixed energy per unit area
in the plane perpendicular to B is e|B|/(2π). Semi-classical analysis then
suggests that

tr
(
e−sPeAε − e−sP0

)

≃
∫

R3

{
e|B(εx)|

2π

∑

ν=±1

∑

n≥0

∫

R

e−s(2n+1+ν)e|B(εx)|e−sξ2 dξ

2π

− 2

∫

R3

e−s|p|2 dp

(2π)3

}

dx. (29)

Using
∫

Rd e
−s|p|2 dp = (π/s)d/2 and

∑

ν=±1

∑

n≥0

e−s(2n+1+ν)e|B| = (1 + e−2s|B|)
∑

n≥0

e−2sne|B| = coth(es|B|),

we can compute the right side of (29) and obtain

tr
(
e−sPeAε−e−sP0

)
≃ ε−3

4π3/2s3/2

∫

R3

(
es|B(x)| coth(es|B(x)|)−1

)
dx. (30)

Inserting in (29), this is exactly the limit (17) stated in Theorem 2.
There are serious technical difficulties in the rigorous justification of these

arguments. The first is that the trace is everywhere formal, since the oper-
ators are usually not trace-class. When A is assumed to be integrable, the
operators are trace-class and many of our arguments become simpler. But
the integrability of A will fail for physically relevant magnetic fields. The
second difficulty is of course the justification of the semi-classical limit (30),
which involves the whole spectrum of the two Pauli operators and not only
the negative eigenvalues.

In [33, 34], Haba has used the Feynman-Kac formula to study the limit
of the kernel (e−sPeA − e−sP0)(x, x) for large fields but he did not state
the semi-classical limit (30). He also used the strong assumption that A ∈
L1(R3) ∩ L∞(R3) (see [33, Thm. 2]).

In the literature there are simple variational arguments (e.g. based on
coherent states [49, 50, 62], including the case of magnetic fields [48, 26, 70,
17, 18, 19, 24, 23, 25]) which provide the first order semi-classical term. So far
these seem to have been mainly used for eigenvalues and it is not clear how
to adapt them to our particular limit (30) of a difference of two heat kernels.
Instead, we will prove Theorem 2 using another integral representation which
involves the resolvent of the two Pauli operators instead of their heat kernels,
as in [28].
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3. Proof of Theorem 2

In this section we describe the main steps of the proof of Theorem 2.
Some technical details will be provided later. Everywhere we use the simpler
notation Dm,A instead of Dm,0,A, since there will be no electric potential V
from now on.

Step 1: Estimates on A. We start with an elementary result which provides
useful estimates on the magnetic potential A, for a magnetic field B which
satisfies the assumptions of Theorem 2.

Lemma 5 (Estimates on A and its derivatives). Let B ∈ C0(R3,R3) be

such that divB = 0 and satisfying the assumptions (16) of Theorem 2. The

magnetic potential

A(x) = − 1

4π

∫

R3

y

|y|3 ×B(x− y) dy =
1

4π

∫

R3

(curlB)(x− y)

|y| dy (31)

is the unique potential in Ḣ1
div(R

3) such that B = curlA. It is in C1(R3)
and satisfies

{

A ∈ Lp(R3) for 3/2 < p ≤ ∞,

∇A ∈ Lq(R3) for 1 < q ≤ ∞.

Proof. Since y|y|−3 is in L3/2
w (R3), the Hardy-Littlewood-Sobolev inequality

gives that A ∈ Lp(R3) for every 3/2 < p <∞. The case p = ∞ follows from
the fact that y|y|−3 ∈ L1(R3) +L2(R3) and B ∈ L2(R3)∩L∞(R3). Next we
write

A(x) =
1

4π

∫

R3

1− e−|y|

|y| curlB(x− y) dy +
1

4π

∫

R3

e−|y|

|y| curlB(x− y) dy

= − 1

4π

∫

R3

∇
(
1− e−|y|

|y|

)

×B(x− y) dy +
1

4π

∫

R3

e−|y|

|y| curlB(x− y) dy.

and obtain

∂jA(x) = − 1

4π

∫

R3

∂j∇
(

1− e−|y|

|y|

)

×B(x− y) dy

+
1

4π

∫

R3

∂j

(

e−|y|

|y|

)

curlB(x− y) dy.

Since ∂j
(
|y|−1e−|y|) ∈ L1(R3)∩L5/4(R3) and curlB ∈ L1(R3)∩L5(R3), the

second term is in L1(R3)∩L∞(R3). Similarly, ∂j∇|y|−1(1− e−|y|) ∈ Lp(R3)
for all p > 1 and B ∈ L1(R3) so the first term is in Lp(R3) for all p > 1. �

Step 2: Expression in terms of the resolvent of the Pauli operator. Here we
summarize some of the findings of [28] which are useful for the proof of the
main theorem. Following [28], we use the integral representation

|x| = 1

π

∫

R

x2

x2 + ω2
dω =

1

π

∫

R

(

1− ω2

x2 + ω2

)

dω
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which allows to express the operator TeA as

TeA =
2∑

j=0

cj

(∣
∣Dmj ,0

∣
∣−
∣
∣Dmj ,eA

∣
∣

)

=
1

π

∫

R

2∑

j=0

cj

(

1
∣
∣Dmj ,eA

∣
∣2 + ω2

− 1
∣
∣Dmj ,0

∣
∣2 + ω2

)

ω2dω. (32)

Using the two Pauli-Villars conditions in (13), a calculation gives the follow-
ing useful formulas:

∀x ≥ 0,

2∑

j=0

cj
1

x+m2
j

=

2∑

j=0

cj

(

1

x+m2
j

− 1

x+m2

)

=

2∑

j=0

cj(m
2
j −m2)2

1

(x+m2
j)(x+m2)2

. (33)

These formulas show how the Pauli-Villars conditions (13) allow to increase
the decay at large momenta, since

∑2
j=0 cj(x+m

2
j)

−1 now behaves like x−3 at
infinity instead of x−1 for the unregularized resolvent (x+m2)−1. Using (33)
and the bound |Dmj ,eA|2 ≥ m2

j following from (26), we deduce that
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2∑

j=0

cj

(

1
∣
∣Dmj ,eA

∣
∣2 + ω2

− 1
∣
∣Dmj ,0

∣
∣2 + ω2

)∣∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤ C

(m2 + ω2)3
.

Therefore the integral in (32) converges in the operator norm. Using (26), we
find that TeA is block-diagonal in the two-spinor basis, which we can rewrite
as

TeA =
1

π

∫

R

ω2dω

2∑

j=0

cj

(

1

PeA +m2
j + ω2

− 1

P0 +m2
j + ω2

)

⊗ 1C2

where PeA is the Pauli operator defined in (27). The integral representation
used in the previous section has the nice feature that the regularization gives
rise to the simple term

∑2
j=0 cje

−sm2
j . Here the regularization parameters

cannot be separated from the other terms in the integral. Nevertheless,
resolvents are simpler to handle and we will be able to apply several estimates
proved in [28] in this setting.

