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Abstract

Following the work of [6], we aim at correcting mortality estimates based on fertility

data. As already conjectured by [13], the computation of exposure to risk can su�er from

errors for cohorts born in years in which births are �uctuating. In this context, we �rst

point our attention to the Human Mortality Database [8], the reference mortality data

provider. While comparing period and cohort mortality tables, we highlight the presence

of anomalies in period ones in the form of isolated cohort e�ects. Our investigation of the

HMD methodology exhibits a strong assumption of uniform distribution of births that is

speci�c to period tables, therefore likely to be at the core of the asymmetry between both.

Based on the idea of [6] regarding the construction of kind of "data quality indicator", we

make a new and intensive exploitation of the Human Fertility Database [7], which is from

our point of view a crucial source as it represents the perfect counterpart of the HMD in

terms of fertility. This indicator is then used to construct corrected period mortality tables

for several countries, which we analyze on both an historical and prospective point of view.

Our main conclusions relate to the reduction of volatility of mortality improvement rates,

the impact in the use of cohort parameters in stochastic mortality models, as well as a

better �t of corrected tables by classical mortality models.

Keywords: Human Mortality Database, Cohort e�ect, Death rate, Exposure

to risk, Human Fertility Database, Births by month.

1 Introduction

Since its launch in 2002, the Human Mortality Database [8] has become the ref-

erence provider of mortality estimates given in an homogenous format for several
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countries. These national indicators are extensively used by researchers as demog-

raphers, as well as practitioners in insurance companies, as an input to get insights

on uncertain future mortality. A huge amount of literature has been dedicated to

the sophistication of stochastic mortality models in the past decades, see e.g. [11]

and [4]. In their philosophy, such models consider that future mortality rates are

random, and the analysis of past mortality rates (often taken from HMD) in terms

of their age, time and possibly cohort directions will help to extract the time series

driving the mortality pattern, which can be then (randomly) extrapolated.

In comparison, few contributions focused on the reliability of demographic data,

and particularly of mortality estimates taken as inputs for historical analysis or

predictive forecasts. To our knowledge, the �rst insights have been suggested by

[13], and from our point of view [6] proposed a founding work on this direction. The

conjecture of [13] was focused on the 1919 birth cohort for England & Wales for

which he suggested the possibility of errors due to erratic number of births. Such

conjectures took a concrete form as the ONS (O�ce for National Statistics) produced

corrected tables, in fact a mortality increase for this 1919 cohort, particularly at high

ages. The ONS methodology has then been studied by [6] in several directions, who

proposed an approach to illustrate and correct mortality tables, applied to the data

for England & Wales; the Convexity Adjustement Ratio introduced in their work

will be of particular interest in this paper.

The common characteristics of such contributions are interesting to highlight, as

they emerge from a joint questioning of

A) the demographic causes of cohort e�ects observed as some generations present

particular mortality levels/improvements, and

B) the link between mortality and fertility, considering observed aggregate mortality

as the result of a whole demographic process.

On this topic, let us also mention other contributions that address the joint impact

of mortality and fertility on agregate demographic quantities, such as [2], [1] and [3]

and that are source of inspiration for the present study.

While studying the construction of mortality tables, one faces the two compo-

nents that are at the core of death rate computation: the number of deaths, often

reliable, divided by the so-called exposure to risk which represents the quantity of in-

dividuals at risk of death, in other words the total time lived by the population in the

period considered. The exposure to risk component is usually approximated based

on annual population estimates, as it is done in the Human Mortality Database,

and this requires di�erent assumptions depending on the kind of table considered.

Indeed, in the HMD mortality tables are provided both on a cohort or period basis.

As cohort tables provide death rates each time computed using individuals of the

same generation (i.e. born the same year), period tables provide death rates com-
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puted using individuals observed the same year. In particular, period tables are well

suited to understand the time behavior of mortality, and are the structural inputs

of stochastic mortality models. The counterpart is that a single death rate is com-

puted while mixing two cohorts; linked to this structure, an additional assumption

is required for period tables to approximate the exposure to risk, which takes the

form in HMD in assuming a uniform distribution of births.

In this paper, we are interested in the robustness of such assumption and inves-

tigate the interaction between the exposure to risk and fertility data in this context.

Coming back to the conjecture of [13] and the work on [6] for England & Wales, we

want to correct the observed anomalies in HMD period mortality tables based on

fertility data at a re�ned time scale.

From our point of view, the Human Fertility Database [7], started in 2009, is the

suitable candidate to address this issue since it represents in its structure the perfect

counterpart of the HMD in terms of fertility. The data of interest here is the number

of births by month, and we select �ve countries according to their particularly deep

fertility histories: France, Switzerland, Finland, Sweden and Austria. The time

origin of such fertility histories is crucial as it represents the �rst generation (year

of birth) that can be corrected. Also, as we will see, the most important anomalies

concern four groups of cohorts: around 1915, 1920, 1940 and 1945. As already

mentioned, this corresponds to periods in which the number of births is erratic. As

these groups are detected for almost the �ve countries considered, we argue that

we are facing some universal issue regarding the construction of mortality tables;

the whole correction process for other countries with limited fertility histories is a

challenging topic that is left for further research.

The paper is organized as follows. In Section 2, we compare period and cohort

mortality tables for speci�c generations, and we highlight the presence of anomalies

in period ones in the form of several isolated cohort e�ects. We then detail the

HMD methodology to compute period and cohort death rates, and we highlight the

strong assumption of uniform distribution of births that is speci�c to period tables,

therefore likely to be at the core of the asymmetry between both. In Section 3, we

use a rigorous mathematical population framework with continuous age and time

in order to properly de�ne and analyze population estimates at stake, as well as to

locate the HMD method in the range of integral approximations. This Section 3

is at the core of the paper as it then presents the Human Fertility Database used

for the construction of the correction ratio which aims at detecting cohorts that

present anomalies as well as to provide corrected period mortality tables. Finally,

we analyze in Section 4 the corrected mortality tables and draw their main features;

in particular, they do not present the initial anomalies, and in consequence o�er

lower levels of empirical volatility computed on mortality improvements. We also
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discuss the way corrected tables change our use of classical stochastic mortality

models, in particular regarding the cohort parameter, and we illustrate how these

models are now �tting and reproducing better the data that is corrected. The paper

ends with some concluding remarks.

2 The Human Mortality Database: data and meth-

ods

The Human Mortality Database (see [8]) provides mortality estimates given in an

homogenous format for several countries. These national indicators are seen as ref-

erences and extensively used by researchers as demographers, as well as practitioners

in insurance companies. HMD provides mortality tables of estimated death rates

by age and time. In this paper, we focus on such tables for the �nest time and age

scale available, that is given each year and by one-year age classes. Two kinds of

mortality tables are available, giving either cohort death rates or period death rates

that are described and shown in the following.

