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Abstract

In this paper, we focus on the analysis of image textures modeled by anisotropic

fractional Brownian fields. We propose some anisotropy indices intended to

characterize the anisotropy of these textures. The construction of these indices

relies upon the use of multi-oriented quadratic variations. It is based on di-

rectional quantities appearing in their asymptotic expectation. We show that

anisotropy indices are invariant to some image transforms, and estimable from

observed data. Eventually, we use anisotropy indices in combination with a

measure of texture roughness to detect lesions in mammograms.
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fractional Brownian field, lesion detection, mammography, breast cancer.
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1. Introduction

Brownian textures refer to a large class of irregular and non-stationary image

textures which are described by Gaussian random field models derived from the

fractional Brownian motion [1]. The most famous ones are fractional Brownian

fields. These fields have a single parameter, the so-called Hurst index, which5

is directly related to a degree of texture roughness (see Section 2 for details).

Email address: frederic.richard@univ-amu.fr (Frédéric J.P. Richard)
URL: http://www.i2m.univ-amu.fr/~richard/ (Frédéric J.P. Richard)

Preprint submitted to Spatial Statistics February 11, 2016



More generic fields include multifractional Brownian fields [2, 3] and their ex-

tensions [4, 5, 6] which can model textures with an inhomogeneous roughness.

These fields have a functional Hurst index which locally quantifies the degree

of roughness. Another family of models cover anisotropic Gaussian fields (e.g.10

anisotropic fractional Brownian fields (AFBF) [7], operator scaling Gaussian

random fields [8], etc.) which are well-suited for the modeling of rough tex-

tures with directional properties. Such models have features (e.g. scalar or

functional parameters) that encode directional properties of fields and may en-

rich the description of their texture irregularity. In this paper, we deal with the15

characterization and estimation of the directional heterogeneity (i.e anisotropy)

of these fields.

In [9, 10], semi-parametric methods were proposed for the estimation of the

anisotropy of irregular stationary fields. In [11], another method was developed

for the estimation of the single anisotropy parameter of a specific operator scal-20

ing random field [11]. This method is an implementation of the characterization

of anisotropic Besov space by hyperbolic wavelet transforms [12]. In this pa-

per, we propose some original features, called anisotropy indices, which aims at

characterizing the field anisotropy within a framework of extended AFBF (see

[13] and Section 2).25

For the definition of these indices, we set some requirements. First, indices

should represent an intrinsic quantity which is invariant to some image trans-

forms such as rotations, rescalings, or linear changes of intensities. Second,

indices should be estimable from an observed image. This second requirement

is probably the most stringent. Indeed, as opposed to multifractional Brownian30

fields whose Hurst index can be efficiently estimated using quadratic variations

[14, 15, 6, 16, 17], AFBF still raise open estimation issues. In [18], a method

was proposed for the estimation of their directional parameters. But, due to the

use of the Radon transform, it can only be applied in a few directions with a

limited precision. By contrast, it is possible to accurately estimate some direc-35

tional quantities which are indirectly related to parameters of AFBF. In [13],

such quantities were brought out during the construction of isotropy tests (see
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Section 2 for details). They are attached to the use of multi-oriented quadratic

variations, and accurately estimated using linear regression techniques. In this

paper, we use these quantities as a basis for the construction of our anisotropy40

indices.

Fractional Brownian fields and related models known as 1/f models are

widely spread in image processing applications, especially for the analysis of

textures of mammograms (radiographic images of the breast) [19, 20, 21, 22,

23, 24, 25, 26, 27, 18, 28]. Indeed, the Hurst index, as well as the parameter45

of a 1/f model, is directly related to the more popular fractal dimension. This

quantity has been of interest for the study of lesion detectability [20, 23, 25], the

detection of lesions [19, 22, 28, 26, 27], and the assessment of the breast cancer

risk [21, 24]. However, it is an isotropic measure of roughness which does not

account for directional properties of textures. Hence, we propose to combine50

such a measure with anisotropy indices so as to enrich the characterization of

mammogram textures. We then test the benefit of this extended description in

the context of lesion detection.

2. Image model

There are different ways to define image textures. In this work, textures55

are viewed as a random aspect of an image. To account for this randomness,

we regard each image as a realization of a random field. Moreover, we focus

on rough textures. Accordingly, we consider that a texture is a visual effect of

an irregularity of the underlying field. This implies that textures are related

to highest frequency properties of the field, and that they differ from other60

low-frequency aspects such as trends. The anisotropy we are interested is a

feature of the image texture. Hence, it only concerns field high-frequencies. In

this section, we present a random field framework which is appropriate for the

stochastic modelling of trended images with rough and anisotropic textures.
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2.1. Image trend65

We shall be able to deal with images having large trends. Hence, we can not

assume that the random field underlying an image is second-order stationary.

Still, some stationary assumptions are required to infer properties of the random

field from a single realization (i.e. an image). Hence, we make a weak assump-

tion that only field increments of a certain order are stationary. In geostatistical70

terms, we assume that random fields are intrinsic [29, 30]:

Definition 1. Let M ∈ N, and Z a random field. An increment field of order

M of Z is a random field defined, for any y ∈ R2, as

V (y) =

m∑
i=1

λiZ(xi + y),

with some sets (λi)
m
i=1 of scalar values and (xi)

m
i=1 of points in R2 satisfying the

condition
m∑
i=1

λix
l
i = 0,∀ l ∈ N2, l1 + l2 ≤M. (1)

A field is intrinsic of order M (or M -IRF) if its increment fields V of order M

are zero mean, and second-order stationary, i.e. for any y, E(V (y)) = 0, and,

for any y, z, E(V (y)V (z)) only depends on y − z.