To be more precise, it was proved in [28] that when A ∈ L1(R3)∩H1
div(R

3)
and B ∈ L1(R3) ∩ L2(R3), the operator

2∑

j=0

cj

(

1

PeA +m2
j + ω2

− 1

P0 +m2
j + ω2

)

is trace-class and that the trace can be integrated over ω:

∫

R

tr

∣
∣
∣
∣
∣
∣

2∑

j=0

cj

(

1

PeA +m2
j + ω2

− 1

P0 +m2
j + ω2

)
∣
∣
∣
∣
∣
∣

ω2dω <∞

which then proved that TeA is itself trace-class, as stated in Theorem 1. In
our situation, we have B ∈ L1 ∩ L∞ but A is not necessarily integrable, so
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the operator is not necessarily trace-class. However, the non-trace-class part
is easy to extract and happens to be linear in A. This is the content of the
following

Proposition 6 (Extracting the non-trace-class part). We assume that B
satisfies the conditions (16) of Theorem 2 and let A be the unique potential

in H1
div(R

3) such that B = curlA. Then

∫

R

tr

∣
∣
∣
∣

2∑

j=0

cj

(
1

PeA +m2
j + ω2

− 1

P0 +m2
j + ω2

− 1

P0 +m2
j + ω2

(p · A+A · p) 1

P0 +m2
j + ω2

)∣
∣
∣
∣
ω2dω <∞ (34)

and

FPV
vac (eA) =

1

π

∫

R

tr

{ 2∑

j=0

cj

(
1

PeA +m2
j + ω2

− 1

P0 +m2
j + ω2

− 1

P0 +m2
j + ω2

(p · A+A · p) 1

P0 +m2
j + ω2

)}

ω2dω, (35)

where p := −i∇. If additionally A ∈ L1(R3), then

tr

{ 2∑

j=0

cj
1

P0 +m2
j + ω2

(p ·A+A · p) 1

P0 +m2
j + ω2

}

= 0

for every ω ∈ R, where the operator in the trace is trace-class.

Note that p ·A+A · p = 2p ·A = 2A · p since divA = 0.

Proof. We only give a sketch of the proof, which relies on the techniques
used in [28]. It is based on the 5th-order resolvent expansion

2∑

j=0

cj

(

1

PeA +m2
j + ω2

− 1

P0 +m2
j + ω2

)

=
4∑

n=1

(−1)n
2∑

j=0

cj

(

1

P0 +m2
j + ω2

SeA

)n
1

P0 +m2
j + ω2

−
2∑

j=0

cj

(

1

P0 +m2
j + ω2

SeA

)5
1

PeA +m2
j + ω2

:=

4∑

n=1

T
(n)
eA (ω) + T

(5)
eA (ω). (36)

where the operator SeA is defined by

SeA := PeA − P0 = −e(p ·A+A · p) + e2|A|2 − eB · σ (37)

= −e(σ · p)(σ · A)− e(σ · A)(σ · p) + e2|A|2. (38)

We emphasize that T (5)
eA (ω) contains PeA in the last resolvent on the right,

whereas T (n)
eA (ω) has P0 for n ≤ 4. This should note generate any confusion,
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since we will never introduce T (n)
eA (ω) for n > 5. For n ≤ 5, it was proved

in [28] that T (n)
eA (ω) is trace-class, with

∫

tr
∣
∣T

(n)
eA (ω)

∣
∣ ω2dω <∞

whenever A ∈ Ln(R3)∩ Ḣ1
div(R

3) and B ∈ L2(R3). From Lemma 5, we have
A ∈ L2(R3) ∩ L∞(R3) and B ∈ L1(R3) ∩ L∞(R3) hence only the first order

term T
(1)
eA (ω) is possibly not trace-class under the condition (16). All the

other terms are trace-class. The term involving p · A+ A · p which we have
subtracted in the statement is exactly the non-trace-class part of T (1)

eA , as
we will explain below. Formula (35) follows from the continuity of FPV

vac in
Theorem 1.

Let us briefly explain how to estimate T (n)
eA (ω) using ideas from [28]. For

the 5th order term, we use directly the Kato-Seiler-Simon inequality (see [61,
Thm. 4.1])

∥
∥g(−i∇)f(x)

∥
∥
Sp

=
∥
∥f(x)g(−i∇)

∥
∥
Sp

≤ (2π)−
3
p
∥
∥f
∥
∥
Lp

∥
∥g
∥
∥
Lp , (39)

which holds for any number p ≥ 2, and any functions (f, g) ∈ Lp(R3)2. Here,
the notation ‖·‖Sp stands for the norm of the Schatten class Sp(L

2(R3,C4)).
Using Hölder’s inequality in Schatten spaces and the positivity of PeA ≥ 0,
we find

∣
∣
∣

∣
∣
∣T

(5)
eA (ω)

∣
∣
∣

∣
∣
∣
S1

≤
2∑

j=0

|cj |
m2

j + ω2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

P0 +m2
j + ω2

SeA

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

5

S5

.

Here it is convenient to use that

SeA = −2ep · A+ e2|A|2 − eB · σ (40)

since divA = 0. By the triangle inequality and the fact that ||·||
Sp

≤ ||·||
Sq

for q ≤ p, we obtain
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

P0 +m2
j + ω2

SeA

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
S5

≤ 2e

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

p

p2 +m2
j + ω2

· A(x)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
S5

+ e2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

p2 +m2
j + ω2

|A(x)|2
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
S3

+ e

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

p2 +m2
j + ω2

|B(x)|
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
S2

.
e ||A||L5

(m2
j + ω2)1/5

+
e2 ||A||2L6

(m2
j + ω2)1/2

+
e ||B||L2

(m2
j + ω2)1/4

which, by the Sobolev inequality, gives the final estimate

∣
∣
∣

∣
∣
∣T

(5)
eA (ω)

∣
∣
∣

∣
∣
∣
S1

.

∑2
j=0 |cj |

m2 + ω2

(

e5 ||A||5H1

m2 + ω2
+

e10 ||A||10H1

(m2 + ω2)5/2

)

and proves that
∫

R
‖T (5)

eA (ω)‖S1ω
2 dω <∞, as we wanted.
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The argument for the lower order terms T (n)
eA (ω) is slightly more com-

plicated, since we need to use the Pauli-Villars condition (13) in order to
increase the decay in momentum. Let us start with the proof for the first or-
der term T

(1)
eA (ω). The idea is to insert the resolvent with the mass m = m0

using the Pauli-Villars conditions (13). For shortness, it is convenient to
introduce the notation

Kj(ω) := P0 +m2
j + ω2 = −∆+m2

j + ω2, (41)

for the Klein-Gordon operator. We then use the relation

−T (1)
eA (ω) =

2∑

j=0

cj
1

Kj(ω)
SeA

1

Kj(ω)

=

2∑

j=1

cj(m
2
j −m2)2

1

Kj(ω)K0(ω)
SeA

1

Kj(ω)K0(ω)

+

2∑

j=1

cj(m
2
j −m2)2

1

K0(ω)
SeA

1

Kj(ω)K0(ω)2

+

2∑

j=1

cj(m
2
j −m2)2

1

Kj(ω)K0(ω)2
SeA

1

K0(ω)
. (42)

Arguing as before using the Kato-Seiler-Simon inequality (39), we obtain
that the second and third terms in the definition (37) of SeA are trace-class
with
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2∑

j=0

cj
1

Kj(ω)

(
e2|A|2 − eB · σ

) 1

Kj(ω)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
S1

.
(
|c1|(m2

1 −m2)2 + |c2|(m2
2 −m2)2

) ||A||2L2 + ||B||L1

(m2 + ω2)5/2
.

