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Empirical comparison of two methods for the Bayesian update
of the parameter s of probability distributionsin a two-level
hybrid probabilistic-possibilistic uncertainty framework for

risk assessment

N. Pedromi, E. Zicf, A. Pasanisj M. Couplet

Abstract

In this paper, we address the issue of updatingaiBayesian framework, the possibilistic

representation of the epistemically-uncertain pageéens of (aleatory) probability distributions, as

new information (e.g., data) becomes available. Bpproaches are considered: the first is based
on a purely possibilistic counterpart of the classj well-grounded probabilistic Bayes’ theorem;

the second relies on the hybrid combination ofFHigzy Interval Analysis (FIA) to process the
uncertainty described by possibility distributioasd (ii) repeated Bayesian updating of the
uncertainty represented by probability distributson

The feasibility of the two methods is shown ontexrdture case study involving the risk-based

design of a flood protection dike.

Keywords. hierarchical two-level uncertainty, Bayesian ugdgoossibility distributions, fuzzy

interval analysis, possibilistic Bayes theoremodigrotection dike.
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We consider a framework of uncertainty represematith two hierarchical levels [Limbourg and
de Rocquigny, 2010], in which risk analysis mod#lsleatory (i.e., random) events (e.g., failures)
contain parameters (e.g., probabilities, failutesa...) that are epistemically-uncertain, i.e.,\kno
with poor precision due to lack of knowledge andoimation. Traditionally, both types of
uncertainty are represented by probability distitms [Apostolakis and Kaplan, 1981;
Apostolakis, 1990; NUREG-CR-6850, 2005; USNRC, 2@d2 2009; NASA, 2010] and Bayes’
rule is useful for updating the (probabilistic) seimic uncertainty representation as new
information (e.g., data) becomes available [Beroasthd Smith, 1994; Siu and Kelly, 1998;
Lindley, 2000 and 2006; Bedford and Cooke, 200iya¥&d et al., 2003; Kelly and Smith, 2009 and
2011; Pasanisi et al., 2012].

However, in some situations, insufficient knowledgdormation and data impair a probabilistic
representation of epistemic uncertainty. A numbiealternative representation frameworks have
been proposed for such cases [Aven, 2010 and 2041 and Steen, 2010; Aven and Zio, 2011,
Flage et al., 2009; Beer et al., 2013b and 2014bng et al., 2013], e.g., e.g., fuzzy set theoty [K
and Yuan, 1995], fuzzy probabilities [Buckley, 208=er, 2009b; Pannier et al., 2013], random set
theory [Molchanov, 2005], evidence theory [Fersomle 2003 and 2004; Helton et al., 2007 and
2008; Sentz and Ferson, 2002; Le Duy et al., 28a8ak et al., 2013], possibility theory (that can
be considered a special case of evidence theoaydi® and Dubois, 2006; Baudrit et al., 2006 and
2008; Dubois, 2006; Dubois and Prade, 1988], prtibabound analysis using probability boxes
(p-boxes) [Ferson and Ginzburg, 1996; Crespo 2@l 3; Mehl, 2013], interval analysis [Ferson
and Hajagos, 2004; Ferson and Tucker, 2006; Feesam., 2007 and 2010; Jalal-Kamali and
Kreinovich, 2013; Muscolino and Sofi, 2013; Zhang a., 2013] and interval probabilities
[Weichselberger, 2000]; notice that most of thdseoties can be included within the general

common framework ofimprecise probabilities[Kuznetsov, 1991; Walley, 1991; Kozine and
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Filimonov, 2000; Kozine and Utkin, 2002; Coolen aditin, 2007; Beer and Ferson, 2013; Beer et
al., 2013a; Blockley, 2013; Reid, 2013; Sankararaared Mahadevan, 2013].

In this paper, we adopt possibility distributiomsdescribe epistemic uncertainty and address the
issue of updating, in a Bayesian framework, thesimisstic representation of the epistemically-
uncertain parameters of (aleatory) probability risitions. We take two approaches of literature.
The first is based on a purely possibilistic coypdiet of the classical, well-grounded probabilistic
Bayes’ theorem: it requires the construction ofoagibilistic likelihood function which is used to
revise the prior possibility distributions of thaeagrtain parameters (determined on the basis of a
priori subjective knowledge and/or data) [Duboid &made, 1997; Lapointe and Bobee, 2000]. This
approach has been already applied by the authongpfitating possibility distributions in [Pedroni
et al., 2014]. The second is a hybrid probabilptssibilistic method that relies on the use of
Fuzzy Probability Density Functions (FPDFs), iRDFs with possibilistic (fuzzy) parameters. It is
based on the combination of (i) Fuzzy Interval Asa@ (FIA) to process the uncertainty described
by possibility distributions and (ii) repeated Bam updating of the uncertainty represented by
probability distributions [Beer, 2009a; Stein aneeB 2011; Stein et al., 2013; Beer et al., 2014a].
The objective (and the main contribution of the graps to compare the effectiveness of the two
methods. To the best of the authors’ knowledges thithe first time that the above mentioned
techniques are systematically compared with retexdo risk assessment problems where hybrid
uncertainty is separated into two hierarchical lev&o keep the analysis simple and retain a clear
view of each step, the investigations are carrigdvath respect to a simple literature case study
involving the risk-based design of a flood protectdike [Pasanisi et al., 2009; Limbourg and de
Rocquigny, 2010]. In addition, different numericadicators (e.g., cumulative distributions,
exceedance probabilities, percentiles, ...) are demnsd to perform a fair, quantitative comparison
between the methods and evaluate their ration@le@ppropriateness in relation to risk analysis.
Other methods have been proposed in the literatureevise, in a Bayesian framework, non-

probabilistic representations of epistemic uncetyajFerson, 2005]. In [Viertl, 1996, 1997, 1999,
3
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2008a,b and 2011; Viertl and Hareter, 2004a,b;tVéerd Hule, 1991] a modification of the Bayes’
theorem is presented to account for the presentegzny data and fuzzy prior PDFs: the approach
is similar to that employed by [Beer, 2009a; Staid Beer, 2011; Stein et al., 2013] and considered
in this paper. In [Smets, 1993] a Generalized Bajksorem (GBT) is proposed within the
framework of evidence theory: this approach is i@gpby [Le-Duy et al., 2011] to update the
estimates of the failure rates of mechanical comptmin the context of nuclear Probabilistic Risk
Assessment (PRA). Finally, in [Walley, 1996; Bedaf005; Masegosa and Moral, 2014]
Imprecise Dirichlet Models (IDMs) are proposed fobjective statistical inference from
multinomial data. In the IDM, prior or posterioreertainty about a parameter is described by a set
of Dirichlet distributions, and inferences abouteets are summarized by lower and upper
probabilities. This model has been extended by g@babeur and de Cooman, 2005] to generalized
Bayesian inference from canonical exponential fe®ibnd by [Walter and Augustin, 2009] with
the aim of handling prior-data conflicts.

The remainder of the paper is organized as followisst, the representation of aleatory
(probabilistic) and epistemic (possibilistic) unte@mties in a “two-level” framework is provided;
then, the two methods employed in this paper ferBayesian update of the possibilistic parameters
of aleatory probability distributions are describedletails; after that, the case study concertiieg
risk-based design of a flood protection dike isspreed; in the following Section, the methods
described are applied to the case study: the seshtained are discussed and the two methods are

synthetically compared; finally, some conclusiores@awn in the last Section.

Representation of aleatory and epistemic uncertainties in a two-level
framework: fuzzy random variables

In all generality, we consider an uncertain vaealll, whose uncertainty is described by the
Probability Distribution Function (PDFp" (y|8), where® ={8,,6, ,...,6, ....,6, } is the vector of
the corresponding internal parameters. In a twellé@amework, the parametets are themselves

4
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affected by epistemic uncertainty [Limbourg andRlecquigny, 2010]. In the present work, we
describe these uncertainties by the (generally t)jojossibility distribution z° € ) (it is

straightforward to notice that in case the intepmiametergé,,é, ,...,0., ,...,6, Jare independent,
then z° @) is simply represented by a group Pfseparate, marginal and independent (i.e., non-
interactive) possibility distributions, i.ez’ @ (3 {77*(8,),7%*(6,),...1"(8,),....7T% (6,)}). A

random variableY with possibilistic parameter@ is a particular case of a Fuzzy Random Variable
(FRV), i.e., of a random variable whose valuesrarereal, but rather fuzzy numbers [Féron, 1976;

Kwakernaak, 1978; Puri and Ralescu, 1986; Baudral.e 2008; Couso and Sanchez, 2008]. The

corresponding Fuzzy Probability Distribution Funeti{FPDF) is here indicated g8 (y|6) .

For clarification by way of example, we may consitlee generic uncertain variab¥ described
by a Gumbel PDF, ieY ~ p'(y|0) = Gun{d) = Gun(,,6,) = Gun(y,d) = p'(y|y.9).
Parametero =6, (i.e., the scale paramter) is a fixed point-wisdue (0 =6, = 100), whereas
parametery =4, (i.e., the location parameter) is epistemicallgenmain. By hypothesis, the only
information available ory =6, is that it is defined on interva&j b,] = [900, 1300] and its most
likely value isc, = 1100. Notice that such informationnet sufficientfor assigning ainglespecific
probability distribution to describe the epistemuiccertainty in parametey =6,. In facts, such

scarce information is actualgompatiblewith avariety of probability distributions (e.g., truncated
normal, lognormal, triangular, ...). To address tisisue, this limited state of knowledge about
y =46, is here described by a triangular possibility ritisition 777 () with corec, = 1100 and
support f,, b] = [900, 1300] (Fig. 1, top left column) [Baudand Dubois, 2006]. Indeed, this
representation i€oherentwith the information available as it can be demonstrated that such
possibility distribution “encodes” tHamily of all the probability distributions with modeg = 1100
and supportd,, b,] = [900, 1300] (obviously, this doesot mean that the triangular possibility

distribution is theonly onewith these characteristics, i.e., the only onesabl encode such a

5
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probability family). In other wordspne single possibility distribution generates in practice a
“bundl€ of probability distributions with mode, = 1100 and supporg], b,] = [900, 1300]. The
reader is referred to [Baudrit and Dubois, 2006u$oet al., 2001; Dubois et al., 2004] for further

technical details and a formal proof of these statats.

