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Abstract 7 

In this paper, we address the issue of updating in a Bayesian framework, the possibilistic 8 

representation of the epistemically-uncertain parameters of (aleatory) probability distributions, as 9 

new information (e.g., data) becomes available. Two approaches are considered: the first is based 10 

on a purely possibilistic counterpart of the classical, well-grounded probabilistic Bayes’ theorem; 11 

the second relies on the hybrid combination of (i) Fuzzy Interval Analysis (FIA) to process the 12 

uncertainty described by possibility distributions and (ii) repeated Bayesian updating of the 13 

uncertainty represented by probability distributions. 14 

The feasibility of the two methods is shown on a literature case study involving the risk-based 15 

design of a flood protection dike. 16 
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 21 

Introduction 22 

We consider a framework of uncertainty representation with two hierarchical levels [Limbourg and 23 

de Rocquigny, 2010], in which risk analysis models of aleatory (i.e., random) events (e.g., failures) 24 

contain parameters (e.g., probabilities, failure rates, …) that are epistemically-uncertain, i.e., known 25 

with poor precision due to lack of knowledge and information. Traditionally, both types of 26 

uncertainty are represented by probability distributions [Apostolakis and Kaplan, 1981; 27 

Apostolakis, 1990; NUREG-CR-6850, 2005; USNRC, 2002 and 2009; NASA, 2010] and Bayes’ 28 

rule is useful for updating the (probabilistic) epistemic uncertainty representation as new 29 

information (e.g., data) becomes available [Bernardo and Smith, 1994; Siu and Kelly, 1998; 30 

Lindley, 2000 and 2006; Bedford and Cooke, 2001; Atwood et al., 2003; Kelly and Smith, 2009 and 31 

2011; Pasanisi et al., 2012]. 32 

However, in some situations, insufficient knowledge, information and data impair a probabilistic 33 

representation of epistemic uncertainty. A number of alternative representation frameworks have 34 

been proposed for such cases [Aven, 2010 and 2011; Aven and Steen, 2010; Aven and Zio, 2011; 35 

Flage et al., 2009; Beer et al., 2013b and 2014b; Zhang et al., 2013], e.g., e.g., fuzzy set theory [Klir 36 

and Yuan, 1995], fuzzy probabilities [Buckley, 2005; Beer, 2009b; Pannier et al., 2013], random set 37 

theory [Molchanov, 2005], evidence theory [Ferson et al., 2003 and 2004; Helton et al., 2007 and 38 

2008; Sentz and Ferson, 2002; Le Duy et al., 2013; Sallak et al., 2013], possibility theory (that can 39 

be considered a special case of evidence theory) [Baudrit and Dubois, 2006; Baudrit et al., 2006 and 40 

2008; Dubois, 2006; Dubois and Prade, 1988], probability bound analysis using probability boxes 41 

(p-boxes) [Ferson and Ginzburg, 1996; Crespo et al., 2013; Mehl, 2013], interval analysis [Ferson 42 

and Hajagos, 2004; Ferson and Tucker, 2006; Ferson et al., 2007 and 2010; Jalal-Kamali and 43 

Kreinovich, 2013; Muscolino and Sofi, 2013; Zhang et al., 2013] and interval probabilities 44 

[Weichselberger, 2000]; notice that most of these theories can be included within the general 45 

common framework of imprecise probabilities [Kuznetsov, 1991; Walley, 1991; Kozine and 46 
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Filimonov, 2000; Kozine and Utkin, 2002; Coolen and Utkin, 2007; Beer and Ferson, 2013; Beer et 47 

al., 2013a; Blockley, 2013; Reid, 2013; Sankararaman and Mahadevan, 2013]. 48 

In this paper, we adopt possibility distributions to describe epistemic uncertainty and address the 49 

issue of updating, in a Bayesian framework, the possibilistic representation of the epistemically-50 

uncertain parameters of (aleatory) probability distributions. We take two approaches of literature. 51 

The first is based on a purely possibilistic counterpart of the classical, well-grounded probabilistic 52 

Bayes’ theorem: it requires the construction of a possibilistic likelihood function which is used to 53 

revise the prior possibility distributions of the uncertain parameters (determined on the basis of a 54 

priori subjective knowledge and/or data) [Dubois and Prade, 1997; Lapointe and Bobee, 2000]. This 55 

approach has been already applied by the authors for updating possibility distributions in [Pedroni 56 

et al., 2014]. The second is a hybrid probabilistic-possibilistic method that relies on the use of 57 

Fuzzy Probability Density Functions (FPDFs), i.e., PDFs with possibilistic (fuzzy) parameters. It is 58 

based on the combination of (i) Fuzzy Interval Analysis (FIA) to process the uncertainty described 59 

by possibility distributions and (ii) repeated Bayesian updating of the uncertainty represented by 60 

probability distributions [Beer, 2009a; Stein and Beer, 2011; Stein et al., 2013; Beer et al., 2014a]. 61 

The objective (and the main contribution of the paper) is to compare the effectiveness of the two 62 

methods. To the best of the authors’ knowledge, this is the first time that the above mentioned 63 

techniques are systematically compared with reference to risk assessment problems where hybrid 64 

uncertainty is separated into two hierarchical levels. To keep the analysis simple and retain a clear 65 

view of each step, the investigations are carried out with respect to a simple literature case study 66 

involving the risk-based design of a flood protection dike [Pasanisi et al., 2009; Limbourg and de 67 

Rocquigny, 2010]. In addition, different numerical indicators (e.g., cumulative distributions, 68 

exceedance probabilities, percentiles, …) are considered to perform a fair, quantitative comparison 69 

between the methods and evaluate their rationale and appropriateness in relation to risk analysis. 70 

Other methods have been proposed in the literature to revise, in a Bayesian framework, non-71 

probabilistic representations of epistemic uncertainty [Ferson, 2005]. In [Viertl, 1996, 1997, 1999, 72 
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2008a,b and 2011; Viertl and Hareter, 2004a,b; Viertl and Hule, 1991] a modification of the Bayes’ 73 

theorem is presented to account for the presence of fuzzy data and fuzzy prior PDFs: the approach 74 

is similar to that employed by [Beer, 2009a; Stein and Beer, 2011; Stein et al., 2013] and considered 75 

in this paper. In [Smets, 1993] a Generalized Bayes Theorem (GBT) is proposed within the 76 

framework of evidence theory: this approach is applied by [Le-Duy et al., 2011] to update the 77 

estimates of the failure rates of mechanical components in the context of nuclear Probabilistic Risk 78 

Assessment (PRA). Finally, in [Walley, 1996; Bernard, 2005; Masegosa and Moral, 2014] 79 

Imprecise Dirichlet Models (IDMs) are proposed for objective statistical inference from 80 

multinomial data. In the IDM, prior or posterior uncertainty about a parameter is described by a set 81 

of Dirichlet distributions, and inferences about events are summarized by lower and upper 82 

probabilities. This model has been extended by [Quaeghebeur and de Cooman, 2005] to generalized 83 

Bayesian inference from canonical exponential families and by [Walter and Augustin, 2009] with 84 

the aim of handling prior-data conflicts. 85 

The remainder of the paper is organized as follows. First, the representation of aleatory 86 

(probabilistic) and epistemic (possibilistic) uncertainties in a “two-level” framework is provided; 87 

then, the two methods employed in this paper for the Bayesian update of the possibilistic parameters 88 

of aleatory probability distributions are described in details; after that, the case study concerning the 89 

risk-based design of a flood protection dike is presented; in the following Section, the methods 90 

described are applied to the case study: the results obtained are discussed and the two methods are 91 

synthetically compared; finally, some conclusions are drawn in the last Section. 92 

Representation of aleatory and epistemic uncertainties in a two-level 93 

framework: fuzzy random variables 94 

In all generality, we consider an uncertain variable Y , whose uncertainty is described by the 95 

Probability Distribution Function (PDF) )|( θypY , where }...,, ..., , ,{ 21 Pm θθθθ=θ  is the vector of 96 

the corresponding internal parameters. In a two-level framework, the parameters θ  are themselves 97 
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affected by epistemic uncertainty [Limbourg and de Rocquigny, 2010]. In the present work, we 98 

describe these uncertainties by the (generally joint) possibility distribution )(θθπ  (it is 99 

straightforward to notice that in case the internal parameters }...,, ..., , ,{ 21 Pm θθθθ  are independent, 100 

then )(θθπ  is simply represented by a group of P separate, marginal and independent (i.e., non-101 

interactive) possibility distributions, i.e., )(θθπ  = )}(...,),( ..., ),( ),({ 21
21

Pm
Pm θπθπθπθπ θθθθ ). A 102 

random variable Y  with possibilistic parameters θ  is a particular case of a Fuzzy Random Variable 103 

(FRV), i.e., of a random variable whose values are not real, but rather fuzzy numbers [Féron, 1976; 104 

Kwakernaak, 1978; Puri and Ralescu, 1986; Baudrit et al., 2008; Couso and Sanchez, 2008]. The 105 

corresponding Fuzzy Probability Distribution Function (FPDF) is here indicated as )|(~ θypY . 106 

For clarification by way of example, we may consider the generic uncertain variable Y  described 107 

by a Gumbel PDF, i.e., Y ~ )|( θypY  = ( )θGum  = ( )21  ,θθGum  = ( )δγ  ,Gum  = ),|( δγypY . 108 

Parameter 2θδ =  (i.e., the scale paramter) is a fixed point-wise value ( 2θδ =  = 100), whereas 109 

parameter 1θγ =  (i.e., the location parameter) is epistemically-uncertain. By hypothesis, the only 110 

information available on 1θγ =  is that it is defined on interval [aγ, bγ] = [900, 1300] and its most 111 

likely value is cγ = 1100. Notice that such information is not sufficient for assigning a single specific 112 

probability distribution to describe the epistemic uncertainty in parameter 1θγ = . In facts, such 113 

scarce information is actually compatible with a variety of probability distributions (e.g., truncated 114 

normal, lognormal, triangular, …). To address this issue, this limited state of knowledge about 115 

1θγ =  is here described by a triangular possibility distribution )(γπ γ  with core cγ = 1100 and 116 

support [aγ, bγ] = [900, 1300] (Fig. 1, top left column) [Baudrit and Dubois, 2006]. Indeed, this 117 

representation is coherent with the information available, as it can be demonstrated that such 118 

possibility distribution “encodes” the family of all the probability distributions with mode cγ = 1100 119 

and support [aγ, bγ] = [900, 1300] (obviously, this does not mean that the triangular possibility 120 

distribution is the only one with these characteristics, i.e., the only one able to encode such a 121 
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probability family). In other words, one single possibility distribution generates in practice a 122 

“bundle” of probability distributions with mode cγ = 1100 and support [aγ, bγ] = [900, 1300]. The 123 

reader is referred to [Baudrit and Dubois, 2006; Couso et al., 2001; Dubois et al., 2004] for further 124 

technical details and a formal proof of these statements. 125 

In order to provide an additional practical interpretation of the possibility distribution )(γπ γ  of 126 

1θγ = , we can define its α-cut sets γ
αA  = { γ : )(γπ γ  ≥ α }, with 0 ≤ α  ≤ 1. For example, γ

5.0A = 127 

[1000, 1200] is the set of γ  values for which the possibility function is greater than or equal to 0.5 128 

(dashed segment in Fig. 1, top left column). Notice that the α-cut set γ
αA  of parameter γ can be 129 

interpreted also as the (1 – α)·100% Confidence Interval (CI) for γ, i.e., the interval such that 130 

αγ γ
α −≥∈ 1][ AP . For example, γ

0A  = [900, 1300] is the (1 – 0)·100% = 100% CI for γ, i.e., the 131 

interval that contains the “true” value of γ with certainty (solid segment in Fig. 1, top left column); 132 