An M -IRF can have a random polynomial trend of degree M . Hence, it can75

account for large non-stationary trends observed in images. Let us notice that a

stationary random field can be seen as a special IRF of order M = −1. Indeed,

when M = −1, Condition (1) is void so that any linear combination of Z has

to be stationary. Intrinsic field of order 0 correspond to fields with stationary

increments. They include the isotropic or anisotropic fractional Brownian field80

(see [7, 18] and Section 2.2 for a definition), or the operator scaling Gaussian

field [8].

Continuous M -IRFs are characterized by the so-called generalized covari-

ances. These covariances are functions K for which

E(Zλ,xZµ,y) =

m∑
i=1

n∑
j=1

λi µjK(xi − yj) (2)
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holds for any pair of M -increments Zλ,x and Zµ,y of Z. They have a spec-

tral representation [29, 31, 30, 13] which extends the Bochner representation of

stationary field covariances. For a large class of M -IRF, this representation is85

characterized by a spectral density f .

Definition 2. A M -IRF has a spectral density if its generalized covariances are

of the form

K(h) =
1

(2π)d

∫
Rd

(cos(〈w, h〉)− 1B(w)PM (〈w, h〉)) f(w)dw +Q(h), (3)

where PM (t) = 1− t2

2 + · · ·+ (−1)M
(2M)! t

2M , 1B(w) is the indicator function of an

arbitrary neighborhood of 0, Q an arbitrary even polynomial of degree ≤ 2M ,

and f is an even and positive function satisfying the integrability conditions

∀A > 0,

∫
|w|<A

|w|2M+2f(w)dw <∞ and

∫
|w|>A

f(w)dw <∞. (4)

Conditions in (4) are related to field properties at low and high frequencies,

respectively. In particular, as the parameter M increases, the first condition

becomes weaker, allowing the order of polynomial trends to be higher.

2.2. Texture anisotropy90

In [7], some anisotropic extensions of the fractional Brownian field were

defined from the spectral representation of Gaussian fields with stationary in-

crements. These fields are IRF of order 0 characterized by a spectral density of

the form

gτ,η(w) = τ(arg(w))|w|−2η(arg(w))−2, (5)

for some even, positive, bounded, and π-periodic functions τ and η, where η(s) ∈

(H,H) with 0 < H ≤ H < 1. The anisotropy of this model is due to the so-

called topothesy function τ and Hurst function η which are both dependent on

spectral direction arg(w). In particular cases when these functions are constant,

fields are isotropic and correspond to fractional Brownian fields. Following [13],95

these anisotropic fields can be extended to IRF of an arbitrary order by only

imposing 0 < H < 1 and letting the upper bound H of η varies in (H,+∞).
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Figure 1: Some realizations of anisotropic fractional Brownian fields simulated using the

turning-band method [32]. Second row: the Hurst function of these fields.

On Figure 1, we show some realizations of anisotropic fractional Brownian

fields. Their topothesy functions are constant and their Hurst functions are

minimal over an interval Ef of decreasing length (from left to right, l(Ef ) =100

2.75, l(Ef ) = 1.37, l(Ef ) = 0.34). As observed on Figure 1, the decrease of the

length of Ef enhances the anisotropy of simulated textures.

The form of the spectral density of an AFBF is identical at all frequencies.

As a consequence, properties of trends and textures of an AFBF cannot be

dissociated. For instance, an AFBF cannot describe images with anisotropic

textures and isotropic trends. Hence, following [13], we will make the assump-

tion that images are sampled from an M -IRF whose spectral density f fulfills

the condition

|w| > A⇒ f(w)− gτf ,ηf (w) ≤ C|w|−2Hf−2−γ , (6)

for some positive constants A,C and γ, a spectral density gτf ,ηf of the form

(5) defined with some topothesy and Hurst functions τf and ηf , and Hf =

ess infs ηf (s). As it only concerns high-frequencies of the field, this condition105

does not constrain image trends. It only implies that image textures are similar
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to those of anisotropic fractional Brownian fields.

In this context, we will say that a texture is isotropic if the topothesy and

Hurst functions τf and ηf of the field underlying images are both almost every-

where constant on [0, π).110

2.3. Texture roughness

Textures we aim to analyze are rough, meaning that they reflect some field

irregularity. To define mathematically the texture roughness, we use the notion

of Hölder irregularity.

Definition 3. A field Z satisfies a uniform stochastic Hölder condition of order

α ∈ (0, 1) if, for any compact set C ⊂ R2, there exists an almost surely finite,

positive random variable AC such that the Hölder condition

|Z(x)− Z(y)| ≤ AC |x− y|α. (7)

holds for any x, y ∈ C, with probability one.115

If there exists H ∈ (0, 1) for which Condition (7) holds for any α < H but

not for α > H, then we say that Z admits H as critical Hölder exponent, or

that Z is H-Hölder.

