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Introduction

We consider a framework of uncertainty representation with two hierarchical levels [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF], in which risk analysis models of aleatory (i.e., random) events (e.g., failures) contain parameters (e.g., probabilities, failure rates, …) that are epistemically-uncertain, i.e., known with poor precision due to lack of knowledge and information. Traditionally, both types of uncertainty are represented by probability distributions [START_REF] Apostolakis | Pitfalls in risk calculations[END_REF][START_REF] Apostolakis | The concept of probability in safety assessment of technological systems[END_REF]NUREG-CR-6850, 2005;[START_REF] Usnrc | An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis[END_REF]2009;NASA, 2010] and Bayes' rule is useful for updating the (probabilistic) epistemic uncertainty representation as new information (e.g., data) becomes available [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Siu | Bayesian parameter estimation in probabilistic risk assessment[END_REF][START_REF] Lindley | The philosophy of statistics[END_REF]2006;[START_REF] Bedford | Probabilistic Risk Analysis. Foundations and Methods[END_REF][START_REF] Atwood | Handbook of Parameter Estimation for Probabilistic Risk Assessment[END_REF]Kelly and[START_REF] Kelly | Bayesian inference in probabilistic risk assessment -The current state of the art[END_REF]2011;[START_REF] Pasanisi | Estimation of a quantity of interest inuncertainty analysis: Some help from Bayesian decision theory[END_REF].

However, in some situations, insufficient knowledge, information and data impair a probabilistic representation of epistemic uncertainty. A number of alternative representation frameworks have been proposed for such cases [START_REF] Aven | On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability[END_REF]2011;Aven and Steen, 2010;[START_REF] Aven | Some considerations on the treatment of uncertainties in risk assessment for practical decision making[END_REF][START_REF] Flage | Alternative representations of uncertainty in reliability and risk analysis -review and discussion[END_REF]Beer et al., 2013b and2014b;[START_REF] Zhang | Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method[END_REF], e.g., e.g., fuzzy set theory [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF], fuzzy probabilities [START_REF] Buckley | Fuzzy probabilities -new approach and applications[END_REF]Beer, 2009b;[START_REF] Pannier | Solutions to problems with imprecise data" -An engineering perspective to generalized uncertainty models[END_REF], random set theory [START_REF] Molchanov | Theory of Random Sets[END_REF], evidence theory [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF][START_REF] Gelman | Bayesian data analysis[END_REF][START_REF] Helton | A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[END_REF]2008;[START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF]Le Duy et al., 2013;Sallak et al., 2013], possibility theory (that can be considered a special case of evidence theory) [Baudrit and Dubois, 2006;Baudrit et al., 2006 and2008;[START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF][START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF], probability bound analysis using probability boxes (p-boxes) [Ferson and Ginzburg, 1996;[START_REF] Crespo | Reliability analysis of polynomial systems subject to p-box uncertainties[END_REF][START_REF] Mehl | P-boxes for cost uncertainty analysis[END_REF], interval analysis [Ferson and Hajagos, 2004;[START_REF] Ferson | Sensitivity in risk analyses with uncertain numbers[END_REF][START_REF] Ferson | Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty[END_REF]2010;[START_REF] Jalal-Kamali | Estimating correlation under interval uncertainty[END_REF][START_REF] Muscolino | Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters[END_REF][START_REF] Zhang | Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method[END_REF] and interval probabilities [START_REF] Weichselberger | The theory of interval-probability as a unifying concept for uncertainty[END_REF]; notice that most of these theories can be included within the general common framework of imprecise probabilities [START_REF] Kuznetsov | Interval statistical models[END_REF][START_REF] Walley | Statistical reasoning with imprecise probabilities[END_REF][START_REF] Kozine | Imprecise reliabilities: experiences and advances[END_REF][START_REF] Kozine | Processing unreliable judgements with an imprecise hierarchical model[END_REF][START_REF] Coolen | Imprecise probability: a concise overview[END_REF]Beer and Ferson, 2013;Beer et al., 2013a;[START_REF] Blockley | Analysing uncertainties: Towards comparing Bayesian and interval probabilities[END_REF][START_REF] Reid | Probabilistic confidence for decisions based on uncertain reliability estimates[END_REF][START_REF] Sankararaman | Distribution type uncertainty due to sparse and imprecise data[END_REF].

In this paper, we adopt possibility distributions to describe epistemic uncertainty and address the issue of updating, in a Bayesian framework, the possibilistic representation of the epistemicallyuncertain parameters of (aleatory) probability distributions. We take two approaches of literature.

The first is based on a purely possibilistic counterpart of the classical, well-grounded probabilistic

Bayes' theorem: it requires the construction of a possibilistic likelihood function which is used to revise the prior possibility distributions of the uncertain parameters (determined on the basis of a priori subjective knowledge and/or data) [Dubois and Prade, 1997;Lapointe and Bobee, 2000]. This approach has been already applied by the authors for updating possibility distributions in [START_REF] Pedroni | Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework[END_REF]. The second is a hybrid probabilistic-possibilistic method that relies on the use of Fuzzy Probability Density Functions (FPDFs), i.e., PDFs with possibilistic (fuzzy) parameters. It is based on the combination of (i) Fuzzy Interval Analysis (FIA) to process the uncertainty described by possibility distributions and (ii) repeated Bayesian updating of the uncertainty represented by probability distributions [Beer, 2009a;[START_REF] Stein | Bayesian quantification of inconsistent information[END_REF][START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF]Beer et al., 2014a].

The objective (and the main contribution of the paper) is to compare the effectiveness of the two methods. To the best of the authors' knowledge, this is the first time that the above mentioned techniques are systematically compared with reference to risk assessment problems where hybrid uncertainty is separated into two hierarchical levels. To keep the analysis simple and retain a clear view of each step, the investigations are carried out with respect to a simple literature case study involving the risk-based design of a flood protection dike [START_REF] Pasanisi | Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice[END_REF][START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]]. In addition, different numerical indicators (e.g., cumulative distributions, exceedance probabilities, percentiles, …) are considered to perform a fair, quantitative comparison between the methods and evaluate their rationale and appropriateness in relation to risk analysis.