2.1 Cohort and period mortality tables

The estimation of death rates by age and time is a statistical challenge when the

two crossing components are continuous, see the formalism and discussion in Section

3. In practice, individuals are regrouped by several blocks depending on their age,

time and time of birth on the basis of a space partition: the so-called Lexis diagram

(see [12]), represented in a simpli�ed version in Figure 1. Note that on this Figure,

the numbers represent the exact ages or times; as an example, if we refer to the year

2008, this corresponds to the line between 2008 and 2009. Three degrees of freedom

are at the core of this representation:

• the time component: time at which an individual is observed,

• the age component: age of the individual,

• the cohort component: time at which the individual is born.

The di�erence between cohort and period death rates for a given year t and a

given one-year age-class x, denoted respectively µC(x, t) and µP (x, t), relies on the

choice of the two degrees of freedom to be �xed among the three described above.

For the period death rate µP (x, t), one regroups the individuals whose ages lie in

the age-class x at any time of the year t, assuming the death rate to be constant

on a square. In this case, two cohorts are mixed: those born in year t − x, as well
as those born in year t − x − 1, therefore the individuals belong to two distinct

Alexandre Boumezoued - Milliman 4/36



2.2 Looking at mortality tables from the HMD

Figure 1: Simpli�ed version of the Lexis diagram (left) and the associated three

degress of freedom (right)

generations. On the contrary, cohort mortality rates µC(x, t) are computed so that

the individuals concerned belong to the same cohort whereas their age still lies in

the one-year age-class x; the obverse is that the times at which they are observed

will exceed year t. In this case, the death rate is assumed to be constant on a

parallelogram. This is illustrated in Figure 2 for the computation of the death rate

for year 2009 and age-class 64.

On the whole, period death rates are particularly interesting to study the dy-

namics of mortality over time, whereas cohort death rates are better designed to

study the age pattern of mortality of the same generation.

Figure 2: Population used (in grey) for the computation of cohort death rates (left)

and period death rates (right) in the Lexis diagram

2.2 Looking at mortality tables from the HMD

Let us �rst focus on the surface of period death rates, here displayed for France in

Figure 3. We represent here the rate for the total population (male and female),

which will be the case of interest in this paper; but note that the discussions, results

and methodology can be duplicated in a separated analysis of male and female pop-

ulation. Several aspects regarding the dynamics of mortality rates can be described

from such graph. First, one notices the level of infant mortality (age zero), then the

increase of mortality from intermediate ages to high ages in an exponential shape,
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2.2 Looking at mortality tables from the HMD

as well as the reduction of the level of mortality for the several age classes over time.

Lastly, one can observe the impact of catastrophic events as the First World War

combined with the Spanish �u, and the Second World War.
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Figure 3: Period death rates for France for year 1900 to 2010 and age from 0 to 90

To better understand the dynamics of mortality rates over time for the several

age classes, one often looks at mortality improvement rates. As discussed before,

period death rates are well designed to study the time pattern of mortality, therefore

improvement rates are computed based on period mortality tables. For any year t

and age-class x, the mortality improvement rate r(x, t) is computed from the period

mortality rate µp(x, t) as

r(x, t) =
µP (x, t+ 1)− µP (x, t)

µP (x, t)
. (1)

Therefore, the improvement rate r(x, t) measures the evolution in time of the age-

dependent mortality, and is as such often negative since mortality is generally de-

creasing over time. These are depicted for France in Figure 4. Other crucial mortal-

ity patterns appear based on the observation of mortality improvement rates in the

diagonal, that is while following a given cohort. Mortality improvements appear to

be particularly low (red) or high (green/blue) for speci�c generations, in order from

the lowest to the highest diagonal:

• Individuals aged 40 around year 1980, that is born around 1940,
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2.2 Looking at mortality tables from the HMD

• Individuals aged 40 around year 1960, that is born around 1920,

• Individuals aged around 45 in year 1960, that is born around 1915.

Note that for other countries, such phenomenon will also be detected for the gen-

erations born around 1945. Several demographic contributions have been dedicated

to the explanations of so-called cohort e�ects, that is the fact that some generations

present particularly high/low morality improvement rates. Aim of this paper is not

to provide a list of such contributions, rather to show that such e�ects represent

anomalies in the computations of death rates due to erratic fertility patterns at year

of birth, as already suggested by [13], and also worked by [6] for England & Wales

based on quarterly birth data.

Figure 4: Period death rates for France for year 1960 to 2010 and ages from 40 to

90

Focus on the 1919-1920 birth cohorts A way to better understand the issues

regarding mortality improvements is to focus on speci�c cohort concerned, as 1919-

1920. In the following, we compare the mortality rates of such cohorts for both

period and cohort HMD mortality tables. This comparison is depicted in Figure 5.

Recall that for cohort data this corresponds to real generations, whereas for period

data we represent a diagonal starting with age zero at the year of birth considered,

see again Figure 2. First, the observation of the right panel (period mortality rates)

in Figure 5 explains the shape of the mortality improvement rates displayed in Figure

4: a downward jump from 1918 to 1919, then an increase from 1919 to 1920, then
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2.2 Looking at mortality tables from the HMD

again a downward jump from 1920 to 1921. Note that these orders of magnitude

are not intuitive regarding demographic insights. On this topic, the comparison

with cohort data is instructive, see now the left panel in Figure 5. Indeed, for

cohort data some regular mortality improvement is observed from 1918 to 1922.

This comparison is depicted for the other countries we consider in this paper in

Figure 6: Switzeland, Finland, Sweden and Austria. Let us recall that this choice is

due to their special fertility records, see the discussions in Sections 1 and 3. Based

on these observations, noting also that cohort and period data share common sub-

populations in their computation, see Figure 2, we argue at this stage that some

structural anomaly is at the origin of such di�erence. To address this issue, there is a

need to go into the details of the construction of cohort and period mortality tables

in the Human Mortality Database. This is investigated in the next subsection.

Figure 5: Left: mortality rates for the birth cohorts 1918 to 1922 from HMD cohort

data. Right: mortality rates for diagonals starting between 1918 and 1922 from

HMD period data.
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2.3 HMD methodology to compute cohort and period death rates

2.3 HMD methodology to compute cohort and period death

rates

The aim of this part is to detail the HMD methodology as it is described in the

associated technical note, see [16]. The mathematical interpretation based on the

full continuous age and time formalism will be detailed in Section 3.