Fields with critical Hölder exponents H in (0, 1) are suitable to model images

having rough textures. Using such fields, the degree of texture roughness can120

be quantified from 0 to 1 by 1−H.

Besides, the Hölder irregularity of a M -IRF can be characterized from the

asymptotic behavior of its spectral density at high-frequencies [33, 13]. Let Z

be a field with a density f satisfying Condition (6). Further assume that

Ef = {s ∈ [0, π), ηf (s) = Hf , τf (s) 6= 0}. (8)

is a subset of [0, π) of positive measure. Then, according to Proposition 2.5 of

[13], the field Z is Hf -Hölder. Hence, by imposing Conditions (6) and (8), we

restrict the domain of our analysis to irregular images with rough textures. Let

us outline however that these conditions has no effect on image trends.125
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3. Anisotropy indices

This section is devoted to anisotropy indices. We first present the multi-

oriented quadratic variations which are at the basis of their construction. We

then define them and state some of their properties. Eventually, we deal with

their estimation.130

Throughout the section, we will assume that an image is a realization of a

random field Z on a grid [[1, N ]]2. We denote by ZN [m] = Z(m/N) the image

intensity at position m ∈ Z2.

3.1. Background

Multi-oriented quadratic variations were introduced in [13] to construct

isotropy tests. The definition of these variations is based on the computation

of image increments, which give information about image variations at highest

observed scales. Furthermore, these increments are not only computed at dif-

ferent scales but also in different orientations. This is done using transforms

Tu defined for a given u ∈ Z2\{(0, 0)} as a composition of a rotation of angle

arg(u) and a rescaling of factor |u|

Tu =

 u1 −u2
u2 u1

 = |u|

 cos(arg(u)) − sin(arg(u))

sin(arg(u)) cos(arg(u))

 ,

Increments in direction arg(u) at scale |u| are obtained by a discrete convolution

∀m ∈ Zd, V Nu [m] =
∑
k∈Z2

v[k]ZN [m− Tuk], (9)

with an appropriate convolution kernel v. This kernel is chosen so as to ensure

that the convolution annihilates any polynomial of a predefined order K (kernel

of order K). Some kernels selected in [13] for their optimality are given for

L ∈ N\{0} by

v[l1, l2] = (−1)l1
(
L

l1

)
, (10)

if (l1, l2) ∈ [[0, L]]×{0} and 0 otherwise;
(
n

k

)
stands for the binomial coefficient.135

Such a kernel is of order K = L− 1.
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The information provided by increments are summarized into a single ran-

dom variable called quadratic variation

WN
u =

1

Ne

∑
m∈EN

(V Nu [m])2, (11)

where EN is a set of cardinal Ne containing positions m where increments can be

computed on grid points. To get information at different scales and orientations,

we compute quadratic variations for different vectors u indexed in a set I. For

any k ∈ I, we also compute normalized log-variations

W̃N
uk

= log(WN
uk

)−
∑
m∈I

λm log(WN
um) (12)

for some positive weights λk that satisfy
∑
k∈I λk = 1. We gather all these

variations into a single random vector Y N = (W̃N
uk

)k∈I . Following [13] (Theo-

rem 3.4), we can specify the asymptotic probability distribution of this random

vector Y N .140

Theorem 1. Assume that the random field Z is a continuous Gaussian M -

IRF with a spectral density f satisfying Condition (6). Further assume that the

Hurst index Hf belongs to (0, 1) and the set Ef defined by Equation (8) is of

positive measure. Consider a log-variation vector Y N constructed using a kernel

v of order K > M . For all k ∈ I, define random variables εNk such that

Y Nk = Hf xk + βf,v(arg(uk)) + εNk , (13)

where xk = log(|uk|2)−
∑
m∈I λm log(|um|2) and

βf,v(arg(uk)) = Cf,v(arg(uk))−
∑
m∈I

λm Cf,v(arg(um)), (14)

with

Cf,v(θ) = log

(
1

(2π)2

∫
Ef

τf (ϕ)

∫
R+

|v̂ (ρ~u(ϕ− θ))|2 ρ−2Hf−1dρdϕ

)
, (15)

v̂ the discrete Fourier transform of v, and ~u(ϕ) = (cos(ϕ), sin(ϕ))′.

Then, as N tends to +∞, the random vector (NεNk )k∈I tends in distribution to

a centered Gaussian vector.
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Interestingly, Theorem 1 brings out some information that quadratic vari-

ations capture about the observed field. In particular, Equation (13) reveals145

a linear relationship between variations Y N and some parameters Hf and βf,v

depending both on the spectral density of the field. The Hurst index Hf is

the parameter which directly characterizes the field irregularity. Intercepts βf,v

carry a directional information which will be used to define anisotropic indices

(see Section 3.2). Both types of parameters can be estimated using a linear150

regression procedure which will be presented in Section 3.3.

3.2. Definition and properties

Intercepts βf,v which appears in Equation (14) of Theorem 1 has a noticeable

property: they vanish when the field texture is isotropic, and differ when it is

not. This property is ensured by the following proposition (see Appendix A for155

a proof).

Proposition 1. Take the same conditions as in Theorem 1.Then, Cf,v is con-

stant over [0, π) if and only if the field is isotropic.