γ
5.0A  = [1000, 1200] (⊂  γ

0A ) is the (1 – 0.5)·100% = 50% CI (dashed segment in Fig. 1, top left 133 

column); γ
8.0A  = [1050, 1150] (⊂  γ

5.0A  ⊂  γ
0A ) is the (1 – 0.8)·100% = 20% CI, and so on. In this 134 

view, the possibility distribution )(γπ γ  can be interpreted as a set of nested CIs for parameter γ 135 

[Baudrit and Dubois, 2006; Couso et al., 2001; Dubois et al., 2004]. 136 

For each possibility (resp., confidence) level α (resp., 1 – α) in [0, 1], a family of PDFs for Y, 137 

namely ( ){ }
α

δγ ,|ypY , can be generated by letting the epistemically-uncertain parameter γ  range 138 

within the corresponding α-cut set γ
αA , i.e., ( ){ }

α
δγ ,|ypY  = ( ){ }100,:,| =∈ δγδγ γ

αAypY . By way 139 

of example, Fig. 1, top right column, shows four PDFs belonging to the family ( ){ }
0

,|
=α

δγypY  140 

(solid lines) and four PDFs belonging to the family ( ){ }
5.0

,|
=α

δγypY  (dashed lines). 141 

In the same way, a bundle of Cumulative Distribution Functions (CDFs) for Y, namely 142 

( ){ }
α

δγ ,|yF Y , can be constructed by letting γ  range within γ
αA , i.e., ( ){ }

α
δγ ,|yF Y  = 143 

( ){ }100,:,| =∈ σγδγ γ
αAyFY . This family of CDFs (of level α) is bounded above and below by the 144 
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upper and lower CDFs, ( )yF Y
α  and ( )yF Y

α , defined as ( ) ( ){ }100,|sup ==
∈

δγ
γ
αγ

α yFyF Y

A

Y  and 145 

( ) ( ){ }100,|inf ==
∈

δγ
γ
αγ

α yFyF Y

A

Y , respectively. Since )(γπ γ  can be interpreted as a set of nested CIs 146 

for parameter γ (see above), it can be argued that the α-cuts of )(γπ γ  induce also a set of nested 147 

pairs of CDFs ( ) ( )( ){ }10:, ≤≤ ααα yFyF YY  which bound the “true” CDF ( )yFY  of Y with confidence 148 

larger than or equal to (1 – α), i.e., ( ) ( ) ( ) ααα −≥≤≤ 1][ yFyFyFP YYY , with 0 ≤ α  ≤ 1 [Baudrit et 149 

al., 2007 and 2008]. In passing, notice that the upper and lower CDFs (of level α), ( )yF Y
α  and 150 

( )yFY
α , can be referred to as the plausibility and belief functions (of level α) of the set Z = (‒∞, y], 151 

i.e., ( ) ( )ZPlyF YY
αα =  and ( ) ( )ZBelyF YY

αα = , respectively. For illustration purposes, Fig. 1, bottom 152 

row, shows the bounding upper and lower CDFs of Y, ( ) ( )ZPlyF YY
αα =  and ( ) ( )ZBelyF YY

αα = , built 153 

in correspondence of the α-cuts of level α = 0 (solid lines), 0.5 (dashed lines) and 1 (dot-dashed 154 

line) of the possibility distribution )(γπ γ  of parameter γ (Fig. 1, top left column). 155 

Finally, the set of nested pairs of CDFs ( ) ( )( ){ }10:, ≤≤ ααα yFyF YY  = ( ) ( )( ){ }10:, ≤≤ ααα ZPlZBel YY , 156 

Z = (‒∞, y], can be synthesized into a single pair of plausibility and belief functions as 157 

( ) ( )∫=
1

0

αα dZPlZPl YY  and ( ) ( )∫=
1

0

αα dZBelZBel YY , respectively (dotted lines in Fig. 1, bottom 158 

row): in other words, ( )ZPlY  and ( )ZBelY  are obtained by averaging the different nested 159 

plausibility and belief functions (i.e., ( ) ( )( ){ }10:, ≤≤ ααα ZPlZBel YY ) generated at different 160 

possibility levels α ∈ [0, 1] (i.e., by averaging the different contributions to the plausibility and 161 

belief functions produced by different α-cuts of the epistemic parameter γ). The plausibility and 162 

belief functions ( )ZPlY  and ( )ZBelY , Z = (‒∞, y], are shown to represent the “best bounds” for the 163 

“true” CDF ( )yFY  of the uncertain variable Y [Ralescu, 2002; Baudrit et al., 2007 and 2008; Couso 164 

et al., 2004; Couso and Dubois, 2009; Couso and Sanchez, 2011]. 165 
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Further details about FRVs are not given here for the sake of brevity: the interested reader is 166 

referred to the cited references. 167 

 168 

Fig. 1 169 

Bayesian update of the possibilistic parameters of aleatory probability 170 

distributions 171 

In this Section, we present the methods employed in this study for updating, in a Bayesian 172 

framework, the possibilistic representation of the epistemically-uncertain parameters of (aleatory) 173 

probability distributions, as new information/evidence (e.g., data) becomes available. In this view, 174 

let )(θθπ  be the (joint) prior possibility distribution for the parameters ]...,, ..., , ,[ 21 Pm θθθθ=θ  of 175 

the PDF )|( θypY  of variable Y (built on the basis of a priori subjective engineering knowledge 176 

and/or data). For example, in the risk assessment context of this paper Y may represent the yearly 177 

maximal water flow of a river described by a Gumbel distribution: thus, Y ~ )|( θypY  = Gum(θ) = 178 

Gum(θ1, θ2) = Gum(γ, δ) = ),|( δγypY  and )(θθπ  = ),(, δγδγπ . Moreover, let 179 

]...,,...,,,[ 21 Dk yyyy=y  be a vector of D observed pieces of data representing the new 180 

information/evidence available for the analysis: referring to the example above, y  may represent a 181 

vector of D values collected over a long period time (e.g., many years) of the yearly maximal water 182 

flow of the river under analysis. The objective of the Bayesian analysis is to update the a priori 183 

representation )(θθπ  = ),(, δγδγπ  of θ  = [γ, δ] on the basis of the new evidence acquired, i.e., to 184 

calculate the posterior possibility distribution )|( yθθπ  (i.e., )|,(, yδγδγπ ) of θ  after y  is 185 

obtained. 186 

In the present paper, two methods are considered to this aim: the purely possibilistic method and the 187 

hybrid probabilistic and possibilistic approach. 188 
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Purely possibilistic approach 189 

The purely possibilistic method (hereafter also referred to as ‘Approach A’ for brevity) is based on 190 

a purely possibilistic counterpart of the classical, probabilistic Bayes’ theorem [Dubois and Prade, 191 

1997; Lapointe and Bobée, 2000]: 192 

{ })()|(sup

)()|(
)|(

θyθ

θyθ
yθ

θθ

θ

θθ
θ

ππ

ππ
π

L

L

⋅
⋅= , (1) 193 

where )|( yθθ

Lπ  is the possibilistic likelihood of the parameter vector θ  given the newly observed 194 

data y, and quantities )|( yθθπ  and )(θθπ  are defined above. Notice that { })()|(sup θyθ
θθ

θ

ππL ⋅  is a 195 

normalization factor such that { })|(sup yθ
θ

θ

π  = 1, as required by possibility theory [Dubois, 2006]. 196 

It is worth mentioning that forms of the possibilistic Bayes’ theorem alternative to (1) can be 197 

constructed as a result of other definitions of the operation of ‘conditioning’ with possibility 198 

distributions: the reader is referred to [Dubois and Prade, 1997; Lapointe and Bobée, 2000] for 199 

technical details. In this paper, expression (1) has been chosen because “it satisfies desirable 200 

properties of the revision process and lead to continuous posterior distributions” [Lapointe and 201 

Bobée, 2000]. 202 

The possibilistic likelihood )|( yθθ

Lπ  is here obtained by transforming the classical probabilistic 203 

likelihood function )|( yθθL  through normalization, i.e., )|( yθθ

Lπ  = { })|(sup

)|(

yθ

yθ
θ

θ

θ

L

L
 [Anoop et al., 204 

2006] (obviously, )|( yθθL  =∏
=

D

k
k

Y yp
1

)|( θ  in the case the observations {yk: k = 1, 2, …, D} are 205 

independent and identically distributed). This choice has been made for the following main reasons: 206 

i. the transformation is simple and can be straightforwardly applied to any distribution [Anoop 207 

et al., 2006]; 208 

ii.  the resulting possibilistic likelihood is very closely related to the classical, purely 209 

probabilistic one (which is theoretically well-grounded) by means of the simple and direct 210 
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operation of normalization that preserves the “original structure” of the experimental 211 

evidence; 212 

iii.  it can be easily verified that the resulting possibilistic likelihood keeps the sequential nature 213 

of the updating procedure typical of the standard Bayes’ theorem; 214 

iv. the operation of likelihood normalization finds also theoretical justifications in some recent 215 

works of literature (see the brief discussion below) [Denoeux, 2014; Moral, 2014]. 216 

However, two considerations are in order with respect to this choice. First, it has to be admitted that 217 

the resulting possibility distributions do not in general adhere to the probability-possibility 218 

consistency principle [Dubois and Prade, 1980]. Second, it has to be remembered that the 219 

probabilistic likelihood function )|( yθθL  is not a probability distribution: in this view, from a 220 

rigorous mathematical viewpoint, speaking of probability/possibility transformation for it would be 221 

wrong. On the other side, from the practical engineering viewpoint of interest to the present paper, 222 

an operation of normalization can be performed (i.e., ∫
θ

θθ
θyθyθ dLL )|()|( ) in order to 223 

“technically” provide it with the “properties” of a probability distribution function. 224 

It is worth noting that other techniques of transformation of probability density functions into 225 

possibility distributions exist, but the corresponding details are not given here for brevity sake: the 226 

interested reader is referred to [Dubois et al., 1993, 2004 and 2008; Flage et al., 2010 and 2013] for 227 

some proposed techniques, e.g., the principle of maximum specificity [Dubois et al., 1993] and the 228 

principle of minimal commitment [Dubois et al., 2008]. Also, it has to be noticed that techniques 229 

are also available to construct possibility distributions (and, thus, possibilistic likelihood functions) 230 

directly from rough experimental data (i.e., without resorting to probability-possibility 231 

transformations): see [Masson and Denoeux, 2006; Mauris, 2008; Hou and Yang, 2010; Serrurier 232 

and Prade, 2011] for more details. Finally, for a thorough theoretical justification of a “possibilistic 233 

vision” of the likelihood the reader is referred to: e.g., [Dubois et al., 1997], where possibility 234 

measures are considered as the supremum of a family of likelihood functions; [Denoeux, 2014], 235 
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where the evidence about a parameter (after observing a piece of data) is represented by a 236 

consonant “likelihood based” belief function, whose contour function equals the normalized 237 

likelihood function (see above): in the paper, this is also rigorously derived from three basic 238 

principles, i.e., the likelihood principle [Edwards, 1992], compatibility with Bayes’ rule and the 239 

minimal commitment principle [Smets, 1993]; and finally [Moral, 2014], where the approach by 240 

[Denoeux, 2014] is discussed and the issue of representing likelihood information is taken from the 241 

point of view of imprecise probabilities. 242 

Hybrid probabilistic and possibilistic approach 243 

The hybrid probabilistic and possibilistic method (hereafter also called ‘Approach B’ for brevity) is 244 

based on the construction of a Fuzzy Probability Distribution Function (FPDF) to be used as a 245 