The term involving p ·A+A ·p can be treated in the same way, but it is only
trace-class when A ∈ L1(R3). It is not trace-class under our assumptions
on A and this is the term which has been subtracted in the statement of
the proposition. Fortunately, when A ∈ L1(R3) its trace vanishes due to the
invariance under complex conjugation. Namely, the operator

2∑

j=0

cj
1

Kj(ω)
(p · A+A · p) 1

Kj(ω)

is self-adjoint, so its trace is real. Applying complex conjugation we find

2∑

j=0

cj
1

Kj(ω)
(p ·A+A · p) 1

Kj(ω)
= −

2∑

j=0

cj
1

Kj(ω)
(p ·A+A · p) 1

Kj(ω)

since p = −p and Kj(ω) and A are both real. So its trace is imaginary, and
thus equal to 0.
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The proof that the second order term T
(2)
eA (ω) is trace-class under our

assumptions (16) on B is similar and relies on the following identity:

T
(2)
eA (ω) =

2∑

j=0

cj (m
2
j −m2

0)
2
( 1

Kj(ω)K0(ω)2
SeA

1

Kj(ω)
SeA

1

Kj(ω)

+
1

K0(ω)2
SeA

1

Kj(ω)K0(ω)
SeA

1

Kj(ω)

+
1

K0(ω)2
SeA

1

K0(ω)
SeA

1

Kj(ω)K0(ω)

+
1

K0(ω)
SeA

1

Kj(ω)K0(ω)2
SeA

1

Kj(ω)

+
1

K0(ω)
SeA

1

K0(ω)2
SeA

1

Kj(ω)K0(ω)

+
1

K0(ω)
SeA

1

K0(ω)
SeA

1

Kj(ω)K0(ω)2

)

. (43)

The third and fourth order terms T (3)
eA (ω) and T (4)

eA (ω) are somewhat easier
to handle since only the first Pauli-Villars condition in (13) is necessary. For
the third-order term we use

T
(3)
eA (ω) =

2∑

j=0

cj (m
2
0 −m2

j)
( 1

Kj(ω)

1

K0(ω)

(

SeA
1

Kj(ω)

)3

+
1

K0(ω)
SeA

1

Kj(ω)

1

K0(ω)

(

SeA
1

Kj(ω)

)2

+
( 1

K0(ω)
SeA

)2 1

Kj(ω)

1

K0(ω)
SeA

1

Kj(ω)

+
( 1

K0(ω)
SeA

)3 1

Kj(ω)

1

K0(ω)

)

.

(44)

The fourth order term is similar and this concludes the proof of Proposition 6.
�

Step 3: Localization. Since we will be considering slowly varying potentials,
it will be useful to localize our energy to sets of fixed size ρ, where the mag-
netic field will be essentially constant. We introduce the Gaussian function
Gρ given by

Gρ(x) := (πρ)−
3
2 e

− |x|2

ρ2 ,

and recall that
∫

R3

Gρ(x− y)2 dy = 1, (45)

for any x ∈ R
3, which we interpret as a continuous partition of unity. The

following is well-known.

Lemma 7 (Localization of a trace-class operator). Let T be a trace-class self-

adjoint operator on L2(R3,C2) and Gρ(· − y) be the multiplication operator
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by the function x 7→ Gρ(x− y). Then Gρ(· − y)TGρ(· − y) is also trace-class

with ∫

R3

tr |Gρ(· − y)TGρ(· − y)| dy ≤ tr |T | <∞

and

trT =

∫

R3

trGρ(· − y)TGρ(· − y) dy =

∫

R3

tr
(
Gρτ−yTτyGρ

)
dy

where (τyf)(x) = f(x−y) is the unitary operator which translates by y ∈ R
3.

Proof. It is clear that Gρ(·− y)TGρ(·− y) is trace-class since x 7→ Gρ(x− y)
is bounded, hence defines a bounded operator. Now, we can diagonalize
T =

∑

j≥1 tj|uj〉〈uj | with
∑

j≥1 |tj | <∞ and obtain

Gρ(· − y)TGρ(· − y) =
∑

j≥1

tj |Gρ(· − y)uj〉〈ujGρ(· − y)|

with the sum being convergent in the trace-class. In particular, by the
triangle inequality

tr |Gρ(· − y)TGρ(· − y)| ≤
∑

j≥1

|tj| tr |Gρ(· − y)uj〉〈ujGρ(· − y)|

=



Gρ ∗
∑

j≥1

|tj| |uj |2


 (y).

The rest follows from the fact that
∫

R3

∑

j≥1 |tj| |uj|2 =
∑

j≥1 |tj| = tr |T |.
�

Using this lemma, we can localize the operator appearing in the paren-
thesis in (35) and obtain, after changing y into εy and using the translation-
invariance of P0 = −∆,

FPV
vac (eAε) =

ε−3

π

∫

R

ω2dω

∫

R3

dy fω(eAε,y) (46)

with
Aε,y(x) = ε−1A(y + εx)

and

fω(A) = trL2(R3,C2)

{

Gρ

2∑

j=0

cj

(
1

PA +m2
j + ω2

− 1

P0 +m2
j + ω2

− 1

P0 +m2
j + ω2

(p ·A+A · p) 1

P0 +m2
j + ω2

)

Gρ

}

. (47)

From (34) and Lemma 7 we also know that
∫

R

ω2dω

∫

R3

dy
∣
∣fω(eAε,y)

∣
∣ <∞.

Since the localization length ρ will not play an important role, we do not
mention it in our notations.

The reason for subtracting the term with p·A+A·p was that it is not trace-
class, although its trace vanishes when A ∈ L1(R3). With the localization
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Gρ, this operator has now become trace-class and it still has a vanishing
trace, which simplifies a bit our reasoning.

Lemma 8. For every fixed ρ > 0, and every A ∈ H1
div(R

3), the operator

K =

2∑

j=0

cj Gρ
1

P0 +m2
j + ω2

(p · A+A · p) 1

P0 +m2
j + ω2

Gρ

is trace-class and its trace vanishes.

Proof. Using (42) and the Kato-Seiler-Simon inequality (39), it is easy to
see that K is trace-class. The trace vanishes for the same reason as without
Gρ, namely K∗ = K and K = −K. �

As a corollary, we immediately deduce that

fω(eAε,y) = trL2(R3,C2)

{

Gρ

2∑

j=0

cj

(
1

PeAε,y +m2
j + ω2

− 1

P0 +m2
j + ω2

)

Gρ

}

(48)
with the operator being trace-class under our assumptions (16) on B.

Step 4: Localized energy with unbounded potentials. Using the localization
Gρ, the idea is now to replace in (48) the potential Aε,y(x) = A(y+εx)/ε by
the potential B(y)× x/2 of the constant field B(y), up to a small error. On
the contrary to all the potentials we have considered so far, the latter has
a linear growth at infinity. It is therefore necessary to extend the definition
of fω to potentials growing at infinity, which is the content of the following
result.

Proposition 9 (Uniformly bounded magnetic fields). Let ρ > 0. Consider

a magnetic potential A ∈ C1(R3,R3) for which B = curlA ∈ L∞(R3) and let

PA be the Friedrichs extension of the corresponding Pauli operator. Then,

for every ω ∈ R the operator

Gρ

2∑

j=0

cj
1

PA +m2
j + ω2

Gρ

is trace-class. In particular, we can define

fω(A) = trL2(R3,C2)






Gρ

2∑

j=0

cj

(
1

PA +m2
j + ω2

− 1

P0 +m2
j + ω2

)

Gρ






.