Other methods have been proposed in the literature to revise, in a Bayesian framework, nonprobabilistic representations of epistemic uncertainty [START_REF] Ferson | Bayesian methods in risk assessment[END_REF]. In [START_REF] Viertl | Statistical Methods for Non-Precise Data[END_REF][START_REF] Viertl | On statistical inference for non precise data[END_REF][START_REF] Viertl | Statistics and integration of fuzzy functions[END_REF][Viertl, , 2008a[Viertl, ,b and 2011;;Viertl and Hareter, 2004a,b;[START_REF] Viertl | On Bayes' theorem for fuzzy data[END_REF] a modification of the Bayes' theorem is presented to account for the presence of fuzzy data and fuzzy prior PDFs: the approach is similar to that employed by [Beer, 2009a;[START_REF] Stein | Bayesian quantification of inconsistent information[END_REF][START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF] and considered in this paper. In [START_REF] Smets | Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF] a Generalized Bayes Theorem (GBT) is proposed within the framework of evidence theory: this approach is applied by [Le- [START_REF] Duy | A study on updating belief functions for pa-rameter uncertainty representation in Nuclear Probabilistic Risk Assessment[END_REF] to update the estimates of the failure rates of mechanical components in the context of nuclear Probabilistic Risk Assessment (PRA). Finally, in [START_REF] Walley | Inferences from multinomial data: learning about a bag of marbles (with discussion)[END_REF][START_REF] Bernard | An introduction to the imprecise Dirichlet model for multinomial data[END_REF][START_REF] Masegosa | Imprecise probability models for learning multinomial distributions from data. Applications to learning credal networks[END_REF] Imprecise Dirichlet Models (IDMs) are proposed for objective statistical inference from multinomial data. In the IDM, prior or posterior uncertainty about a parameter is described by a set of Dirichlet distributions, and inferences about events are summarized by lower and upper probabilities. This model has been extended by [START_REF] Quaeghebeur | Imprecise probability models for inference in exponential families[END_REF] to generalized Bayesian inference from canonical exponential families and by [START_REF] Walter | Imprecision and Prior-data Conflict in Generalized Bayesian Inference[END_REF] with the aim of handling prior-data conflicts.

The remainder of the paper is organized as follows. First, the representation of aleatory (probabilistic) and epistemic (possibilistic) uncertainties in a "two-level" framework is provided;

then, the two methods employed in this paper for the Bayesian update of the possibilistic parameters of aleatory probability distributions are described in details; after that, the case study concerning the risk-based design of a flood protection dike is presented; in the following Section, the methods described are applied to the case study: the results obtained are discussed and the two methods are synthetically compared; finally, some conclusions are drawn in the last Section.

Representation of aleatory and epistemic uncertainties in a two-level framework: fuzzy random variables

In all generality, we consider an uncertain variable Y , whose uncertainty is described by the ). A random variable Y with possibilistic parameters θ is a particular case of a Fuzzy Random Variable (FRV), i.e., of a random variable whose values are not real, but rather fuzzy numbers [START_REF] Féron | Ensembles aléatoires flous[END_REF][START_REF] Kwakernaak | Fuzzy Random Variables-I. Definitions and Theorems[END_REF][START_REF] Puri | Fuzzy random variables[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]Couso and Sanchez, 2008] [Baudrit and Dubois, 2006]. Indeed, this representation is coherent with the information available, as it can be demonstrated that such possibility distribution "encodes" the family of all the probability distributions with mode c γ = 1100 and support [a γ , b γ ] = [900, 1300] (obviously, this does not mean that the triangular possibility distribution is the only one with these characteristics, i.e., the only one able to encode such a probability family). In other words, one single possibility distribution generates in practice a "bundle" of probability distributions with mode c γ = 1100 and support [a γ , b γ ] = [900,1300]. The reader is referred to [Baudrit and Dubois, 2006;[START_REF] Couso | The necessity of the strong alpha-cuts of a fuzzy set[END_REF][START_REF] Dubois | Probability-Possibility Transformation, Triangular Fuzzy Sets, and Probabilistic Inequalities[END_REF] for further technical details and a formal proof of these statements.
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In order to provide an additional practical interpretation of the possibility distribution ) (γ [1000,1200] is the set of γ values for which the possibility function is greater than or equal to 0.5 (dashed segment in Fig. 1, top left column). Notice that the α-cut set γ α A of parameter γ can be interpreted also as the (1 -α)•100% Confidence Interval (CI) for γ, i.e., the interval such that

π γ of 1 θ γ = , we can define its α-cut sets γ α A = { γ : ) (γ π γ ≥ α }, with 0 ≤ α ≤ 1. For example, γ 5 . 0 A =
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. For example, 900,1300] is the (1 -0)•100% = 100% CI for γ, i.e., the interval that contains the "true" value of γ with certainty (solid segment in Fig. 1, top left column); can be interpreted as a set of nested CIs for parameter γ [Baudrit and Dubois, 2006;[START_REF] Couso | The necessity of the strong alpha-cuts of a fuzzy set[END_REF][START_REF] Dubois | Probability-Possibility Transformation, Triangular Fuzzy Sets, and Probabilistic Inequalities[END_REF].
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In the same way, a bundle of Cumulative Distribution Functions (CDFs) for Y, namely
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, can be constructed by letting γ range within γ α A , i.e.,
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. This family of CDFs (of level α) is bounded above and below by the upper and lower CDFs,
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can be interpreted as a set of nested CIs for parameter γ (see above), it can be argued that the α-cuts of ) (γ
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, with 0 ≤ α ≤ 1 [START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF]2008]. In passing, notice that the upper and lower CDFs (of level α), ( )
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, can be referred to as the plausibility and belief functions (of level α) of the set Z = (-∞, y],
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, respectively. For illustration purposes, Fig. 1, bottom row, shows the bounding upper and lower CDFs of Y, ( ) ( )
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in correspondence of the α-cuts of level α = 0 (solid lines), 0.5 (dashed lines) and 1 (dot-dashed line) of the possibility distribution ) (γ π γ of parameter γ (Fig. 1, top left column).

Finally, the set of nested pairs of CDFs ( ) ( )
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, respectively (dotted lines in Fig. 1 
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) generated at different possibility levels α ∈ [0, 1] (i.e., by averaging the different contributions to the plausibility and belief functions produced by different α-cuts of the epistemic parameter γ). The plausibility and belief functions ( )

Z Pl Y and ( ) Z Bel Y
, Z = (-∞, y], are shown to represent the "best bounds" for the "true" CDF ( )

y F Y
of the uncertain variable Y [START_REF] Ralescu | Average level of a fuzzy set, in: Statistical Modeling, Analysis and Management of Fuzzy Data[END_REF][START_REF] Baudrit | Joint propagation of probability and possibility in risk analysis: toward a formal framework[END_REF]2008;[START_REF] Couso | A Possibilistic Interpretation of the Expectation of a Fuzzy Random Variable[END_REF][START_REF] Couso | On the Variability of the Concept of Variance for Fuzzy Random Variables[END_REF]Couso and Sanchez, 2011].

Further details about FRVs are not given here for the sake of brevity: the interested reader is referred to the cited references. 
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In the present paper, two methods are considered to this aim: the purely possibilistic method and the hybrid probabilistic and possibilistic approach. independent and identically distributed). This choice has been made for the following main reasons:

i. the transformation is simple and can be straightforwardly applied to any distribution [START_REF] Anoop | Conversion of probabilistic information into fuzzy sets for engineering decision analysis[END_REF];

ii. the resulting possibilistic likelihood is very closely related to the classical, purely probabilistic one (which is theoretically well-grounded) by means of the simple and direct operation of normalization that preserves the "original structure" of the experimental evidence;

iii. it can be easily verified that the resulting possibilistic likelihood keeps the sequential nature of the updating procedure typical of the standard Bayes' theorem;

iv. the operation of likelihood normalization finds also theoretical justifications in some recent works of literature (see the brief discussion below) [START_REF] Denoeux | Likelihood-based belief function: Justification and some extensions to low quality data[END_REF][START_REF] Moral | Comments on "Likelihood-based belief function: Justification and some extensions to low-quality data" by Thierry Denoeux[END_REF].