At the beginning, the aim is to estimate the mortality rate, assumed to be con-

stant in each square (period setting) or parallelogram (cohort setting). As classical,

the corresponding estimators are computed as

µ̂P (x, t) =
DP (x, t)

EP (x, t)
and µ̂C(x, t) =

DC(x, t)

EC(x, t)
,

where DP (x, t) (resp. DC(x, t)) is the number of deaths in the square (resp. paral-

lelogram), and EP (x, t) (resp. EC(x, t)) is the famous exposure to risk, that is the

total time lived by individuals in the square (resp. parallelogram). While observing

a given population, counting the number of deaths, and measuring the total time

lived, it is worth mentioning that these numbers only allow to compute an estimator

µ̂(x, t) of the true death rate µ(x, t), and also that this estimator is computed under

the assumption of a constant death rate in a square or parallelogram.

From censuses, one can compute the number of deaths, and it is reasonable

to think that these numbers are accurate, although several approximation methods

have to be used to recompose the number of deaths in the case where the information

is not available between several years, see the discussion in [16]. In all this paper,

we assume that the number of deaths is computed carefully with no errors and we

focus on the computation of exposures to risk.

To compute the exposure to risk on a surface (square or parallelogram), one has

to measure the total time lived by individuals. Unfortunately, this can not be mea-

sured exactly since the population is not continuously observed, see the discussion in

Section 3. Therefore, the HMD methodology relies on fundamental quantities that

are measured annually (or approximated, but as well we assume that HMD numbers

regarding population estimates are accurate).

In the one-year age × time square, two kind of population estimates are recorded,

see Figure 7:

• The number of individuals at exact time t, with age x last birthday, denoted

P (x, t),

• The number of individuals who attained exact age x in the year [t, t + 1),

denoted N(x, t).

Also, the number of deaths DP (x, t) in the square is split between the upper (U)

and the lower (L) triangle, respectively denoted DU(x, t) and DL(x, t), so that

DP (x, t) = DU(x, t) +DL(x, t).
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2.3 HMD methodology to compute cohort and period death rates

From the observation of the square, two fundamental relations appear, that can be

proved rigorously with the mathematical formalism introduced in Section 3:

N(x+ 1, t) = P (x, t)−DU(x, t),

P (x, t+ 1) = N(x, t)−DL(x, t).
(2)

Remark 1. The fundamental equalities of Equation (2) are valid for a closed pop-

ulation, that is without any migration �ow. This will be used by HMD in the

reasoning to establish the �nal formulas for the approximation of the exposure to

risk. Note however that straightfoward consequences of the fundamental relations as

P (x, t+ 1) = P (x− 1, t)−DU(x− 1, t)−DL(x, t) are not veri�ed numerically based

on population estimates and death counts in HMD. This comes from the fact that

although the reasoning is performed for a closed population, the population estimates

take into account to some extent the way population numbers �uctuate. In this pa-

per, we also derive reasonings without migration �ows, but note that the analysis of

this aspect in the HMD methodology could be of interest as well.

At this stage, the main question arises: as the exact exposure can not be com-

puted, how to approximate it by means of these quantities? To address this issue,

let us �rst go back to the cohort case. We will then exhibit the additional assump-

tion needed for the period case to be likely at the source of the asymmetry between

period and cohort mortality tables. Note that the quantities introduced previously,

namely P , N , DU and DL are common to both the cohort and the period setting,

see Figure 8.

We now describe the HMD approximation for the cohort exposure to risk as

detailed in [16], see Figure 8. The reasoning for the approximation of the exposure

to risk is made in two steps:

1. Let us �rst assume that no deaths occur in the parallelogram. In this case,

it is easy to compute the exposure to risk: each individual of the cohort lives

one year while aging in diagonal through the parallelogram. As in the case

individuals reach the vertical barrier, they are numbered as P (x, t + 1), this

quantity is the main component of the exposure to risk.

2. In practice, deaths occur so there is a need for accounting of two adjustments:

�rst, individuals who died in the lower triangle are missed by the population

estimate, so there is a need to add their contribution to the exposure to risk.

Second, individuals who died in the upper triangle are counted for 1 at this

stage so it is needed to substract the time from death until the end of the

period. In HMD, the assumption is made that deaths are uniformly spread in

each triangle, and a straightforward computation (see again [16]) show that
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2.3 HMD methodology to compute cohort and period death rates

such positive or negative contribution is equal to 1/3, so that in the end the

exposure to risk is approximated as:

ÊC(x, t) = P (x, t+ 1) +
1

3

(
DL(x, t)−DU(x, t+ 1)

)
. (3)

Let us now focus on the HMD approximation for the period exposure to risk,

and reproduce the two main steps of the reasoning, see Figure 7.

1. The problem arising here is that in the �rst step, assuming no deaths, the time

lived by individuals is not one year in general: this strongly depends on the

distribution of individuals of each cohort over the year. For example, let us

focus on the oldest cohort, that is the cohort of individuals going through the

upper triangle. Assume that all these individuals are born at exact time t and

nowhere else; in this extreme case, all individuals from this cohort live the total

diagonal that is one year. On the contrary, let us assume that this generation

is born at exact time t; in this case, its contribution to the exposure to risk is

zero. In between these extreme cases, one has to know about the distribution

of births for each cohort as the contribution to the exposure to risk strongly

depends on it. In HMD, see again [16], an assumption of uniform distribution

of births for every cohort is made. In this case, the average contribution of an

individual from any cohort is 1/2, which, from our interpretation, is nothing

but the area of each triangle. Then, if the horizontal barriers are considered

as references (see Remark 2 below), the main component of the exposure to

risk thus writes
1

2
(N(x, t) +N(x+ 1, t)) .

2. As in the cohort setting, one has to correct the main component from the

deaths in the square. More precisely, for the oldest cohort one has to add the

contribution of those died in the upper triangle; also, for the youngest cohort

one has to substract some time due to deaths in the lower triangle. With the

same elementary contribution 1/3, this leads to

ÊP (x, t) =
1

2
(N(x, t) +N(x+ 1, t)) +

1

3

(
DU(x, t)−DL(x, t+ 1)

)
. (4)

A last step is made by HMD to convert the N quantities into P quantities; from

the fundamental relations in Equation (2), one gets:

ÊP (x, t) =
1

2

(
P (x, t+ 1) +DL(x, t) + P (x, t)−DU(x, t)

)
+

1

3

(
DU(x, t)−DL(x, t)

)
ÊP (x, t) =

1

2
(P (x, t+ 1) + P (x, t)) +

1

6

(
DL(x, t)−DU(x, t)

)
.

(5)
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This is the �nal formula used in HMD for the approximation, as we can numer-

ically check starting from population estimates and Lexis death counts as given in

the database. A rigorous mathematical interpretation will be discussed in Section

3.