(49)

This is a gauge-invariant functional: for any function θ ∈ C2(R3,R), we

have

fω(A) = fω(A+∇θ). (50)

Remark 10. Using the exponential decay of Gρ, it is possible to generalize

the result to any potential A for which B has a polynomial growth at infinity,

but we do not discuss this further.

Proof of Proposition 9. The proof of Proposition 9 is based on the following
observation.
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Lemma 11 (Positivity). Assume that the coefficients c0 = 1, c1 and c2, and

the masses 0 < m = m0 < m1 < m2 satisfy the Pauli-Villars conditions (13).
Then

2∑

j=0

cjf(m
2
j) ≥ 0

for every convex function on [0,∞). In particular

2∑

j=0

cj
s+m2

j

≥ 0 and

2∑

j=0

cje
−sm2

j ≥ 0, for every s ≥ 0.

Proof of Lemma 11. By convexity we have, using the Pauli-Villars condi-
tion (13),

f(m2) + c2f(m
2
2) ≥ (1 + c2)f

(
m2 + c2m

2
2

1 + c2

)

= −c1f(m2
1).

�

By Lemma 11 we have
∑2

j=0 cj(PA + m2
j + ω2)−1 ≥ 0, in the sense of

operators, and therefore the same is true with Gρ on both sides. The trace
is then always well-defined in [0,∞] and it suffices to estimate it in order to
prove that the operator is trace-class. We use (33), c1 ≤ 0, and obtain

2∑

j=0

cj
1

x+m2
j + ω2

=

2∑

j=0

cj(m
2
j −m2)2

1

x+m2
j + ω2

1

(x+m2 + ω2)2

≤ c2(m
2
2 −m2)2

m2
2 + ω2

1

(x+m2 + ω2)2
,

hence
2∑

j=0

cj
1

PA +m2
j + ω2

≤ c2(m
2
2 −m2)2

m2
2 + ω2

1

(PA +m2 + ω2)2

in the sense of operators. We can multiply by Gρ on both sides without
changing the inequality and obtain after taking the trace

tr






Gρ

2∑

j=0

cj
1

PA +m2
j + ω2

Gρ






≤ c2(m

2
2 −m2)2

m2
2 + ω2

∣
∣
∣
∣

∣
∣
∣
∣
Gρ

1

PA +m2 + ω2

∣
∣
∣
∣

∣
∣
∣
∣

2

S2

.

It is therefore sufficient to show that Gρ(PA + m2 + ω2)−1 is a Hilbert-
Schmidt operator, under the assumptions of the proposition. This is the
content of the following lemma.

Lemma 12 (Magnetic Kato-Seiler-Simon-type inequality). Consider a mag-

netic potential A ∈ C1(R3,R3) for which B = curlA ∈ L∞(R3). Then we

have, for every 2 ≤ p ≤ ∞ and every µ > 0

∣
∣
∣
∣f(x)(PA + µ)−1

∣
∣
∣
∣
Sp

≤ 2
− 2

pπ
− 1

p

(

1 +
‖B‖L∞

µ

) 2
p

µ
3
2p

−1 ||f ||Lp . (51)
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Proof. Since PA ≥ 0, we have ‖(PA+µ)
−1‖ ≤ µ−1 and the bound is obvious

for p = ∞. For p = 2 we write

1

PA + µ
=

1

PA + µ+ ‖B‖L∞
× PA + µ+ ‖B‖L∞

PA + µ

and use that ∣
∣
∣
∣

∣
∣
∣
∣

PA + µ+ ‖B‖L∞

PA + µ

∣
∣
∣
∣

∣
∣
∣
∣
≤ 1 +

‖B‖L∞

µ
.

Therefore, it suffices to estimate the Hilbert-Schmidt norm of f(PA + µ +
‖B‖L∞)−1. Now we use the fact that the integral kernel of (PA + µ +
‖B‖L∞)−1 is pointwise bounded by that of (−∆+ µ)−1:

∣
∣(PA + µ+ ‖B‖L∞)−1(x, y)

∣
∣
∞ ≤

∣
∣(−∆+ µ)−1(x, y)

∣
∣
∞ (52)

where | · |∞ is the sup norm of 2× 2 hermitian matrices. The proof of (52) is
well known and goes as follows. First we reduce it to the similar pointwise
bound on the heat kernels

∣
∣e−s(PA+µ+‖B‖L∞ )(x, y)

∣
∣
∞ ≤ e−s(−∆+µ)(x, y) (53)

using the integral formula H−1 =
∫∞
0 e−sH ds. Then, we use Trotter’s for-

mula

e−s(PA+µ+‖B‖L∞ )(x, y)

= lim
n→∞

(

e−
s
n
(−i∇+A)2+µ)e−

s
n
(−σ·B+‖B‖L∞ )

)n
(x, y)

= lim
n→∞

∫

R3

dx1 · · ·
∫

R3

dxn−1 e
− s

n
((−i∇+A)2+µ)(x, x1)×

× e−
s
n
(−σ·B(x1)+‖B‖L∞ )e−

s
n
((−i∇+A)2+µ)(x1, x2)× · · ·

· · · × e−
s
n
((−i∇+A)2+µ)(xn−1, y)e

− s
n
(−σ·B(y)+‖B‖L∞ ). (54)

The estimate (53) follows from the diamagnetic inequality [63]

|e− s
n
((−i∇+A)2+µ)(x, y)|∞ ≤ e−

s
n
(−∆+µ)(x, y)

and the fact that
|e− s

n
(−σ·B(x)+‖B‖L∞ )|∞ ≤ 1,

since −σ ·B(x)+ ‖B‖L∞ is a non-negative 2× 2 symmetric matrix for every
x ∈ R

3. We therefore conclude that
∣
∣
∣
∣f(x)(PA + µ+ ‖B‖L∞)−1

∣
∣
∣
∣
2

S2

=

∫

R3

∫

R3

|f(x)|2
∣
∣(PA + µ+ ‖B‖L∞)−1(x, y)

∣
∣2

2
dx dy

≤ 2
∣
∣
∣
∣f(x)(−∆+ µ)−1

∣
∣
∣
∣
2

S2
= 2(2π)−3 ||f ||2L2

∫

R3

dp

(p2 + µ)2
=

||f ||2L2

4π
√
µ

and
∣
∣
∣
∣f(x)(PA + µ)−1

∣
∣
∣
∣
S2

≤
(

1 +
‖B‖L∞

µ

) ||f ||L2

2
√
πµ1/4

, (55)

as we wanted. The estimate for 2 < p < ∞ follows by complex interpola-
tion [61]. �
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We conclude the proof of Proposition 9 by recalling the (time-independent)
gauge transformation Iθ

Iθ(ψ) := eiθψ. (56)

This is a unitary operator which satisfies

IθPAI−1
θ = PA+∇θ and IθGρI−1

θ = Gρ.

Therefore, (50) follows from the invariance of the trace of the first term
under conjugation by a unitary operator, and this concludes the proof of
Proposition 9. �

Step 5: Replacement by an almost constant potential. After these prepara-
tions we are ready to start the proof of the semi-classical limit (17). The
first step is to replace Aε,y by the potential B(y)× x/2, up to a small error.
We would like to express the error only in terms of the magnetic field B, up
to a gradient term that will then be dropped using gauge invariance. The
following simple formula is well known (see e.g. [5, Compl. DIV]).