However, two considerations are in order with respect to this choice. First, it has to be admitted that the resulting possibility distributions do not in general adhere to the probability-possibility consistency principle [START_REF] Dubois | Fuzzy Sets and Systems: Theory and Applications[END_REF]. Second, it has to be remembered that the probabilistic likelihood function

It is worth noting that other techniques of transformation of probability density functions into possibility distributions exist, but the corresponding details are not given here for brevity sake: the interested reader is referred to [START_REF] Dubois | On possibility/probability transformations[END_REF][START_REF] Dubois | Probability-Possibility Transformation, Triangular Fuzzy Sets, and Probabilistic Inequalities[END_REF][START_REF] Dubois | A definition of subjective possibility[END_REF][START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF]2013] for some proposed techniques, e.g., the principle of maximum specificity [START_REF] Dubois | On possibility/probability transformations[END_REF] and the principle of minimal commitment [START_REF] Dubois | A definition of subjective possibility[END_REF]. Also, it has to be noticed that techniques are also available to construct possibility distributions (and, thus, possibilistic likelihood functions) directly from rough experimental data (i.e., without resorting to probability-possibility transformations): see [START_REF] Masson | Inferring a possibility distribution from empirical data[END_REF][START_REF] Mauris | Inferring a Possibility Distribution from Very Few Measurements[END_REF][START_REF] Hou | Probability-Possibility Transformation for Small Sample Size Data[END_REF][START_REF] Serrurier | Maximum-Likelihood Principle For Possibility Distributions Viewed As Families Of Probabilities[END_REF] for more details. Finally, for a thorough theoretical justification of a "possibilistic vision" of the likelihood the reader is referred to: e.g., [Dubois et al., 1997], where possibility measures are considered as the supremum of a family of likelihood functions; [START_REF] Denoeux | Likelihood-based belief function: Justification and some extensions to low quality data[END_REF],

where the evidence about a parameter (after observing a piece of data) is represented by a consonant "likelihood based" belief function, whose contour function equals the normalized likelihood function (see above): in the paper, this is also rigorously derived from three basic principles, i.e., the likelihood principle [START_REF] Edwards | Likelihood, expanded edition[END_REF], compatibility with Bayes' rule and the minimal commitment principle [START_REF] Smets | Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF]; and finally [START_REF] Moral | Comments on "Likelihood-based belief function: Justification and some extensions to low-quality data" by Thierry Denoeux[END_REF], where the approach by [START_REF] Denoeux | Likelihood-based belief function: Justification and some extensions to low quality data[END_REF] is discussed and the issue of representing likelihood information is taken from the point of view of imprecise probabilities.

Hybrid probabilistic and possibilistic approach

The hybrid probabilistic and possibilistic method (hereafter also called 'Approach B' for brevity) is based on the construction of a Fuzzy Probability Distribution Function (FPDF) to be used as a 'fictitious' prior for the epistemically-uncertain parameters θ of the PDF

) | ( θ y p Y
of the uncertain variable Y: in other words, a fictitious (artificial) probabilistic function has to be 'superimposed' onto the purely possibilistic prior
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(by so doing, the fictitious prior FPDF
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). These possibility distributions should be properly selected by the analyst so as to reflect as closely as possible the structure of the 'real' prior possibility distribution ) (θ

θ π = { ) ( ), ( δ γ δ γ π π
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In extreme synthesis, the method relies on the hybrid combination of (i) Fuzzy Interval Analysis (FIA) to process the uncertainty described by possibility distributions and (ii) repeated Bayesian updating of the uncertainty represented by probability distributions [Beer, 2009a;[START_REF] Stein | Bayesian quantification of inconsistent information[END_REF][START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF]. In more details, the algorithm proceeds as follows:

1. set α = 0; above, generate a family of (fictitious) prior PDFs

( ) { } α φ θ θ | p = ( ) { } φ θ φ φ θ α A p ∈ : |
. This is empirically done by (i) randomly or deterministically selecting a finite number T (e.g., T = 100 in this paper) of parameter vectors θ y
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This is equivalent to generating a family 
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θ A α = ] | , | [ , , y y m m α α θ θ = }] { max }, { min [ θ θ ∈ ∈
. In this view, notice that the use of the P-dimensional α-cut A α ), then conservatism would be still guaranteed [START_REF] Stein | Bayesian Approach for Inconsistent Information[END_REF].

y θ| ,Cart A α constructed by the Cartesian product of the (one-dimensional) α-cuts y | m θ A α of the marginal distributions, m = 1, 2, …, P (i.e., y θ| ,Cart A α = y | 1 θ A α x y | 2 θ A α x … x y | m θ A α x … x y | P θ A α )
For illustration purposes and with reference to the example above, Fig. 2 shows also the two-

dimensional α-cut y | , , 2 1 θ α θ Cart A (dashed line) generated by the Cartesian product of the (one-dimensional) α-cuts y | 1 θ A α and y | 2 θ A α , i.e., y | , , 2 1 θ α θ Cart A = y | 1 θ A α x y | 2 θ A α .

Fig. 2

The characteristics of the two approaches are summarized in Table 1. Notice that both methods relies on arbitrary assumptions about either the prior or the likelihood functions: in the purely possibilistic approach (A) the "original" possibilistic prior is employed, but a possibilistic likelihood function has to be constructed (e.g., by probability-possibility transformations, directly from rough experimental data and/or by resorting to the guidelines provided by [Dubois et al., 1997;[START_REF] Denoeux | Likelihood-based belief function: Justification and some extensions to low quality data[END_REF]); instead, in the hybrid method (B) the original probabilistic likelihood function is used, but a "fictitious" prior Fuzzy Probability Distribution Function needs to be identified by superimposing an arbitrarily selected probabilistic PDF onto the "original" possibilistic prior that has to be updated.

Table 1.

A final consideration is in order with respect to the two approaches here outlined. In the hybrid probabilistic-possibilistic framework of interest to the present paper, the knowledge a priori . As detailed in the previous Section, the possibilistic approach is particularly suitable to address those situations where the information a priori available on θ is scarce and imprecise, i.e., not sufficient for assigning a single specific probability distribution to (describe the epistemic uncertainty in) θ . Actually, the

possibilistic function ) (θ θ π
is in practice "equivalent" to the family of all those probability distributions (of possibly different shapes) that are coherent with the scarce information available on θ . On the other hand, it is worth mentioning that in a classical purely probabilistic framework, imprecision in prior information about θ can be also accounted for by means of the so-called Hierarchical Bayes approach. Hierarchical Bayes is so-named because it utilizes hierarchical or multistage prior distributions [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models[END_REF][START_REF] Gelman | Using Redundant Parameterizations to Fit Hierarchical Models[END_REF][START_REF] Congdon | Applied Bayesian Hierarchical Methods[END_REF][START_REF] Kelly | Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook[END_REF][START_REF] Chung | Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models[END_REF][START_REF] Shirley | Hierarchical models for estimating state and demographic trends in US death penalty public opinion[END_REF]. To develop a hierarchical model for θ , we need to specify a first-stage prior (say,