In order to provide an additiongkactical interpretation of the possibility distributiorr” y ( of
y=46,, we can define ita-cut setsA, = {y: 7' (y) > a}, with 0 < a < 1. For example A/, =
[1000, 1200] is the set gf values for which the possibility function is greathan or equal to 0.5
(dashed segment in Fig. 1, top left column). Notitat thea-cut set A’ of parameter can be
interpreted also as the (14-100% Confidence Interval (Cl) for, i.e., the interval such that
PlyOA/1=21-a . For example,A/ = [900, 1300] is the (1 — @O0% = 100% CI fow, i.e., the
interval that contains the “true” value pfvith certainty (solid segment in Fig. 1, top le@lumn);
Al =[1000, 1200] U AY) is the (1 — 0.5100% = 50% CI (dashed segment in Fig. 1, top left
column); Al =[1050, 1150] 0 A}; O A))is the (1 — 0.8100% = 20% ClI, and so on. In this
view, the possibility distributiorvz” ){ Yan be interpreted as a setnastedCls for parametey

[Baudrit and Dubois, 2006; Couso et al., 2001; Dsiled al., 2004].

For each possibility (resp., confidence) lewe(resp., 1 —«) in [0, 1], afamily of PDFs forY,

namely{pY(yl v, 5)}a, can be generated by letting the epistemicallyetlan parametey range
within the corresponding-cut set#’, i.e., {p'(y|y, 5)}a ={p"(y|y.0):y0A,,6=100. By way

of example, Fig. 1, top right column, shows fourA3Cbelonging to the famil){pY(y|y, )}

a=0

(solid lines) and four PDFs belonging to the fan{iw(yly, 5)} .5 (dashed lines).

In the same way, &undle of Cumulative Distribution Functions (CDFs) fof, namely
{F(yly, )}a can be constructed by letting range within A/, i.e., {F"(yly. )}a =
{FY(y|y, 5):yD Aj,a=100}. Thisfamily of CDFs (of leveb) is bounded above and below by the

6
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upper and lower CDFsF)(y) and F)(y), defined asF)(y)=sugF"(y|y,6=100} and
VoA,

EZ(y)= H&g {FY(y| V.0 :100)}, respectively. Sincer” y( ¢an be interpreted as a set of nested Cls

for parametep (see above), it can be argued thatdkauts of 777 (/) induce also &etof nested
pairs of CDFs{(EZ(y), lfaY(y)):Os a s]} which bound the “true” CDFFY(y) of Y with confidence
larger than or equal to (1), i.e., P[F.(y)< F"(y)<F)(y)]21-a, with 0< o <1 [Baudrit et
al., 2007 and 2008]. In passing, notice that thpeu@nd lower CDFs (of level), IfaY(y) and
EZ(y), can be referred to as tptausibility andbelief functions (of leveb) of the seZ = (o, V],

i.e., F'(y)=PIY¥(z) and E}(y)=Bel'(z), respectively. For illustration purposes, Figbbftom
row, shows the bounding upper and lower CDF¥,0F,’ (y)=PI(z) and F) (y)=Bel'(z), built

in correspondence of thecuts of levela = 0 (solid lines), 0.5 (dashed lines) and 1 (daded

line) of the possibility distributiomr?” ) pf parametey (Fig. 1, top left column).
Finally, thesetof nestedpairs of CDFs{(E" (y).F (y)):0< a <1} = {(Bel(2), PI¥ (2)):0= a <1},

Z = (o, y], can be synthesized into single pair of plausibility and belief functions as

1 1
J'PIZ(Z)da and BeIY(Z)=IBeIZ(Z)da, respectively (dotted lines in Fig. 1, bottom
0

0

PIY(2)

row): in other words, PI"(Z) and Bel"(Z) are obtained byaveraging the different nested

plausibility and belief functions (i.e.{(Bel!(z),PIY(2)):0<a<1}) generated at different

possibility levelsa LI [0, 1] (i.e., by averaging the different contriloums to the plausibility and

belief functions produced by differentcuts of the epistemic parametgr The plausibility and

belief functionsPI"(Z) and Bel"(Z), Z = (x, y], are shown to represent theest boundsfor the
“true” CDF F"(y) of the uncertain variabMé [Ralescu, 2002; Baudrit et al., 2007 and 2008;380u

et al., 2004; Couso and Dubois, 2009; Couso andHean2011].
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Further details about FRVs are not given here lher $ake of brevity: the interested reader is

referred to the cited references.

Fig. 1

Bayesian update of the possibilistic parameters of aleatory probability
distributions

In this Section, we present the methods employedhis study for updating, in a Bayesian
framework, the possibilistic representation of #pstemically-uncertain parameters of (aleatory)

probability distributions, asew information/evidence (e.g., data) becomes availalol this view,
let z° (@) be the (joint)prior possibility distribution for the parameteés=[4,,6, ,...,0, .....6, ol
the PDF p' (y|0) of variableY (built on the basis of a priori subjective enginegrknowledge

and/or data). For example, in the risk assessnntext of this pape¥ may represent the yearly

maximal water flow of a river described by a Gumtistribution: thusy ~ p" (y|6) = Gum@) =
Gum@y, 6) = Gumy, o) = p'(y|y,0) and 2’ @) = ="°(y,0). Moreover, let
Y=[Y, Y0V Yp] be a vector ofD observed pieces of data representing theew

information/evidencavailablefor the analysis: referring to the example aboyanay represent a

vector ofD values collected over a long period time (e.g.nyngears) of the yearly maximal water

flow of the river under analysis. The objectivetbé Bayesian analysis is to update the a priori

representation’ & ¥ =" (y,9) of @ = [y, ] on the basis of the new evidence acquired, tice.,

calculate theposterior possibility distributionz’ € ) (i.e., #° ¢ 0 |y)) of @ after y is

obtained.
In the present paper, two methods are considertdst@im: the purely possibilistic method and the

hybrid probabilistic and possibilistic approach.



189 Purely possibilistic approach

190 The purely possibilistic method (hereafter als@mefd to as ‘Approach A’ for brevity) is based on
191 a purely possibilistic counterpart of the classigabbabilistic Bayes’ theorem [Dubois and Prade,

192 1997; Lapointe and Bobée, 2000]:

7' (0]y) & (0)
sgdnf ©@1y)Z°(0)}’

193 7' (@0ly)= (1)

194 wherex! @ ly)is the possibilistic likelihood of the paramet@ctor # given the newly observed

195 datay, and quantities:’ 6( y Jand 7’ @ ) are defined above. Notice thandnf @y =z’ (0)} is a
6

196 normalization factor such thau;{n” @] y)} =1, as required by possibility theory [DuboispgD
[

197 It is worth mentioning that forms of the possiliiisBayes’ theorem alternative to (1) can be
198 constructed as a result of other definitions of dperation of ‘conditioning’ with possibility
199 distributions: the reader is referred to [Duboigl &rade, 1997; Lapointe and Bobée, 2000] for
200 technical details. In this paper, expression (13 baen chosen because ‘it satisfies desirable
201 properties of the revision process and lead toicoatis posterior distributions” [Lapointe and

202 Bobeée, 2000].

203 The possibilistic likelihoodz! & ¥ )is here obtained byransformingthe classical probabilistic

L’ @1y)

Anoop et al.,
suaL” (0|y)f [ P
/]

204 likelihood function L’ @ ly ) throughnormalization i.e., z! @ |y) =

D
205 2006] (obviously,L’ 4 Y )= l_' p" (y, |0) in the case the observationg:{k = 1, 2, ...,D} are

206 independent and identically distributed). This clednas been made for the following main reasons:

207 i.  the transformation is simple and can be straigivhodly applied to any distribution [Anoop
208 et al., 2006];

209 ii. the resulting possibilistic likelihood iwery closely relatedto the classical, purely
210 probabilistic one (which is theoretically well-gmed) by means of the simple and direct

9
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operation of normalization that preserves tlwidinal structuré of the experimental
evidence;
iii. it can be easily verified that the resulting posisific likelihood keeps theequentiainature
of the updating procedure typical of the standaagié®’ theorem);
iv.  the operation of likelihood normalization finds @tbeoreticaljustifications in some recent
works of literature (see the brief discussion bglfidenoeux, 2014; Moral, 2014].
However, two considerations are in order with respe this choice. First, it has to be admitted tha
the resulting possibility distributions do not irergeral adhere to the probability-possibility

consistency principle [Dubois and Prade, 1980].08dc it has to be remembered that the
probabilistic likelihood functionL’ & ¥ )is not a probability distribution: in this view, from a

rigorous mathematical viewpoint, speaking of proligfpossibility transformation for it would be

wrong. On the other side, from the practical engiiimg viewpoint of interest to the present paper,

an operation of normalization can be performed.,(i.b"(0|y)/J-L”(Bly)dH) in order to
0

“technically” provide it with the “properties” of probability distribution function.