Remark 2. It is interesting to note here the sensitivity of the formulas derived

depending on the reasoning considered. Indeed, instead of using population estimates

N in step 1, let us proceed similarly with population estimates P . In this case, see

Figure 7, the �rst step of the reasoning leads to a main component of the exposure

to risk equal to (P (x, t) + P (x, t+ 1)) /2, while assuming no deaths and uniform

births. In the second step, we adjust this estimate to the deaths in both triangles:

this remains to add the average contribution to the exposure per death in the lower

triangle and to substract the average lost exposure in the upper triangle, which is in

each case equal to 1/3 under the assumption of uniform distribution of deaths, see

again [16]. In the end, the obtained formula is

1

2
(P (x, t+ 1) + P (x, t)) +

1

3

(
DL(x, t)−DU(x, t)

)
.

Note that this is slightly di�erent from the formula derived in Equation (5); both will

be interpreted in terms of integral approximation in Section 3.

At this stage, the asymetry between period and cohort exposure to risk compu-

tation appears: this corresponds to the assumption of uniform distribution of births

in the period setting, whereas the cohort framework does not need such additional

assumption. Based on the observations in Subsection 2.2, as well as on the previous

insights by [13] and [6], we argue that such assumption is likely to be the source of

errors for several diagonals in period mortality tables. In fact, this issue is already

reported in the HMD technical note itself, see again [16], which we reproduce below:

�This assumption [of uniform distribution of births] is violated most severely in situa-

tions where there are rapid changes in the size of successive cohorts, owing to �uctuations

in the birth series many years before. The worst situation is when a sharp discontinuity in

births occurs in the middle of one calendar year, creating a cohort that is �heavy� at one

end and �light� at the other. We have not attempted to correct our mortality estimates for

the error introduced by such occurrences, which may result in arti�cially elevated or de-

pressed levels of mortality along a diagonal of the Lexis diagram that follows the cohort(s)

in question. The user should be aware of this possibility and not misinterpret the data.�

3 Correcting population exposure with fertility data

This section is dedicated to the mathematical formalism as well as the diagnose/

correction methodology relying on the Human Fertility Database. We �rst detail in
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3.1 Continuous framework and population estimates

Subsection 3.1 the underlying contiuous age and time population framework; this

allows us to highlight the impact of births in the whole dynamics, to rigorously

de�ne the population estimates as well as the death counts at stake, and give an

integral approximation interpretation of the formula used in the HMD. Although we

think that this theoretical part is crucial to get a whole understanding of the issue

as well as for further research on this topic, we allow the (hurried) reader to directly

go to Subsections 3.2 and 3.3 which present the fertility data from the HFD as well

as the associated methodology to diagnose and correct period mortality estimates.

The corrected tables will be analyzed in Section 4.

3.1 Continuous framework and population estimates

Continuous age-time population framework Whereas we deal with one year

age classes x and years t to characterize mortality rates, the mortality surface de-

scribed by the Lexis diagram is structured into continuous age and time axes. To

make the di�erence, we denote a a continuous age variable and s a continuous time

variable, with a ∈ R+ and s ∈ R+. At this stage, and in the rest of this paper,

we deal with deterministic population densities, that is g(a, s) ∈ R+ denotes the

quantity of individuals with exact age a at exact time s. This can be seen as the

density of individuals in an in�nite population, or the average number of individuals

in a given (�nite) population evolving stochastically over time; see [2] for further

discussions on this aspect, especially the link between deterministic and stochastic

population dynamics. In this framework, for any �xed time s ∈ R+, the trajectory

(g(a, s+ a))a≥0, or the map a 7→ g(a, s + a), is the rigorous representation of what

is called the birth cohort s, that is the evolution of the population of all individu-

als born at exact time s. Note also that with �xed time s as well, the component

(g(a, s))a≥0 represents the well known age pyramid as it gives the repartition of in-

dividuals by age. Finally, now with �xed age a ∈ R+, the component (g(a, s))s≥0
characterizes the evolution of populations at the same age over time.

Let us introduce the true mortality rate µ(a, s) for exact age a and exact time

s; it drives the evolution of the birth cohort s by: for each a ∈ R+,

g(a, s+ a) = g(0, s) exp

(
−
∫ a

0

µ(u, s+ u)du

)
, (6)

where g(0, s) represents the individuals with age zero (born) at time s, and with

S(a, s) := exp
(
−
∫ a
0
µ(u, s+ u)du

)
the survival function at age a for the individuals

born at time s. From this equation, it is clear that the cohort dynamics depends on

the number of newborn in a crucial way.

Let us write the number of deaths of individuals aged a at time s in any small
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time interval with length ∆u as

g(a, s)− g(a+ ∆u, s+ ∆u) ≈ −( ∂a + ∂s)g(a, s)∆u.

From Equation (6), one can then prove that

( ∂a + ∂s)g(a, s) = −µ(a, s)g(a, s). (7)

In this form, the equation is the �rst basic component of the classical population

dynamics model of Mc Kendrick and Von Foerster (see [10] and [14]). This is called

the transport component in the �eld of partial di�erential equations as is states that

age is translated along the time axis, in other words that individuals are ageing.

Theoretically, another component is needed, since in itself Equation (6) embeds

some unknown quantity g(0, s). But in fact, such estimates of the number of newborn

in a given country can be found for a number of countries, see Section 3, and this

transport component will be su�cient in itself four our study. Nevertheless, we

mention the second component in the following remark.

Remark 3. The second component of the Mc Kendrick-Von Foerster population

model is referred to as the renewal component: given a birth rate b(a, s) for age a

and exact time s, the number of newborn is computed as the sum over all possible

parents as, for each s ∈ R+,

g(0, s) =

∫ ∞
0

g(a, s)b(a, s)da. (8)

With Equations (7) and (8) one is able to analyze theoretically the (deterministic)

population dynamics, which is beyond the scope of the present paper.

In the following, we express the well known exposure to risk in terms of the

underlying continuous age and time population, and we discuss its approximation

at a re�ned time scale.

Period and cohort mortality estimates The estimation of death rates with

two crossing continuous dimensions (here age and time) is a statistical challenge.

In particular, there is no standard non-parametric technique to tackle this problem

without making assumption of a piecewise constant mortality rate, see e.g. [9] for

a discussion on this topic. In the period framework, the assumption is made that

the mortality rate is constant equal to some µP (x, t) in each square with left-lower

point (x, t) ∈ R2
+, that is:

for each (a, s) ∈ [x, x+ 1)× [t, t+ 1), µ(a, s) = µP (x, t).

In the cohort framework however, this assumption is made on each parallelogramm

with left-lower point (x, t) ∈ R2
+, which can be rigorously written as

for each a ∈ [x, x+ 1), for each s ∈ [t+ a− x, t+ a− x+ 1), µ(a, s) = µC(x, t),
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since individuals have their time of birth in the year t − x, i.e. mathematically

s−a ∈ [t−x, t−x+ 1). Let us remark the di�erence between the two assumptions,

especially the dependence in age of the time interval in the cohort setting.