‘fictitious’ prior for the epistemically-uncertain parameters θ  of the PDF )|( θypY  of the uncertain 246 

variable Y: in other words, a fictitious (artificial) probabilistic function has to be ‘superimposed’ 247 

onto the purely possibilistic prior )(θθπ  that has to be updated. In more detail, let )|(~ φθ
θp  be the 248 

fictitious (prior) FPDF of θ , constructed by the superimposition of an (arbitrarily selected) 249 

fictitious PDF )|( φθ
θp  and a vector of parameters φ  described by a (properly selected) possibility 250 

distribution )(φφπ  (it is straightforward to notice that in the case parameters {θm: m = 1, 2, …, P} 251 

are independent, then )|( φθ
θp  = ∏

=

P

m
mm

θ
θp m

1

)|( φ , with mφ  = [ 1mφ , 2mφ , …, 
mmNφ ], m = 1, 2, …, 252 

P; also, )(φφπ  is expressed as )(φφπ  = )}(...,),(...,),(),({ 21
21

Pm
Pm φφφφ
φφφφ ππππ . In addition, 253 

if also the possibilistic parameters 1mφ , 2mφ , …, 
mmnφ  of the fictitious PDF )|( mm

θ
θp m φ , m = 1, 2, 254 

…, P, are independent, then )( m
m φ
φπ  = )}(...,),(),({ 21

21

m

mmNmm
mNmm φπφπφπ φφφ ). As before, let Y ~ 255 

)|( θypY  = ( )δγ ,Gum  = ),|( δγypY , with θ = [θ1, θ2] = [γ, δ] epistemically-uncertain. For 256 

simplicity, we consider θ1 = γ and θ2 = δ independent, such that )(θθπ  = { )(),( δγ δγ ππ } and that 257 
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the (fictitious) PDF )|( φθ
θp  can be written as ∏

=

P

m
mm

θ
θp m

1

)|( φ  = )|()|( 2211
21 φφ θθ θθ pp ⋅  = 258 

)|()|( δ
δ

γ
γ δγ φφ pp ⋅ . By hypothesis, the analyst arbitrarily  selects Normal distributions to 259 

represent )|( γ
γ γ φp  and )|( δ

δ δ φp , i.e., )|( γ
γ γ φp  = )( γφN  = ),( γγ σµN  and )|( δ

δ δ φp  = 260 

)( δφN  = ),( δδ σµN , respectively (Normal and Uniform distributions are indicated as good choices 261 

for )|( φθ
θp  by [Beer, 2009a; Stein and Beer, 2011; Stein et al., 2013]). Then, parameters 262 

],[ γγγ σµ=φ  and ],[ δδδ σµ=φ  are represented by the possibility distributions 263 

)}(),({ γ
σ

γ
µ σπµππ γγγ =φ  and )}(),({ δ

σ
δ

µ σπµππ δδδ =φ  (by so doing, the fictitious prior FPDF 264 

)|(~ φθ
θp  = )|(~)|(~

2211
21 φφ θθ θθ pp ⋅  = )|(~)|(~

δ
δ

γ
γ δγ φφ pp ⋅  is constructed). These possibility 265 

distributions should be properly selected by the analyst so as to reflect as closely as possible the 266 

structure of the ‘real’ prior possibility distribution )(θθπ  = { )(),( δγ δγ ππ } that has to be updated: 267 

for example, γπ φ  and δπ φ  could be identified by ‘imposing’ that the expected value of the FPDF 268 

)|(~ φθ
θp  corresponds to the real prior possibility distribution )(θθπ , i.e., )]|(~[ φθ

θ

φ pE  = )(θθπ  269 

or, in this case, )]|(~[ γ
γ γ

γ
φφ pE  = )(γγπ  and )]|(~[ δ

δ δ
δ

φφ pE  = )(δδπ . 270 

In extreme synthesis, the method relies on the hybrid combination of (i) Fuzzy Interval Analysis 271 

(FIA) to process the uncertainty described by possibility distributions and (ii) repeated Bayesian 272 

updating of the uncertainty represented by probability distributions [Beer, 2009a; Stein and Beer, 273 

2011; Stein et al., 2013]. In more details, the algorithm proceeds as follows: 274 

1. set α = 0; 275 

2. select the α-cut φ

αA  of the possibility distribution )(φφπ  of vector φ  of the parameters of the 276 

(fictitious) prior PDF )|( φθ
θp ; 277 

3. letting the parameter vector φ  range within the corresponding α-cut φ

αA  identified at step 2. 278 

above, generate a family of (fictitious) prior PDFs ( ){ }
α

φθθ |p  = ( ){ }φθ
φφθ αAp ∈:| . This is 279 
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empirically done by (i) randomly or deterministically selecting a finite number T (e.g., T = 280 

100 in this paper) of parameter vectors α,lφ , l = 1, 2, …, T, in φ

αA  and (ii) evaluating 281 

)|( φθ
θp  in correspondence of these vectors, i.e., ( ){ }

α
φθθ |p  ≈ ( ){ }Tlp l ...,,2,1:| , =αφθ

θ ; 282 

4. apply the classical probabilistic Bayes theorem to each (fictitious) prior PDF )|( ,αlp φθ
θ  283 

generated at step 3. above to get the corresponding posterior PDF ( )yθ
θ |,αlp : 284 

 ( ) ( ) ( )
( ) ( )∫ ⋅

⋅
=

θ

θ

θ

θ

θφθyθ

φθyθ
yθ

dpL

pL
p

l

l
l

α

α
α

,

,
,

||

||
| , l = 1, 2, …, T (2) 285 

This is equivalent to generating a family ( ){ }
α

yθθ |p  of posterior PDFs for θ, i.e., 286 

( ){ }
α

yθθ |p  ≈ ( ) }...,,2,1:|{ , Tlpl =yθ
θ

α ; 287 

5. calculate the expected value of each posterior PDF ( )yθ
θ |,αlp  generated at step 4. above to 288 

obtain a point estimate yθ |,αl  for the epistemically-uncertain parameter vector θ [Stein et 289 

al., 2013]: 290 

 )]|([| ,, yθyθ
θ

θ αα ll pE= , l = 1, 2, …, T (3) 291 

6. take the hull enveloping the T point estimates yθ |,αl , l = 1, 2, …, T, as the (P-dimensional) 292 

α-cut yθ|
αA  of the (joint P-dimensional) posterior possibility distribution )|( yθθπ  of θ. By 293 

way of example and for illustration purposes, Fig. 2 shows the identification of a (two-294 

dimensional) α-cut yyθ |,| 21 θθ
αα AA =  (solid line) as the contour enclosing T = 20 point estimates 295 

yθ |,αl , l = 1, 2, …, 20 (dots), in the simplified case of P = 2 parameters θ1 and θ2; 296 

7. if α < 1, then set α = α + ∆α (e.g., ∆α = 0.05 in this paper) and return to step 2. above; 297 

otherwise, stop the algorithm. 298 
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The (joint P-dimensional) posterior possibility distribution )|( yθθπ  for the epistemically-uncertain 299 

parameter vector θ is empirically constructed as the (discrete) collection of the α-cuts yθ|
αA , α = 0, 300 

0.05, …, 0.95, 1, found at step 6. above. 301 

 302 

It is worth noting that the application of both approaches A and B always produces a joint P-303 

dimensional posterior possibility distribution )|(yθθπ  (whatever the state of dependence between 304 

the priors), characterized by P-dimensional α-cuts yθ|
αA , with 0 < α < 1: as a consequence, there is 305 

an interactive dependence between the values that parameters {θm: m = 1, 2, …, P} can take when 306 

ranging within a given α-cut yθ|
αA : for example, in Fig. 2 it is impossible that parameter θ1 takes on 307 

low values and parameter θ2 takes on high values at the same time. 308 

From )|( yθθπ  it is straightforward to obtain the marginal posterior possibility distribution 309 

)|( ym
θ
θπ m  for each parameter θm as )|( ym

θ
θπ m  = )}|({max

,
yθ

θπ
mjθ j ≠ℜ∈

, ℜ∈∀ mθ , m = 1, 2, …, P 310 

[Baudrit et al., 2006]: )|( ym
θ
θπ m  is the projection of )|( yθθπ  onto the m-th axis. The (one-311 

dimensional) α-cut y|mθAα  = ]|,|[ ,, yy mm αα θθ  of the marginal possibility distribution )|( ym
θ
θπ m  is 312 

then related to the (P-dimensional) α-cut yθ|
αA  of the joint possibility distribution )|( yθθπ  by the 313 

following straightforward relation, i.e., y|mθAα  = ]|,|[ ,, yy mm αα θθ  = }]{max},{min[
|| m

A
m

A yy
θθ

αα
θθ

θθ ∈∈
. In this 314 

view, notice that the use of the P-dimensional α-cut yθ|
,CartAα  constructed by the Cartesian product of 315 

the (one-dimensional) α-cuts y|mθAα  of the marginal distributions, m = 1, 2, …, P (i.e., yθ|
,CartAα  = y|1θAα  316 

x y|2θAα  x … x y|mθAα  x … x y|PθAα ) would (incorrectly) imply independence between the posterior 317 

estimates of the parameters {θm: m = 1, 2, …, P}; however, since yθ|
,CartAα  completely contains yθ|

αA  318 

(i.e., by definition yθ|
αA  ⊂  yθ|

,CartAα ), then conservatism would be still guaranteed [Stein et al., 2013]. 319 

For illustration purposes and with reference to the example above, Fig. 2 shows also the two-320 
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dimensional α-cut y|,
,

21 θ
α
θ

CartA  (dashed line) generated by the Cartesian product of the (one-dimensional) 321 

α-cuts y|1θAα  and y|2θAα , i.e., y|,
,

21 θ
α
θ

CartA  = y|1θAα  x y|2θAα . 322 

 323 

Fig. 2 324 
 325 

The characteristics of the two approaches are summarized in Table 1. Notice that both methods 326 

relies on arbitrary assumptions about either the prior or the likelihood functions: in the purely 327 

possibilistic approach (A) the “original” possibilistic prior is employed, but a possibilistic 328 

likelihood function has to be constructed (e.g., by probability-possibility transformations, directly 329 

from rough experimental data and/or by resorting to the guidelines provided by [Dubois et al., 1997; 330 

Denoeux, 2014]); instead, in the hybrid method (B) the original probabilistic likelihood function is 331 

used, but a “fictitious” prior Fuzzy Probability Distribution Function needs to be identified by 332 

superimposing an arbitrarily selected probabilistic PDF onto the “original” possibilistic prior that 333 

has to be updated. 334 

Table 1. 335 
 336 

A final consideration is in order with respect to the two approaches here outlined. In the hybrid 337 

probabilistic-possibilistic framework of interest to the present paper, the knowledge a priori 338 

available on the parameters ]...,, ..., , ,[ 21 Pm θθθθ=θ  of a given (aleatory) probability model 339 

)|( θypY  is described by the prior possibility distribution function )(θθπ . As detailed in the 340 

previous Section, the possibilistic approach is particularly suitable to address those situations where 341 

the information a priori available on θ  is scarce and imprecise, i.e., not sufficient for assigning a 342 

single specific probability distribution to (describe the epistemic uncertainty in) θ . Actually, the 343 

possibilistic function )(θθπ  is in practice “equivalent” to the family of all those probability 344 

distributions (of possibly different shapes) that are coherent with the scarce information available 345 

on θ . On the other hand, it is worth mentioning that in a classical purely probabilistic framework, 346 

imprecision in prior information about θ  can be also accounted for by means of the so-called 347 
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Hierarchical Bayes approach. Hierarchical Bayes is so-named because it utilizes hierarchical or 348 

multistage prior distributions [Gelman, 2006; Gelman et al., 2008; Congdon, 2010; Kelly and 349 

Smith, 2011; Chung et al., 2015; Shirley and Gelman, 2015]. To develop a hierarchical model for 350 

θ , we need to specify a first-stage prior (say, )|( φθ
θp ), which is often of a particular functional 351 

form, often a conjugate prior. However, analysts find it difficult to express their incertitude 352 

numerically at all, much less as particular probability distributions. Thus, a higher-dimensional 353 

model is defined to represent such (epistemic) uncertainty: in particular, we need to specify an 354 

“additional” prior distribution (say, )|( ωφ
φp ) on the first-stage parameters φ. Distribution 355 