Besides, for appropriate weights (λk)k and a fixed θ, the intercept βf,v(θ)

approximate the difference between the value of the function Cf,v at θ and its160

integral over [0, π). These remarks lead us to the definition of anisotropic indices.

Definition 4 (Anisotropy indices). Take the same conditions as in Theo-

rem 1. Let p be in (0,+∞], and ‖·‖p be a norm (or pseudo-norm) of Lp([0, π);R).

The p-anisotropy index Ap,v(f) of an intrinsic random field whose spectral den-

sity f fulfills Condition (6) is defined as

Ap,v(f) =

∥∥∥∥Cf,v(·)− 1

π

∫ π

0

Cf,v(ϕ)dϕ

∥∥∥∥
p

, (16)

where Cf,v is defined by Equation (15). In particular, for p = 1, 2,+∞, it is
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defined as

A1,v(f) =
1

π

∫ π

0

∣∣∣∣Cf,v(θ)− 1

π

∫ π

0

Cf,v(ϕ)dϕ

∣∣∣∣ dθ, (17)

A2,v(f) =
1

π

∫ π

0

(
Cf,v(θ)−

1

π

∫ π

0

Cf,v(ϕ)dϕ

)2

dθ, (18)

A∞,v(f) = sup
θ∈[0,π)

∣∣∣∣Cf,v(θ)− 1

π

∫ π

0

Cf,v(ϕ)dϕ

∣∣∣∣ . (19)

respectively.

The anisotropic index has some important properties, which are shown in Ap-165

pendix A.

Proposition 2. Take the same conditions as in Theorem 1, and set p ∈]0,+∞].

Then,

(i) Ap,v(f) = 0 if and only if the field texture is isotropic.

(ii) For any positive scalars α, λ, and rotation matrix Rψ of angle ψ,

Ap,v(αf ◦ (λRψ)) = Ap,v(f).

Property (i) ensures that the anisotropic index has a minimal value 0 when the

fields are isotropic, and that the minimum is exclusively reached by isotropic

fields. Property (ii) implies that the anisotropic index is invariant to rotations

and rescalings of the image, and linear transforms of its intensities.170

We get some other interesting properties in cases when the kernel v is mono-

directional, i.e. if v[k1, k2] = v1[k1]v2[k2] and v2[k2] = 0 whenever k2 6= 0 (see

Equation (10) for examples).

Proposition 3. Take the same conditions as in Theorem 1, and set p ∈ (0,+∞].

(i) For any mono-directional kernel v of order K > M , we have

Ap,v(f) = Ãp(f), where Ãp(f) =

∥∥∥∥C̃f (·)− 1

π

∫ π

0

C̃f (ϕ)dϕ

∥∥∥∥
p

, (20)

and C̃f (θ) = log

(∫
Ef

τf (ϕ)| cos(θ − ϕ)|2Hf dϕ

)
. (21)

11



0 1 2 3 4
0

0.5

1

1.5

Angle range

A
ni

so
tr

op
y 

in
de

x

 

 

H=0.1
H=0.3
H=0.5
H=0.7
H=0.9

0 1 2 3 4
0

0.5

1

1.5

2

Angle range

A
ni

so
tr

op
y 

in
de

x

 

 

H=0.1
H=0.3
H=0.5
H=0.7
H=0.9

(a) (b)

Figure 2: Theoretical values of the anisotropy indices for elementary anisotropic fractional

Brownian fields: (a) A1, (b) A2

(ii) If we further assume that Ef = (α1, α2) for −π/2 ≤ α1 < α2 ≤ π/2, and

that τf is almost everywhere constant on Ef , then Ap,v(f) is of the form (20)

with a function C̃f (θ) which is the logarithm of the function
BH
(

1−sin(θ+l(Ef ))
2

)
+ BH

(
1−sin(θ)

2

)
if π/2− l(Ef ) ≤ θ ≤ π/2,

BH
(

1+sin(θ+l(Ef ))
2

)
+ BH

(
1+sin(θ)

2

)
if − π/2− l(Ef ) ≤ θ ≤ −π/2,∣∣∣BH ( 1−sin(θ+l(Ef ))

2

)
− BH

(
1−sin(θ)

2

)∣∣∣ otherwise,

(22)

where l(Ef ) = α2 − α1 and BH is the incomplete Beta function given by

∀ t ∈ [0, 1],BH(t) =

∫ t

0

uH−1/2(1− u)H−1/2du.

Property (i) ensures that the value of the anisotropic index does not depend

on the choice of the increment kernel v (when restricting to mono-directional175

kernels). Property (ii) gives a computable formula of the anisotropic index of

the so-called elementary fractional Brownian field whose topothesy function is

constant on the set Ef and null outside.

Using Formula (22), we computed anisotropy indices of fields shown in Fig-

ure 1: from left to right, we got A2 = 0.03, A2 = 0.17, A2 = 0.30. Hence,180

we observed that the anisotropy enhancement is associated to an increase of

anisotropy indices.
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To further illustrate this association, we computed the anisotropy indices

of elementary fractional Brownian fields, i.e. fields whose topothesy function

is constant on the set Ef and null outside. On Figure 2, we plotted values of185

anisotropy indices as a function of the length l(Ef ) for different minimal Hurst

index Hf . We can observe that a decrease of the length l(Ef ) of Ef produces

an increase of anisotropy indices. This suggests that anisotropy indices could

quantify some degrees of anisotropy.