) | ( φ θ θ p
), which is often of a particular functional form, often a conjugate prior. However, analysts find it difficult to express their incertitude numerically at all, much less as particular probability distributions. Thus, a higher-dimensional model is defined to represent such (epistemic) uncertainty: in particular, we need to specify an ). This method has been investigated in the field of social and behavioral sciences with the main aim of treating hierarchical data with different levels of variables in the same statistical model. For example, the hierarchical data for sociological survey analysis include measurements from individuals with different historical, geographic, or economic variables. To this end, the hierarchical modeling was proposed to account for the different grouping or times at which data are measured [START_REF] Gill | Bayesian methods: a social and behavioral sciences approach[END_REF]. In addition, a common application of hierarchical Bayes analysis in the Probabilistic Risk Assessment (PRA) of nuclear power plants has been as a model of variability among data sources, for example variability in Emergency Diesel Generator (EDG) performance across different plants, or across time [START_REF] Siu | Bayesian parameter estimation in probabilistic risk assessment[END_REF][START_REF] Atwood | Handbook of Parameter Estimation for Probabilistic Risk Assessment[END_REF][START_REF] Kelly | Bayesian inference in probabilistic risk assessment -The current state of the art[END_REF]. Finally, similar analogy can be made for the collected measurements from a structure under different ambient and environmental conditions. This framework has been recently implemented for uncertainty quantification applications in structural dynamics [START_REF] Behmanesh | Hierarchical Bayesian Model Updating for Probabilistic Damage Identification[END_REF][START_REF] Ballesteros | Bayesian Hierarchical Models for Uncertainty Quantification in Structural Dynamics[END_REF]. Although hierarchical Bayes can address the issue of imprecise prior information by means of multi-level models, the following conceptual and practical considerations should be made about its applicability: (i) in principle, one could define even higher dimensional models to represent the uncertainty. Some analysts have attempted three-and even four-level models [START_REF] Jaworska | Estimation of HC5 taking into account uncertainties of individual dose response curves and species sensitivity distribution[END_REF], but this hardly seems a workable solution when the complexity of the analysis is the primary problem; (ii) in addition, "if concern about the uncertainty in parameters can in principle drive the analysis to a higher level, one could fall into an insoluble infinite cascade" [START_REF] Ferson | Bayesian methods in risk assessment[END_REF]; (iii) finally, both first-and second-stage priors,

) | ( φ θ θ p and ) | ( ω φ φ p ,
respectively, are often of a particular functional form, which forces the analyst to make "overlyoptimistic" and excessively precise statements about parameter uncertainties, even when the information and data available are scarce and/or vague, i.e., not sufficient for assigning a single specific probability distribution. In such cases, non-probabilistic methods (e.g., intervals, possibility distributions or Dempster-Shafer structures from evidence theory) have been shown to provide reliable and robust results [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF]Beer et al., 2013a]. On the basis of considerations (i)-(iii) above and given that the objective of the paper is the comparison of methods for the update of possibilistic parameters (of aleatory probability distributions), Hierarchical Bayes approaches are not considered in the present work.

Case study: flood protection risk-based design

The case study deals with the design of a protection dike in a residential area closely located to a river with potential risk of floods. Two issues of concern are: (i) high construction and annual maintenance costs of the dike; (ii) uncertainty in the natural phenomenon of flooding. Then, the different design options must be evaluated within a flooding risk analysis framework accounting for uncertainty.

The model

The maximal water level of the river (i.e., the output variable of the model, c Z ) is given as a function of several (and some uncertain) parameters (i.e., the inputs to the model) [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]]:
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whereas quantities Y 1 = Q , Y 2 = m Z , Y 3 = v Z , Y 4 = s K are uncertain variables.

The input variables: physical description and representation of the associated uncertainty

The n = 4 input variables Y i , i = 1, 2, 3, 4, are affected by aleatory and epistemic uncertainties. The aleatory part of the uncertainty is described by probability distributions of defined shape. The parameters of the probability distributions describing the aleatory uncertainty are themselves affected by epistemic uncertainty and represented in terms of possibility distributions.

The yearly maximal water flow, Y 1 = Q

The aleatory uncertainty in the yearly maximal water flow Y 1 = Q is well described by a Gumbel probability distribution The friction coefficient s K is affected by random events modifying the river status (e.g., erosion, sedimentation, …): the corresponding variability is typically described by a normal distribution, i.e., Table 2.
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Results

In order to simplify the notation, in what follows let θ be one of the uncertain parameters of the

PDFs of Y 1 = Q, Y 2 = Z m , Y 3 = Z v and Y 4 = K s , i.e., θ = γ , δ , Zm µ , Zm σ , Zv µ , Zv σ , s K
µ or Ks σ . Fig. 3 illustrates the possibility distributions of the epistemically-uncertain parameters of the aleatory PDFs ( )

δ γ , q p Q (top row), ) ( Zm Zm m Z z p m σ µ , | (middle-top row), ) ( Zv Zv v Z z p v σ µ , | (middle-bottom row) and ) ( Ks Ks s K k p s σ µ , | (bottom row) of the uncertain input variables Y 1 = Q, Y 2 = Z m , Y 3 = Z v
and Y 4 = K s , respectively, of the model of the previous Section: in particular, the prior possibility distributions ) (θ

π θ (= ) (γ π γ , ) (δ π δ , ) ( Zm Zm µ π µ , ) ( Zm Zm σ π σ , ) ( Zv Zv µ π µ , ) ( Zv Zv σ π σ , ) ( s s K K µ π µ and ) ( Ks Ks σ π σ
) are shown as solid lines, whereas the marginal posterior possibility distributions 
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Fig. 3.

From a mere visual and qualitative inspection of Fig. 3 it can be seen that both approaches are suitable for revising the prior possibility distributions (based on a priori purely subjective knowledge) by means of empirical data. In particular, it is evident that: (i) the most likely (i.e., preferred) values c θ of the epistemically-uncertain parameters (i.e., those values in correspondence of which the possibility function equals 1) are moved towards the MLE estimates MLE θ ˆ in all the cases considered; (ii) the area S θ underlying the corresponding possibility distributions is significantly reduced: noting that this area is related to the imprecision in the knowledge of the possibilistic parameter (i.e., the larger the area, the higher the imprecision), it can be concluded that both approaches succeed in reducing the epistemic uncertainty. With respect to that, Table 3 (5)

Obviously, the lower is MLE d θ the closer is the most likely value c θ to the MLE estimate MLE θ ˆ, i.e., the higher is the strength of the approach in updating the prior possibilistic distribution on the basis of newly available experimental evidence;

ii. the percentage relative difference R θ between the areas underlying the possibility distribution of parameter θ before and after the Bayesian update, namely Prior S θ and Posterior S θ , respectively:

100 ⋅ - = Prior Posterior Prior S S S R θ θ θ θ . ( 6 
)
In this case, the higher is R θ , the higher is the reduction in the area (i.e., in the epistemic uncertainty) and, thus, the higher is the "updating strength" of the approach. From the analysis of quantitative indicator R θ (6) it can be seen that both methods succeed in reducing the area underlying the possibility distributions of the uncertain parameters: in particular, the percentage reduction R θ ranges between 8.33% and 30.49% for approach A and between 3.89% and 33.01% for Approach B. In addition, as expected, the strength of both approaches in reducing epistemic uncertainty decreases with the size of the data set used to perform the Bayesian update.