)|( ωφ
φp  is called the second-stage prior, or hyper-prior. This way of proceeding amounts to 356 

generating a ‘parametric’ family { })|( φθ
θp  of (first-stage prior) probability distributions for θ , all 357 

obtained in correspondence of different possible values of the first-stage parameters φ (described by 358 

hyper-prior )|( ωφ
φp ). This method has been investigated in the field of social and behavioral 359 

sciences with the main aim of treating hierarchical data with different levels of variables in the same 360 

statistical model. For example, the hierarchical data for sociological survey analysis include 361 

measurements from individuals with different historical, geographic, or economic variables. To this 362 

end, the hierarchical modeling was proposed to account for the different grouping or times at which 363 

data are measured [Gill, 2002]. In addition, a common application of hierarchical Bayes analysis in 364 

the Probabilistic Risk Assessment (PRA) of nuclear power plants has been as a model of variability 365 

among data sources, for example variability in Emergency Diesel Generator (EDG) performance 366 

across different plants, or across time [Siu and Kelly, 1998; Atwood et al., 2003; Kelly and Smith, 367 

2009]. Finally, similar analogy can be made for the collected measurements from a structure under 368 

different ambient and environmental conditions. This framework has been recently implemented for 369 

uncertainty quantification applications in structural dynamics [Behmanesh et al., 2015; Ballesteros 370 

et al., 2014]. Although hierarchical Bayes can address the issue of imprecise prior information by 371 

means of multi-level models, the following conceptual and practical considerations should be made 372 
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about its applicability: (i) in principle, one could define even higher dimensional models to 373 

represent the uncertainty. Some analysts have attempted three- and even four-level models 374 

[Jaworska and Aldenberg, 2000], but this hardly seems a workable solution when the complexity of 375 

the analysis is the primary problem; (ii) in addition, “if concern about the uncertainty in parameters 376 

can in principle drive the analysis to a higher level, one could fall into an insoluble infinite cascade” 377 

[Ferson, 2005]; (iii) finally, both first- and second-stage priors, )|( φθ
θp  and )|( ωφ

φp , 378 

respectively, are often of a particular functional form, which forces the analyst to make “overly-379 

optimistic” and excessively precise statements about parameter uncertainties, even when the 380 

information and data available are scarce and/or vague, i.e., not sufficient for assigning a single 381 

specific probability distribution. In such cases, non-probabilistic methods (e.g., intervals, possibility 382 

distributions or Dempster-Shafer structures from evidence theory) have been shown to provide 383 

reliable and robust results [Ferson et al., 2003; Beer et al., 2013a]. On the basis of considerations 384 

(i)-(iii) above and given that the objective of the paper is the comparison of methods for the update 385 

of possibilistic parameters (of aleatory probability distributions), Hierarchical Bayes approaches are 386 

not considered in the present work. 387 

Case study: flood protection risk-based design 388 

The case study deals with the design of a protection dike in a residential area closely located to a 389 

river with potential risk of floods. Two issues of concern are: (i) high construction and annual 390 

maintenance costs of the dike; (ii) uncertainty in the natural phenomenon of flooding. Then, the 391 

different design options must be evaluated within a flooding risk analysis framework accounting for 392 

uncertainty. 393 

The model 394 

The maximal water level of the river (i.e., the output variable of the model, cZ ) is given as a 395 

function of several (and some uncertain) parameters (i.e., the inputs to the model) [Limbourg and de 396 

Rocquigny, 2010]: 397 
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( ) ( )654321 ,,,,,,,,,, YYYYYYfLBKZZQfZ svmc ==  (4) 398 

where: Y1 = Q  is the yearly maximal water discharge [m3/s]; Y2 = mZ and Y3 = vZ are the riverbed 399 

levels [m asl] at the upstream and downstream parts of the river under investigation, respectively; Y4 400 

= sK  is the Strickler friction coefficient; Y5 = B  and Y6 = L  are the width and length of the river 401 

part [m], respectively. Quantities Y5 = B (= 300m) and Y6 = L (= 5000m) are constant parameters, 402 

whereas quantities Y1 = Q , Y2 = mZ , Y3 = vZ , Y4 = sK  are uncertain variables. 403 

The input variables: physical description and representation of the associated 404 

uncertainty 405 

The n = 4 input variables Yi, i = 1, 2, 3, 4, are affected by aleatory and epistemic uncertainties. The 406 

aleatory part of the uncertainty is described by probability distributions of defined shape. The 407 

parameters of the probability distributions describing the aleatory uncertainty are themselves 408 

affected by epistemic uncertainty and represented in terms of possibility distributions. 409 

The yearly maximal water flow, Y1 = Q 410 

The aleatory uncertainty in the yearly maximal water flow Y1 = Q is well described by a Gumbel 411 

probability distribution ( )δγ ,qpQ  = ( )δγ ,Gum  = 




 −















 −−
δ

γ
δ

γ
δ

qq
expexpexp

1
 [Limbourg and 412 

de Rocquigny, 2010]. The extreme physical bounds on variable Q  are [Limbourg and de 413 

Rocquigny, 2010]: 414 

- 10min =Q m3/s, which is a typical drought flow level (irrelevant within a flood study); 415 

- maxQ  = 10000 m3/s, which is three times larger than the maximal flood ever occurred. 416 

When Approach A is used, the prior possibility distributions )(γπ γ  and )(δπ δ  for the 417 

epistemically-uncertain parameters γ  and δ  are subjectively chosen as triangular functions TR(aγ, 418 

cγ, bγ) and TR(aδ, cδ, bδ), respectively, with cores (i.e., preferred or most likely values) cγ = 955m3/s 419 

and cδ = 600m3/s, and supports [aγ, bγ] = [869, 1157] m3/s and [aδ, bδ] = [455, 660] m3/s, 420 
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respectively. When Approach B is employed, the fictitious prior FPDFs )(~ γγp  and )(~ δδp  are 421 

subjectively chosen as normal probability distributions )(γγp  = ( )γγ σµ ,N  and )(δδp  = 422 

( )δδ σµ ,N , respectively, with possibilistic parameters δδγγ σµσµ and,, : the characteristics of the 423 

corresponding triangular possibility distributions )( γ
µ µπ γ , )( γ

σ σπ γ , )( δ
µ µπ δ  and )( δ

σ σπ δ  are 424 

summarized in Table 2 for brevity. The Bayesian update of these uncertainty representations (based 425 

on prior subjective knowledge) is realized with the aid of a vector y1 = [y11, y12, …, y1k, …, 
11Dy ] of 426 

D1 = 149 (independent and identically distributed – iid) values of the annual maximal flow of the 427 

river, i.e., y1 = q = [q1, q2, …, qk, …, q149]. The point estimates for γ  and δ  obtained by the 428 

classical, purely probabilistic Maximum Likelihood Estimation (MLE) method are MLEγ̂  = 1013. 21 429 

m3/s and MLEδ̂  = 558.21 m3/s, respectively. 430 

The upstream riverbed level, Y2 = Zm 431 

The aleatory part of the uncertainty in the upstream riverbed level Y2 = Zm is represented by a 432 

normal distribution, i.e., mZ  ~ )( ZmZmm
Z zp m σµ ,|  = )( ZmZmN σµ ,  [Limbourg and de Rocquigny, 433 

2010]. This distribution is truncated at the minimum and maximum physical bounds on Zm, i.e., 434 

5.53min, =mZ m (given by plausible lower geomorphologic limits to erosion) and 57max, =mZ m 435 

(given by plausible upper geomorphologic limits to sedimentation), respectively. In Approach A, 436 

the prior possibility distributions )( Zm
Zm µπ µ  and )( Zm

Zm σπ σ  for Zmµ  and Zmσ  are chosen as 437 

triangular functions (Table 2). In Approach B, the fictitious prior FPDFs )(~
Zm

Zmp µµ  and )(~
Zm

Zmp σσ  438 

are chosen as normal PDFs )( Zm
Zmp µµ  = ( )

ZmZm
N µµ σµ ,  and )( Zm

Zmp σσ  = ( )
ZmZm

N σσ σµ ,  with 439 

parameters described by the triangular possibilistic functions )(
Zm

Zm
µ

µ µπ µ , )(
Zm

Zm
µ

σ σπ µ , 440 

)(
Zm

Zm
σ

µ µπ σ  and )(
Zm

Zm
σ

σ σπ σ  reported in Table 2. The Bayesian update of these uncertainty 441 

representations is carried out using a vector y2 = [y21, y22, …, y2k, …, 
22Dy ] of D2 = 29 (iid) values 442 
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of the upstream riverbed level, i.e., y2 = zm = [zm,1, zm,2, …, zm,k, …, zm,29]. The point estimates MLE
Zmµ̂  443 

and MLE
Zmσ̂  for Zmµ  and Zmσ  obtained by the MLE method are MLE

Zmµ̂  = 50.19 m and MLE
Zmσ̂  = 0.38 m, 444 

respectively. 445 

The downstream riverbed level, Y3 = Zv 446 

As for Y2 = Zm, the aleatory part of the uncertainty in the downstream riverbed level Y3 = Zv is 447 

represented by a normal distribution, i.e., vZ  ~ )( ZvZvv
Z zp v σµ ,|  = )( ZvZvN σµ , , truncated at 448 

48min, =vZ m and 51max, =vZ m. As before, the prior possibility distributions )( Zv
Zv µπ µ  and 449 

)( Zv
Zv σπ σ  used in Approach A are triangular functions (Table 2) and the FPDFs )(~

Zv
Zvp µµ  and 450 

)(~
Zv

Zvp σσ  employed in Approach B are normal PDFs )( Zv
Zvp µµ  = ( )

ZmZm
N µµ σµ ,  and )( Zv

Zvp σσ  = 451 

( )
ZvZv

N σσ σµ ,  with parameters described by the triangular possibility distributions )(
Zv

Zv
µ

µ µπ µ , 452 

)(
Zv

Zv
µ

σ σπ µ , )(
Zv

Zv
σ

µ µπ σ  and )(
Zv

Zv
σ

σ σπ σ  of Table 2. These representations are updated by means of 453 

a vector y3 = [y31, y32, …, y3k, …, 
33Dy ] of D3 = 29 (iid) values of the downstream riverbed level, 454 

i.e., y3 = zv = [zv,1, zv,2, …, zv,k, …, zv,29]. The MLE estimates of the parameters are MLE
Zvµ̂  = 55.03 m 455 

and MLE
Zvσ̂  = 0.45 m, respectively. 456 

The Strickler friction coefficient, Y4 = Ks 457 

The Strickler friction coefficient Y4 = sK  is the most critical source of uncertainty because it is 458 

usually a simplification of a complex hydraulic model. The absolute physical limits of sK  are 5 and 459 

60, respectively [Limbourg and de Rocquigny, 2010]: 460 

- 5<sK  corresponds to an “extremely sinuous shape of the canal, with large dents and strong 461 

vegetation”; 462 

- 60=sK  corresponds to a “canal with smoothest earth surface, rectilinear, without any 463 

vegetation”. 464 
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The friction coefficient sK  is affected by random events modifying the river status (e.g., erosion, 465 

sedimentation, …): the corresponding variability is typically described by a normal distribution, i.e., 466 

sK  ~ )( KsKss
K kp s σµ ,|  = )( KsKsN σµ ,  [Limbourg and de Rocquigny, 2010]. However, the 467 

parameters of this normal distribution are difficult to estimate because data can only be obtained 468 

through “indirect calibration characterized by significant uncertainty” [Limbourg and de 469 

Rocquigny, 2010]: the uncertainty in these parameters is described by possibility distributions. 470 