Lemma 13 (Fundamental theorem of calculus in Poincaré gauge). Let A ∈
C1(R3,R3) be any vector field. Then we have

A(y + x) = ∇x

(

x ·
∫ 1

0
A(y + tx) dt

)

− x×
∫ 1

0
(curlA)(y + tx) t dt. (57)

Proof. Using
∇
(
x · a

)
= x× (curl a) + (x · ∇)a+ a,

we can write the right side of (57) as

∇x

(

x ·
∫ 1

0
A(y + tx) dt

)

− x× curlx

∫ 1

0
A(y + tx) dt

=

∫ 1

0

(

t x · ∇A(y + tx) +A(y + tx)
︸ ︷︷ ︸

d
dt
tA(y+tx)

)

dt = A(y + x).

�

The idea of the decomposition (57) is that the first gradient term can be
dropped using gauge invariance, leading to a new magnetic potential

Ãy(x) = −x×
∫ 1

0
(curlA)(y + tx) t dt ≃ B(y)× x/2.

This potential does not belong to the Coulomb gauge anymore, but rather
satisfies the Poincaré (also called multipolar and Fock-Schwinger) gauge con-
dition at y

x ·A(x+ y) = 0.

Applying formula (57) in our situation gives

A(y + εx)

ε
= ∇x

(

x ·
∫ 1

0

A(y + tεx)

ε
dt

)

+B(y)× x/2 + εRε,y(x) (58)

where

Rε,y(x) = x×
∫ 1

0

B(y)−B(y + tεx)

ε
t dt (59)

is an error term.
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The following gives some simple properties of the error term Rε,y.

Lemma 14 (Estimates on Rε,y). Let ρ, ε > 0, and y ∈ R
3. Then we have

for a universal constant C

||Rε,y(x)||Lp
y(R3) + |x| ||curlRε,y(x)||Lp

y(R3)

≤ C|x| min

(

|x| ||∇B||Lp(R3) ,
||B||Lp(R3)

ε

)

(60)

and

||divRε,y(x)||Lp
y(R3) ≤ C ||∇B||Lp(R3) |x|. (61)

Proof. We have

|Rε,y(x)| ≤
|x|
2ε

(

|B(y)|+ 2

∫ 1

0
|B(y + tεx)| tdt

)

.

Integrating over y gives

||Rε,y(x)||Lp
y(R3) ≤

|x|
ε

||B||Lp(R3) .

On the other hand, using

B(y)−B(y + tεx)

ε
= −t

3∑

j=1

∫ 1

0
xj(∂jB)(y + tsεx) ds,

and the identity
∫ 1

0

∫ 1

0
f(ts) t2dt ds =

∫ 1

0

1− t2

2
f(t) dt,

we can write

Rε,y(x) = −x×
∫ 1

0

1− t2

2

3∑

j=1

xj(∂jB)(y + tεx) dt (62)

hence
||Rε,y(x)||Lp(R3) ≤ C|x|2 ||∇B||Lp(R3) .

Finally, we have

curlRε,y(x) =
B(y + εx)−B(y)

ε
, divRε,y(x) = x ·

∫ 1

0
curlB(y+ tεx) t2 dt

and the estimates are similar. �

Since B ∈ L∞(R3), we have | curlRε,y| ≤ C/ε and we can apply Proposi-
tion 9. The following is then an immediate consequence of (50) and (58).

Corollary 15 (Replacing by an almost constant field). Assume that B sat-

isfies the conditions (16) of Theorem 2. Then for any ω ∈ R and any y ∈ R
3,

we have

fω(eAε,y) = fω

(e

2
B(y)× ·+ eεRε,y

)

, (63)

where we recall that Rε,y is defined in (59).
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Step 6: Computation for a constant field. First we discard the error term
Rε,y in (63) and compute the exact value of the energy. Of course, we find
the localized Pauli-Villars-regulated Euler-Heisenberg energy.

Proposition 16 (Constant field). If B is constant and A(x) = B × x/2,
then the function defined in (49) equals

fω(B × x/2) =
1

4π3/2

∫ ∞

0
e−sω2

( 2∑

j=0

cj e
−sm2

j

)(

s|B| coth
(
s|B|

)
− 1
) ds

s3/2
.

(64)

Note that the value does not depend on the localization parameter ρ > 0.
From (64), we obtain after integrating over ω that

1

π

∫

R

fω(B × x/2)ω2dω = fPVvac (|B|), (65)

the Pauli-Villars-regulated Euler-Heisenberg energy defined in (18). The
integral over y then gives

∫
fPVvac (|B(y)|) dy as we wanted. The proof of

Proposition 16 is merely a computation, explained in Section 4 below.

Step 7: Bound on the error. At this step of the proof, we have shown
in (46), (63) and (64) that

ε3FPV
vac (Aε)

=
1

π

∫

R3

dy

∫

R

ω2 dω fω(eAε,y)

=
1

π

∫

R3

dy

∫

R

ω2 dω fω

(e

2
B(y)× ·+ eεRε,y

)

=

∫

R3

fPVvac

(
|B(y)|

)
dy

+
1

π

∫

R3

dy

∫

R

ω2 dω
{

fω

(e

2
B(y)× ·+ eεRε,y

)

− fω

(e

2
B(y)× ·

)}

and there only remains to evaluate the error term. The difficulty is, of course,
to have an estimate on the integrand that can be integrated over y and ω.
This is the content of the following result.

Proposition 17 (Bound on the error term). Assume that B satisfies the

conditions of Theorem 2. Then we have for every 0 < ε ≤ 1
∫

R3

dy
∣
∣
∣fω

(e

2
B(y)× ·+ eεRε,y

)

− fω

(e

2
B(y)× ·

)∣
∣
∣ ≤ C

ε

(m2 + ω2)2
, (66)

with a constant C which only depends on B, on ρ and on the cj ’s and mj’s.

Integrating over ω we find
∫

R

ω2 dω

∫

R3

dy
∣
∣
∣fω

(e

2
B(y)× ·+ eεRε,y

)

− fω

(e

2
B(y)× ·

)∣
∣
∣ ≤ Cε,

which ends the outline of the proof of Theorem 2.
The proof of Proposition 17 is the most tedious part of the proof of our

main result, and it is provided later in Section 5. The next section is devoted
to the proof of Proposition 16, whereas Appendix A gathers some important
estimates for the resolvent of the Pauli operator with constant magnetic field.
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4. Computation for a constant field: proof of Proposition 16

Applying a rotation and using the invariance of −∆ as well as the Gaussian
Gρ, we can always assume that B is parallel to e3,

B = (0, 0, b),

which we will do for the rest of the proof.
Since we have shown in Proposition 9 that the two terms are separately

trace-class, we can compute their trace separately. The computation is easier
if we go back to heat kernels using H−1 =

∫∞
0 e−sH ds:

2∑

j=0

cj
1

H +m2
j

=

∫ ∞

0

( 2∑

j=0

cje
−sm2

j

)

e−sH ds. (67)

We recall from Lemma 11 that
∑2

j=0 cje
−sm2

j ≥ 0. We conclude that

tr






Gρ

2∑

j=0

cj
H + ω2 +m2

j

Gρ







=

∫ ∞

0
e−sω2





2∑

j=0

cje
−sm2

j



 tr
{
Gρe

−sHGρ

}
ds ≥ 0

which will be used for H = −∆ and H = PB×x/2.
For the Laplacian, we have

trGρe
s∆Gρ = 2

(∫

G2
ρ

)(
1

(2π)3

∫

R3

e−sp2 dp

)

=
1

4π3/2s3/2
,

so

tr






Gρ

2∑

j=0

cj
−∆+ ω2 +m2

j

Gρ






=

1

4π3/2

∫ ∞

0
e−sω2





2∑

j=0

cje
−sm2

j




ds

s3/2
.