It is worth noting that other techniques of tramsfation of probability density functions into
possibility distributions exist, but the correspmgldetails are not given here for brevity sake: th
interested reader is referred to [Dubois et al9312004 and 2008; Flage et al., 2010 and 2013] for
some proposed techniques, e.g., the principle oimman specificity [Dubois et al., 1993] and the
principle of minimal commitment [Dubois et al., Z)OAlso, it has to be noticed that techniques
are also available to construct possibility disttibns (and, thus, possibilistic likelihood funetg)
directly from rough experimentaldata (i.e., without resorting to probability-possibyit
transformations): see [Masson and Denoeux, 2006ri81a2008; Hou and Yang, 2010; Serrurier
and Prade, 2011] for more details. Finally, foharbughtheoreticaljustification of a “possibilistic
vision” of the likelihood the reader is referred ®g., [Dubois et al., 1997], where possibility

measures are considered as shpremumof a family of likelihood functions; [Denoeux, 2014],

10
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where the evidence about a parameter (after olgprai piece of data) is represented by a
consonant‘likelihood based” belief function, whose contotunction equals thenormalized
likelihood function(see above): in the paper, this is also rigorouwsyived from three basic
principles, i.e., the likelihood principle [Edward992], compatibility with Bayes’ rule and the
minimal commitment principle [Smets, 1993]; andafig [Moral, 2014], where the approach by
[Denoeux, 2014] is discussed and the issue of septing likelihood information is taken from the

point of view of imprecise probabilities.

Hybrid probabilistic and possibilistic approach
The hybrid probabilistic and possibilistic methdeeafter also called ‘Approach B’ for brevity) is

based on the construction of a Fuzzy Probabilitgtiidiution Function (FPDF) to be used as a

fictitious’ prior for the epistemically-uncertaiparameter®) of the PDFp” (y|6) of the uncertain

variableY: in other words, a fictitious (artificialprobabilistic function has to be ‘superimposed’
onto thepurely possibilistigorior 7 (@) that has to be updated. In more detail, jé{0 | p) be the
fictitious (prior) FPDF of @, constructed by the superimposition of an (arbljraselected)

fictitious PDF p’ (@ |¢) and a vector of parametegsdescribed by a (properly selected) possibility

distribution 777 @ ) (it is straightforward to notice that in the cgmrameters,: m=1, 2, ...,P}

P
are independent, thep’ @ p) = [ p™ (0, |9n). With 0, =[Gy, Brpr -os By 1, M=1,2, .,

m=.

P; also, 7’ @ ) is expressed ag” o ( F {71" (p,), 7" (9,),.... 77" (9,,),...., 77" (95)} . In addition,

if also the possibilistic parametegs, , @,,, ..., @,, of the fictitious PDFp’ (4, |9,), m= 1, 2,

M
..., P, are independent, ther” (p., {7 (@), 7" (@p)s-- -, 7T ™ (@, )})- As before, lety ~
p"(y|0) = Gumly,d) = p'(y|y.d), with & = [61, 6] = [y, J] epistemically-uncertain. For

simplicity, we conside#; =y andé, = ¢ independent, such thaf 6 (3 {z"(y),z°(d)} and that

11
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P
the (fictitious) PDF p’(@|p) can be written as[] p™ (@, |p,) = p%(b,|p) %6, |p,) =

m=;

py(y|¢y)Ep"(5|qo5). By hypothesis, the analysrbitrarily selects Normal distributions to
representp’(ylp,) and p°(@l¢,), ie, p"(vlg,) = N(p,) = N(y,,0,) and p°(@Olg,) =

N(p;) = N(u;,0;,), respectively (Normal and Uniform distribution® andicated as good choices
for p’(@|e) by [Beer, 2009a; Stein and Beer, 2011; Stein gt 2013]). Then, parameters
o, =[y,,0,] and ¢,=[y;,05] are represented by the possibility distributions
n” ={n"(u,),n” (o,)} and m* ={(u;),7°° (0, )} (by so doing, the fictitious prior FPDF
p’@le) = PG le)B*%(G,19,) = P’ (Vle,)[P°le,;) is constructed). These possibility

distributions should beroperly selected by the analyst so as to reflect as glaslpossible the

structure of thereal prior possibility distributionz’ @ )= {z”(y),z°(d) } that has to be updated:
for example,77”7 and 777 could be identified by ‘imposing’ that trexpected valuef the FPDF
p’ (@ ]9) corresponds to theeal prior possibility distributionz” ¢ ) i.e., E [P’ (0| p)] = z° (0)
or, in this caseE, [p" (v, ) 7" () andE, [P’ (O 9s)] = 7°(3).

In extreme synthesis, the method relies on theithylwmbination of (i) Fuzzy Interval Analysis
(FIA) to process the uncertainty described by pmisi distributions and (ii)repeatedBayesian
updating of the uncertainty represented by probighdistributions [Beer, 2009a; Stein and Beer,
2011; Stein et al., 2013]. In more details, theoatgm proceeds as follows:

1. seta =0;

2. select thex-cut A? of the possibility distributiorrz’ ¢ pf vector ¢ of the parameters of the
(fictitious) prior PDF p’ (6 | ) ;

3. letting the parameter vecter range within the correspondigcut A! identified at step 2.
above, generate a family of (fictitious) prior PD{-TEﬁ(H |¢)}a = {p” (49 |¢):¢D Aj;’}. This is

12



280 empirically done by (i) randomly or deterministically selegtiafinite numberT (e.g., T =

281 100 in this paper) of parameter vectass,, | = 1, 2, ..., T, in A? and (ii) evaluating
282 p’ (@ ]e) in correspondence of these vectors, {.p‘?(ﬁ |¢)}a ~ {p” (49 |q0|’a):| = lZ,...,T};
283 4. apply the classical probabilistic Bayes theoreneaeh (fictitious) prior PDF p’ @le )
284 generated at step 3. above to get the correspopdstgrior PDprfa (0| y):
285 ploa(aly): L0(0|Y)Ep(0|¢|,a) 1=1,2 ..T )

| [U(e1y)D010, e

0

286 This is equivalent to generating a fami{)p”(0|y)}a of posterior PDFs fom, i.e.,
287 {p"o1y), = {pl.(01y)1 =12..T};
288 5. calculate theexpected valuef eachposterior PDFpﬂa (49| y) generated at step 4. above to
289 obtain apoint estimated, , | y for the epistemically-uncertain parameter veé@d6tein et
290 al., 2013]:
291 0.,1y=Elp,@0IV].,1=1,2, ...T (3)
292 6. take the hull enveloping thepoint estimated, , |y, | =1, 2, ...,T, as the R-dimensional)
293 a-cut A’ of the (jointP-dimensional) posterior possibility distributiotf (¢ y | of 6. By
294 way of example and for illustration purposes, Rigshows the identification of a (two-
295 dimensionaly-cut A™Y = A%%Y (solid line) as the contour enclosifig= 20 point estimates
296 0,1y, 1=1,2,..., 20 (dots), in the simplified casePof 2 parameterg; ando.;
297 7. if a <1, then setr = a + Aa (e.g.,Aa = 0.05 in this paper) and return to step 2. above;
298 otherwise, stop the algorithm.
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The (jointP-dimensional) posterior possibility distributioff (9 y | for the epistemically-uncertain
parameter vectof is empirically constructed as the (discrete) aiten of thea-cuts A’ , a = 0,

0.05, ..., 0.95, 1, found at step 6. above.

It is worth noting that the application of both apgches A and B always producegoat P-
dimensional posterior possibility distributiori @ (y | (Whateverthe state of dependence between
the priors), characterized IBrdimensionak-cuts A’Y, with 0 <a < 1: as a consequence, there is
aninteractive dependendgetween the values that parametéts fn = 1, 2, ...,P} can take when
ranging within a givem-cut A’Y: for example, in Fig. 2 it is impossible that paeterd; takes on
low valuesand parameted), takes on high values at the same time.

From 7’ @ |y) it is straightforward to obtain thenarginal posterior possibility distribution

7’ (6,,|y) for each parametet, asz’" (6, ly) = Hrﬂgai({n"(m y)}, 06,00, m=1,2, ..P
jod JFEm

[Baudrit et al., 2006]:z"" (6., ¥ )is the projection ofz’ & ¥y )onto them-th axis. The (one-
dimensional)-cut A™Y = [Ena Y §mya | y] of the marginal possibility distribution’" (0, y| 05
then related to theP¢dimensional)x-cut A‘j'y of the joint possibility distribution’ 6( y )Yy the

following straightforward relation, i.e. A" = 6,0 |y,§m’a| y] = [ggl/igrl\{ﬁm}, ma|>{€m}] . In this
y 0D¥y

view, notice that the use of tiedimensionak-cut A}, constructed by the Cartesian product of
the (one-dimensional)-cuts A/ of the marginal distributionsn =1, 2, ...,P (i.e., Al%,, = AW

x A2 x ..ox APV x ... x APY) would (incorrectly) implyindependencéetween the posterior
estimates of the paramete@.{m = 1, 2, ...,P}; however, sinceA/%,. completelycontains A’”
(i.e., by definitionA?” 0O A’ ), then conservatism would be still guaranteedifiSteal., 2013].

For illustration purposes and with reference to ¢éixample above, Fig. 2 shows also the two-
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dimensionakbk-cut A‘jfgg'r{ (dashed line) generated by the Cartesian produbegqone-dimensional)

a-cuts A and A7V i.e., ARZY = AUV x AV

Fig. 2

The characteristics of the two approaches are suinadain Table 1. Notice that both methods
relies onarbitrary assumptionsabout either the prior or the likelihood functioms the purely
possibilistic approach (A) the “original’ possilstlic prior is employed, but a possibilistic
likelihood function has to be constructed (e.g.,pogbability-possibility transformations, directly
from rough experimental data and/or by resortinthéoguidelines provided by [Dubois et al., 1997;
Denoeux, 2014]); instead, in the hybrid method ) original probabilistic likelihood function is
used, but a “fictitious” prior Fuzzy Probability ®ribution Function needs to be identified by
superimposing aarbitrarily selectedprobabilistic PDF onto the “original” possibilistprior that
has to be updated.

Table 1.