Now, let us address the implication of each assumption on Equation (7). Let us

introduce the regions "square (x, t)" RP (x, t) and "parallelogramm (x, t)" RC(x, t)

in the period and cohort settings respectively as:

RP (x, t) = [x, x+1)×[t, t+1) and RC(x, t) = {(a, s) : a ∈ [x, x+1), s−a ∈ [t−x, t−x+1)}

Let us integrate Equation (7) for ages and times in the regions RP (x, t) and

RC(x, t) respectively1, and let us �rst focus on the period setting. On the left hand

side, we obtain DP (x, t) =
∫
(a,s)∈RP (x,t)

−( ∂a + ∂s)g(a, s)dads which is nothing but

the total number of deaths in the square. On the right hand side, we get, using the

assumption of a constant death rate on the square:∫ x+1

x

∫ t+1

t

µ(a, s)g(a, s)dads = µP (x, t)

∫ x+1

x

∫ t+1

t

g(a, s)dads,

therefore equalling the left and right hand sides in the period setting it follows that

DP (x, t) = µP (x, t)EP (x, t),

with EP (x, t) =
∫ x+1

x

∫ t+1

t
g(a, s)dsda the famous exposure to risk in the period

setting.

With the same reasoning, in the cohort setting, with the corresponding assump-

tion, we get

DC(x, t) = µC(x, t)EC(x, t),

with EC(x, t) =
∫ x+1

x

∫ t+a−x+1

t+a−x g(a, s)dsda andDC(x, t) =
∫
(a,s)∈RC(x,t)

−( ∂a+ ∂s)g(a, s)dads.

Integral approximation of the exposure to risk Let us now investigate the

approximation of the exposure to risk in the period setting, which is by construction

sensitive to the repartition of births in successive years. From a mathematical point

of view, this problem reduces to the approximation of the two-dimensional integral

EP (x, t) =

∫ x+1

x

∫ t+1

t

g(a, s)dsda. (9)

Traditionally, this problem is tackled by using values of the two-dimensional function

at some collection of ages and times (ai, si), and weights wi so that e.g.

EP (x, t) ≈
∑
i

wig(ai, si)(si+1 − si)(ai+1 − ai).

1Both sides are multiplied by -1 to get the (positive) number of deaths.
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However, in practice, demographic information for joint isolated times and ages

is not available. Instead, one has access to population estimates as described in

Subsection 2.3, such as the population estimate with age in a one year age class

[x, x + 1) at an exact time t, which we denoted P (x, t), or the estimation of the

number of individuals reaching exact age x in a year t, which we denoted N(x, t),

all notations in accordance with the description of the HMD methodology.

Let us express these quantities in terms of the underlying population. First, the

quantity P (x, t) can be obtained by summing all ages in the age class considered,

that is rigorously:

P (x, t) =

∫ x+1

x

g(a, t)da. (10)

Also, as g(x, s) is the number of individuals reaching exact age x at exact time s,

we deduce that

N(x, t) =

∫ t+1

t

g(x, s)ds. (11)

Recall that the number of deaths can be split into upper and lower triangles. As

in Subsection 2.3, for any square with left-lower point (x, t), we denote DL(x, t)

the number of deaths in the lower triangle and DU(x, t) the number of deaths in

the upper triangle. Let us �nally rigorously de�ne such quantitites. First, deaths

in the upper triangle concern individuals aged a at time s so that a ∈ [x, x + 1),

s ∈ [t, t + 1) and that belong to the cohort born in year t − x − 1, i.e. such that

s− a ∈ [t− x− 1, t− x), leading to

DU(x, t) =

∫ x+1

x

∫ t−x+a

t

−( ∂a + ∂s)g(a, s)dsda.

Analogously, as individuals dying in the lower triangle are born in the year t − x,
one gets

DL(x, t) =

∫ x+1

x

∫ t+1

t−x+a
−( ∂a + ∂s)g(a, s)dsda.

It is clear that DP (x, t) = DU(x, t) + DL(x, t), and starting from all quantities

introduced above, it is possible to prove the fundamental relations introduced in

Equation (2); this proof is left to the reader.

In order to make the link between the HMD formula and classical integral ap-

proximation methods, let us go back to the double integral representation of the

exposure to risk. Two representations follow from Equations (9), (10) and (11):

EP (x, t) =

∫ x+1

x

N(a, t)da and EP (x, t) =

∫ t+1

t

P (x, s)ds.

This leads to two naïve one-dimensional integral approximations:

ÊP
1
(x, t) =

1

2
(N(x, t) +N(x+ 1, t)) and ÊP

0
(x, t) =

1

2
(P (x, t) + P (x, t+ 1)) ,
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the �rst one being rewritten, according to the fundamental relations in Equation

(2) as ÊP
1
(x, t) = 1

2
(P (x, t) + P (x, t+ 1)) + 1

2

(
DL(x, t)−DU(x, t)

)
. Finally, let us

introduce the weighted average approximation, for α ∈ [0, 1],

ÊP
α
(x, t) = αÊP

1
(x, t) + (1− α)ÊP

0
(x, t).

We conclude that the HMD approximation, see Equation (5), is equal to ÊP
α
(x, t)

for α = 1
3
. The interesting point here is that a demographic reasoning combined

with several assumptions (uniform deaths and births) leads to a formula which is

similar to some weighted average of simple one-dimensional integral approximations.

3.2 The Human Fertility Database

In order to detect the cohorts that are sensitive to the assumption of uniform dis-

tribution of births made by the HMD, there is a need to study the time behavior of

fertility at a re�ned time scale. Moreover, since the analysis of several countries in

the HMD is at stake, there is a need for a comparable database in terms of fertility,

with as the HMD an homogenous data structure between di�erent countries.

As a suitable candidate, the Human Fertility Database [7] has been launched in

2009 with the aim to be the HMD counterpart in terms of fertility. Many kinds

of fertility data are available for more that 20 countries, such as fertility rates by

age and/or parity2 in the standard form of fertility tables. For our purpose, we are

rather interested in number of births over time, given at a monthly time scale.

It is now time to recall the set of countries we will focus on in this paper.

We perform our analysis on countries for which deep historical records are avail-

able in the HFD, that are the following countries in order from the deepest his-

torical record3: France (1861), Switzerland (1871), Finland (1900), Sweden (1911)

and Austria (1914). Although for the other countries the proposed methodology is

achievable, the correction of old cohorts (as 1919-1920) can not be performed with

the current histories, therefore advanced statistical methodology is required, see the

discussion in the concluding Section 5.