For example, the area S γ underlying the possibility distribution of γ (Fig. 3, top left column) is reduced by 30.49-33.01% with the aid of a large data set of size D 1 = 149; on the contrary, the area Finally, it has to be remarked that for the sake of simplicity the quantitative analyses above have been performed only on the marginal posterior possibility distributions of the uncertain parameters 
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Fig. 5

Obviously, the gap between the plausibility and belief functions ( ] ( )

j Y y Pl j , ∞ - = ( ) j Y y F j and ( ] ( ) j Y y Bel j , ∞ - = ( ) j Y y F j
, j = 1, 2, 3, 4, is larger before the Bayesian update in all the cases considered: in particular, the 'prior' CDFs (solid lines) completely envelop the 'posterior' ones (dashed and dot-dashed lines). This larger gap is explained by the larger area contained under the possibility distribution functions of the corresponding epistemically-uncertain parameters (actually, as highlighted before, the larger the area, the higher the imprecision in the knowledge of the possibilistic parameters).

Then, in order to provide a fair and quantitative comparison between the two approaches adopted, the intervals [ ] ( )

   -β 1 j Y F , [ ] ( )] β 1 - j Y F
for the β•100-th percentiles β j Y , β = 0.05, 0.50 and 0.95, of the variables Y j , j = 1, 2, 3, 4, are computed (Table 4). For example, analyzing β Q , β = 0.05, 0.50 and 0.95, it can be seen that the width of the intervals is reduced by 30. 54-40.34% and 29.88-43.29% by Approaches A and B, respectively: coherently with the results reported in Table 3, when a large data set is available (i.e., D 1 = 149 in this case) the strength of Approach B in reducing the epistemic uncertainty is slightly (i.e., 2-3%) higher than that of Approach A. On the contrary, analyzing β s K , β = 0.05, 0.50 and 0.95, it is evident that the width of the intervals is reduced of 25.30-30.80% and 5.74-19.45% by Approaches A and B, respectively: as highlighted before (Table 3), when a small data set is available (i.e., D 4 = 5 in this case) the power of Approach A in reducing epistemic uncertainty is consistently (i.e., 15-20%) higher than that of Approach B. This is confirmed also by the analysis of the quantiles of Y 2 = Z m and Y 3 = Z v (see Table 4). Table 4.

Comparable conclusions can be drawn by the analysis of the upper and lower CDFs approach. This method combines the MC technique [Kalos and Withlock, 1986] with the extension principle of fuzzy set theory [START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF]Kentel and[START_REF] Kentel | Probabilistic-fuzzy health risk modeling[END_REF]2007] in two hierarchical, repeated steps [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF][START_REF] Kentel | 2D Monte Carlo versus 2D Fuzzy Monte Carlo Health Risk Assessment[END_REF]Moller and[START_REF] Möller | Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics[END_REF]2008;[START_REF] Moller | Safety assessment of structures in view of fuzzy randomness[END_REF]2006;[START_REF] Pedroni | Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[END_REF]Pedroni et al., 2013]: the reader is referred to the cited references for details. Again, in order to provide a fair comparison between the two approaches employed, proper quantitative indicators are computed. The final goal of the case study presented in the previous Section is to determine (i) the dike level necessary to guarantee a given flood return period or (ii) the flood risk for a given dike level. With respect to issue (i) above, the quantity of interest that is most relevant to the decision maker is the β•100%-th quantile of Z c (i.e., β c Z ): this corresponds to the yearly maximal water level with a β•100-year return period. With respect to issue (ii) above, the quantity of interest that is most relevant to the decision maker is the probability that the maximal water level of the river c Z exceeds a given threshold * z , i.e., 5). Analyzing the intervals [ [ ] ( )

*] [

β 1 - c Z F , [ ] ( ) β 1 - c Z F
] for the percentiles 

* 1 c Z z F c - , ( ) * 1 c Z z F c -
] for the exceedance probability P[Z c > z c *], it can be seen that their width is reduced of 28.14-38.63% and 16.88-29.23% by Approaches A and B, respectively (i.e., the strength of Approach A in reducing epistemic uncertainty is about 4-11% higher than that of Approach B).

Fig. 6. Table 5.

Several considerations are in order with respect to the results obtained. When the Bayesian update is performed based on a data set of large size (e.g., > 100 in this case), the difference in the behavior of the two approaches is quite low. This demonstrates that although the two methods are conceptually and algorithmically quite different, in presence of a "strong" experimental evidence they produce "coherent" results (i.e., posterior possibility distributions that bear the same overall "uncertainty content"): this is a fair outcome since the results provided by the two methods are expected to be more and more similar (i.e., more and more coherent with the experimental evidence) as the size of the data set increases (experts and practitioners may find a similarity and parallelism between these results and those obtained in purely probabilistic, graphical Bayesian models [START_REF] Gelman | Bayesian data analysis[END_REF]; in particular, see references concerning approaches used to "borrow strength" in (Hierarchical) Bayesian analyses [START_REF] Atwood | Handbook of Parameter Estimation for Probabilistic Risk Assessment[END_REF]Kelly and[START_REF] Kelly | Bayesian inference in probabilistic risk assessment -The current state of the art[END_REF]2011]). Instead, when the Bayesian update is performed on a data set of small-medium size (e.g., ≈ 5-30 in this case), the strength of Approach A in reducing epistemic uncertainty is significantly higher than that of Approach B. This can be explained as follows. In Approach A the purely possibilistic likelihood (i.e., the function "containing" the experimental evidence available) has a direct and strong influence on the purely possibilistic prior (actually, they are directly multiplied in (1)); on the contrary, in Approach B the purely probabilistic likelihood has a direct influence only on the (fictitious) probabilistic distributions that are superimposed onto the prior possibilistic parameters: this "artificial" procedure may in practice "soften" (i.e., reduce) the effect of the newly available information (i.e., of the data) in the revision of the possibilistic priors (obviously, this effect is expected to be more evident if the amount of data, i.e., the strength of the experimental evidence, is small). In such cases, embracing one method instead of the other may significantly change the outcome of a decision making process in a risk assessment problem involving uncertainties: this is of paramount importance in systems that are critical from the safety view point, e.g., in the nuclear, aerospace, chemical and environmental fields.

Finally, it is absolutely important to acknowledge that even if the strength of one method (i.e., A in this case) in reducing epistemic uncertainty is higher than that of the other one (i.e., B in this case), this does not necessarily imply that one method is "better" or "more effective" than the other overall. Actually, if on one side a consistent reduction in the epistemic uncertainty is in general desirable in decision making processes related to risk assessment problems (since it significantly increases the analyst's confidence in the decisions), on the other side this reduction must be coherent with the amount of information available. In this view, an objection may arise in the present case: is the remarkable strength of Approach A in reducing epistemic uncertainty (with very few pieces of data) fully justified by such a small amount of data? In other words, is this considerable reduction of epistemic uncertainty coherent with the strength of the experimental evidence or is it too optimistic? These issues will be thoroughly discussed in the following dedicated Section.