A final consideration is in order with respect tee ttwo approaches here outlined. In the hybrid
probabilistic-possibilistic framework of interest the present paper, the knowledge a priori

available on the paramete®=[4,,6,,....6,....6. df a given (aleatory) probability model
P’ (y|0) is described by therior possibility distribution functionz’ & ) As detailed in the

previous Section, the possibilistic approach igipalarly suitable to address those situations wher
the information a priori available 0@ is scarce and imprecise, i.agt sufficientfor assigning a
single specific probability distribution to (describe the epistenincertainty in)@. Actually, the
possibilistic function 7z’ @) is in practice “equivalent” to théamily of all those probability
distributions (of possiblydifferent shapésthat arecoherentwith the scarce information available
on #. On the other hand, it is worth mentioning thaainlassicapurely probabilisticiramework,

imprecision in prior information abou# can be also accounted for by means of the soecalle
15
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Hierarchical Bayesapproach. Hierarchical Bayes is so-named becdusiizes hierarchical or
multistage prior distributions [Gelman, 2006; Gelman et &008; Congdon, 2010; Kelly and

Smith, 2011; Chung et al., 2015; Shirley and Geln2215]. To develop a hierarchical model for

0, we need to specify first-stage prior(say, p’ (@ |e) ), which is often of garticular functional

form, often a conjugate prior. However, analysts fihddifficult to express their incertitude
numerically at all, much less as particular proligbdistributions. Thus, a higher-dimensional

model is defined to represent such (epistemic) iaicey: in particular, we need to specify an

“additional” prior distribution (say, p’(p|w)) on the first-stage parameteys Distribution
p? (p|w) is called thesecond-stage prigror hyper-prior. This way of proceeding amounts to
generating a ‘parametric’ famil{/p" @ |q))} of (first-stage prior) probability distributionsif @, all

obtained in correspondence of different possiblaesof the first-stage parameter¢described by

hyper-prior p’ (¢ |®)). This method has been investigated in the fidldaxrial and behavioral

sciences with thenainaim of treating hierarchical data with differeavéls of variables in the same
statistical model. For example, the hierarchicaladior sociological survey analysis include
measurements from individuals with different higtal, geographic, or economic variables. To this
end, the hierarchical modeling was proposed towatcior the different grouping or times at which
data are measured [Gill, 2002]. In addition, a camrapplication of hierarchical Bayes analysis in
the Probabilistic Risk Assessment (PRA) of nucfgawer plants has been as a model of variability
among data sources, for example variability in Ejaecy Diesel Generator (EDG) performance
across different plants, or across time [Siu antlyK&998; Atwood et al., 2003; Kelly and Smith,
2009]. Finally, similar analogy can be made for tblected measurements from a structure under
different ambient and environmental conditions.sTinamework has been recently implemented for
uncertainty quantification applications in struetudynamics [Behmanesh et al., 2015; Ballesteros
et al., 2014]. Although hierarchical Bayes can addrthe issue of imprecise prior information by

means of multi-level models, the following concegtand practical considerations should be made
16
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about its applicability: (i) in principle, one cauldefine even higher dimensional models to
represent the uncertainty. Some analysts have ptiteimthree- and even four-level models
[Jaworska and Aldenberg, 2000], but this hardlyrsea workable solution when the complexity of
the analysis is the primary problem; (ii) in aduaiitj “if concern about the uncertainty in parameters

can in principle drive the analysis to a higherlewne could fall into an insoluble infinite cadea
[Ferson, 2005]; (iii) finally, both first- and seuwd-stage priors, p’(@|p) and p’(p|w),

respectively, are often of garticular functional form, which forces the analyst to makeerly-
optimistic” and excessively precise statements almarameter uncertainties, even when the
information and data available are scarce and/gueai.e.,not sufficientfor assigning asingle
specificprobability distribution. In such cases, non-ptabstic methods (e.g., intervals, possibility
distributions or Dempster-Shafer structures frondewce theory) have been shown to provide
reliable and robust results [Ferson et al., 200&rBet al., 2013a]. On the basis of considerations
()-(iii) above and given that the objective of thaper is the comparison of methods for the update
of possibilisticparameters (of aleatory probability distributigridlerarchical Bayes approaches are

not considered in the present work.

Case study: flood protection risk-based design

The case study deals with the design of a protedtike in a residential area closely located to a
river with potential risk of floods. Two issues obncern are: (i) high construction and annual
maintenance costs of the dike; (ii) uncertaintythe natural phenomenon of flooding. Then, the
different design options must be evaluated withiloading risk analysis framework accounting for

uncertainty.

The model
The maximal water level of the river (i.e., the mutt variable of the modelZ,) is given as a
function of several (and some uncertain) paraméters the inputs to the model) [Limbourg and de

Rocquigny, 2010J:
17
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z.=1(Q.2,.2,,K.,B,L)= f(Y.Y,.Y,.Y,. X, Y,) (4)
where:Y; = Q is the yearly maximal water discharge’[s; Y» = Z.andY; = Z are the riverbed
levels [m asl] at the upstream and downstream péttse river under investigation, respectively;
= K, is the Strickler friction coefficientys = B andYs = L are the width and length of the river

part [m], respectively. Quantitieg = B (= 300m) andys = L (= 5000m) areonstantparameters,

whereas quantitieg; = Q, Y= Z_, Ys= Z,, Y4 = K, areuncertainvariables.

The input variables: physical description and representation of the associated
uncertainty

Then = 4 input variable¥;, i = 1, 2, 3, 4, are affected by aleatory and epigtemcertainties. The
aleatory part of the uncertainty is described bgbpbility distributions of defined shape. The
parameters of the probability distributions desogbthe aleatory uncertainty are themselves

affected by epistemic uncertainty and represemtédrms of possibility distributions.

Theyearly maximal water flow, Y1 =Q

The aleatory uncertainty in the yearly maximal wdkew Y; = Q is well described by a Gumbel
probability distribution p(qy, ) = Gun(y,d) = %exp{—ex;{y%;qﬂ ex;{y%;q} [Limbourg and

de Rocquigny, 2010]The extreme physical bounds on variale are [Limbourg and de
Rocquigny, 2010]:

- Quin =10m?s, which is a typical drought flow level (irrelevtawithin a flood study);

- Q.. = 10000 n¥s, which is three times larger than the maximabdl ever occurred.
When Approach A is used, the prior possibility disitions 777 (/) and 7° ¢) for the

epistemically-uncertain parameteysand o are subjectively chosen as triangular functioRéa,,

¢, b) andTR(as, ¢, by), respectively, with cores (i.e., preferred or trdely values)c, = 955n/s

and ¢; = 600nt/s, and supportsal, b,] = [869, 1157] r¥s and §; bs] = [455, 660] nis,

18



421 respectively. When Approach B is employed, theitfiis prior FPDFsp” ¥ )and p° @) are
422 subjectively chosen as normal probability distibog p” (/) = N(,uy,ay) and p’ ¢) =

423 N(,LJJ,JJ), respectively, with possibilistic parametegs, 0, 1, ando,; : the characteristics of the

424  corresponding triangular possibility distributioms"y(uy), hrald (0,), m°(u;) and 1’ (o, ) are
425 summarized in Table 2 for brevity. The Bayesianaipaf these uncertainty representations (based
426  on prior subjective knowledge) is realized with te of a vectoy: = [y, Y12, .-+, Yk -y Yip, ] OF

427 D; = 149 (independent and identically distributedd} values of the annual maximal flow of the
428 river, i.e.,y1 =9 = [01, 92, ..., Ok -.-,» Cuag. The point estimates foy and J obtained by the

429 classical, purely probabilistic Maximum Likeliho&$timation (MLE) method ar¢® = 1013. 21

430 m%s ando™E =558.21 riVs, respectively.

431 Theupstreamriverbed leve, Y, = Z,

432 The aleatory part of the uncertainty in the upstreaverbed levelY, = Z,, is represented by a
433 normal distribution, i.e.Z,, ~ p*(z, |ty Ts) = N(ty05,) [Limbourg and de Rocquigny,
434 2010]. This distribution is truncated at the minfm@and maximum physical bounds @, i.e.,

435 Z =535m (given by plausible lower geomorphologic limits érosion) andZ_ .. = 5h

m,min

436 (given by plausible upper geomorphologic limitssedimentation), respectively. In Approach A,

437 the prior possibility distributionsz (u,,, Jand 77 (o,, ) for i, and o,, are chosen as
438 triangular functions (Table 2). In Approach B, fiwitious prior FPDFsp*" (i, )and p’ (0, )
439 are chosen as normal PDRS“" (1, N(,uﬂzm,aﬂzm) and p’(g,, ) = N(/ngm,ag ) with

Zm

440 parameters described by the triangular possilalistiinctions n”“z"*(,uﬂzm), ﬂ”“zm(aﬂzm),

441  g'om (4,,) and ey (0,, ) reported in Table 2. The Bayesian update of thaeseertainty

442  representations is carried out using a VEAoF [Yy21, Yoz, .-+, Yok -y Yop,] Of D2 = 29 (iid) values

19



443

444

445

446
447

448

449

450

451

452

453

454

455

456

457
458

459

460

461

462

463

464

~MLE

of the upstream riverbed level, i.§2,= zn = [Zn1, Zn2, ..., Znk ---» Zm29]. The point estimategs;,;

and 60:F for u,, and o, obtained by the MLE method ag&;"- = 50.19 m andipn- = 0.38 m,

respectively.

Thedownstream riverbed level, Yz = Z,
As for Y, = Z,, the aleatory part of the uncertainty in the dawe@n riverbed leveY; = Z, is

represented by a normal distribution, i.&, ~ p%(z, | y.05) = N(i,.0,,), truncated at

Z . =48m and Z = 5In. As before, the prior possibility distributiong”>(1,, and

v,min V max
m°*(o,,) used in Approach A are triangular functions (TaBJeand the FPDF"* (y,, @nd

p’»(o0,,) employed in Approach B are normal PDB%” (1, =)N (,uﬂzm,aﬂzm) and p°(o,, ) =
N(,ugzv,agzv) with parameters described by the triangular fpiligi distributions 77" (Uy,)

ne (o, ), 1 (u, ) and (o, )of Table 2. These representations are updatedeayisnof

a vectorys = [ys1, Y32, -, Yaks ---s Yap,] Of D3 = 29 (iid) values of the downstream riverbed level

i..,Y3=2 = [Z1, Zv2, - Zuk -.» Zu2g. The MLE estimates of the parameters A&~ = 55.03 m

and G5F = 0.45 m, respectively.