On the other hand, we recall in (82) (Appendix A) that the heat kernel
of the Pauli operator with constant magnetic field B = b e3 is

[
e−sPB×x/2

]
(x, y) =

b

8π3/2s
1
2 sinh(bs)

×

× e−
b
4
coth(bs)|x⊥−y⊥|2 e−

1
4s

(x3−y3)2 e−
ib
2
x⊥×y⊥

(
ebs 0
0 e−bs

)

(68)

where x⊥ = (x1, x2) and y⊥ = (y1, y2), which gives us

trC2

[
e−sPB×x/2

]
(x, y) =

sb coth(sb)

4π3/2s
3
2

×

× e−
b
4
coth(bs)|x⊥−y⊥|2 e−

1
4s

(x3−y3)2 e−
ib
2
x⊥×y⊥ (69)

and therefore, the function being continuous at x = y, we deduce from [61,
Thm. 2.12] that

trGρe
−sPB×x/2Gρ =

sb coth(sb)

4π3/2s
3
2

,

which ends the proof of Proposition 16. �
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5. Bound on the error term: proof of Proposition 17

We follow here the same strategy as in the proof of Proposition 9, with
P0 = −∆ replaced everywhere by the Pauli operator PeB(y)×·/2 with con-
stant magnetic field B(y). We will use pointwise estimates on the kernel of
the resolvent of PeB(y)×·/2 which are recalled in Appendix A, that will es-
sentially reduce the problem to the free case, up to a multiplicative constant.
This method cannot be easily coupled to operators bounds, which forces us
to use a 6th order expansion. In particular we will use that the operators
appearing in the 6th order have a sign.

In order to simplify our notation, we introduce the Klein-Gordon operator
with constant magnetic field B(y)

Kj(ω, y) := PeB(y)×·/2 +m2
j + ω2.

Using the resolvent expansion as in (36), we have to estimate the trace of

T (ω, y) = Gρ

2∑

j=0

cj

((
Kj(ω, y) + Sε,y

)−1 −Kj(ω, y)
−1
)

Gρ

= Gρ

5∑

n=1

(−1)n
2∑

j=0

cj

(
1

Kj(ω, y)
Sε,y

)n 1

Kj(ω, y)
Gρ

+Gρ

2∑

j=0

cj

(
1

Kj(ω, y)
Sε,y

)3 1

PeB(y)×·/2+eεRε,y
+m2

j + ω2
×

×
(

Sε,y
1

Kj(ω, y)

)3

Gρ

:=

5∑

n=1

T (n)(ω, y) + T (6)(ω, y),

where the operator Sε,y is defined by

Sε,y :=PeB(y)×·/2+eεRε,y
− PeB(y)×·/2

=e2ε2|Rε,y|2 − eε(σ · py)(σ ·Rε,y)− eε(σ ·Rε,y)(σ · py)
=e2ε2|Rε,y|2 − eε(py ·Rε,y +Rε,y · py)− eεσ · curlRy,ε,

with py = p− eB(y)× ·/2 the magnetic momentum. The main result of this
section is the estimate

∫

R

∫

R3

‖T (n)(ω, y)‖S1 dy ω
2 dω ≤ Cεn, 1 ≤ n ≤ 6, (70)

where the constant depends on B, on ρ and on the cj ’s and mj’s, which
clearly ends the proof of Proposition 17.

In order to prove (70), we will use pointwise kernel estimates, and in
particular the fact that when T and T ′ are two trace-class operators such
that

|T (x, x′)| ≤ T ′(x, x′)

with the kernel of T ′ being continuous in a neighborhood of the diagonal,
then | tr(T )| ≤ tr(T ′) =

∫

R3 T
′(x, x) dx.
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Our proof will rely on the following pointwise estimates on the kernels of
the resolvents of the Pauli operator with constant magnetic field, proved in
Proposition 18 in Appendix A:

∣
∣Kj(ω, y)

−1(x, x′)
∣
∣ ≤ C(1 + e‖B‖L∞) gω(x− x′) (71)

and
∣
∣pyKj(ω, y)

−1(x, x′)
∣
∣ ≤ C

mj

m
(1 + e2‖B‖2L∞)hω(x− x′), (72)

with the functions

gω(x) =

(
1

|x| +
1√

m2 + ω2

)

e−
√
m2+ω2|x| (73)

and

hω(x) =

(
1

|x|2 + |x|2 + 1

m2 + ω2
+m2 + ω2

)

e−
√
m2+ω2|x|. (74)

Note that

||gω||Lp(R3) ≤
Cp

(m2 + ω2)
3/p−1

2

, ||hω||Lp(R3) ≤
Cp

(m2 + ω2)
3/p−2

2

, (75)

for all 1 ≤ p <∞. There are similar estimates for |x|αgω and |x|αhω, with a
better decay in ω when α > 0.

Sixth order term. We start by estimating the kernel of the 6th order term
T (6)(ω, y). We are going to estimate the trace of each of the terms in the sum
over j = 0, 1, 2, which involves a non-negative operator and is thus always
well defined. We first use the operator bound

1

PeB(y)×·/2+εRε,y
+m2

j + ω2
≤
(

1 +
µ

m2

) 1

PeB(y)×·/2+εRε,y
+m2

j + ω2 + µ

as in the proof of Lemma 12, with

µ := ‖eB(y) + eε curlRε,y‖L∞(R3) ≤ 2e‖B‖L∞(R3)

where the last estimate follows from Lemma 14. We obtain
∫

R

ω2dω

∫

R3

dy ‖T (6)(ω, y)‖S1

≤
(

1 +
2e‖B‖L∞(R3)

m2

) 2∑

j=0

|cj |
∫

R

ω2dω

∫

R3

dy tr
{
T
(6)
j (ω, y)

}

where

T
(6)
j (ω, y) = Gρ

(
1

Kj(ω, y)
Sε,y

)3

×

× 1

PeB(y)×·/2+eεRε,y
+m2

j + ω2 + µ

(

Sε,y
1

Kj(ω, y)

)3

Gρ ≥ 0.

We estimate the kernel of T (6)
j (ω, y) by writing

Sε,y = e2ε2|Rε,y|2 − eε(2py ·Rε,y + idivRε,y)− eεσ · curlRy,ε,
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for the term on the left and using 2Rε,y · py − idivRε,y for the term on the
right. We also use the diamagnetic-type inequality (52)
∣
∣
(
PeB(y)×·/2+eεRε,y

+m2
j + ω2 + µ

)−1
(x, x′)

∣
∣
∞

≤
∣
∣
(
−∆+m2

j + ω2
)−1

(x, x′)
∣
∣
∞ =

e−
√
m2+ω2|x−x′|

4π|x− x′| ≤ gω(x− x′)
4π

for the kernel of the middle operator, as well as gω ≤ Chω to simplify our
bounds. We find

|T (6)
j (ω, y)(x, x′)| ≤ C Gρ(x)

∫

R3

dz1 · · ·
∫

R3

dz6

hω(x− z1)
5∏

k=1

hε,y(zk)hω(zk − zk+1)hε,y(z6)hω(z6 − x′)Gρ(x
′)

with

hε,y(z) := eε|Rε,y(z)|+ eε|divRε,y(z)| + eε| curlRε,y(z)| + e2ε2|Rε,y(z)|2

≤ eε
(
1 + e‖B‖L∞(R3)|z|

)
|Rε,y(z)|+ eε|divRε,y(z)|+ eε| curlRε,y(z)|.