3.3. Estimation190

For the ease of presentation, we will use a multi-index k = (i, j) to identify

terms involved in the linear model (13). The first index i will refer to an ith angle

ϕi in a set {arg(uk), k ∈ I} of size m, and the index j to an jth rescaling factor

in a set {|ak|, arg(uk) = ϕi} of size ni. Angles ϕi are arranged in (−π/2, π/2] by

increasing order. We assume that ϕm = π/2, and set ϕ0 = −π/2 by convention.195

We define αi = ϕi − ϕi−1, βi = βf,v(ϕi), and H = Hf .

For p ∈ (0,+∞), we estimate the anisotropic index Ap with

Âp =

 m∑
i=1

ni∑
j=1

λij |β̂i|p
(1/p)

, (23)

where variables β̂i are some estimators of βi, and λij some positive weights

satisfying
∑ni
j=1 λij = αi

π for all i ∈ [[1,m]] (e.g. λij = αi
πni

). For p = +∞, we

estimate it with

Â∞ = sup
i∈[[1,m]]

|β̂i|. (24)

Estimates β̂i of βi are obtained by applying a linear regression technique to

the model (13). More precisely, they are computed by minimizing the ordinary

least square criterion

J(H,β1, · · · , βm) =

m∑
i=1

ni∑
j=1

(Yij −Hxij − βi)2 (25)

under the constraint that
∑m
i=1 αiβi = 0. This leads to estimates

β̂i =

(
Y i· − c0

αi
ni

m∑
k=1

αkY k·

)
− Ĥ

(
xi· − c0

αi
ni

m∑
k=1

αkxk·

)
, (26)
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and

Ĥ =

∑m
i=1(

∑ni
j=1 xijYij − nixi·Y i·) + c0(

∑m
i=1 αixi·)(

∑m
i=1 αiY i·)∑m

i=1

∑ni
j=1 x

2
ij −

∑m
i=1 nix

2
i· + c0(

∑m
i=1 αixi·)

2
(27)

where xi· = 1
ni

∑ni
j=1 xij , Y i· = 1

ni

∑ni
j=1 Yij , and c0 = 1/

∑m
i=1

α2
i

ni
.

4. Numerical study

In this section, we present an evaluation of estimators of anisotropy indices

defined in Section 3.3.200

4.1. Estimation error

We simulated 10000 realizations of elementary fractional Brownian fields

on a square grid of length N = 200. The Hurst function of these fields was

equal to a same Hurst index Hf ∈ (0, 1) on an interval of the form Ef =

[φ0 − δ0/2, φ0 + δ0/2]. Their topothesy function was constant on Ef , and null205

outside. The value of Hf determines the irregularity of the field, the value of

φ0 its anisotropy direction, and δ0 its degree of anisotropy. For each simulated

field, parameters Hf , φ0 and δ0 were sampled independently from a uniform

law on (0.05, 0.95), (−π/2, π/2), and (0.02, π), respectively.

Our evalution was focused on elementary fractional Brownian fields which210

only cover special cases of anisotropic fields we deal with. In general, the

topothesy function of fields may vary on Ef . However, each anisotropic field

can be approximated by a sum of independent elementary fractional Brownian

fields. Hence, we expect our evaluation to give a fair account of estimation

performances on arbitrary anisotropic fields.215

On each simulated field, we computed quadratic variations of image incre-

ments in directions arg(u) and at scales |u| prescribed by vectors u of the set

U = {u ∈ [[0, N ]] × [[−N,N ]], 1 ≤ |u| ≤ 42} (see Equations (9) and (11)). To

compute increments, we used a kernel v of the form (10) for L = 2.

Then, we estimated anisotropy indices A1, A2 and A∞ using the regres-220

sion procedure described in Section 3.3. This procedure was applied several
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times to quadratic variations associated to different subsets Uρ of U depend-

ing on a maximal scale ρ. For ρ ∈ [2, 42], subsets Uρ were composed of all

vectors u ∈ U such that |u| < ρ and there exists another v ∈ U , |v| < ρ and

arg(u) = arg(v). Denoting Iρ the set of indices of vectors of Uρ and according225

to Equation (23), estimates of anisotropic indices obtained with a subset Uρ are

Âρp =
(∑

k∈Iρ λk|β̂k|
p
) 1
p

for p ∈ (0,+∞) and Âρ∞ = supk∈Iρ |β̂k| for p = +∞.

For each anisotropic index and maximal scale, we computed the mean square

error as the average of square differences between theoretical and estimated val-

ues of the anisotropy index over simulations. We used Formula (22) of Propo-230

sition 3 to evaluate the theoretical indices.