The data collection of number of births by month is depicted in Figure 9 for

the �ve countries considered. The trajectories are interesting as they make appear

several upward or downward shocks. These shocks are of interest as they will impact

the robustness of the assumption of uniform distribution of births used in HMD. It

is not the purpose of the present paper to provide detailed demographic insights on

these �uctuations, rather to understand the dynamics from a modelling and data

point of view. Let us still mention that the main shocks likely to be due to the world

2Number of children already born to a woman.
3We do not consider here HFD data that is stated as "preliminary release", see

http://www.humanfertility.org/, as it is not fully processed and checked.
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wars will be of interest as the main anomalies will be detected for the generations

born at the beginning and the end of the two world wars, that is around 1915, 1920,

1940 and 1945.

Let us note the complex shape of these numbers depicted in Figure 9, explained

by the fact that they depend on both the underlying population and the level of

birth rates in a non-trivial way. Indeed, mathematically, for a time u on a monthly

grid 1
12
N, the number of births in the month u is

N(u) =

∫ u+ 1
12

u

g(0, s)ds,

then the renewal Equation (8) leads to

N(u) =

∫ u+ 1
12

u

∫ ∞
0

g(a, s)b(a, s)dads.

It is interesting to note here that the database already provides the previous quan-

tity as a whole, therefore it is not needed to go into the details of a population

dynamics analysis and simulation, although we think that it is a powerfull tool in

other contexts of application, see the references cited in the Introduction focusing

on the interaction between mortality and fertility.

3.3 Quality indicator and corrected mortality tables

Following the work of [6], we focus on the computation of the exposure to risk

at age zero with two methods: an annually estimate, in line with HMD method,

and an (annual) exposure to risk computation based on monthly birth data. The

deviation between both will be summarized in some correction ratio (close to that

called Convexity Adjustment Ratio in the work of [6]), which will then be used to

correct HMD period tables assuming that birthdays are uniformly spread at each

age. Moreover, this correction ratio will not depend on deaths. An advantage of such

approach is that this ratio does not depend on HMD data, therefore only on HFD

data. This helps avoiding any endogeneity in the methodology, while considering

HFD as an external benchmarking database.

Let us go back to the continuous age and time framework introduced in Sub-

section 3.1, and denote g∗(a, s) the population where no deaths occur, with ∗ to be

consistent with the notations for population estimates in [6], see below. Our aim is

to compute the following exposure to risk at age 0, which does not include deaths,

with the two methods previously described:

E∗P (0, t) =

∫ t+1

t

∫ 1

0

g∗(a, s)dads =

∫ t+1

t

P ∗(0, s)ds, (12)

where P ∗(0, s) =
∫ 1

0
g∗(a, s)da is the population estimate of individuals with age 0

last birthday at exact time s; as no deaths are embedded, we get g∗(a, s) = g(0, s−a),
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where we recall that g(0, s−a) is the number of individuals born at exact time s−a,
therefore the population estimate writes

P ∗(0, s) =

∫ 1

0

g(0, s− a)ds.

Through the Human Fertility Database, one has access to monthly number of births:

for a time u on a monthly grid 1
12
N, the number of births in the month u is

N(u) =

∫ u+ 1
12

u

g(0, s)ds.

Therefore the population estimates can be computed since

P ∗(0, s) =

∫ 1

0

g(0, s− a)ds

=
12∑
k=1

∫ k
12

k−1
12

g(0, s− u)du

=
12∑
k=1

∫ s− k−1
12

s− k
12

g(0, v)dv

=
12∑
k=1

N

(
s− k

12

)
.

(13)

We are now ready to describe the three steps for the computation of the correction

ratio:

1. For s on a monthly grid 1
12
N, compute the population estimate P ∗(0, s) as

P ∗(0, s) =
12∑
k=1

N

(
s− k

12

)
,

where we recall that N(u) is the number of births in the month u. Note that

this is not an approximation as the integral can be exactly split into the sum

of monthly integrals, see Equation (13).

2. Approximate the annual exposure to risk de�ned in Equation (12) based on

the previous monthly estimates as, for annual t ∈ N,

Ê∗P (0, t) =
12∑
i=0

wiP
∗
(

0, t+
i

12

)
, (14)

where the wi are chosen in accordance with any integral approximation method.

An interesting point here is that the two-dimensional integral approximation

problem, see the discussion in Subsection 3.1, reduces to one dimension only.

Alexandre Boumezoued - Milliman 19/36



3.3 Quality indicator and corrected mortality tables

3. The correction ratio is then de�ned for each annual t ∈ N (viewed as a year

of birth) as the ratio between the previous annual exposure to risk Ê∗P (0, t)

(monthly based approximation) and the main component of the HMD exposure

to risk approximation in the period setting, see Equation (5), as

Î(t) =
Ê∗P (0, t)

1
2

(P ∗(0, t) + P ∗(0, t+ 1))
. (15)

Note that this ratio is a monthly approximation of the true ratio I(t) =
E∗

P (0,t)
1
2
(P ∗(0,t)+P ∗(0,t+1))

.

If close to one, the ratio Î(t) indicates that the diagonal in the period table starting

with age zero in year t is not sensitive to the assumption of uniform distribution of

births. On the contrary, if Î(t) signi�catively di�ers from one, this indicates errors

in the period mortatlity table for the "cohort" born in year t (again, note that it

is not a real cohort as the diagonal of the period table does not concern a single

generation). More precisely: if Î(t) is greater than one, we deduce that the uniform

distribution of births is likely to under-estimate the exposure to risk, whereas if Î(t)

is lower than one it is likely that this assumption leads to an over-estimation of the

exposure to risk. Two remarks again:

• First, as in [6], all estimates in the previous step do not embed death counts,

therefore in our work they only depend on HFD data: we argue that this

feature is interesting to avoid any endogeneity of the proposed methodology

as well as any interaction between the two databases at this diagnostic stage.

• Second, the exposure to risk computed in step 2 is still an approximation of

a one-dimensional integral, but performed at a monthly time scale instead of

an annual time scale; in this sense this is considered to be more accurate.

As for the weights wi in Equation (14), we still make the same choice as in

[6] in order to provide comparable results. We �x these weights in accordance to

the Simpson approximation method with w0 = w12 = 1/36, for i ∈ {2, 4, 6, 9, 10},
wi = 2/36 and for i ∈ {1, 3, 5, 7, 9, 11}, wi = 4/36. We furthermore performed some

sensitivity using uniform weights with no signi�cative di�erence in the results.