Using Lemma 14 together with the assumption that B,∇B ∈ Lp(R3) for
1 ≤ p ≤ 6, we obtain

∀1 ≤ p ≤ 6, ||hε,y(z)||Lp
y(R3) ≤ Cε(1 + |z|3). (76)

Next we integrate over y, use Hölder’s inequality and the bound (76) for
p = 6. We arrive at
∫

R3

|T (6)
j (ω, y)(x, x′)| dy ≤ Cε6Gρ(x)

∫

R3

dz1 · · ·
∫

R3

dz6 hω(x− z1)×

×
5∏

k=1

(1 + |zk|3)hω(zk − zk+1)(1 + |z6|3)hω(z6 − x′)Gρ(x
′).

We can put the polynomial terms together with the functions hω using that
J∏

k=1

(1+|zk|3) ≤ CJ

J−1∏

k=1

(1+|zk−zk+1|3)(1+|zJ−x′|3)(1+|x−x′|3)(1+|x−z1|3)

(77)
and

(1+|x−x′|3)Gρ(x)Gρ(x
′) = (πρ)−3(1+|x−x′|3)e−

|x+x′|2+|x−x′|2

2ρ2 ≤ Ce
− |x+x′|2

2ρ2 .

The above bound becomes
∫

R3

|T (6)
j (ω, y)(x, x′)| dy ≤ Cε6 e

− |x+x′|2

2ρ2
{
(1 + | · |3)hω

}∗7
(x− x′)

where f∗n is the n-fold convolution of a function f . By Young’s inequality
and (75) we find

∫

R3

trT
(6)
j (ω, y) dy ≤ Cε6

∣
∣
∣
∣(1 + | · |3)hω

∣
∣
∣
∣
2

L2(R3)

∣
∣
∣
∣(1 + | · |3)hω

∣
∣
∣
∣
5

L1(R3)

≤ Cε6

(m2 + ω2)2
.
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Suming over j, we have proved that

∫

R

∫

R3

‖T (6)(ω, y)‖S1 dy ω
2 dω ≤ Cε6,

as we wanted, where the constant depends on B, on ρ and on the cj ’s and
mj’s.

The proof for the other terms is very similar, and relies on the Pauli-Villars
condition (13), exactly as in the proof of Proposition 6. We only sketch it.

First order term. We write

−T (1)(ω, y) = Gρ

( 2∑

j=1

cj(m
2
j −m2)2

1

Kj(ω, y)K0(ω, y)
Sε,y

1

Kj(ω, y)K0(ω, y)

+

2∑

j=1

cj(m
2
j −m2)2

1

K0(ω, y)
Sε,y

1

Kj(ω, y)K0(ω, y)2

+

2∑

j=1

cj(m
2
j −m2)2

1

Kj(ω, y)K0(ω, y)2
Sε,y

1

K0(ω, y)

)

Gρ.

Since Sε,y contains only one operator py, estimating the kernel of the above
operators will involve one function hω and three functions gω. The argument
is exactly the same as before, using this time ||hε,y(z)||L1

y(R
3), with the final

bound

∫

R3

|T (1)(ω, y)(x, x′)| dy ≤ C ε e
− |x+x′|2

2ρ2 {(1+|·|3)hω}∗{(1+|·|3)gω}∗3(x−x′)

and thus

∫

R3

∣
∣ trT (1)(ω, y)

∣
∣ dy

≤ Cε
∣
∣
∣
∣(1 + | · |3)hω

∣
∣
∣
∣
L1(R3)

∣
∣
∣
∣(1 + | · |3)gω

∣
∣
∣
∣
L1(R3)

∣
∣
∣
∣(1 + | · |3)gω

∣
∣
∣
∣
2

L2(R3)

≤ C
ε

(m2 + ω2)2

which proves (70) for n = 1.
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Second order term. For the second order term, we use as in (43)

T (2)(ω, y) =
2∑

j=0

cj (m
2
j −m2

0)
2×

×Gρ

( 1

Kj(ω, y)K0(ω, y)2
Sε,y

1

Kj(ω, y)
Sε,y

1

Kj(ω, y)

+
1

K0(ω, y)2
Sε,y

1

Kj(ω, y)K0(ω, y)
Sε,y

1

Kj(ω, y)

+
1

K0(ω, y)2
Sε,y

1

K0(ω, y)
Sε,y

1

Kj(ω, y)K0(ω, y)

+
1

K0(ω, y)
Sε,y

1

Kj(ω, y)K0(ω, y)2
Sε,y

1

Kj(ω, y)

+
1

K0(ω, y)
Sε,y

1

K0(ω, y)2
Sε,y

1

Kj(ω, y)K0(ω, y)

+
1

K0(ω, y)
Sε,y

1

K0(ω, y)
Sε,y

1

Kj(ω, y)K0(ω, y)2

)

Gρ

(78)

and apply the same argument. There are two functions hω, three functions
gω, and the L2

y norm of hε,y. We get

∫

R3

∣
∣ trT (2)(ω, y)

∣
∣ dy

≤ Cε2
∣
∣
∣
∣(1 + | · |3)hω

∣
∣
∣
∣
2

L1(R3)

∣
∣
∣
∣(1 + | · |3)gω

∣
∣
∣
∣
L1(R3)

∣
∣
∣
∣(1 + | · |3)gω

∣
∣
∣
∣
2

L2(R3)

≤ C
ε2

(m2 + ω2)
5
2

.

Third, fourth and fifth order terms. For the other terms we only use the first
Pauli-Villars condition, in order to simplify the argument. For instance, we
write

−T (3)(ω, y) =Gρ

2∑

j=0

cj

(
1

Kj(ω, y)
Sε,y

)3 1

Kj(ω, y)
Gρ

=Gρ

2∑

j=0

cj(m
2 −m2

j)

{
1

K0(ω, y)Kj(ω, y)

(

Sε,y
1

Kj(ω, y)

)3

+
1

K0(ω, y)
Sε,y

1

K0(ω, y)Kj(ω, y)

(

Sε,y
1

Kj(ω, y)

)2

+

(
1

K0(ω, y)
Sε,y

)2 1

K0(ω, y)Kj(ω, y)
Sε,y

1

Kj(ω, y)

+

(
1

K0(ω, y)
Sε,y

)3 1

K0(ω, y)Kj(ω, y)

}

Gρ
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and estimate its kernel as before. There are three functions hω, two functions
gω, and the L3

y norm of hε,y. We get

∫

R3

∣
∣ trT (3)(ω, y)

∣
∣ dy

≤ Cε3
∣
∣
∣
∣(1 + | · |3)hω

∣
∣
∣
∣
3

L1(R3)

∣
∣
∣
∣(1 + | · |3)gω

∣
∣
∣
∣
2

L2(R3)
≤ C

ε3

(m2 + ω2)2
.

The argument for the fourth and fifth order term is exactly the same. This
ends the proof of Proposition 17. �

Appendix A. The Pauli operator with constant magnetic field

In this appendix, we gather some useful properties of the Pauli operator
with constant magnetic field B ∈ R

3

PB×·/2 =
(
σ · (−i∇−B × x/2)

)2
. (79)

The Pauli operator naturally splits into a two-dimensional Pauli operator in
the plane orthogonal to B and a Laplacian in the direction of B. Here as
in the sequel, we denote by x⊥ the projection of any vector x ∈ R

3 on this
plane.