Details about the possibilistic functions )(
s

sK

Kµπ µ
 and )( Ks

Ks σπ σ  and the FPDFs )(~
Ks

Ksp µµ  and 471 

)(~
Ks

Ksp σσ  used to represent the a priori knowledge on KsKs σµ and  in Approaches A and B, 472 

respectively, are reported in Table 2. The Bayesian revision of these a priori representations is 473 

performed by means of a vector y4 = [y41, y42, …, y4k, …, 
44Dy ] of D4 = 5 (iid) values of the 474 

Strickler friction coefficient, i.e., y4 = ks = [ks,1, ks,2, …, ks,k, …, ks,5]. The MLE estimates of the 475 

parameters are MLE
Ksµ̂  = 27.8 and MLE

Ksσ̂  = 5.26, respectively. 476 

 477 
Table 2. 478 

 479 

Results 480 

In order to simplify the notation, in what follows let θ be one of the uncertain parameters of the 481 

PDFs of Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks, i.e., θ = γ , δ , Zmµ , Zmσ , Zvµ , Zvσ , 
sKµ  or Ksσ . Fig. 482 

3 illustrates the possibility distributions of the epistemically-uncertain parameters of the aleatory 483 

PDFs ( )δγ ,qpQ  (top row), )( ZmZmm
Z zp m σµ ,|  (middle-top row), )( ZvZvv

Z zp v σµ ,|  (middle-bottom 484 

row) and )( KsKss
K kp s σµ ,|  (bottom row) of the uncertain input variables Y1 = Q, Y2 = Zm, Y3 = Zv 485 

and Y4 = Ks, respectively, of the model of the previous Section: in particular, the prior possibility 486 

distributions )(θπ θ  (= )(γπ γ , )(δπ δ , )( Zm
Zm µπ µ , )( Zm

Zm σπ σ , )( Zv
Zv µπ µ , )( Zv

Zv σπ σ , )(
s

sK

Kµπ µ
 487 

and )( Ks
Ks σπ σ ) are shown as solid lines, whereas the marginal posterior possibility distributions 488 
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)|( yθπ θ  (= )|( qγπ γ , )|( qδπ δ , )|( mzZm
Zm µπ µ , )|( mzZm

Zm σπ σ , )|( vzZv
Zv µπ µ , )|( vzZv

Zv σπ σ , 489 

)|( sk
s

sK

Kµπ µ
 and )|( skKs

Ks σπ σ ) obtained by Approaches A and B using D1 = 149, D2 = 29, D3 = 490 

29 and D4 = 5 pieces of data are shown in dashed and dot-dashed lines, respectively; the point 491 

estimates MLEθ̂  (= MLEγ̂ , MLEδ̂ , MLE
Zmµ̂ , MLE

Zmσ̂ , MLE
Zvµ̂ , MLE

Zvσ̂ , MLE
Ks

µ̂  and MLE
Ksσ̂ ) produced by the 492 

classical MLE method are also shown for comparison (dots). 493 

 494 

Fig. 3. 495 

 496 

From a mere visual and qualitative inspection of Fig. 3 it can be seen that both approaches are 497 

suitable for revising the prior possibility distributions (based on a priori purely subjective 498 

knowledge) by means of empirical data. In particular, it is evident that: (i) the most likely (i.e., 499 

preferred) values cθ of the epistemically-uncertain parameters (i.e., those values in correspondence 500 

of which the possibility function equals 1) are moved towards the MLE estimates MLEθ̂  in all the 501 

cases considered; (ii) the area Sθ underlying the corresponding possibility distributions is 502 

significantly reduced: noting that this area is related to the imprecision in the knowledge of the 503 

possibilistic parameter (i.e., the larger the area, the higher the imprecision), it can be concluded that 504 

both approaches succeed in reducing the epistemic uncertainty. With respect to that, Table 3 reports 505 

the most likely values cθ and the areas Sθ underlying the (marginal) possibility distributions of the 506 

uncertain parameter θ (= γ , δ , Zmµ , Zmσ , Zvµ , Zvσ , 
sKµ  and Ksσ ) before and after the Bayesian 507 

update performed by Approaches A and B; the point estimates MLEθ̂  obtained by the classical MLE 508 

method are also reported for completeness. In addition, in order to perform a quantitative 509 

comparison between the methods, two indicators are defined: 510 

i. the relative absolute distance MLEdθ  between the (posterior) most likely value cθ of parameter 511 

θ and the corresponding MLE estimate MLEθ̂ , i.e.: 512 
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MLE

MLE

MLE
c

d
θ

θθ
θ ˆ

ˆ−
= . (5) 513 

Obviously, the lower is MLEdθ  the closer is the most likely value cθ to the MLE estimate 514 

MLEθ̂ , i.e., the higher is the strength of the approach in updating the prior possibilistic 515 

distribution on the basis of newly available experimental evidence; 516 

ii.  the percentage relative difference Rθ between the areas underlying the possibility 517 

distribution of parameter θ before and after the Bayesian update, namely PriorSθ  and PosteriorSθ , 518 

respectively: 519 

 100⋅−=
Prior

PosteriorPrior

S

SS
R

θ

θθ
θ . (6) 520 

In this case, the higher is Rθ, the higher is the reduction in the area (i.e., in the epistemic 521 

uncertainty) and, thus, the higher is the “updating strength” of the approach. 522 

 523 
Table 3. 524 

 525 

It is evident that the strength of Approach A in moving the most likely values cθ towards the 526 

corresponding MLE estimates MLEθ̂  is always higher than that of Approach B. Actually, the values 527 

of MLEdθ  (5) produced by Approach A are 1.58-5.24 times lower than those generated by Approach 528 

B for all the parameters. 529 

From the analysis of quantitative indicator Rθ (6) it can be seen that both methods succeed in 530 

reducing the area underlying the possibility distributions of the uncertain parameters: in particular, 531 

the percentage reduction Rθ ranges between 8.33% and 30.49% for approach A and between 3.89% 532 

and 33.01% for Approach B. In addition, as expected, the strength of both approaches in reducing 533 

epistemic uncertainty decreases with the size of the data set used to perform the Bayesian update. 534 

For example, the area Sγ underlying the possibility distribution of γ (Fig. 3, top left column) is 535 

reduced by 30.49‒33.01% with the aid of a large data set of size D1 = 149; on the contrary, the area 536 
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Ks
Sσ  underlying the possibility distribution of σKs (Fig. 3, bottom right column) is reduced only by 537 

3.89‒8.76% by means of D4 = 5 pieces of data. Moreover, it is interesting to note that the strength 538 

of Approach B in reducing epistemic uncertainty is slightly higher than that of Approach A only 539 

when the amount of available data is quite large (i.e., in the revision of the possibility distributions 540 

of parameters γ  and δ  of the PDF of Y1 = Q, by means of D1 = 149 pieces of data): actually, the 541 

values of Rγ and Rδ range within 25.56-30.49% and 28.74-33.01% for Approaches A and B, 542 

respectively. In all the other cases, the power of Approach A in reducing epistemic uncertainty is 543 

higher than that of Approach B and this difference becomes more and more evident as the size of 544 

the data set decreases: in particular, for medium-sized data sets (i.e., in the revision of the 545 

possibility distributions of the parameters Zmµ , Zmσ , Zvµ , Zvσ  of the PDFs of Y2 = Zm and Y3 = Zv 546 

with D2 = D3 = 29 pieces of data) the values of Rθ (6) produced by Approaches A and B range 547 

within 8.33-24.38% and 4.17-22.00%, respectively; instead, for small-sized data sets (i.e., in the 548 

revision of the possibility distributions of the parameters 
sKµ  and Ksσ  of the PDF of Y4 = Ks with 549 

D4 = 5 pieces of data) the values of Rθ produced by Approaches A and B range within 8.76-16.28% 550 

and 3.89-10.08%, respectively. This is particularly evident in the estimation of the standard 551 

deviation σKs of Ks (Fig. 3, bottom right column): on one side, the posterior distribution produced by 552 

the hybrid approach (B) seems not to be influenced by the revision process (actually, the most likely 553 

value of the parameter, 
Ks

cσ  = 6.72, and the area underlying the corresponding posterior possibility 554 

distribution, 
Ks

Sσ  = 3.95, are quite close to those of the prior, i.e., 6.89 and 4.11, respectively); on 555 

the other side, the posterior distribution generated by the purely possibilistic approach (A) is almost 556 

centered on the point estimates obtained by the MLE method and the corresponding area is reduced 557 

by about 9%. 558 

 559 

Finally, it has to be remarked that for the sake of simplicity the quantitative analyses above have 560 

been performed only on the marginal posterior possibility distributions of the uncertain parameters 561 
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( )|( qγπ γ , )|( qδπ δ , )|( mzZm
Zm µπ µ , )|( mzZm

Zm σπ σ , )|( vzZv
Zv µπ µ , )|( vzZv

Zv σπ σ , )|( sk
s

sK

Kµπ µ
 562 

and )|( skKs
Ks σπ σ ); in fact, as highlighted before, the posterior possibility distributions of the 563 

uncertain parameters are multi-dimensional functions (and the posterior estimates of the parameters 564 

are dependent). Only for illustration purposes, Fig. 4 shows the α-cuts of level α = 0.05, 0.50 and 565 

0.95 of the joint posterior possibility distributions )|,(, qδγπ δγ , )|,(,
mzZmZm

ZmZm σµπ σµ , 566 

)|,(,
vzZvZv

ZvZv σµπ σµ  and )|,(
,

sk
ss

sKsK

KK σµπ σµ
 of the parameters of the PDFs of Y1 = Q (top right 567 

column), Y2 = Zm (top left column), Y3 = Zv (bottom left column) and Y4 = Ks (bottom right column), 568 

respectively, produced by Approaches A (solid lines) and B (dashed lines). 569 

 570 

Fig. 4. 571 

 572 

The visual inspection of Fig. 4 confirms the results obtained by the quantitative analysis carried out 573 

on the marginal distributions. For example, it can be seen that the areas of the α-cuts of level α = 574 

0.95 of )|,(,
vzZvZv

ZvZv σµπ σµ  and )|,(
,

sk
ss

sKsK

KK σµπ σµ
 produced by Approach A are consistently 575 

smaller than those generated by Approach B; the α-cuts of )|,(,
mzZmZm

ZmZm σµπ σµ  produced by 576 

Approaches A and B are comparable in size, whereas the area of the α-cut of )|,(, qδγπ δγ  obtained 577 

by Approach B is slightly lower than the one produced by Approach A. 578 

 579 

In order to show the effect that the reduction of the epistemic uncertainty in the distribution 580 

parameters has on the uncertain input variables Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks, Fig. 5 reports 581 

the upper and lower CDFs, ( )j
Y

yF j  and ( )j
Y yF j  (i.e., the plausibility and belief functions, 582 

( ]( )j
Y yPl j ,∞−  and ( ]( )j

Y yBel j ,∞− , respectively), j = 1, 2, 3, 4, of Y1 = Q (top left column), Y2 = Zm 583 

(top right column), Y3 = Zv (bottom left column) and Y4 = Ks (bottom right column) before (solid 584 

lines) and after the Bayesian update performed by Approaches A (dashed lines) and B (dot-dashed 585 
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lines). The calculation of CDFs is of great importance in risk assessment since they summarize the 586 

uncertainty “contained” in the variables of interest. 587 

 588 

Fig. 5 589 

 590 

Obviously, the gap between the plausibility and belief functions ( ]( )j
Y yPl j ,∞−  = ( )j

Y yF j  and 591 

( ]( )j
Y yBel j ,∞−  = ( )j

Y yF j , j = 1, 2, 3, 4, is larger before the Bayesian update in all the cases 592 

considered: in particular, the ‘prior’ CDFs (solid lines) completely envelop the ‘posterior’ ones 593 

(dashed and dot-dashed lines). This larger gap is explained by the larger area contained under the 594 

possibility distribution functions of the corresponding epistemically-uncertain parameters (actually, 595 

as highlighted before, the larger the area, the higher the imprecision in the knowledge of the 596 

possibilistic parameters). 597 

Then, in order to provide a fair and quantitative comparison between the two approaches adopted, 598 

the intervals [ ] ( )