Lastly, the correction of HMD period mortality tables is performed as follows:

for any period death rate µ̂P (x, t) from the HMD table, we construct the corrected

period death rate as:

µ̃P (x, t) =
µ̂P (x, t)

Î(t− x)
=
DP (x, t)

ÊP (x, t)
×

1
2

(P ∗(0, t− x) + P ∗(0, t− x+ 1))

Ê∗P (0, t− x)
(16)

since t− x is the year at which individuals are aged zero along the diagonal in the

Lexis diagram. From this equation, one illustrates the spirit of the methodology: by

cross-product, the aim is to correct the deviation due to the assumption of uniform
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distribution of births. The assumption underlying this correction lies in the fact that

birthdays distribution remain the same at each age. Recall that the ratio on the left

hand side comes from HMD, whereas that on the right hand side only depends on

HFD.

4 Analysis of corrected period mortality tables

The correction ratios, which have been constructed based on HFD data from Equa-

tion (15) for the range of countries considered, are depicted in Figure 10. High

or low values indicate a deviation due to the uniform births assumption. Even if

historics vary from one country to another, we are able to identify common struc-

tural anomalies for speci�c cohorts, especially those born around 1915-1920 and

1940-1945.

To go further, we now aim at analyzing the corrected mortality tables constructed

as detailed in Equation (16). This analysis will be performed in two directions:

• �rst, an observation of the main features of both original and corrected his-

torical data (retrospective analysis),

• second, the discussion of the impact of such correction on the way we use

stochastic mortality models (prospective analysis).

4.1 Retrospective analysis

Let us �rst focus again on the 1919 and 1920 generations, in order to capture the new

orders of magnitude between both. The results are depicted in Figure 11 with cohort

HMD data, period HMD data, and corrected period data for our �ve countries of

interest (France, Switzerland, Finland, Sweden and Austria). As seen on this graph,

the natural order between the two generations is restored, which is coherent with

reasonable demographic insights. As well, we note several similarities between cohort

and corrected period data, although the comparison can not be made fully since the

populations used for their computation are di�erent, see the discussion in Section 2.

In order to analyze the impact on all observed isolated cohort e�ects, it is inter-

esting to recompose the mortality improvement rates, see Equation (1); these are

depicted for both HMD data and HFD-corrected data in Figure 12. As crude HMD

data exhibit isolated cohort trends, those disappear with the correction using HFD

data. This is a main conclusion of this paper, that the use of the ratio linked to the

assumption of uniform distribution of births leads to corrected tables that do not

present such isolated cohort e�ects. Let us note that the range of colors is di�erent

for each country, and that the corresponding range of values is highly dependent

of the order of magnitude of the population size, as smaller populations lead to a
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wider range of possible values due to sampling (or "demographic") risk. There-

fore, for smaller countries, the isolated cohort trends are less identi�able. Another

good feature of the correction ratio here appears as it allows to detect the cohort

anomalies even for smaller countries.

Remark 4. Of course, other kind of cohort e�ects can be exhibited and are likely to

exist from a demographic point of view, but they usually concern generations born

in a wider range of years. One can think for example of the Golden Cohort in UK,

see in particular demographic explanations in [15], as well as a population modeling

analysis in [2] based on a remark of the previously cited paper linking the cohort

e�ect with �uctuating birth patterns in an heterogenous population. It is interesting

to note that these other kind of cohort e�ects have also been studied in the light

of fertility issues, which way of taking into account the whole demographic process

seems from our point of view a promizing direction in this context as well.

Finally, let us focus on classical features of mortality improvements: their em-

pirical mean and standard deviation. These are depicted in Figure 13. First, for

all countries, the mean of mortality improvements (left column) is preserved in cor-

rected data; this is coherent with the values of the correction ratio which is centered

around 1 (see again Figure 10); moreover this shows that the whole methodology

amounts to re-distribute part of the population estimate year by year from one co-

hort to the other. Second, let us now focus on their empirical standard deviation

(right column). Another main conclusion is that for all countries, their empirical

volatility is reduced, especially for high ages. Note that the impact is lower for higher

range of values, and that the impact is particularly high for France; note especially

that the shape of volatility of mortality improvements is now closer to that of the

other countries. Indeed, as already noticed, the range of values of such mortality

improvements depends on the country considered; this drives in particular the level

of the mean as well as that of the volatility. As expected, the more sampling risk

(smaller countries), the less the relative impact of data correction on volatility (with

theoretically the same values for the correction ratio). We conclude this retrospec-

tive Subsection with Figure 14 which presents a focus on the volatilities for the high

age range from 70 to 90. From this graph, it is clear that although the level di�ers

from one country to another, for almost each age the volatility is reduced in the

corrected data.

4.2 Impact for stochastic mortality modeling

As new mortality tables are constructed, it is now time to address the impact on

stochastic mortality modelling. It is worth mentioning that in the demographic

and actuarial literature, a huge amount of contributions have been dedicated to the
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increasing sophistication of stochastic mortality models. The stochastic modelling

framework for mortality, introduced by [11], has soon been followed in the actuarial

litterature, see e.g. [5] and [4], and references therein. In their philosophy, such

models consider that future mortality rates are random, and the analysis of the

past values in terms of their age, time and possibly cohort directions will help to

extract the time series driving the mortality pattern, which can be then (randomly)

extrapolated.

For our discussion, we focus on high ages in the range 60-90. In this context,

we make choice of a speci�c model which is detailed in the following; we consider a

slightly modi�ed version of the "M7" model described in [4] as it will provide the

crucial basic features we want to analyze here:

ln (µP (x, t)) = κ1(t) + κ2(t) (x− x̄) + κ3(t)
(
(x− x̄)2 − σ̂x2

)
+ ε(x, t) (17)

where x̄ is the mean age over the age range considered, σ̂x
2 is the mean of (x− x̄)2,

κ1, κ2 and κ3 are the time series driving the mortality dynamics, and the ε(x, t)

are centered residuals. Such model will be calibrated with either µ̂P (x, t) (crude

HMD data) or µ̃P (x, t) (HFD-corrected data). Let us emphasize that it is not the

purpose of the present paper to perform a selection of the "best" model, and we

rather motivate this speci�c choice based on the following considerations:

• The model embeds no unkown parameters in age so that the whole set of

parameters is reasonable; it exploits for each year t the well-known overall lin-

earity of the logarithm in the age range considered through κ1(t) and κ2(t), also

known as the Gompertz model, and adds a small adjustment of the curvature

with κ3(t).

• The three terms will be able to capture the shape of the mortality surface in

a satisfactory way (in the corrected data), and in particular, the replicated

mortality improvements are well �tted in mean (for both data).

• The model does not include a cohort component, see the discussion below.

• In its complete form (with cohort term), and tested on uncorrected data, it

has proved to provide good results, see again [4].