The Strickler friction coefficient, Y4 = Kg

The Strickler friction coefficient's = K is the most critical source of uncertainty becaitise
usually a simplification of a complex hydraulic nebdThe absolute physical limits &, are 5 and

60, respectively [Limbourg and de Rocquigny, 2010]:
- K, <5 corresponds to an “extremely sinuous shape ofahal, with large dents and strong
vegetation”;
- K, =60 corresponds to a “canal with smoothest earth seyfaectilinear, without any

vegetation”.
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The friction coefficientK, is affected by random events modifying the riviatiss (e.g., erosion,
sedimentation, ...): the corresponding variabilityygically described by a normal distribution, ,i.e.
K. ~ p*(k |t 0c) = N(.04) [Limbourg and de Rocquigny, 2010]. However, the

parameters of this normal distribution are diffictd estimate because data can only be obtained
through “indirect calibration characterized by d$igant uncertainty” [Limbourg and de

Rocquigny, 2010]: the uncertainty in these paramsei® described by possibility distributions.

Details about the possibilistic functiors™ (4¢,) and 17 (o, ) and the FPDFp* (1, Rnd

p’(o,.) used to represent the a priori knowledge gnando,, in Approaches A and B,

respectively, are reported in Table 2. The Bayeseuision of these a priori representations is
performed by means of a vectef = [yay, Yaz, ..., Yak, ---, Yap,] Of D4 = 5 (iid) values of the
Strickler friction coefficient, i.e.ys = ks = [Ks1, Ks2, ..., Ksk --., Ks5]. The MLE estimates of the

parameters argly. - = 27.8 andd,.= = 5.26, respectively.

Table 2.

Results

In order to simplify the notation, in what followst § be one of the uncertain parameters of the
PDFs ofY1 =Q, Y2 =Zm, Ys=Z,andYs =Ks, i.6.,0 = y, O, Uy, Ozns Hyys Oy My OF Oy . Fig.

3 illustrates the possibility distributions of tlepistemically-uncertain parameters of the aleatory
PDFs p°(aly. ) (top row), p* (z, | Lym Tn) (Middle-top row), p*(z, | 4, 05,) (Middle-bottom
row) and p* (kS | ,UKS,JKS) (bottom row) of the uncertain input variabMs= Q, Y, = Z, Y3 = Z,
andY,; = K, respectively, of the model of the previous Sectio particular, the prior possibility
distributions 77° @ ) (= 17 (y), 7°(0), " (Uyy), T (Oy), T4 (1y,), T7%(0,), % (4 )

and 77 (o,, )) are shown as solid lines, whereas ti@rginal posterior possibility distributions
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489 n°(@ly) (= m(la), 7 ©G1a), T (t|Zn), T (OgmlZn), T (U 12), 7T(0417,),
490 ' (K¢, |k,) and 77 (o, | K, ) obtained by Approaches A and B usiDg= 149,D, = 29,D3 =

491 29 andD, = 5 pieces of data are shown in dashed and dbedaknes, respectively; the point

492  estimates@"'® (= pMF, OMF, 1=, 65F. T, 63, I and Gy ") produced by the

493 classical MLE method are also shown for compar{siants).

494

495 Fig. 3.

496

497 From a mere visual and qualitative inspection af. B it can be seen that both approaches are

498 suitable for revising the prior possibility distutoons (based on a priori purely subjective
499 knowledge) by means of empirical data. In particuiais evident that: (i) the most likely (i.e.,

500 preferred) values, of the epistemically-uncertain parameters (ilgose values in correspondence

501 of which the possibility function equals 1) are radvowards the MLE estimateé®" in all the
502 cases considered; (i) the aréy underlying the corresponding possibility distriobas is
503 significantly reduced: noting that this area isatetl to the imprecision in the knowledge of the
504 possibilistic parameter (i.e., the larger the atle@,higher the imprecision), it can be concludeat t
505 both approaches succeed in reducing the epistemsigrtainty. With respect to that, Table 3 reports

506 the most likely values, and the area$, underlying the (marginal) possibility distribut®mf the
507  uncertain parametét (= y, O, Uy, Oz, My Oz, M, @nd o) before and after the Bayesian

éMLE

508 update performed by Approaches A and B; the pa@tinates obtained by the classical MLE

509 method are also reported for completeness. In iadditn order to perform a quantitative

510 comparison between the methods, two indicatorslefieed:

511 i.  the relative absolute distancg™" between the (posterior) most likely valueof parameter

512 6 and the corresponding MLE estimad¥'® | i.e.:
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dgMLE = (5)

Obviously, the lower isd;"" the closer is the most likely valug to the MLE estimate

6" | i.e., the higher is thetrengthof the approach in updating the prior possibitisti

distribution on the basis of newly available expemntal evidence;

ii. the percentage relative differend® between the areas underlying the possibility
distribution of parametef before and after the Bayesian update, nanggl§/ and SJ°**",
respectively:

Prior Posterior
- SH SH

Prior
S

R, [100. (6)

In this case, the higher Ry, the higher is the reduction in the area (i.e.thia epistemic

uncertainty) and, thus, the higher is the “updasitigngth” of the approach.
Table 3.

It is evident that thestrengthof Approach A in moving the most likely values towards the
corresponding MLE estimate@"€ is alwayshigherthan that of Approach B. Actually, the values
of d}* (5) produced by Approach A are 1.58-5.24 tirteger than those generated by Approach

B for all the parameters.

From the analysis of quantitative indicat@s (6) it can be seen that both methods succeed in
reducing the area underlying the possibility dmitions of the uncertain parameters: in particular,
the percentage reductidty ranges between 8.33% and 30.49% for approach Aaivdeen 3.89%
and 33.01% for Approach B. In addition, as expectied strength oboth approaches in reducing
epistemic uncertaintgecreasesith thesizeof the data set used to perform the Bayesian epdat
For example, the ared, underlying the possibility distribution of (Fig. 3, top left column) is

reduced by 30.483.01% with the aid of Erge data set of sizB; = 149; on the contrary, the area

23



537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

S, underlying the possibility distribution oks (Fig. 3, bottom right column) is reduced only by
3.89-8.76% by means dD, = 5 pieces of data. Moreover, it is interestingutde that the strength
of Approach B in reducing epistemic uncertaimgslightly higherthan that of Approach Anly
when the amount of available data is quetee (i.e., in the revision of the possibility distrifoans

of parameteryy and 0 of the PDF ofY; = Q, by means oD; = 149 pieces of data): actually, the
values ofR, and R; range within 25.56-30.49% and 28.74-33.01% for vdpphes A and B,
respectively. In all the other cases, the poweAmbroach A in reducing epistemic uncertainty is

higher than that of Approach B and this difference becomere andnore evidengs the size of
the data setlecreasesin particular, for medium-sized data sets (iie.,the revision of the
possibility distributions of the parameters,,, 7, t,,, 05, Of the PDFs ofY, = Z;,, andYs; = Z,
with D, = D3 = 29 pieces of data) the valuesRf (6) produced by Approaches A and B range
within 8.33-24.38% and 4.17-22.00%, respectivehgtead, for small-sized data sets (i.e., in the
revision of the possibility distributions of therpmetersy,  and o, of the PDF ofY, = Ks with

D4 = 5 pieces of data) the valuesRyfproduced by Approaches A and B range within 8.8628%
and 3.89-10.08%, respectively. This is particulaglyident in the estimation of the standard
deviationoks of K (Fig. 3, bottom right column): on one side, theteaor distribution produced by
the hybrid approach (B) seems not to be influermethe revision process (actually, the most likely

value of the parametec, = 6.72, and the area underlying the corresponpaggerior possibility
distribution, S, = 3.95, are quite close to those of the prior, B89 and 4.11, respectively); on

the other side, the posterior distribution generde the purely possibilistic approach (A) is alos
centered on the point estimates obtained by the khiethod and the corresponding area is reduced

by about 9%.

Finally, it has to be remarked that for the sakesiofplicity the quantitative analyses above have

been performed only on thmearginal posterior possibility distributions of the uncént@arameters
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(' (vla), 7°©@19), T (U |2Z0) s T (O | Z0), T (z, 12,), 777(04,12,), nuKS(/JKslks)

and 717 (0 |k, )); in fact, as highlighted before, the posteriosgbility distributions of the

uncertain parameters amaulti-dimensionafunctions (and the posterior estimates of the mpatars

aredependent Only for illustration purposes, Fig. 4 shows theuts of levela = 0.05, 0.50 and
0.95 of the joint posterior possibility distributi® 7°° ¢ d1q), 7" Uy Ty |Z,),
> (1,0, | z,) and 7 (U, .0« |k ) of the parameters of the PDFsYaf= Q (top right

column),Y, = Z, (top left column),Y; = Z, (bottom left column) and, = Kg (bottom right column),

respectively, produced by Approaches A (solid ljreesd B (dashed lines).

Fig. 4.

The visual inspection of Fig. 4 confirms the resulbtained by the quantitative analysis carried out

on the marginal distributions. For example, it tenseen that the areas of theuts of levela =
0.95 of 71*>=(u,,,0,,|z, ) and 7" (L .0« ks ) produced by Approach A are consistently
smaller than those generated by Approach B;doeits of 77~ (u,,.,0,., 12, ) produced by

Approaches A and B are comparable in size, wheheaarea of the-cut of 77° (# J |q) obtained

by Approach B is slightly lower than the one proeldidy Approach A.