 −

β
1

jYF , [ ] ( )]β
1−

jYF  for the β·100-th percentiles β
jY , β = 0.05, 0.50 and 0.95, of the 599 

variables Yj, j = 1, 2, 3, 4, are computed (Table 4). For example, analyzing βQ , β = 0.05, 0.50 and 600 

0.95, it can be seen that the width of the intervals is reduced by 30.54‒40.34% and 29.88‒43.29% 601 

by Approaches A and B, respectively: coherently with the results reported in Table 3, when a large 602 

data set is available (i.e., D1 = 149 in this case) the strength of Approach B in reducing the 603 

epistemic uncertainty is slightly (i.e., 2-3%) higher than that of Approach A. On the contrary, 604 

analyzing β
sK , β = 0.05, 0.50 and 0.95, it is evident that the width of the intervals is reduced of 605 

25.30-30.80% and 5.74-19.45% by Approaches A and B, respectively: as highlighted before (Table 606 

3), when a small data set is available (i.e., D4 = 5 in this case) the power of Approach A in reducing 607 

epistemic uncertainty is consistently (i.e., 15-20%) higher than that of Approach B. This is 608 

confirmed also by the analysis of the quantiles of Y2 = Zm and Y3 = Zv (see Table 4). 609 

 610 
Table 4. 611 
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 612 

Comparable conclusions can be drawn by the analysis of the upper and lower CDFs ( )c
Z zF c  and 613 

( )c
Z zF c  (i.e., the plausibility and belief functions, ( ]( )c

Z zPl c ,∞−  and ( ]( )c
Z zBel c ,∞− , 614 

respectively), of the maximal water level of the river Zc (i.e., the model output) obtained before 615 

(Fig. 6, solid lines) and after the Bayesian update performed by Approaches A (Fig. 6, dashed lines) 616 

and B (Fig. 6, dot-dashed lines). Notice that the distributions for Zc have been obtained by 617 

propagating the two-level mixed probabilistic and possibilistic uncertainty through the 618 

mathematical model by means of a hybrid Monte Carlo (MC) and Fuzzy Interval Analysis (FIA) 619 

approach. This method combines the MC technique [Kalos and Withlock, 1986] with the extension 620 

principle of fuzzy set theory [Guyonnet et al., 2003; Kentel and Aral, 2004 and 2007] in two 621 

hierarchical, repeated steps [Baudrit et al., 2008; Kentel and Aral, 2005; Moller and Beer, 2004 and 622 

2008; Moller et al., 2003 and 2006; Pedroni and Zio, 2012; Pedroni et al., 2013]: the reader is 623 

referred to the cited references for details. Again, in order to provide a fair comparison between the 624 

two approaches employed, proper quantitative indicators are computed. The final goal of the case 625 

study presented in the previous Section is to determine (i) the dike level necessary to guarantee a 626 

given flood return period or (ii) the flood risk for a given dike level. With respect to issue (i) above, 627 

the quantity of interest that is most relevant to the decision maker is the β·100%-th quantile of Zc 628 

(i.e., β
cZ ): this corresponds to the yearly maximal water level with a β·100-year return period. With 629 

respect to issue (ii) above, the quantity of interest that is most relevant to the decision maker is the 630 

probability that the maximal water level of the river cZ  exceeds a given threshold *z , i.e., 631 

*][ cc zZP ≥ : in the present paper, *cz  = 55.5 m (Table 5). Analyzing the intervals [[ ] ( )β1−
cZF , 632 

[ ] ( )β
1−

cZF ] for the percentiles β
cZ , β = 0.05, 0.50 and 0.95, and the intervals 633 

[ ( )*1 c
Z zF c− , ( )*1 c

Z zF c− ] for the exceedance probability P[Zc > zc*], it can be seen that their width is 634 

reduced of 28.14‒38.63% and 16.88‒29.23% by Approaches A and B, respectively (i.e., the 635 
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strength of Approach A in reducing epistemic uncertainty is about 4-11% higher than that of 636 

Approach B). 637 

 638 

Fig. 6. 639 

 640 
Table 5. 641 

 642 

Several considerations are in order with respect to the results obtained. When the Bayesian update is 643 

performed based on a data set of large size (e.g., > 100 in this case), the difference in the behavior 644 

of the two approaches is quite low. This demonstrates that although the two methods are 645 

conceptually and algorithmically quite different, in presence of a “strong” experimental evidence 646 

they produce “coherent” results (i.e., posterior possibility distributions that bear the same overall 647 

“uncertainty content”): this is a fair outcome since the results provided by the two methods are 648 

expected to be more and more similar (i.e., more and more coherent with the experimental 649 

evidence) as the size of the data set increases (experts and practitioners may find a similarity and 650 

parallelism between these results and those obtained in purely probabilistic, graphical Bayesian 651 

models [Gelman et al., 2004]; in particular, see references concerning approaches used to “borrow 652 

strength” in (Hierarchical) Bayesian analyses [Atwood et al., 2003; Kelly and Smith, 2009 and 653 

2011]). Instead, when the Bayesian update is performed on a data set of small-medium size (e.g., ≈ 654 

5-30 in this case), the strength of Approach A in reducing epistemic uncertainty is significantly 655 

higher than that of Approach B. This can be explained as follows. In Approach A the purely 656 

possibilistic likelihood (i.e., the function “containing” the experimental evidence available) has a 657 

direct and strong influence on the purely possibilistic prior (actually, they are directly multiplied in 658 

(1)); on the contrary, in Approach B the purely probabilistic likelihood has a direct influence only 659 

on the (fictitious) probabilistic distributions that are superimposed onto the prior possibilistic 660 

parameters: this “artificial” procedure may in practice “soften” (i.e., reduce) the effect of the newly 661 

available information (i.e., of the data) in the revision of the possibilistic priors (obviously, this 662 
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effect is expected to be more evident if the amount of data, i.e., the strength of the experimental 663 

evidence, is small). In such cases, embracing one method instead of the other may significantly 664 

change the outcome of a decision making process in a risk assessment problem involving 665 

uncertainties: this is of paramount importance in systems that are critical from the safety view point, 666 

e.g., in the nuclear, aerospace, chemical and environmental fields. 667 

Finally, it is absolutely important to acknowledge that even if the strength of one method (i.e., A in 668 

this case) in reducing epistemic uncertainty is higher than that of the other one (i.e., B in this case), 669 

this does not necessarily imply that one method is “better” or “more effective” than the other 670 

overall. Actually, if on one side a consistent reduction in the epistemic uncertainty is in general 671 

desirable in decision making processes related to risk assessment problems (since it significantly 672 

increases the analyst’s confidence in the decisions), on the other side this reduction must be 673 

coherent with the amount of information available. In this view, an objection may arise in the 674 

present case: is the remarkable strength of Approach A in reducing epistemic uncertainty (with very 675 

few pieces of data) fully justified by such a small amount of data? In other words, is this 676 

considerable reduction of epistemic uncertainty coherent with the strength of the experimental 677 

evidence or is it too optimistic? These issues will be thoroughly discussed in the following 678 

dedicated Section. 679 

 680 

Finally, in addition to the strength of the approaches in revising the (prior) possibilistic description 681 

of the uncertain parameters of aleatory variables, also the computational time associated to the 682 

methods has to be taken into account. Table 6 reports the computational time tcomp required by the 683 

Bayesian update of all the parameters of the PDFs of Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks performed 684 

by Approach A and by Approach B (with T = 100 repetitions of the purely probabilistic Bayes’ 685 

theorem for each of the Nα = 21 α-cuts analyzed). Obviously, the computational time required by 686 

Approach B is approximately T·Nα (i.e., T·Nα = 100·21 = 2100 in this case) times larger than that of 687 

Approach A. On the other hand, notice that since Approach B is based on several repetitions of the 688 
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purely probabilistic Bayes’ theorem, if possible, parallelization could be in principle employed to 689 

reduce the associated computational cost. 690 

 691 
Table 6. 692 

 693 

Discussion of the results and comparison of the approaches 694 

The results of the comparisons performed in the previous Sections can be summarized as follows: 695 

• both methods succeed in updating the possibilistic description of the epistemically-uncertain 696 

parameters of (aleatory) probability distributions by means of data. This is highlighted by 697 

the fact that in most cases the posterior possibility distributions produced by the two 698 

approaches are significantly different from the corresponding priors. In particular: 699 

� the most likely values of the parameters (i.e., those values in correspondence of 700 

which the possibility function equals 1) are moved towards the point estimates of the 701 

parameters obtained by the classical, purely probabilistic MLE method; 702 

� the area underlying the posterior possibility distributions is consistently lower than 703 

that of the priors: since this area is related to the imprecision in the knowledge of the 704 

possibilistic parameter (i.e., the larger the area, the higher the imprecision), it can be 705 

concluded that both approaches succeed in reducing the epistemic uncertainty in the 706 

possibilistic parameters of the aleatory probability distributions. This is also 707 

confirmed by the reduction of the gap between the upper and lower CDFs (i.e., the 708 

plausibility and belief functions) of the corresponding aleatory variables; 709 

• when the Bayesian update is performed using a data set of large size (e.g., > 100), the 710 

strength of the two approaches in reducing the epistemic uncertainty is quite similar. By 711 

way of example, in the case study considered Approaches A and B reduce the areas 712 

underlying the possibility distributions of the uncertain parameters by 25.56-30.49% and 713 

28.74-33.01%, respectively. This demonstrates that although the two methods are 714 
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conceptually and algorithmically quite different, in presence of a “strong” experimental 715 

evidence they produce “coherent” results (i.e., possibility distributions that bear almost the 716 

same overall “uncertainty content”): this is a fair outcome since the it is “desired” that both 717 

methods provide results that become more and more similar (i.e., that become more and 718 

more coherent with the experimental evidence) as the size of the data set increases; 719 

• the strength of the purely possibilistic approach (A) in reducing epistemic uncertainty is 720 

consistently higher than that of the hybrid one (B) in presence of medium- and small-sized 721 

data sets (e.g., ≈ 5-30) (which is often the case in the risk analysis of complex safety-critical 722 

systems). For example, the width of the intervals for the quantiles of the variables of interest 723 

is reduced by 25.30-30.80% and 5.74-19.45% by Approaches A and B, respectively. This 724 

significantly different behavior is explained by the fact that in Approach A the (purely 725 

possibilistic) likelihood has an immediate and strong influence on the (purely possibilistic) 726 

prior (i.e., they are directly multiplied); on the contrary, in Approach B the (purely 727 

probabilistic) likelihood has a direct influence only on the (fictitious) probabilistic function 728 

that is superimposed onto the possibilistic parameter (subject to the Bayesian update): this 729 

“artificial” procedure could in practice weaken the effect of the newly available information 730 

(i.e., the data) in the revision of the possibilistic prior (this effect is expected to be more 731 

evident if the amount of data, i.e., the strength of the experimental evidence, is small). 732 

As highlighted above, the fact that the power of Approach A in reducing epistemic 733 

uncertainty is higher than that of Approach B does not necessarily imply that one method is 734 

“better” or “more effective” than the other overall. For example, by hypothesis the 735 

remarkable strength of Approach A in reducing epistemic uncertainty by means of very few 736 

pieces of data (e.g., 5-30 in this case) might not be coherent with the “real” strength of such 737 

a scarce experimental evidence and could be accidentally due to some bias in the procedure. 738 

With respect to that, it has to be admitted that the uncertainty reduction power of the purely 739 

possibilistic approach (A) is strongly dependent on the shape of a constructed possibilistic 740 
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likelihood that could in principle bias the analysis. However: (i) in the present paper, this 741 

possibilistic function is very closely related to the classical, purely probabilistic one (which 742 

is theoretically well-grounded) by a simple and direct operation of normalization that 743 

preserves the “original structure” of the experimental evidence; (ii) the operation of 744 

normalization of the probabilistic likelihood finds also some theoretical justification in the 745 

work by [Denoeux, 2014]; (iii) in general, a probability-to-possibility transformation 746 