Finally, in addition to the strength of the approaches in revising the (prior) possibilistic description of the uncertain parameters of aleatory variables, also the computational time associated to the methods has to be taken into account. Table 6 reports the computational time t comp required by the Bayesian update of all the parameters of the PDFs of reduce the associated computational cost. Table 6.

Y 1 = Q, Y 2 = Z m , Y 3 = Z v

Discussion of the results and comparison of the approaches

The results of the comparisons performed in the previous Sections can be summarized as follows:

• both methods succeed in updating the possibilistic description of the epistemically-uncertain parameters of (aleatory) probability distributions by means of data. This is highlighted by the fact that in most cases the posterior possibility distributions produced by the two approaches are significantly different from the corresponding priors. In particular:

the most likely values of the parameters (i.e., those values in correspondence of which the possibility function equals 1) are moved towards the point estimates of the parameters obtained by the classical, purely probabilistic MLE method;

the area underlying the posterior possibility distributions is consistently lower than that of the priors: since this area is related to the imprecision in the knowledge of the possibilistic parameter (i.e., the larger the area, the higher the imprecision), it can be concluded that both approaches succeed in reducing the epistemic uncertainty in the possibilistic parameters of the aleatory probability distributions. This is also confirmed by the reduction of the gap between the upper and lower CDFs (i.e., the plausibility and belief functions) of the corresponding aleatory variables;

• when the Bayesian update is performed using a data set of large size (e.g., > 100), the strength of the two approaches in reducing the epistemic uncertainty is quite similar. By way of example, in the case study considered Approaches A and B reduce the areas underlying the possibility distributions of the uncertain parameters by 25.56-30.49% and 28.74-33.01%, respectively. This demonstrates that although the two methods are conceptually and algorithmically quite different, in presence of a "strong" experimental evidence they produce "coherent" results (i.e., possibility distributions that bear almost the same overall "uncertainty content"): this is a fair outcome since the it is "desired" that both methods provide results that become more and more similar (i.e., that become more and more coherent with the experimental evidence) as the size of the data set increases;

• the strength of the purely possibilistic approach (A) in reducing epistemic uncertainty is consistently higher than that of the hybrid one (B) in presence of medium-and small-sized data sets (e.g., ≈ 5-30) (which is often the case in the risk analysis of complex safety-critical systems). For example, the width of the intervals for the quantiles of the variables of interest is reduced by 25.30-30.80% and 5.74-19.45% by Approaches A and B, respectively. This significantly different behavior is explained by the fact that in Approach A the (purely possibilistic) likelihood has an immediate and strong influence on the (purely possibilistic) prior (i.e., they are directly multiplied); on the contrary, in Approach B the (purely probabilistic) likelihood has a direct influence only on the (fictitious) probabilistic function that is superimposed onto the possibilistic parameter (subject to the Bayesian update): this "artificial" procedure could in practice weaken the effect of the newly available information (i.e., the data) in the revision of the possibilistic prior (this effect is expected to be more evident if the amount of data, i.e., the strength of the experimental evidence, is small).

As highlighted above, the fact that the power of Approach A in reducing epistemic uncertainty is higher than that of Approach B does not necessarily imply that one method is "better" or "more effective" than the other overall. For example, by hypothesis the remarkable strength of Approach A in reducing epistemic uncertainty by means of very few pieces of data (e.g., 5-30 in this case) might not be coherent with the "real" strength of such a scarce experimental evidence and could be accidentally due to some bias in the procedure.

With respect to that, it has to be admitted that the uncertainty reduction power of the purely possibilistic approach (A) is strongly dependent on the shape of a constructed possibilistic likelihood that could in principle bias the analysis. However: (i) in the present paper, this possibilistic function is very closely related to the classical, purely probabilistic one (which is theoretically well-grounded) by a simple and direct operation of normalization that preserves the "original structure" of the experimental evidence; (ii) the operation of normalization of the probabilistic likelihood finds also some theoretical justification in the work by [START_REF] Denoeux | Likelihood-based belief function: Justification and some extensions to low quality data[END_REF]; (iii) in general, a probability-to-possibility transformation (properly performed according to the rules of possibility theory) always introduces additional artificial epistemic uncertainty into the analysis, i.e., it does not artificially reduce it (because it replaces a single probabilistic distribution by a family of distributions) [START_REF] Dubois | On possibility/probability transformations[END_REF][START_REF] Dubois | Probability-Possibility Transformation, Triangular Fuzzy Sets, and Probabilistic Inequalities[END_REF][START_REF] Dubois | A definition of subjective possibility[END_REF][START_REF] Flage | Possibility-probability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF]2013]. On the basis of considerations (i)-(iii) above, it seems unlikely that the purely possibilistic approach (A) may produce results that are dangerously over-optimistic with respect to those of the hybrid one (B). On the other hand, future research should be devoted to the study and development of rigorous, generalized methods for Bayesian model comparison and validation in a purely possibilistic framework, in order to complement and strengthen the conclusions drawn by means of the metrics originally introduced in the present manuscript: in this light, techniques from the classical, purely probabilistic field may serve as inspiring references [START_REF] Gelman | Posterior predictive assessment of model fitness via realized discrepancies[END_REF]Bayarri and[START_REF] Bayarri | Quantifying surprise in the data and model verification[END_REF]2000;[START_REF] Valen | A Bayesian χ 2 test for goodness-of-fit[END_REF];

• the computational time required by the hybrid approach (B) is consistently higher than that associated to the purely possibilistic one (A): this is explained by the necessity of repeatedly applying many times the purely probabilistic Bayes' theorem for each α-cut analyzed. More precisely, the application of method A just requires one single evaluation of the purely possibilistic Bayes' formula; on the other hand, approach B entails repeating T•N α times the classical probabilistic Bayes' theorem. In this respect, notice that N α (i.e., the number of αcuts processed) is typically of the order of 10 [ Baudrit et al., 2006], whereas T (i.e., the number of parameter values selected to explore each α-cut) cannot be in principle prescribed a priori: however, it needs to be large enough to thoroughly explore each dimension of the epistemic parameter space (at least 10 values should be selected for each parameter);

• both methods relies on assumptions about either the prior or the likelihood functions: in the purely possibilistic approach (A) the "original" possibilistic prior is employed, but a possibilistic likelihood function has to be constructed (e.g., by probability-possibility transformations or directly from rough experimental data); instead, in the hybrid method (B) the original probabilistic likelihood function is used, but a "fictitious" prior Fuzzy Probability Distribution Function needs to be identified by superimposing an arbitrarily selected probabilistic PDF onto the "original" possibilistic prior that has to be updated.

Based on these findings, the advantages and drawbacks of the two approaches are summarized in the following Table 7. Table 7.