In order to show the effect that the reduction loé epistemic uncertainty in the distribution

parameters has on the uncertain input variablesQ, Y> = Z, Y3 = Z, andY, = K, Fig. 5 reports
the upper and lower CDFsE " (yj) and F" (yj) (i.e., the plausibility and belief functions,
PI" ((—oo, y, ]) and Bel" ((—oo, y, ]) respectively)j = 1, 2, 3, 4, of; = Q (top left column)Y. = Zn,

(top right column),Y; = Z, (bottom left column) and/, = Ks (bottom right column) before (solid

lines) and after the Bayesian update performed jpyrédaches A (dashed lines) and B (dot-dashed
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lines). The calculation of CDFs is of great impada in risk assessment since they summarize the

uncertainty “contained” in the variables of intdres

Fig. 5

Obviously, the gap between the plausibility andidfefunctions PI" ((_ooayj]) = F" (yj) and

Bel" ((—oo,yj]) = F" (yj),j =1, 2, 3, 4, is larger before the Bayesian updatall the cases

considered: in particular, the ‘prior CDFs (solides) completely envelop the ‘posterior’ ones

(dashed and dot-dashed lines). This larger gappkaimed by the larger area contained under the
possibility distribution functions of the corresplamg epistemically-uncertain parameters (actually,
as highlighted before, the larger the area, thddrighe imprecision in the knowledge of the

possibilistic parameters).

Then, in order to provide a fair and quantitatieenparison between the two approaches adopted,

the intervals[[lfYj ]_1(,8), [EYj ]_1(,8)J for thep- 100-th percentile¥”, # = 0.05, 0.50 and 0.95, of the

variablesY;, j = 1, 2, 3, 4, are computed (Table 4). For examgni@)yzingQ”, # = 0.05, 0.50 and

0.95, it can be seen that the width of the intenmireduced by 30.540.34% and 29.883.29%
by Approaches A and B, respectively: coherenthhwiite results reported in Table 3, whelarge
data set is available (i.eQ; = 149 in this case) the strength of Approach Breducing the

epistemic uncertainty islightly (i.e., 2-3%)higher than that of Approach A. On the contrary,
analyzing K?, g = 0.05, 0.50 and 0.95, it is evident that the Widf the intervals is reduced of
25.30-30.80% and 5.74-19.45% by Approaches A anme$hectively: as highlighted before (Table
3), when asmalldata set is available (i.&, = 5 in this case) the power of Approach A in radgc
epistemic uncertainty i€onsistently(i.e., 15-20%)higher than that of Approach B. This is
confirmedalsoby the analysis of the quantiles\6f= Z,, andYs = Z, (see Table 4).

Table4.
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Comparable conclusions can be drawn by the anatydise upper and lower CDF5 “ (zc) and

F*(z) (.e., the plausibility and belief functionsPl*((-w,z]) and Bel*((-c,z]),
respectively), of the maximal water level of theeriZ. (i.e., the model output) obtained before
(Fig. 6, solid lines) and after the Bayesian upgetdormed by Approaches A (Fig. 6, dashed lines)
and B (Fig. 6, dot-dashed lines). Notice that the&tributions for Z. have been obtained by
propagating the two-level mixed probabilistic andsgbilistic uncertainty through the
mathematical model by means of a hybrid Monte C&YI€) and Fuzzy Interval Analysis (FIA)
approach. This method combines the MC techniquéoKand Withlock, 1986] with the extension
principle of fuzzy set theory [Guyonnet et al., 30&entel and Aral, 2004 and 2007] in two
hierarchical, repeated steps [Baudrit et al., 26@8jtel and Aral, 2005; Moller and Beer, 2004 and
2008; Moller et al., 2003 and 2006; Pedroni and, 2012; Pedroni et al., 2013]: the reader is
referred to the cited references for details. Agairorder to provide a fair comparison between the
two approaches employed, proper quantitative iidisaare computed. The final goal of the case
study presented in the previous Section is to deter (i) the dike level necessary to guarantee a
given flood return period or (ii) the flood riskrfa given dike level. With respect to issue (i) @0

the quantity of interest that is most relevanthe tlecision maker is th® 100%-th quantile oZ.
(i.e., Zf): this corresponds to the yearly maximal wateelevith af- 100-year return period. With

respect to issue (ii) above, the quantity of irgetbat is most relevant to the decision makehés t

probability that the maximal water level of theaivZ, exceeds a given thresholo®*, i.e.,
P[Z.=z*]: in the present papez, * 55.5 m (Table 5). Analyzing the interval[fFC]_l(,B),
[Ezc]‘l(ﬁ)] for the percentiles Z”, g = 0.05, 050 and 0.95, and the intervals

[1-F* (z;),l—EZ° (zc)] for the exceedance probabil®fZ. > z.*], it can be seen that their width is

reduced of 28.148.63% and 16.829.23% by Approaches A and B, respectively (i.be t
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636 strength of Approach A in reducing epistemic uraety is about 4-11%igher than that of

637 Approach B).

638
639 Fig. 6.
640

641 Tables.
642

643 Several considerations are in order with respetii@éaesults obtained. When the Bayesian update is
644 performed based on a data setasfje size (e.g., > 100 in this case), the differencéhabehavior
645 of the two approaches is quilew. This demonstrates that although the two methads a
646 conceptually and algorithmically quite differem, presence of astrondg experimental evidence
647 they produce ¢oherent results (i.e., posterior possibility distribut®rthat bear theameoverall

648 “uncertainty content”): this is a fair outcome ®nthe results provided by the two methods are
649 expected to be more and mosanilar (i.e., more and more coherent with the experimenta
650 evidence) as the size of the dataineteasegexperts and practitioners may find a similarinda
651 parallelism between these results and those olstameurely probabilistic, graphical Bayesian
652 models [Gelman et al., 2004]; in particular, sderences concerning approaches used to “borrow
653 strength” in (Hierarchical) Bayesian analyses [Abgoet al., 2003; Kelly and Smith, 2009 and
654 2011]). Instead, when the Bayesian update is pmddron a data set efnall-mediunsize (e.g.x

655 5-30 in this case), thstrengthof Approach A in reducing epistemic uncertaintysignificantly
656 higher than that of Approach B. This can be explainedadlews. In Approach A thepurely
657 possibilisticlikelihood (i.e., the function “containing” the pgrimental evidence available) has a
658 directand strong influence on thpairely possibilisticprior (actually, they are directly multiplied in
659 (1)); on the contrary, in Approach B tpearely probabilisticlikelihood has a direct influenaanly

660 on the (fictitious)probabilistic distributions that are superimposed onto the ppossibilistic
661 parameters: this “artificial” procedure may in fdiee “soften” (i.e., reduce) the effect of the ngwl

662 available information (i.e., of the data) in thevison of the possibilistic priors (obviously, this
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effect is expected to be more evident if the amairdata, i.e., thestrengthof the experimental
evidence, issmall. In such cases, embracing one method insteatleobther may significantly
change the outcome of a decision making process insk assessment problem involving
uncertainties: this is of paramount importanceysteams that are critical from the safety view point
e.g., in the nuclear, aerospace, chemical and@mwiental fields.

Finally, it is absolutely important to acknowledipat even if the strength of one method (i.e., A in
this case) in reducing epistemic uncertainty isvarghan that of the other one (i.e., B in thise¢as
this doesnot necessarilyimply that one method isbéttef or “more effective than the other
overall. Actually, if on one side a consistent reductianthe epistemic uncertainty is in general
desirablein decision making processes related to risk assest problems (since it significantly
increasesthe analyst’'sconfidencein the decisions), on the other side this reductioust be
coherentwith the amount oinformation available In this view, an objection may arise in the
present case: is tmemarkablestrength of Approach A in reducing epistemic utaiaty (with very
few pieces of datafully justified by such a small amount of data? In other wordsthis
considerable reduction of epistemic uncertaintyeceht with the strength of the experimental
evidence or is it too optimistic? These issues Ww#él thoroughly discussed in the following

dedicated Section.

Finally, in addition to the strength of the appioeg in revising the (prior) possibilistic descripti
of the uncertain parameters of aleatory variabdésy thecomputational timeassociated to the
methods has to be taken into account. Table 6 t®fiee computational timi,mp required by the
Bayesian update of all the parameters of the PDKs 8 Q, Y2 =Z, Y3 =27, andY, = Ks performed
by Approach A and by Approach B (with = 100 repetitions of the purely probabilistic Baye
theorem for each of thd, = 21 a-cuts analyzed). Obviously, the computational tireguired by
Approach B is approximately-N, (i.e., T-N, = 100-21 = 2100 in this case) times larger than @l

Approach A. On the other hand, notice that sincerdach B is based on severapetitionsof the
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purely probabilistic Bayes’ theorem, if possibbarallelization could be in principle employed to

reduce the associated computational cost.

Table6.

Discussion of the results and comparison of the approaches
The results of the comparisons performed in theipos Sections can be summarized as follows:

» both methods succeed in updating the possibilisription of the epistemically-uncertain
parameters of (aleatory) probability distributidmg means of data. This is highlighted by
the fact that in most cases the posterior possibdistributions produced by the two
approaches are significantly different from theresponding priors. In particular:

= the most likely values of the parameters (i.e..s¢hoalues in correspondence of
which the possibility function equals 1) are movedards the point estimates of the
parameters obtained by the classical, purely piitbit MLE method;

= the area underlying the posterior possibility disttions is consistently lower than
that of the priors: since this area is relatechitmprecision in the knowledge of the
possibilistic parameter (i.e., the larger the atiea,higher the imprecision), it can be
concluded that both approaches succeed in redtitengpistemic uncertainty in the
possibilistic parameters of the aleatory probapildistributions. This is also
confirmed by the reduction of the gap between tygeu and lower CDFs (i.e., the
plausibility and belief functions) of the corresplamy aleatory variables;

* when the Bayesian update is performed using a skttaflarge size (e.g., > 100), the
strengthof the two approaches in reducing the epistemiedainty is quitesimilar. By
way of example, in the case study considered Ambhrem A and B reduce the areas
underlying the possibility distributions of the @ntain parameters by 25.56-30.49% and

28.74-33.01%, respectively. This demonstrates takdhough the two methods are
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conceptually and algorithmically quite differenty presence of a “strong” experimental
evidence they produce “coherent” results (i.e.spmkty distributions that bear almost the
sameoverall “uncertainty content”): this is a fair aoime since the it is “desired” that both
methods provide results that become more and moéas (i.e., that become more and
more coherent with the experimental evidence) esite of the data set increases;

the strength of the purely possibilistic approaéh i reducing epistemic uncertainty is
consistentlyhigher than that of the hybrid one (B) in presencen&dium andsmallsized
data sets (e.gs 5-30) (which is often the case in the risk analydicomplex safety-critical
systems). For example, the width of the intervatstiie quantiles of the variables of interest
is reduced by 25.30-30.80% and 5.74-19.45% by Aggres A and B, respectively. This
significantly different behavior is explained byetliact that in Approach A the (purely
possibilistic) likelihood has an immediate and stronfluence on the (purely possibilistic)
prior (i.e., they are directly multiplied); on theontrary, in Approach B the (purely
probabilistic) likelihood has a direct influenoaly on the (fictitious) probabilistic function
that is superimposed onto the possibilistic paramubject to the Bayesian update): this
“artificial” procedure could in practice weaken tbiect of the newly available information
(i.e., the data) in the revision of the possiktigtrior (this effect is expected to be more
evident if the amount of data, i.e., tsteengthof the experimental evidence, is small).