In the text we need the following pointwise estimates on the kernel of the
resolvent of PB×·/2 as well as on (−i∂j − (B × x)j/2) times the resolvent.

Proposition 18 (Pointwise estimates for a constant magnetic field). Let

B ∈ R
3 be a constant magnetic field. Then we have the pointwise estimates

∣
∣
∣

(
PB×·/2 + µ2

)−1
(x, y)

∣
∣
∣
∞

≤ 1

4π

( 1

|x− y| +
2|B|
µ

)

e−µ|x−y| (80)

and
∣
∣
∣(−i∂j − (B × x)j/2)

(
PB×·/2 + µ2

)−1
(x, y)

∣
∣
∣
∞

≤
( |B|
2π

+
2

π|x− y|2 +
2µ

π|x− y| +
5|B|2
4πµ

|x⊥ − y⊥|
)

e−µ|x−y| (81)

for every µ > 0 and j = 1, 2, 3, where |M |∞ = sup ‖x‖−1‖Mx‖ is the sup

norm of 2× 2 matrices.

Similar estimates were derived in [19, Lemma A.10]. We have already
shown a pointwise bound in Lemma 12 for the resolvent (80), but the esti-
mate (81) requires a bit more work.

Proof. For the proof of the proposition we can assume, after applying a
suitable rotation, that B = |B|e3 and then rewrite

PB×·/2 = −(∂1 + i|B|x2/2)2 − (∂2 − i|B|x1/2)2 − ∂23 − |B|σ3.

Next we express the resolvent using the heat kernel as follows

(
PB×·/2 + µ2

)−1
(x, y) =

∫ ∞

0
e−sPB×·/2(x, y)e−sµ2

ds.
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Note that the operators |B|σ3 and ∂23 commute with each other, as well as
with the first two terms. Hence

e−sPB×·/2(x, y)

= es(∂1+i|B|x2/2)2+s(∂2−i|B|x1/2)2(x⊥, y⊥)
e−

(x3−y3)
2

4s

2
√
πs

(
e|B|s 0

0 e−|B|s

)

with x⊥ = (x1, x2). The kernel of the two-dimensional Pauli operator is

es(∂1+i|B|x2/2)2+s(∂2−i|B|x1/2)2(x⊥, y⊥)

=
|B|

4π sinh(|B|s) e
− |B|

4
coth(|B|s)|x⊥−y⊥|2 e−

i|B|
2

x⊥×y⊥

(see e.g. [60, Chapter 15]). As a consequence, we find

e−sPB×·/2(x, y) =
|B|

8π3/2
√
s sinh(|B|s)e

− |B|
4

coth(|B|s)|x⊥−y⊥|2×

× e−
i|B|
2

x⊥×y⊥e−
(x3−y3)

2

4s

(
e|B|s 0

0 e−|B|s

)

(82)

and

(
PB×·/2+µ

2
)−1

(x, y) =
e−

i|B|
2

x⊥×y⊥

8π3/2

∫ ∞

0

|B|√
s sinh(|B|s)

(
e|B|s 0

0 e−|B|s

)

×

× e−
|B|
4

coth(|B|s)|x⊥−y⊥|2e−
(x3−y3)

2

4s e−sµ2
ds. (83)

In order to bound this quantity, we split the domain of integration into
two pieces. When |B|s ≤ 1, we use the inequalities |B|s ≤ sinh(|B|s),
|B|s coth(|B|s) ≥ 1 and exp(|B|s) ≤ 1 + (e − 1)s|B| ≤ 1 + 4s|B|. When
|B|s ≥ 1, we also use the inequality |B|s coth(|B|s) ≥ 1, as well as the
bound exp(|B|s) ≤ 4 sinh(|B|s). This gives

∣
∣
∣

(
PB×·/2 + µ2

)−1
(x, y)

∣
∣
∣
∞

≤
∫ 1

|B|

0

ds

(4πs)
3
2

e−sµ2
e−

|x−y|2

4s +
|B|
π

∫ ∞

0

ds√
4πs

e−sµ2
e−

|x−y|2

4t .

It then remains to recall the following formulae for the kernels of the resolvent
of the one-dimensional and three-dimensional Laplace operators

∫ ∞

0

ds√
4πs

e−µ2se−
r2

4s =
e−µr

2µ
, (84)

respectively,
∫ ∞

0

ds

(4πs)
3
2

e−µ2se−
r2

4s =
e−µr

4πr
, (85)

in order to obtain the estimate (80).
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Concerning (81), we first derive from (83) that
[
(−i∂1 + |B|x2)

(
PB×·/2 + µ2

)−1]
(x, y)

=
|B|2

2(4π)
3
2

e−
i|B|
2

x⊥×y⊥
∫ ∞

0
e−

|B|
4

coth(|B|s)|x⊥−y⊥|2 e−
(x3−y3)

2

4s ×

×
(
e|B|s 0

0 e−|B|s

)
(
x2 − y2 + i(x1 − y1) coth(|B|s)

) e−µ2s ds

s
1
2 sinh(|B|s)

.

Arguing as in the proof of (80), and applying the inequalities |B|s exp(|B|s)
coth(|B|s) ≤ 8 for |B|s ≤ 1, respectively coth(|B|s) ≤ 4 for |B|s ≥ 1, we are
led to the estimate
∣
∣
∣

[
(−i∂1 + |B|x2)

(
PB×·/2 + µ2

)−1]
(x, y)

∣
∣
∣
∞

≤ |x⊥ − y⊥|
(

2|B|
∫ ∞

0

ds

(4πs)
3
2

e−µ2se−
|x−y|2

4s

+ 16π

∫ ∞

0

ds

(4πs)
5
2

e−µ2se−
|x−y|2

4s +
5|B|2
2π

∫ ∞

0

ds√
4πs

e−µ2se−
|x−y|2

4s

)

.

Inequality (81) then follows from (84), (85), as well as the identity
∫ ∞

0

ds

(4πs)
5
2

e−µ2se−
r2

4s =
e−µr

8π2r2

(1

r
+ µ

)

,

which can be derived from (84) and (85) by integrating by parts.
Finally, the kernels of the two other operators are given by
[
(−i∂2 − |B|x1)

(
PB×·/2 + µ2

)−1]
(x, y)

=
|B|2

2(4π)
3
2

e−
i|B|
2

x⊥×y⊥
∫ ∞

0
e−

|B|
4

coth(|B|s)|x⊥−y⊥|2 e−
(x3−y3)

2

4s ×

×
(
e|B|s 0

0 e−|B|s

)
(
y1 − x1 + i(x2 − y2) coth(bt)

) e−µ2s ds

s
1
2 sinh(|B|s)

.

and
[
(−i∂3)

(
PB×·/2 + µ2

)−1]
(x, y)

= (y3 − x3)
e−

i|B|
2

x⊥×y⊥

2(4π)
3
2

∫ ∞

0
e−

|B|
4

coth(|B|s)|x⊥−y⊥|2e−
(x3−y3)

2

4s ×

×
(
e|B|s 0

0 e−|B|s

) |B|e−sµ2
ds

s
3
2 sinh(|B|s)

.

and the proof of (81) for j = 2, 3 is similar. This completes the proof of
Proposition 18. �
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