Conclusions

In this paper, we have considered two methods for the Bayesian update of the possibilistic parameters of aleatory probability distributions, with exemplification on a case study concerning the risk-based design of a flood protection dike. The first method considered is based on a purely possibilistic counterpart of the classical probabilistic Bayes' theorem; the second is a hybrid (probabilistic and possibilistic) method combining Fuzzy Interval Analysis and the classical probabilistic Bayes' theorem.

The findings of the work show that in general adopting different methods may generate different results and possibly different decisions in risk problems involving uncertainties: this is of paramount importance in systems that are critical from the safety viewpoint, e.g., in the nuclear, aerospace, chemical and environmental fields.

In particular, on the basis of the results obtained, it seems advisable to suggest the use of the purely possibilistic approach (instead of the hybrid one) for the following reasons: (i) its strength in reducing epistemic uncertainty is significantly higher, in particular when the amount of available data is small: this is important in decision making processes since reducing epistemic uncertainty significantly increases the analyst confidence in the decisions; (ii) the computational time required is consistently lower.

However, it has to be remarked that the construction of a possibilistic likelihood required by the purely possibilistic method, although recently tacked in the literature, still represents an issue to be further investigated from both the theoretical and practical viewpoint in order to avoid introducing biases in the analysis and to suggest the application of the approach for real risk assessment problems: with respect to that, future research will be devoted to the investigation of additional methods developed to this aim. Also, future studies will be aimed at developing generalized methods for Bayesian model comparison and validation in a purely possibilistic framework, in order to complement and strengthen the conclusions drawn by means of the metrics originally introduced in the present manuscript. Adapted and extended from [START_REF] Pedroni | Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework[END_REF] [START_REF] Pedroni | Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework[END_REF] (5) and R θ (6) (in parentheses). Adapted and extended from [START_REF] Pedroni | Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework[END_REF] 
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  4) where: Y 1 = Q is the yearly maximal water discharge [m 3 /s]; Y 2 = m Z and Y 3 = v Z are the riverbed levels [m asl] at the upstream and downstream parts of the river under investigation, respectively; Y 4 = s K is the Strickler friction coefficient; Y 5 = B and Y 6 = L are the width and length of the river part [m], respectively. Quantities Y 5 = B (= 300m) and Y 6 = L (= 5000m) are constant parameters,

  [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. The extreme physical bounds on variable Q are [Limbourg and s, which is a typical drought flow level (irrelevant within a flood study); max Q = 10000 m 3 /s, which is three times larger than the maximal flood ever occurred.When Approach A is used, the prior possibility distributions ) parameters γ and δ are subjectively chosen as triangular functions TR(a γ , c γ , b γ ) and TR(a δ , c δ , b δ ), respectively, with cores (i.e., preferred or most likely values) c γ = 955m 3 /s and c δ = 600m 3 /s, and supports [a γ , b γ ] = [869, 1157] m 3 /s and [a δ , b δ ] = [455, 660] m 3 /s, respectively. When Approach B is employed, the fictitious prior FPDFs ) 2 for brevity. The Bayesian update of these uncertainty representations (based on prior subjective knowledge) is realized with the aid of a vector y 1 = [y 11 , y 12 , …, y 1k , …, 1 1D y ] of D 1 = 149 (independent and identically distributed -iid) values of the annual maximal flow of the river, i.e., y 1= q = [q 1 , q 2 , …, q k , …, q 149 ].The point estimates for γ and δ obtained by the classical, purely probabilistic Maximum Likelihood Estimation (MLE) method are MLE γˆ The aleatory part of the uncertainty in the upstream riverbed level Y 2 = Z m is represented by a normal distribution, i.e., This distribution is truncated at the minimum and maximum physical bounds on Z m , i.e.plausible upper geomorphologic limits to sedimentation), respectively. In Approach A, in Table 2. The Bayesian update of these uncertainty representations is carried out using a vector y 2 = [y 21 , y 22 , …, y 2k , …, 2 2 D y ] of D 2 = 29 (iid) values of the upstream riverbed level, i.e., y 2 = z m = [z m,1 , z m,2 , …, z m,k , …, z m,29 ]. The point estimates As for Y 2 = Z m , the aleatory part of the uncertainty in the downstream riverbed level Y 3 = Z v is represented by a normal distribution, i.e., These representations are updated by means of a vector y 3 = [y 31 , y 32 , …, y 3k , …, 3 3D y ] of D 3 = 29 (iid) values of the downstream riverbed level, i.e., y 3 = z v = [z v,1 , z v,2 , …, z v,k , …, z v,29 ]. The MLE estimates of the parameters are 45 m, respectively.The Strickler friction coefficient, Y 4 = K sThe Strickler friction coefficient Y 4 = s K is the most critical source of uncertainty because it is usually a simplification of a complex hydraulic model. The absolute physical limits of s K a "canal with smoothest earth surface, rectilinear, without any vegetation".

  [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. However, the parameters of this normal distribution are difficult to estimate because data can only be obtained through "indirect calibration characterized by significant uncertainty"[START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]: the uncertainty in these parameters is described by possibility distributions. reported in Table2. The Bayesian revision of these a priori representations is performed by means of a vector y 4 = [y 41 , y 42 , …, y 4k , …, 4 4 D y ] of D 4 = 5 (iid) values of the Strickler friction coefficient, i.e., y 4 = k s = [k s,1 , k s,2 , …, k s,k , …, k s,5 ]. The MLE estimates of

  Approaches A and B using D 1 = 149, D 2 = 29, D 3 = 29 and D 4 = 5 pieces of data are shown in dashed and dot-dashed lines, respectively; the point estimates MLE are also shown for comparison (dots).
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  σ underlying the possibility distribution of σ Ks (Fig.3, bottom right column) is reduced only by 3.89-8.76% by means of D 4 = 5 pieces of data. Moreover, it is interesting to note that the strength of Approach B in reducing epistemic uncertainty is slightly higher than that of Approach A only when the amount of available data is quite large (i.e., in the revision of the possibility distributions of parameters γ and δ of the PDF of Y 1 = Q, by means of D 1 = 149 pieces of data): actually, the values of R γ and R δ range within 25.56-30.49% and 28.74-33.01% for Approaches A and B, respectively. In all the other cases, the power of Approach A in reducing epistemic uncertainty is higher than that of Approach B and this difference becomes more and more evident as the size of the data set decreases: in particular, for medium-sized data sets (i.e., in the revision of the possibility distributions of the parameters Zm µ , Zm σ , Zv µ , Zv σ of the PDFs of Y 2 = Z m and Y 3 = Z v with D 2 = D 3 = 29 pieces of data) the values of R θ (6) produced by Approaches A and B range within 8.33-24.38% and 4.17-22.00%, respectively; instead, for small-sized data sets (i.e., in the revision of the possibility distributions of the parameters s K µ and Ks σ of the PDF of Y 4 = K s with D 4 = 5 pieces of data) the values of R θ produced by Approaches A and B range within 8.76-16.28% and 3.89-10.08%, respectively. This is particularly evident in the estimation of the standard deviation σ Ks of K s (Fig. 3, bottom right column): on one side, the posterior distribution produced by the hybrid approach (B) seems not to be influenced by the revision process (actually, the most likely value of the parameter, Ks c σ = 6.72, and the area underlying the corresponding posterior possibility distribution, Ks S σ = 3.95, are quite close to those of the prior, i.e., 6.89 and 4.11, respectively); on the other side, the posterior distribution generated by the purely possibilistic approach (A) is almost centered on the point estimates obtained by the MLE method and the corresponding area is reduced by about 9%.

  fact, as highlighted before, the posterior possibility distributions of the uncertain parameters are multi-dimensional functions (and the posterior estimates of the parameters are dependent). Only for illustration purposes, Fig. 4 shows the α-cuts of level α = 0.05, 0of the PDFs of Y 1 = Q (top right column), Y 2 = Z m (top left column), Y 3 = Z v (bottom left column) and Y 4 = K s (bottom right column), respectively, produced by Approaches A (solid lines) and B (dashed lines).