Estimation errors are partly due to biases induced by discrete approxi-

mations of anisotropy indices. These approximations depend on ρ. For p ∈

(0,+∞), they are given by∑
k∈Iρ

λk

∣∣∣∣∣∣Cf,v(arg(uk))−
∑
l∈Iρ

λl Cf,v(arg(ul))

∣∣∣∣∣∣
p 

1
p

,

where Cf,v is defined by Equation (15). For p = +∞, it is

max
k∈Iρ

∣∣∣∣∣∣Cf,v(arg(uk))−
∑
l∈Iρ

λl Cf,v(arg(ul))

∣∣∣∣∣∣ .
To assess the approximation effect, we computed an error (bias) as the aver-

age of square differences between theoretical and approximated values of an

anisotropy index over simulations. The approximated anisotropy indices were

also evaluated using Formula (22) of Proposition 3.235

Another source of error comes from the variance of quadratic variations in-

volved in estimation. To see this variance effect, we computed another error

(variance) as the average of square differences between estimated and approxi-

mated values of an anisotropy index over simulations.

On Figure 3, we plotted errors as a function of the maximal scale ρ. As240

ρ was increased, there were more and more quadratic variations involved esti-

mation. As a result, errors due to variances kept on increasing. Conversely,
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Figure 3: Relative errors for the evaluation of (a) A1, (b) A2 and (c) A∞. All errors are

expressed in percent of the variance of anisotropy index values.

as ρ was increased, approximation errors got lower and lower since the number

of variation directions also increased. Up to some scales, improvements of ap-

proximation accuracy compensated for variance increases, and estimation errors245

(MSE) reduced. Above these scales, variance effects became predominant, and

estimation errors started to increase. For anisotropy indices A1 and A2 (graphs

(a) and (b)), estimation errors reached a minimum at about the scale ρ = 15.

For A∞ (graph (c)), the error was minimal at an higher scale (25) due to a

worse approximation of the index.250

4.2. Influence of simulation parameters

We further investigated the effect of simulation parameters on the estimation

of anisotropy indices. We focused on A2 and set the maximal scale ρ = 15.

In Table 1, we present errors with respect to ranges of different parameters.

The estimation was sensitive to the field irregularity Hf . As Hf gets close to 1,255

variances of quadratic variations increases. Hence, variance errors, and a fortiori

estimation errors, were larger forHf close to 1 than to 0. Besides, the orientation

of the anisotropy φ0 had a slight effect on the estimation. Approximation errors

were higher for φf close to 0 and π/2 than for directions in between. The degree

of isotropy δ0 had also an effect on estimation. The error is particularly high260

when the support length δ0 is small, i.e. when the anisotropy is strong.
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Hf Ed Ev E

(0.05,0.23) 0 0.3 0.3

(0.23,0.41) 0.1 0.9 1.0

(0.41,0.59) 0.1 1.6 1.7

(0.59,0.77) 0.2 2.1 2.2

(0.77,0.95) 0.3 2.7 3.1

|φ0| Ed Ev E

(0 ,0.31) 0.2 1.7 2.0

(0.31,0.63) 0 1.4 1.4

(0.63,0.94) 0.1 1.3 1.3

(0.94,1.26) 0.1 1.5 1.5

(1.26,1.57) 0.3 1.8 2.1

δ0 Ed Ev E

(0.01,0.32) 0.6 4.3 5.1

(0.32,0.63) 0 1.3 1.4

(0.63,0.95) 0 0.7 0.7

(0.95,1.26) 0 0.6 0.6

(1.26,1.57) 0 0.7 0.7

Table 1: Analysis of errors made in computing the anisotropic index A2 with respect to each

simulation parameter. Errors denoted by Ed, Ev and E are the approximation bias, the

variance error and the MSE, respectively. They are expressed in percent of the variance of

anisotropy index values.

5. Application to mammograms

In this section, we present an application of anisotropy indices to the detec-

tion of lesions on mammograms.

5.1. Context265

Breast cancer is a leading cause of woman mortality, which is particularly

widespread in western countries. The early detection of this disease increases

treatment possibilities and the rate of survival. Currently, mammography is

recognized as the most effective imaging modality for an early detection, and

used as a conventional tool for screening (see [34] for a review of epidemiological270

studies about mammography screening). However, there are still numerous can-

cers missed by mammography examination. Computer-aided detection (CAD)

systems have been developed to aid radiologists in detecting lesions and try to

reduce overlooked cancers (see [35, 36, 37, 38, 39] for reviews of lesion detection

methods).275

However, the automatic detection of lesions on mammograms (images pro-

duced by mammography) is a challenging task. Mammograms are X-ray pro-

jections of breast tissues composing breasts. Due to breast diversity and in-

homogeneity, textures of these images may vary drastically not only between
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H = 0.17, A2 = 0.22 H = 0.34, A2 = 0.34 H = 0.58, A2 = 0.69

H = 0.41, A2 = 0.17 H = 0.65, A2 = 0.32 H = 0.73, A2 = 0.22

Figure 4: Examples of regions extracted from mammograms. Images of the first row are from

normal cases. Images of the second row show lesions; from left to right, spiculated, ill-defined,

and circumscribed masses.

women but also within a same breast. Such variations are illustrated on the280

first row of Figure 4. Mammographic patterns due to lesions are also very di-

verse. On the second row of Figure 4, we show some lesions exhibiting a central

mass (a bright circular area) whose shape, margin and appearance are highly

variable. Some lesions may not even have a distinct mass, as it is the case with

the so-called architectural distortions or asymmetries. Architectural distortions285

are perceived on mammograms as local distortions of the normal parenchymal

texture. Such lesions are often missed by radiologists, and poorly detected by

commercial and academic CAD systems [40, 38]. Asymmetries may only be

detectable by a comparison of bilateral mammograms [38].