We propose to calibrate the model on data from France on both crude and

corrected tables. The estimated values for κ1, κ2 and κ3 are depicted in Figure

15. Clearly, the parameters are rather similar for both data sets; this is coherent

with the fact that such mortality model performs some smoothing of the mortality

surface, therefore it is not sensitive to changes from one cohort to the other (having

in mind that no cohort parameter is embedded in the mortality model). In Figure

16, we represent the residuals of the stochastic mortality model in Equation (17),
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that is the quantities ε(x, t). Here, the di�erence appears: although for the crude

data the residuals show striking cohort trends, leading the user to choose another

model including some cohort component, for the corrected data such trends almost

disappear. Therefore, as a �rst main conclusion, the impact of correcting such data

is not on the parameter values, rather on the choice of the mortality model itself.

Let us now focus on the mean and volatility of mortality improvements in four

con�gurations, see Figure 17:

• mortality improvements of the period 1980-2010 for crude HMD data,

• mortality improvements of the period 1980-2010 for corrected data,

• next year mortality improvements simulated in the model calibrated on crude

HMD data,

• next year mortality improvements simulated in the model calibrated on cor-

rected data.

For the two last analysis based on model-generated mortality improvements, these

are computed as:

r(x, T ) =
µM(x, T + 1)− µM(x, T )

µM(x, T )
,

where T = 2010, µM(x, T ) = exp
{
κ1(T ) + κ2(T ) (x− x̄) + κ3(T )

(
(x− x̄)2 − σ̂x2

)}
is the (deterministic) last death rate value �tted by the model, and µM(x, T + 1)

is the (randomly) simulated death rate for next year, where simple auto regressive

model is �tted to the time component κ̄(t) = (κ1(t), κ2(t), κ3(t)):

κ̄(t+ 1) = κ̄(t) + µ+ CZ(t),

with µ a 3-dimensional vector, C a 3 × 3 matrix and Z(t) random and indepen-

dent 3-dimensional vector with centered normal distribution and identity variance-

covariance matrix.

Let us �rst notice that the mean and volatility of mortality improvements gener-

ated by the model are really close for each calibration data (corrected or not); this is

coherent with the close values fo the corresponding parameters, see again Figure 15.

Second, it is interesting to note the ability of the model to reproduce by simulation

the quadratic curvature in age of mortality improvements (left graph). Third, and

more importantly, with the new volatility levels exhibited in the corrected data, the

model shows a far better duplication of historic volatility features. As a second main

conclusion, it is therefore interesting to note that as volatility is reduced, the model

is now able to give coherent order of magnitude of these, which drive the random

possibilities for the future mortality levels.
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5 Concluding remarks

In this paper, we exhibited the strong assumption of uniform distribution of births

underlying the Human Mortality Database (HMD) methodology to compute period

death rates. Based on monthly fertility data, we aimed at detecting the cohorts that

are sensitive to such assumption as well as to correct period mortality tables based

on a ratio measuring the deviation between annual and monthly approximations of

the exposure to risk. We proposed to exploit the Human Fertility Database (HFD)

as it represents the perfect couterpart of the HMD, and allows to construct the cor-

rection ratio for several countries. We focused on the �ve countries with the deepest

fertility histories available in HFD, namely France, Switzerland, Finland, Sweden

and Austria. For all these countries, we constructed corrected period mortality ta-

bles which do not present the initial important anomalies in the form of isolated

cohort e�ects for years of birth around the two world wars, that is around 1915,

1920, 1940 and 1945. As these groups are concerned for almost the �ve countries

considered, we argue that we are facing some universal issue regarding the construc-

tion of period mortality tables in the HMD; the whole correction process for other

countries with limited fertility histories is a challenging topic that is left for further

research.

The analysis of corrected mortality tables allowed us to draw several important

conclusions. This concerned the way we understand cohort e�ects, in particular

the systematic pathologic feature of those concerning isolated years of birth (one to

three), the reduction of mortality improvements volatility in the corrected tables,

as well as the better ability for classical models to �t the mortality surface (resid-

ual analysis) and to reproduce by simulation the mean and volatility of mortality

improvements, noting that estimated time parameters remain quite the same when

calibrating stochastic mortality models on uncorrected or corrected data.

In the spirit of the cited recent contributions in this direction, we argue that

considering the whole demographic dynamics is a promizing direction for further

understanding of mortality; this includes linking further HMD and HFD data as

well as their associated research communities.
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Figure 6: From top to bottom: Switzerland, Finland, Sweden and Austria. Left:

mortality rates for the birth cohorts 1919 and 1920 from HMD cohort data. Right:

mortality rates for diagonals starting at 1919 and 1920 from HMD period data.

Figure 7: Population estimates and death counts on the Lexis diagram.
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Figure 8: Population estimate and death counts on the Lexis diagram (cohort set-

ting).
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Figure 9: Number of births by month from HFD data. From top to bottom: France,

Switzerland, Finland, Sweden and Austria.
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Figure 10: Correction ratio by year of birth. From top to bottom: France, Switzer-

land, Finland, Sweden and Austria.
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Figure 11: From top to bottom: France, Switzerland, Finland, Sweden and Austria.

Left column: mortality rates for the birth cohorts 1919 and 1920 from HMD cohort

data. Middle column: mortality rates for diagonals starting at 1919 and 1920 from

HMD period data. Right column: mortality rates for diagonals starting at 1919 and

1920 from corrected period data.
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Figure 12: From top to bottom: France, Switzerland, Finland, Sweden and Austria.

Left column: mortality improvement rates from HMD period data. Right column:

mortality improvement rates from corrected period data.
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Figure 13: From top to bottom: France, Switzerland, Finland, Sweden and Austria.

Comparison of mean and standard deviation of mortality improvements on the pe-

riod 1980-2010 for both HMD data and corrected data, for the age range 40-90. Left

column: mean. Right column: standard deviation.
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Figure 14: Standard deviation of mortality improvements on the period 1980-2010

for both HMD data and corrected data, for the age range 70-90. From top to bottom:

France, Switzerland, Finland, Sweden and Austria.

Alexandre Boumezoued - Milliman 35/36



REFERENCES

Figure 15: Time parameters in the stochastic mortality model in Equation 17 for

the period 1980-2010 calibrated on the age range calibrated on the age range 60-90.

Figure 16: Residuals of the stochastic mortality model in Equation 17 calibrated

on the time period 1980-2010 and the age range calibrated on the age range 60-90.

Left: crude HMD data. Right: corrected data.

Figure 17: Mean (left) and volatility (right) of mortality improvements from four

sources: empirical analysis on 1980-2010 from crude HMD data, empirical analysis

on 1980-2010 from corrected data, analysis of one year mortality improvements in

the model calibrated either on crude HMD or corrected data.
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