(properly performed according to the rules of possibility theory) always introduces 747 

additional artificial epistemic uncertainty into the analysis, i.e., it does not artificially reduce 748 

it (because it replaces a single probabilistic distribution by a family of distributions) [Dubois 749 

et al., 1993, 2004 and 2008; Flage et al., 2010 and 2013]. On the basis of considerations (i)-750 

(iii) above, it seems unlikely that the purely possibilistic approach (A) may produce results 751 

that are dangerously over-optimistic with respect to those of the hybrid one (B). On the other 752 

hand, future research should be devoted to the study and development of rigorous, 753 

generalized methods for Bayesian model comparison and validation in a purely possibilistic 754 

framework, in order to complement and strengthen the conclusions drawn by means of the 755 

metrics originally introduced in the present manuscript: in this light, techniques from the 756 

classical, purely probabilistic field may serve as inspiring references [Gelman et al., 1996; 757 

Bayarri and Berger, 1999 and 2000; Johnson Valen, 2004]; 758 

• the computational time required by the hybrid approach (B) is consistently higher than that 759 

associated to the purely possibilistic one (A): this is explained by the necessity of repeatedly 760 

applying many times the purely probabilistic Bayes’ theorem for each α-cut analyzed. More 761 

precisely, the application of method A just requires one single evaluation of the purely 762 

possibilistic Bayes’ formula; on the other hand, approach B entails repeating T·Nα times the 763 

classical probabilistic Bayes’ theorem. In this respect, notice that Nα (i.e., the number of α-764 

cuts processed) is typically of the order of 10 [Baudrit et al., 2006], whereas T (i.e., the 765 

number of parameter values selected to explore each α-cut) cannot be in principle prescribed 766 



 33

a priori: however, it needs to be large enough to thoroughly explore each dimension of the 767 

epistemic parameter space (at least 10 values should be selected for each parameter); 768 

• both methods relies on assumptions about either the prior or the likelihood functions: in the 769 

purely possibilistic approach (A) the “original” possibilistic prior is employed, but a 770 

possibilistic likelihood function has to be constructed (e.g., by probability-possibility 771 

transformations or directly from rough experimental data); instead, in the hybrid method (B) 772 

the original probabilistic likelihood function is used, but a “fictitious” prior Fuzzy 773 

Probability Distribution Function needs to be identified by superimposing an arbitrarily 774 

selected probabilistic PDF onto the “original” possibilistic prior that has to be updated. 775 

 776 

Based on these findings, the advantages and drawbacks of the two approaches are summarized in 777 

the following Table 7. 778 

 779 
Table 7. 780 

 781 

Conclusions 782 

In this paper, we have considered two methods for the Bayesian update of the possibilistic 783 

parameters of aleatory probability distributions, with exemplification on a case study concerning the 784 

risk-based design of a flood protection dike. The first method considered is based on a purely 785 

possibilistic counterpart of the classical probabilistic Bayes’ theorem; the second is a hybrid 786 

(probabilistic and possibilistic) method combining Fuzzy Interval Analysis and the classical 787 

probabilistic Bayes’ theorem. 788 

The findings of the work show that in general adopting different methods may generate different 789 

results and possibly different decisions in risk problems involving uncertainties: this is of 790 

paramount importance in systems that are critical from the safety viewpoint, e.g., in the nuclear, 791 

aerospace, chemical and environmental fields. 792 
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In particular, on the basis of the results obtained, it seems advisable to suggest the use of the purely 793 

possibilistic approach (instead of the hybrid one) for the following reasons: (i) its strength in 794 

reducing epistemic uncertainty is significantly higher, in particular when the amount of available 795 

data is small: this is important in decision making processes since reducing epistemic uncertainty 796 

significantly increases the analyst confidence in the decisions; (ii) the computational time required 797 

is consistently lower. 798 

However, it has to be remarked that the construction of a possibilistic likelihood required by the 799 

purely possibilistic method, although recently tacked in the literature, still represents an issue to be 800 

further investigated from both the theoretical and practical viewpoint in order to avoid introducing 801 

biases in the analysis and to suggest the application of the approach for real risk assessment 802 

problems: with respect to that, future research will be devoted to the investigation of additional 803 

methods developed to this aim. Also, future studies will be aimed at developing generalized 804 

methods for Bayesian model comparison and validation in a purely possibilistic framework, in order 805 

to complement and strengthen the conclusions drawn by means of the metrics originally introduced 806 

in the present manuscript. 807 

808 
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Figure captions list 1127 
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Fig. 1. Top left: triangular possibility distribution )(γπ γ  of the epistemically-uncertain parameter 1129 

γ of the Gumbel probability distribution of Y; in evidence the α-cuts of level α = 0, 0.5 and 1. 1130 

Top right: four PDFs belonging to the family ( ){ }
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δγypY  and four PDFs belonging to the 1131 
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δγypY . Bottom: bounding upper and lower CDFs of Y, ( ) ( )ZPlyF YY
αα =  and 1132 

( ) ( )ZBelyF YY
αα = , Z = (‒∞, y], built in correspondence of the α-cuts of level α = 0, 0.5 and 1 1133 

of )(γπ γ ; the plausibility and belief functions ( )ZPlY  and ( )ZBelY , Z = (‒∞, y], are also 1134 

shown 1135 

 1136 

Fig. 2. Identification of the P-dimensional α-cut yθ|
αA  of the posterior possibility distribution of θ as 1137 

the hull enveloping T = 20 point estimates yθ |,αl , l = 1, 2, …, 20 (dots), generated by the 1138 

repeated application of the Bayes’ theorem in the hybrid probabilistic-possibilistic approach 1139 

(B), in the particular case of P = 2 parameters θ1 and θ2. The corresponding α-cut y|,
,

21 θ
α
θ

CartA  1140 

generated by the Cartesian product of the (one-dimensional) α-cuts y|1θAα  and y|2θAα  of the 1141 

marginal possibility distributions is also shown 1142 

 1143 

Fig. 3. Prior and posterior possibility distributions of the epistemically-uncertain parameters of the 1144 

aleatory PDFs of Y1 = Q (top row, left and right column), Y2 = Zm (middle-top row, left and 1145 

right column), Y3 = Zv (middle-bottom row, left and right column) and Y4 = Ks (bottom row, 1146 

left and right column). The point estimates of the parameters obtained by the classical MLE 1147 

method are also shown for comparison. Adapted and extended from [Pedroni et al., 2014] 1148 

 1149 
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Fig. 4. Exemplary α-cuts of level α = 0.05, 0.50 and 0.95 of the joint posterior possibility 1150 

distributions of the parameters of the PDFs of Y1 = Q (top left), Y2 = Zm (top right), Y3 = Zv 1151 

(bottom left) and Y4 = Ks (bottom right), produced by Approaches A (solid lines) and B 1152 

(dashed lines) 1153 

 1154 

Fig. 5. Upper and lower CDFs, ( )j
Y yF j  and ( )j

Y yF j , j = 1, 2, 3, 4, of the uncertain input variables 1155 

Y1 = Q (top left), Y2 = Zm (top right), Y3 = Zv (bottom left) and Y4 = Ks (bottom right) before 1156 

and after the Bayesian update performed by Approaches A and B 1157 

 1158 

Fig. 6. Plausibility and belief functions, ( ]( )c
Z zPl c ,∞−  and ( ]( )c

Z zBel c ,∞− , of the maximal water 1159 

level of the river Zc before and after the Bayesian update performed by Approaches A and B. 1160 

Adapted and extended from [Pedroni et al., 2014] 1161 

 1162 
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of )(γπ γ ; the plausibility and belief functions ( )ZPlY  and ( )ZBelY , Z = (‒∞, y], are also 1173 

shown 1174 

1175 
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 1176 

Fig. 2. Identification of the P-dimensional α-cut yθ|
αA  of the posterior possibility distribution of θ as 1177 

the hull enveloping T = 20 point estimates yθ |,αl , l = 1, 2, …, 20 (dots), generated by the 1178 

repeated application of the Bayes’ theorem in the hybrid probabilistic-possibilistic approach 1179 

(B), in the particular case of P = 2 parameters θ1 and θ2. The corresponding α-cut y|,
,

21 θ
α
θ

CartA  1180 

generated by the Cartesian product of the (one-dimensional) α-cuts y|1θAα  and y|2θAα  of the 1181 

marginal possibility distributions is also shown 1182 

1183 
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Fig. 3. Prior and posterior possibility distributions of the epistemically-uncertain parameters of the 1189 

aleatory PDFs of Y1 = Q (top row, left and right column), Y2 = Zm (middle-top row, left and 1190 

right column), Y3 = Zv (middle-bottom row, left and right column) and Y4 = Ks (bottom row, 1191 

left and right column). The point estimates of the parameters obtained by the classical MLE 1192 

method are also shown for comparison. Adapted and extended from [Pedroni et al., 2014] 1193 

1194 
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Fig. 4. Exemplary α-cuts of level α = 0.05, 0.50 and 0.95 of the joint posterior possibility 1198 

distributions of the parameters of the PDFs of Y1 = Q (top left), Y2 = Zm (top right), Y3 = Zv 1199 

(bottom left) and Y4 = Ks (bottom right), produced by Approaches A (solid lines) and B 1200 

(dashed lines) 1201 

1202 
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Fig. 5. Upper and lower CDFs, ( )j
Y yF j  and ( )j

Y yF j , j = 1, 2, 3, 4, of the uncertain input variables 1206 

Y1 = Q (top left), Y2 = Zm (top right), Y3 = Zv (bottom left) and Y4 = Ks (bottom right) before 1207 

and after the Bayesian update performed by Approaches A and B 1208 

1209 
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 1210 

Fig. 6. Plausibility and belief functions, ( ]( )c
Z zPl c ,∞−  and ( ]( )c

Z zBel c ,∞− , of the maximal water 1211 

level of the river Zc before and after the Bayesian update performed by Approaches A and B. 1212 

Adapted and extended from [Pedroni et al., 2014] 1213 

1214 
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Tables 1215 

 1216 

 Purely possibilistic method (A) Hybrid probabilistic-possibilistic method 
(B) 

Prior  Possibility distribution  Fuzzy Probability Distribution Function  

Likelihood  
Possibility distribution: 
   - Probability-possibility transformation in this 
paper (e.g., normalization: see also [Denoeux, 2014])  

Probabilistic function 

Posterior  Possibility distribution  
Fuzzy Probability Distribution Function: 
     - Expected value: possibility distribution  

Table 1. Characteristics of the purely possibilistic (A) and the hybrid probabilistic and possibilistic 1217 

(B) approaches 1218 

1219 



 58

 1220 

  Purely possibilistic method (Approach A) 
Aleatory uncertainty Epistemic uncertainty (Purely possibilistic priors) 

Q ( )δγ ,Gum  
)(γπ γ  = TR(aγ, cγ, bγ) = TR(869, 955, 1157) 

)(δπ δ  = TR(aδ, cδ, bδ) = TR(455, 600, 660) 

Zm )( ZmZmN σµ ,  
)( Zm

Zm µπ µ  = TR(
Zm

aµ , 
Zm

cµ , 
Zm

bµ ) = TR(54.78, 54.93, 55.28) 

)( Zm
Zm σπ σ  = TR(

Zm
aσ , 

Zm
cσ , 

Zm
bσ ) = TR(0.33, 0.51, 0.58) 

Zv )( ZvZvN σµ ,  
)( Zv

Zv µπ µ  = TR(
Zv

aµ , 
Zv

cµ , 
Zv

bµ ) = TR(49.98, 50.11, 50.40) 

)( Zv
Zv σπ σ  = TR(

Zv
aσ , 

Zv
cσ , 

Zv
bσ ) = TR(0.23, 0.45, 0.54) 