As highlighted above, the fact that the power ofpAgach A in reducing epistemic
uncertainty is higher than that of Approach B doesnecessarilymply that one method is
“better or “more effectiveé than the otheroverall. For example, by hypothesis the
remarkable strength of Approach A in reducing epist uncertainty by means of very few
pieces of datée.g., 5-30 in this case) mighot be coherent with the “real” strength of such
a scarce experimental evidence and could be ataltiedue to some bias in the procedure.
With respect to that, it has to be admitted thatuhcertainty reduction power of the purely

possibilistic approach (A) is strongly dependenttiom shape of aonstructedpossibilistic
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likelihood that could in principléias the analysis. However: (i) in the present papas t
possibilistic function issery closely relatedo the classical, purely probabilistic one (which
is theoretically well-grounded) by a simple andedir operation ofnormalization that
preserves the “original structure” of the experitaérevidence; (ii) the operation of
normalization of the probabilistic likelihood finddso someheoreticaljustification in the
work by [Denoeux, 2014]; (iii) in general, a proiap-to-possibility transformation
(properly performed according to the rules of pofisy theory) always introduces
additional artificial epistemic uncertainty into the analysis, i.edaés not artificially reduce
it (because it replacessingle probabilistic distribution by &mily of distributions) [Dubois
et al., 1993, 2004 and 2008; Flage et al., 2010281@]. On the basis of considerations (i)-
(iif) above, it seems unlikely that the purely pbgsstic approach (A) may produce results
that are dangerously over-optimistic with respedhbse of the hybrid one (B). On the other
hand, future research should be devoted to theysardl development of rigorous,
generalized methods for Bayesian model comparisdnvalidation in gurely possibilistic
framework, in order to complement and strengthendbnclusions drawn by means of the
metrics originally introduced in the present mamcin this light, techniques from the
classical, purely probabilistic field may serveiaspiring references [Gelman et al., 1996;
Bayarri and Berger, 1999 and 2000; Johnson Va4

the computational time required by the hybrid applo(B) isconsistentlyhigher than that
associated to the purely possibilistic one (A)s tisiexplained by the necessity of repeatedly
applying many times the purely probabilistic Bay#®orem foreacha-cut analyzed. More
precisely, the application of method A just regsioame singleevaluation of the purely
possibilistic Bayes’ formula; on the other handpmach B entails repeatinigN, times the
classical probabilistic Bayes’ theorem. In thispes, notice thal, (i.e., the number od-
cuts processed) is typically of the order of 10y&adt et al., 2006], whereak (i.e., the

number of parameter values selected to ex@aoha-cut) cannot be in principle prescribed
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a priori: however, it needs to be large enoughtvdughly exploreeach dimensionf the
epistemic parameter spa@ [east10 values should be selected for each parameter);

* both methods relies cessumptionsbout either the prior or the likelihood functioms the
purely possibilistic approach (A) the “original” gsibilistic prior is employed, but a
possibilistic likelihood function has to be consted (e.g., by probability-possibility
transformations or directly from rough experimemtata); instead, in the hybrid method (B)
the original probabilistic likelihood function issed, but a “fictitious” prior Fuzzy
Probability Distribution Function needs to be idketl by superimposing aarbitrarily

selectedprobabilistic PDF onto the “original” possibilistprior that has to be updated.

Based on these findings, the advantages and draw/loddhe two approaches are summarized in

the following Table 7.

Table?.

Conclusions

In this paper, we have considered two methods lier Bayesian update of the possibilistic
parameters of aleatory probability distributionghvexemplification on a case study concerning the
risk-based design of a flood protection dike. Thiet fmethod considered is based on a purely
possibilistic counterpart of the classical probiabd Bayes' theorem; the second is a hybrid
(probabilistic and possibilistic) method combinikgzzy Interval Analysis and the classical

probabilistic Bayes’ theorem.

The findings of the work show that in general adupdifferent methods may generate different
results and possibly different decisions in rislolgpems involving uncertainties: this is of

paramount importance in systems that are criticahfthe safety viewpoint, e.g., in the nuclear,

aerospace, chemical and environmental fields.
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In particular, on the basis of the results obtajnieseems advisable to suggest the use of thdypure
possibilistic approach (instead of the hybrid of@) the following reasons: (i) its strength in
reducing epistemic uncertainty is significantly teg, in particular when the amount of available
data is small: this is important in decision makprgcesses since reducing epistemic uncertainty
significantly increases the analyst confidencehim decisions; (ii) the computational time required
is consistently lower.

However, it has to be remarked that the constronotiba possibilistic likelihood required by the
purely possibilistic method, although recently &atkn the literature, still represents an issubeo
further investigated from both the theoretical and prattgewpoint in order to avoid introducing
biases in the analysis and to suggest the applicaif the approach for real risk assessment
problems: with respect to that, future research el devoted to the investigation of additional
methods developed to this aim. Also, future studiéé be aimed at developing generalized
methods for Bayesian model comparison and validati@purely possibilistidramework, in order

to complement and strengthen the conclusions diawmeans of the metrics originally introduced

in the present manuscript.
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1129 Fig. 1. Top l€ft: triangular possibility distributions7”’(y) of the epistemically-uncertain parameter

1130 y of the Gumbel probability distribution of Y; inidence thex-cuts of levek = 0, 0.5 and 1.
1131 Top right: four PDFs belonging to the familﬁpY (y|y, 5)}0:0 and four PDFs belonging to the
1132 family {p(y |, 5)}0:05. Bottom: bounding upper and lower CDFs of ¥, (y)=PI}(z) and
1133 FY(y)=Bel(z), Z = (-0, y], built in correspondence of thecuts of levek: = 0, 0.5 and 1
1134 of 77/(y) ; the plausibility and belief functionBl"(z) and Bel'(Z), Z = (~, y], are also
1135 shown

1136

1137  Fig. 2. Identification of the P-dimensionaicut A’ of the posterior possibility distribution éfas

1138 the hull enveloping T = 20 point estimatgs, |y, | =1, 2, ..., 20 (dots), generated by the
1139 repeated application of the Bayes’ theorem in thieriadl probabilistic-possibilistic approach
1140 (B), in the particular case of P = 2 parametéksandd,. The corresponding-cut A‘jfgg'r{
1141 generated by the Cartesian product of the (one-daimmal)a-cuts A" and A" of the
1142 marginal possibility distributions is also shown

1143

1144 Fig. 3. Prior and posterior possibility distributions di¢ epistemically-uncertain parameters of the

1145 aleatory PDFs of Y= Q (top row, left and right column), Y, = Z,, (middle-top row, left and
1146 right column), Y; = Z, (middle-bottom row, left and right column) and Y; = K (bottom row,
1147 left and right column). The point estimates of the parameters obtainethé classical MLE
1148 method are also shown for comparison. Adapted atehded from [Pedroni et al., 2014]
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distributions of the parameters of the PDFs o£YQ (top l€eft), Yo = Zp, (top right), Yz = Z,
(bottom left) and Y, = K¢ (bottom right), produced by Approaches A (solid lines) and B

(dashed lines)

Fig. 5. Upper and lower CDFsEF " (yj) and F" (yj), j=1, 2,3, 4, of the uncertain input variables

Y1 = Q (top l€eft), Yo = Zp, (top right), Yz = Z, (bottom left) and Y, = K (bottom right) before

and after the Bayesian update performed by Apprea¢hand B
Fig. 6. Plausibility and belief functiong?1%((- 0, z,]) and Bel* (-, ]), of the maximal water

level of the river Zbefore and after the Bayesian update performedpgproaches A and B.

Adapted and extended from [Pedroni et al., 2014]
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(yj) and F" (yj), J=1, 2, 3, 4, of the uncertain input variables

Yj

1206  Fig. 5. Upper and lower CDFsF

(bottom right) before

=K

Y, = Zn, (top right), Y; = Z, (bottom left) and Y

Y1 = Q (top left),

1207

and after the Bayesian update performed by Apprea¢hand B
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1210

Fig. 6. Plausibility and belief functiong?!%((- w0, z,]) and Bel* (-, z]), of the maximal water

1211

level of the river Zbefore and after the Bayesian update performedpgproaches A and B.