In what follows, we propose a method to detect the presence of lesions in290

mammograms. In this method, we use estimates of both the Hurst index and an

anisotropy index to classify image regions of interest into normal and abnormal.
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Figure 5: Classification of ROIs extracted from mammograms. Image (a): values of the Hurst

and anisotropy indices (Ĥ, Â2) of each ROI, (b) ROC curves obtained after a classification of

ROIs.

5.2. Lesion detection

We applied our classification approach to the mini MIAS database [41]. In

this database, we extracted regions of interest (ROI) of size 100× 100 centered295

at the lesion barycenter within 92 pathological mammograms. We included all

types of lesions except micro-calcifications. We also randomly selected 358 ROIs

within normal mammograms.

On each ROI, we computed increments V Nu (see Equation 9) for vectors

u ∈ Z2 having a scale |u| between
√

2 pixels (0.28 mm) and 40 pixels (8 mm)300

and an argument arg(u) where at least 2 vectors u had the same argument. Due

to the small size of ROI, we used the kernel defined by Equation (10) with L = 1.

Since this kernel is only of order 0, we compensated for trends in each ROI by

fitting and subtracting a polynomial of order 1 to the image. For each ROI, we

computed the irregularity and anisotropy indices Ĥ and Âp (with p = 1, 2 or305

+∞).

Values of these index pairs (for p = 2) are shown on image (a) of Figure

5. On average, the abnormal ROIs seemed smoother than the normal ones

(higher values of H). The relative smoothness of abnormal ROIs could be
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explained by some increases of mammogram densities associated to the presence310

of pathology. Besides, for a same degree of regularity, the amount of anisotropy

appeared lower for the abnormal ROIs than for the normal ones. Reflecting

the orientation of tissues toward the nipple, mammogram textures of a normal

breast would rather be anisotropic. Modifying the normal tissue orientation, a

pathology would cause isotropic patterns (e.g. spiculated lesions, architectural315

distortions) to appear on mammogram textures.

We further used indices as features to classify ROIs into normal and abnor-

mal. For this classification, we adopted a novelty detection approach. We first

estimated a probability distribution of index pairs on a half of normal ROIs

selected at random. For that, we fitted a normal distribution to the empirical320

distribution of Ĥ, and Gamma distributions to empirical distributions of Âp

conditionally to values of Ĥ. Then, we classified the rest of ROIs (normal and

abnormal) by thresholding the probability computed on ROIs: a ROI was con-

sidered as normal (resp. abnormal) if the probability were above (resp. below)

a given threshold. For each type of lesions, we computed false and true positive325

rates associated to different thresholds. Eventually, we plotted Reicever Oper-

ating Characteristic (ROC) curves (see Figure 5 (b)) and computed areas under

these curves (AUC) (see Table 2).

Lesion type circ misc spic arch asym all

Number of cases 19 19 24 15 15 92

AUC (with H only) 0.895 0.912 0.861 0.685 0.771 0.827

AUC (with (H,A2)) 0.897 0.916 0.869 0.743 0.776 0.843

AUC (with (H,A1)) 0.88 0.895 0.855 0.7 0.778 0.823

AUC (with (H,A∞)) 0.812 0.716 0.891 0.671 0.63 0.754

Table 2: The AUC of the ROC curves by lesion types.

The AUC is an indicator in [0, 1] which is often used in medical applica-

tions to compare detection methods. Using this criterion, the best method is330

the one for for which the AUC is the closest to 1. Here, the best AUC were
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obtained using the anisotropic index A2. It reached 0.843 for all lesion types.

It was particularly high (> 0.85) for the detection of all kinds of masses (cir-

cumscribed ’circ’, ill-defined ’misc’, and spiculated ’spic’). It was quite good

(> 0.74) for other subtle lesions (architectural distortions ’arch’ and asymme-335

tries ’asym’). Comparing the AUC obtained with and without using A2, we

noticed that information provided by A2 greatly improves the detection of ar-

chitectural distortions. However, the improvement was not as significant for

other lesions.

6. Discussion340

We defined some indices which are intended to characterize the anisotropy of

image textures modeled by anisotropic fractional Brownian fields. We showed

that these indices are intrinsic quantities in the sense that they are invariant to

several image transforms (rotation, rescalings and linear intensity changes). We

also constructed estimators of these indices, and evaluated them on synthetic345

data. Results showed that the estimation mean square error was lower than 2%

for two selected indices (A1 and A2).

Our anisotropy indices differ from the one proposed in [11]. In [11], the

index was the parameter of a specific operator scaling random fields. Here,

indices were rather non-parametric quantities which characterized a large class350

of anisotropic fields; due to their regularity properties [42, 43], operating scaling

random fields are likely to belong to this class. In [11], the anisotropy parameter

was estimated using hyperbolic wavelets. By construction, these wavelets are

dependent on image axes. Hence, the wavelet analysis had to be performed on

different image rotations so as to account for arbitrary anisotropy directions.355

As it required image interpolations, the use of rotations was likely to bias the

estimation procedure. By contrast, our indices were estimated using quadratic

variations computed on the image grid at several scales and orientations without

any interpolation. Consequently, our estimation procedure was quite robust to

the anisotropy direction.360
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Figure 6: Some simulated fields (top row) with a same anisotropy index A2 = 0.30 (first row)

but different Hurst functions (second row). In all examples, the minimal value Hf of the

Hurst function and the set Ef where it is minimal are the same.