Fig. 4 .

 4 Fig. 4.

  of the maximal water level of the river Z c (i.e., the model output) obtained before (Fig.6, solid lines) and after the Bayesian update performed by Approaches A (Fig.6, dashed lines) and B (Fig.6, dot-dashed lines). Notice that the distributions for Z c have been obtained by propagating the two-level mixed probabilistic and possibilistic uncertainty through the mathematical model by means of a hybrid Monte Carlo (MC) and Fuzzy Interval Analysis (FIA)

  and Y 4 = K s performed by Approach A and by Approach B (with T = 100 repetitions of the purely probabilistic Bayes' theorem for each of the N α = 21 α-cuts analyzed). Obviously, the computational time required by Approach B is approximately T•N α (i.e., T•N α = 100•21 = 2100 in this case) times larger than that of Approach A. On the other hand, notice that since Approach B is based on several repetitions of the purely probabilistic Bayes' theorem, if possible, parallelization could be in principle employed to
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. 1 Bayesian update of the possibilistic parameters of aleatory probability distributions

  

	In this Section, we present the methods employed in this study for updating, in a Bayesian
	framework, the possibilistic representation of the epistemically-uncertain parameters of (aleatory)
	probability distributions, as new information/evidence (e.g., data) becomes available. In this view,
	let	π	θ	(θ	)		be the (joint) prior possibility distribution for the parameters	[	,	,	...,	,	...,	]
	the PDF	p Y	| ( θ y	)	of variable Y (built on the basis of a priori subjective engineering knowledge
	and/or data). For example, in the risk assessment context of this paper Y may represent the yearly
	maximal water flow of a river described by a Gumbel distribution: thus, Y ~	p Y	| ( θ y	)	= Gum(θ) =
	Gum(θ 1 , θ 2 ) = Gum(γ, δ) =	p Y	(	y	|	γ	,	δ	)	and	π	θ	(θ	)	=	π	γ	, δ	( γ	,	δ	)	. Moreover, let
	y	=	[	1 y	,	y	2	,	...,	y	k	,	...,	y	D	]	be a vector of D observed pieces of data representing the new
	information/evidence available for the analysis: referring to the example above, y may represent a
	vector of D values collected over a long period time (e.g., many years) of the yearly maximal water
	flow of the river under analysis. The objective of the Bayesian analysis is to update the a priori
	representation	π	θ	(θ	)	=	π	γ	, δ	( γ	,	δ	)	of θ = [γ, δ] on the basis of the new evidence acquired, i.e., to
	calculate the posterior possibility distribution	π	θ	| ( y θ	)	(i.e.,	γ	, δ	( γ	,	δ	|	y	)

Table 3 .

 3 It is evident that the strength of Approach A in moving the most likely values c θ towards the

	corresponding MLE estimates MLE θ ˆ	is always higher than that of Approach B. Actually, the values
	of MLE d θ	(5) produced by Approach A are 1.58-5.24 times lower than those generated by Approach
	B for all the parameters.

Most likely value, c θ (d θ MLE ) Area, S θ (R θ )

  

	Variable	θ	MLE MLE θ ˆ	Prior	Posterior A	Posterior B	Prior	Posterior A	Posterior B
	Q [m 3 /s]	γ δ	1013.21 558.48	955.55 1002.70 (0.010) 990.42 (0.023) 144.65 100.55 (30.49) 96.90 (33.01) 599.15 566.35 (0.014) 581.40 (0.041) 103.35 76.94 (25.56) 73.65 (28.74)
	Z m [m]	µ Zm σ Zm	55.03 0.45	54.93 0.51	55.00 (5.45e-4) 54.98 (9.09e-4) 0.47 (0.044) 0.50 (0.111)	0.25 0.12	0.190 (24.00) 0.110 (8.33)	0.195 (22.00) 0.115 (4.17)
	Z v [m]	µ Zv σ Zv	50.19 0.38	50.11 0.45	50.17 (3.98e-4) 50.15 (7.97e-4) 0.39 (0.026) 0.43 (0.132)	0.21 0.16	0.165 (21.43) 0.121 (24.38)	0.170 (19.05) 0.125 (21.88)
	K s [/]	µ Ks σ Ks	27.80 5.26	25.24 6.89	26.95 (0.031) 5.54 (0.053)	26.43 (0.049) 6.72 (0.278)	6.45 4.11	5.40 (16.28) 3.75 (8.76)	5.80 (10.08) 3.95 (3.89)

Table 3 .

 3 Most likely values c θ of the parameters θ = γ , δ , Zm PDFs of the input variables Y 1 = Q, Y 2 = Z m , Y 3 = Z v and Y 4 = K s and areas S θ underlying the corresponding (marginal) possibility distributions before and after the Bayesian update performed by Approaches A and B. The point estimates MLE

	µ , Zm σ , Zv µ , Zv σ ,	s µ and Ks K σ of

Purely possibilistic approach

The purely possibilistic method (hereafter also referred to as 'Approach A' for brevity) is based on a purely possibilistic counterpart of the classical, probabilistic Bayes' theorem [Dubois and Prade, 1997;Lapointe and Bobée, 2000]: [START_REF] Pedroni | Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework[END_REF] Adapted and extended from [START_REF] Pedroni | Bayesian update of the parameters of probability distributions for risk assessment in a two-level hybrid probabilistic-possibilistic uncertainty framework[END_REF] Tables Purely possibilistic method (A) Hybrid probabilistic-possibilistic method (B) Prior
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Table 1. Characteristics of the purely possibilistic (A) and the hybrid probabilistic and possibilistic (B) approaches

Purely possibilistic method (Approach A)

Aleatory uncertainty Epistemic uncertainty (Purely possibilistic priors) (54.78, 54.93, 55.28) (49.98, 50.11, 50. 

Table 2. Characteristics and parameters of the prior distributions of the uncertain variables Y

and Y 4 = K s used in Approaches A and B, respectively

INPUT VARIABLES Variable Indicator

Prior Purely possibilistic approach (A) (% width reduction)

Hybrid approach (B) (% width reduction) 284.8, 480.9] [329.3, 446.3 [52.16, 53.46] [52.38, 53.23] (0.3462) [52.36, 53.28] (0.2923) Z c 0.95 [54.13, 56.44] [54.21, 55.87