Ks )( KsKsN σµ ,  
)(

s

s

K

K µπ  = TR(
Ks

aµ , 
Ks

cµ , 
Ks

bµ ) = TR(21.37, 25.23, 34.23) 

)( Ks
Ks σπ σ  = TR(

Ks
aσ , 

Ks
cσ , 

Ks
bσ ) = TR(1.16, 6.91, 9.37) 

 
 Hybrid probabilistic-possibilistic method (Approach B) 

Aleatory uncertainty 
Epistemic uncertainty (Fuzzy Probability Density Functions - FPDFs) 

Probabilistic part Possibilistic part 

Q ( )δγ ,Gum  

)(γγp  = ( )γγ σµ ,N  
)( γ

µ µπ γ  = TR(
γµa , 

γµc , 
γµb ) = TR(869, 955, 1157), 

)( γ
σ σπ γ  = TR(

γσa , 
γσc , 

γσb ) = TR(39, 52, 57) 

)(δδp  = ( )δδ σµ ,N  
)( δ

µ µπ δ  = TR(
δµa , 

δµc , 
δµb ) = TR(455, 600, 660) 

)( δ
σ σπ δ  = TR(

δσa , 
δσc , 

δσb ) = TR(25, 31, 43) 

Zm )( ZmZmN σµ ,  

)( Zm
Zmp µµ  = ( )

ZmZm
N µµ σµ ,  

)(
Zm

Zm

µ
µ µπ µ  = TR(

Zm

a
µµ , 

Zm

c
µµ , 

Zm

b
µµ ) = TR(54.78, 54.93, 55.28) 

)(
Zm

Zm

µ
σ σπ µ  = TR(

Zm

a
µσ , 

Zm

c
µσ , 

Zm

b
µσ ) = TR(0.06, 0.09, 0.11) 

)( Zm
Zmp σσ  = ( )

ZmZm
N σσ σµ ,  

)(
Zm

Zm

σ
µ µπ σ  = TR(

Zm

a
σµ , 

Zm

c
σµ , 

Zm

b
σµ ) = TR(0.33, 0.51, 0.58) 

)(
Zm

Zm

σ
σ σπ σ  = TR(

Zm

a
σσ , 

Zm

c
σσ , 

Zm

b
σσ ) = TR(0.03, 0.04, 0.06). 

Zv )( ZvZvN σµ ,  

)( Zv
Zvp µµ  = ( )

ZvZv
N µµ σµ ,  

)(
Zv

Zv

µ
µ µπ µ  = TR(

Zv

a
µµ , 

Zv

c
µµ , 

Zv

b
µµ ) = TR(49.98, 50.11, 50.40) 

)(
Zv

Zv

µ
σ σπ µ  = TR(

Zv

a
µσ , 

Zv

c
µσ , 

Zv

b
µσ ) = TR(0.04, 0.08, 0.10), 

)( Zv
Zvp σσ  = ( )

ZvZv
N σσ σµ ,  

)(
Zv

Zv

σ
µ µπ σ  = TR(

Zv

a
σµ , 

Zv

c
σµ , 

Zv

b
σµ ) = TR(0.23, 0.45, 0.54) 

)(
Zv

Zv

σ
σ σπ σ  = TR(

Zv

a
σσ , 

Zv

c
σσ , 

Zv

b
σσ ) = TR(0.02, 0.04, 0.08) 

Ks )( KsKsN σµ ,  

)( Ks
Ksp µµ  = ( )

KsKs
N µµ σµ ,  

)(
Ks

Ks

µ
µ µπ µ  = TR(

Ks

a
µµ ,

Ks

c
µµ ,

Ks

b
µµ ) = TR(21.37, 25.23, 34.23) 

)(
Ks

Ks

µ
σ σπ µ  = TR(

Ks

a
µσ ,

Ks

c
µσ ,

Ks

b
µσ ) = TR(0.50, 2.80, 3.79) 

)( Ks
Ksp σσ  = ( )

KsKs
N σσ σµ ,  

)(
Ks

Ks

σ
µ µπ σ  = TR(

Ks

a
σµ ,

Ks

c
σµ ,

Ks

b
σµ ) = TR(1.16, 6.91, 9.37) 

)(
Ks

Ks

σ
σ σπ σ  = TR(

Ks

a
σσ ,

Ks

c
σσ ,

Ks

b
σσ ) = TR(0.10, 0.86, 2.64) 

Table 2. Characteristics and parameters of the prior distributions of the uncertain variables Y1 = 1221 

Q, Y2 = Zm, Y3 = Zv and Y4 = Ks used in Approaches A and B, respectively 1222 

 1223 

1224 
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 1225 

 Marginal possibility distributions update 
Most likely value, cθ (dθ

MLE) Area, Sθ (Rθ) 
Variable θ MLE MLEθ̂  Prior Posterior A Posterior B Prior Posterior A Posterior B 

Q [m3/s] 
γ 1013.21 955.55 1002.70 (0.010) 990.42 (0.023) 144.65 100.55 (30.49) 96.90 (33.01) 
δ 558.48 599.15 566.35 (0.014) 581.40 (0.041) 103.35 76.94 (25.56) 73.65 (28.74) 

Zm [m] 
µZm 55.03 54.93 55.00 (5.45e-4) 54.98 (9.09e-4) 0.25 0.190 (24.00) 0.195 (22.00) 
σZm 0.45 0.51 0.47 (0.044) 0.50 (0.111) 0.12 0.110 (8.33) 0.115 (4.17) 

Zv [m] 
µZv 50.19 50.11 50.17 (3.98e-4) 50.15 (7.97e-4) 0.21 0.165 (21.43) 0.170 (19.05) 
σZv 0.38 0.45 0.39 (0.026) 0.43 (0.132) 0.16 0.121 (24.38) 0.125 (21.88) 

Ks [/] 
µKs 27.80 25.24 26.95 (0.031) 26.43 (0.049) 6.45 5.40 (16.28) 5.80 (10.08) 
σKs 5.26 6.89 5.54 (0.053) 6.72 (0.278) 4.11 3.75 (8.76) 3.95 (3.89) 

Table 3. Most likely values cθ of the parameters θ = γ , δ , Zmµ , Zmσ , Zvµ , Zvσ , 
sKµ  and Ksσ  of 1226 

the aleatory PDFs of the input variables Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks and areas Sθ 1227 

underlying the corresponding (marginal) possibility distributions before and after the 1228 

Bayesian update performed by Approaches A and B. The point estimates MLEθ̂  obtained by 1229 

the classical MLE method are also shown for comparison together with the values of the 1230 

quantitative indicators MLEdθ  (5) and Rθ (6) (in parentheses). Adapted and extended from 1231 

[Pedroni et al., 2014] 1232 

1233 
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 1234 

INPUT VARIABLES 

Variable Indicator Prior 
Purely possibilistic approach (A) 

(% width reduction) 
Hybrid approach (B) 
(% width reduction) 

Y1 = Q 
Q0.05 [284.8, 480.9] [329.3, 446.3] (0.4033) [322.9, 434.1] (0.4329) 
Q0.50 [1110.5, 1295.5] [1143.6, 1269.1] (0.3216) [1145.5, 1263.7] (0.3610) 
Q0.95 [2478.2, 2917.3] [2553.4, 2857.9] (0.3065) [2571.1, 2879.0] (0.2987) 

Y2 = Zm 
Zm

0.05 [53.98, 54.36] [54.09, 54.37] (0.2631) [54.06, 54.36] (0.2105) 
Zm

0.50 [54.85, 55.12] [54.92, 55.09] (0.4074) [54.93, 55.12] (0.2592) 
Zm

0.95 [55.56, 56.02] [55.66, 55.96] (0.3478) [55.67, 55.99] (0.3043) 

Y3 = Zv 
Zv

0.05 [49.22, 49.64] [49.35, 49.64] (0.3095) [49.29, 49.62] (0.2142) 
Zv

0.50 [50.04, 50.29] [50.10, 50.25] (0.4000) [50.10, 50.27] (0.3199) 
Zv

0.95 [50.63, 51.09] [50.72, 51.00] (0.3913) [50.72, 51.06] (0.2608) 

Y4 = Ks 
Ks

0.05 [10.95, 22.33] [12.75, 21.25] (0.2530) [11.15, 20.38] (0.1889) 
Ks

0.50 [23.49, 31.15] [24.43, 29.73] (0.3080) [24.05, 30.22] (0.1945) 
Ks

0.95 [32.66, 44.14] [33.01, 41.40] (0.2691) [33.32, 44.14] (0.0574) 

Table 4. Intervals [ ] ( )

 −

β
1

jY
F , [ ] ( )]β

1−
jYF  for the β·100-th percentiles β

jY , β = 0.05, 0.50 and 0.95, 1235 

of the input variables Yj, j = 1, 2, 3, 4, before and after the Bayesian update performed by 1236 

Approaches A and B. The percentage reduction in the width of the intervals produced by 1237 

Approaches A and B is also shown in parentheses for comparison purposes 1238 

 1239 
1240 
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 1241 

OUTPUT VARIABLE Zc 

Variable Indicator Prior 
Purely possibilistic approach (A) 

(% width reduction) 
Hybrid approach (B) 
(% width reduction) 

Zc 

Zc
0.05 [50.70, 51.67] [50.90, 51.56] (0.3196) [50.84, 51.53] (0.2887) 

Zc
0.50 [52.16, 53.46] [52.38, 53.23] (0.3462) [52.36, 53.28] (0.2923) 

Zc
0.95 [54.13, 56.44] [54.21, 55.87] (0.2814) [54.28, 56.20] (0.1688) 

P[Zc > zc*] [0.8908, 0.9946] [0.9284, 0.9921] (0.3863) [0.9103, 0.9946] (0.1879) 

Table 5. Intervals [ ] ( )[ β1−
cZPl , [ ] ( )]β1−

cZBel  for the β·100-th percentiles β
cZ , β = 0.05, 0.50 and 1242 

0.95, of the maximal water level of the river Zc (i.e., the model output) and intervals 1243 

[ ( )*1 c
Z zF c− , ( )*1 c

Z zF c− ] for the exceedance probability P[Zc > zc* = 55.5m], before and 1244 

after the Bayesian update performed by Approaches A and B. The percentage reduction in the 1245 

width of the intervals produced by Approaches A and B is also shown in parentheses for 1246 

comparison purposes. Adapted and extended from [Pedroni et al., 2014] 1247 

1248 
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 1249 

Approach A Approach B (T = 100, Nα = 21) 
Computational time tcomp [s] on a Intel® Core™2 
Duo CPU E7600 @ 3.06 and 3.07 GHz  

0.73 1536.65 

Table 6. Computational time tcomp required by the Bayesian update of all the parameters of the 1250 

PDFs of Y1 = Q, Y2 = Zm, Y3 = Zv and Y4 = Ks performed by Approach A and by Approach B 1251 

with T = 100 repetitions of the purely probabilistic Bayes’ theorem for each of the Nα = 21 α-1252 

cuts analyzed 1253 

1254 
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 1255 

 Purely possibilistic approach (A) Hybrid probabilistic-possibilistic approach 
(B) 

Advantages 

- High strength in updating the possibilistic 
parameters independently on the size of the data 
set available  
- Computationally cheap  

- Well-established and rigorous theoretical framework 
(i.e., probabilistic Bayes’ theorem) 

Drawbacks 

- Necessity to “build” a possibilistic likelihood 
(e.g., by probability-possibility transformations, 
normalization  or directly from rough 
experimental data) 

- Necessity to “build” a (fictitious) Fuzzy Probability 
Distribution Functions as a prior 
- High strength in updating the possibilistic parameters 
only when the size of the data set available is large 
(e.g., > 100) 
- Computationally burdensome  

Table 7. Advantages and drawbacks of the purely possibilistic (A) and the hybrid probabilistic and 1256 

possibilistic (B) approaches 1257 

 1258 
 1259 