The construction of anisotropy indices relied upon the use of multi-oriented

quadratic variations introduced in [13]. More precisely, it was based on direc-

tional quantities which appear in the asymptotic expression of the expectation

of these variations. These asymptotic quantities depend on the texture irregu-

larity Hf (the minimal value of the Hurst function ηf of the observed AFBF).365

This dependence should be taken into account when comparing the anisotropy

of textures with different degree of roughness. Moreover, asymptotic quanti-

ties only depend on values of the topothesy and Hurst functions on the set

Ef of directional frequencies where the Hurst function is minimal. Therefore,

anisotropy indices can not differentiate anisotropic textures where these func-370

tions exclusively differ outside Ef . Examples of such textures are shown on

Figure 6.

We combined anisotropy indices with the Hurst index so as to describe both

the irregularity and anisotropy of mammogram textures. We used this combined

description to detect the presence of lesions in regions of interest. Despite the375

variability of mammogram textures and lesion patterns, we obtained encourag-
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ing results for all lesion types. The benefit of anisotropy indices was particularly

obvious for architectural distortions which are lesions among the most difficult

to detect.
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Appendix A. Proofs

Proof of Proposition 1. According to Equation (15),

Cf,v(θ) = C0,∀ θ ⇔ K(θ) =
1

π

∫ π

0

1E(ϕ)τf (ϕ)WH(θ − ϕ)dϕ =
C0

π
,∀ θ, (A.1)

where 1E is the indicator function of the set E, and

WH(ϕ) =

∫ +∞

0

|v̂(ρ~u(−ϕ))|2ρ−2H−1dρ. (A.2)

But, computing the discrete Fourier transform of K, we have for all n ∈ Z2,

K̂[n] = 1̂Eτf [n]ŴH [n],

where f̂ [n] = 1
π

∫ π
0
f(θ)e−i2〈n,θ〉dθ denotes Fourier coefficients of a π-periodic

function f . Hence,

Cf,v(θ) = C0,∀ θ ⇔ 1̂Eτf [n]ŴH [n] =

 C0/π if n = 0,

0 if n 6= 0.
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Thus, inversing the Fourier transform, we obtain

Cf,v(θ) = C0,∀ θ ⇔ 1E(θ)τf (θ) =
C0

πŴH [0]
, (A.3)

for almost all θ. Moreover, integrating K over (0, π) in Equation (A.1), we get∫
E

τ(ϕ)dϕ ŴH [0] = C0.

Given Equation (A.3), this implies that the Lebesgue measure of the set E is495

equal to π. Consequently, Cf,v is constant over (0, π) if and only if τf is almost

everywhere constant over (0, π).

Proof of Proposition 2. Property (i) is a direct consequence of Proposition 1

and properties of a norm (or pseudo-norm).

We focus on the proof of Property (ii). Let α, and λ be two positive scalars,

and Rψ a rotation matrix of angle. Set g = αf ◦ (λRψ). According to (6), we

have Eg = Ef − ψ, and Hg = Hf . Furthermore, for all θ ∈ Eg,

τg(θ) = αλ−2Hf−1τf (θ + ψ).

Hence, from Equation (15), we get

Cg,v(θ) = log(α λ−2Hf−1) + log

(∫
Ef−ψ

τf (ϕ+ ψ)WH(θ − ϕ)dϕ

)
,

where WH is given by Equation (A.2). Therefore, by a coordinate change ζ =

ϕ− ψ, we obtain

Cg,v(θ) = log(α λ−2Hf−1) + Cf,v(θ − ψ).

Then, using Equation (16), we get

Ap,v(g) =

∥∥∥∥Cf,v(· − ψ)− 1

π

∫ π

0

Cf,v(ϕ− ψ)dϕ

∥∥∥∥
p

,

and, thus, Ap,v(g) = Ap,v(f).500
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Proof of Proposition 3. Let v be a mono-directional filter, i.e. v[k1, k2] =

v1[k1]v2[k2] and v2[k2] = 0 whenever k2 6= 0. Then,

Cf,v(θ) =

∫
Ef

τf (ϕ)

∫ +∞

0

|v̂1(ρ cos(θ − ϕ))|2ρ−2Hf−1dρdϕ.

Using the coordinate change λ = ρ| cos(θ − ϕ)|, it comes that

Cf,v(θ) = Λ(Hf , v)

∫
Ef

τf (ϕ)| cos(θ − ϕ)|2Hf dϕ, (A.4)

where Λ(Hf , v) =
∫ +∞
0
|v̂1(λ)|2λ−2Hf−1dλ. Then, Equation (20) follows from

the definition of the anisotropy index.

In the particular case when Ef = (α1, α2) and τf is constant over Ef , we

have

Cf,v(θ) = λ0

∫
Ef

| cos(θ − ϕ)|2Hf dϕ,

for some positive constant λ0. The integral of this equation can be further

specified using Corollary 3 of supplementary materials of [32]. This directly

leads to Equation (22).505
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