1212

Adapted and extended from [Pedroni et al., 2014]

1213
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1215 Tables
1216
Purely possibilistic method (A) Hybrid probabilistic-possibilistic method
(B)
Prior Possibility distribution Fuzzy Probability Disttibon Function
Possibility distribution:
Likelihood - Probability-possibility transformation in this Probabilistic function
paper (e.g., normalization: see also [Denoeux, P014
Posterior Possibility distribution Fuzzy Probability Distribution Function:

- Expected value: possibility distribution

1217 Table 1. Characteristics of the purely possibilistic (A)dathe hybrid probabilistic and possibilistic

1218
1219

(B) approaches
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1220

Purely possibilistic method (Approach A)

Aleatory uncertainty Epistemic uncertainty (Purely possibilistic priors)

' (y) =TR@, ¢, b) =TRB869, 955, 1157)

Gumy,o
° .2) °(9) = TRy, C; bs) = TR455, 600, 660)
2 N(, .0, ) m(u,,) =TRa, , ¢, , b, )=TR®54.78,54.93, 55.28)
) e n°~(0,) =TR(a, , ¢, , b, )=TR0.33,0.51, 0.58)
2 N(,,.0,) m(u,) =TR(a, , ¢, , b, )=TR49.98, 50.11, 50.40)
’ e m(a,) =TR(a, , ¢, , b, ) =TR0.23, 0.45, 0.54)
m(4,) =TRa, , ¢, , b, ) =TR?21.37, 25.23, 34.23)

KS N(#KS’O-KS)

n"(o,) =TRa,_, ¢, , b, ) =TR(1.16, 6.91, 9.37)

Hybrid probabilistic-possibilistic method (Approach B)
Epistemic uncertainty (Fuzzy Probability Density Functions - FPDFs)

Aleatory uncertainty

Probabilistic part Possibilistic part
T (u,) =TR( a,,c, b, )=TRB869, 955, 1157),

p’(y) = N(,uy,ay) 7% (@,) :TR(agy' c, bay) =TR(39, 52, 57)

Q Gunly, o)
, N( ) m(u;) =TRa, , ¢, , b, ) = TR@455, 600, 660)
= , O
P*(9) HarGs m(0,) =TR(a, , ¢, , b, ) =TR25, 31, 43)
= (u,) =TR@a, ,c, ,b, )=TR(54.78,54.93, 5528)
P () = Ny, 0, ) — e
n’~(0,) =TRa, ,c, ,b, )=TR0.06,0.09,0.11)
Zm N(/'IZm’a-Zm) - - -
( ) (4, ) =TR(a, ,c, ,b, )=TRO.33,0.51,0.58)
perm (U-Zm) = N /'117 ’0-0 - = - -
© ™ @=(o,)=TRa, .c, .b, )=TR0.03,0.04,0.06).
(4, ) =TRa, ,c, ,b, )=TRA49.98,50.11, 50.40)
p“ () = N, .0, )
n(o,) =TRa, ,c, ,b, )=TRO0.04,0.08, 0.10),
ZV N(IUZV'JZV)
(4, ) =TR@a, ,c, ,b, )=TR0.23,0.45, 0.54)
pazv(o'zv) = N(/IUZV’U-UZV) o
n=(o,) =TRa, ,c, ,b, )=TR0.02,0.04,0.08)
(4, ) =TRa, ,c, .b, )=TR21.37, 2523, 34.23)
p“ () = Ny, .0, ) —
n(o,) =TRa, ,c, ,b, )=TR0.50,2.80,3.79)
KS N(luKs'a-Ks)

m (4, ) =TRa, ,c, ,b, )=TR1.16,6.91,9.37)

p™(0.) = Ny, 0, )

n’~(0, ) =TRa, ,c, ,b, )=TR0.10, 0.86, 2.64)

o,

1221 Table 2. Characteristics and parameters of the prior dlsiitions of the uncertain variables ¥

1222 Q, 2=2Zn Ys=2Z,and Y, = Ksused in Approaches A and B, respectively
1223
1224
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1225

Marginal possibility distributions update

Most likely value, ¢, (dy"""5) Area, S (Ry)
Variable 6 MLE g™ Prior Posterior A Posterior B Prior Posterior A Posterior B
y y 1013.21  955.55 1002.70 (0.010) 990.42 (0.023) H#4.400.55 (30.49)  96.90 (33.01)
QIms —5 558.48  599.15 566.35(0.014) 581.40 (0.041) 103.3%6.94 (25.56)  73.65 (28.74)
7 Hzm 55.03 54.93  55.00 (5.45e-4) 54.98 (9.09e-4) 0.25 19®(24.00)  0.195 (22.00)
m [M] 67m 0.45 0.51 0.47 (0.044) 0.50 (0.111) 0.12 0.1103B8.3 0.115 (4.17)
7 Hzy 50.19 50.11 50.17 (3.98e-4) 50.15(7.97e-4) 0.21 169(21.43) 0.170 (19.05)
v[ml o2 0.38 0.45 0.39 (0.026) 0.43(0.132) 0.16  0.1213@4. 0.125 (21.88)
K[/ Hrs 27.80 25.24  26.95 (0.031) 26.43(0.049)  6.45 514028)  5.80 (10.08)
5[] Oks 5.26 6.89 5.54 (0.053) 6.72 (0.278) 4.11 3.75(8.76 3.95 (3.89)
1226 Table 3. Most likely valuesoof the parameter8 =y, 8, lyy, Ozys Hzys Oz My, @nd 0y Of
1227 the aleatory PDFs of the input variables¥Q, Y. =Z, Y3 = Z,and Y, = Ksand areas $
1228 underlying the corresponding (marginal) possibilitigtributions before and after the
1229 Bayesian update performed by Approaches A and 8pdnt estimated“'® obtained by
1230 the classical MLE method are also shown for congmaritogether with the values of the
1231 quantitative indicatorsd)" (5) and R (6) (in parentheses). Adapted and extended from
1232 [Pedroni et al., 2014]
1233
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1234

1235

1236
1237
1238

1239
1240

INPUT VARIABLES
Purely possibilistic approach (A) Hybrid approach (B)

Variable Indicator Prior

(% width reduction) (% width reduction)
QY% [284.8, 480.9] [329.3, 446.3] (0.4033) [322.9, 4340.4329)
Y1=Q Q> [1110.5, 1295.5] [1143.6, 1269.1] (0.3216) [1143.363.7] (0.3610)
QY% [2478.2, 2917.3] [2553.4, 2857.9] (0.3065) [2572879.0] (0.2987)
7, " [53.98, 54.36] [54.09, 54.37] (0.2631) [54.06, B.8.2105)
Yo=Zm Zn> [54.85, 55.12] [54.92, 55.09] (0.4074) [54.93, 53.00.2592)
7, " [55.56, 56.02] [55.66, 55.96] (0.3478) [55.67, 5§.@.3043)
z® [49.22, 49.64] [49.35, 49.64] (0.3095) [49.29, 49.0.2142)
Y;=2Z, z>>® [50.04, 50.29] [50.10, 50.25] (0.4000) [50.10, 50.@0.3199)
z® [50.63, 51.09] [50.72, 51.00] (0.3913) [50.72, B].(D.2608)
KO%® [10.95, 22.33] [12.75, 21.25] (0.2530) [11.15, 3).®.1889)
Y, =K Ko™ [23.49, 31.15] [24.43, 29.73] (0.3080) [24.05, 3).(.1945)
K> [32.66, 44.14] [33.01, 41.40] (0.2691) [33.32, 44.(0.0574)

-1

Table 4. Intervals[[lfY"] (B), [EYJ’ ]_l(ﬂ)] for the-100-th percentiley”, g = 0.05, 0.50 and 0.95,

of the input variables;Yj = 1, 2, 3, 4, before and after the Bayesianatpdperformed by
Approaches A and B. The percentage reduction invidéh of the intervals produced by
Approaches A and B is also shown in parenthesesoimparison purposes
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1241

1242
1243
1244

1245
1246
1247
1248

OUTPUT VARIABLE Z,

Variable  Indicator Prior Purely possibilistic approach (A) Hybrid approach (B)

(% width reduction) (% width reduction)
z>%® [50.70, 51.67] [50.90, 51.56] (0.3196) [50.84, 31.6.2887)
7 z>% [52.16, 53.46] [52.38, 53.23] (0.3462) [52.36, B3.D.2923)
¢ z>%® [54.13, 56.44] [54.21, 55.87] (0.2814) [54.28, B5.(D.1688)
P[Z.>z*] [0.8908, 0.9946] [0.9284, 0.9921] (0.3863) [0.9103946] (0.1879)

Table5. Intervals I[PIZC ]_l(,[z’), [Belz° ]_1([)’)] for thes-100-th percentileg” , # = 0.05, 0.50 and
0.95, of the maximal water level of the river(iZe., the model output) and intervals
[1-F* (z;),l—Ez° (zc)] for the exceedance probability P{2 z* = 55.5m], before and

after the Bayesian update performed by ApproachasdB. The percentage reduction in the
width of the intervals produced by Approaches A Bns also shown in parentheses for

comparison purposes. Adapted and extended fronrfiRedt al., 2014]
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1249

1250
1251
1252
1253
1254

Approach A Approach B (T = 100, N, = 21)
0.73 1536.65

Computational timé.qm,[s] on a Intel® Core™?2
Duo CPU E7600 @ 3.06 and 3.07 GHz

Table 6. Computational time:dmprequired by the Bayesian update of all the paramsetf the
PDFsof Y=Q, Y>=Z,, Y3=2Z,and Y, = Ks performed by Approach A and by Approach B
with T = 100 repetitions of the purely probabilsBayes’ theorem for each of thg ]21 a-

cuts analyzed
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1255

Purely possibilistic approach (A) Hybrid probabilistic-possibilistic approach
(B)

- High strength in updating the possibilistic
parameters independently on the size of the data Well-established and rigorous theoretical framegwo

Advantages set available (i.e., probabilistic Bayes’ theorem)
- Computationally cheap
- Necessity to “build” a (fictitious) Fuzzy Probétyi
- Necessity to “build” a possibilistic likelihood  Distribution Functions as a prior
D back (e.g., by probability-possibility transformations, - High strength in updating the possibilistic paedens
rawbacks  ormalization or directly from rough only when the size of the data set available gdar
experimental data) (e.g., > 100)
- Computationally burdensome
1256 Table7. Advantages and drawbacks of the purely posdiiili#) and the hybrid probabilistic and
1257 possibilistic (B) approaches
1258
1259
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