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Sub-optimal Lunar Landing GNC using
Non-gimbaled Bio-inspired Optic Flow Sensors

Guillaume Sabiron, Thibaut Raharijaona, Laurent Burlion, Erwan Kervendal, Eric Bornschlegl,
and Franck Ruffier,

Abstract—Autonomous planetary landing is a critical phase
in every exploratory space mission. Autopilots have to be safe,
reliable, energy-saving, and as light as possible. The 2-D Guidance
Navigation and Control (GNC) strategy presented here makes use
of biologically inspired landing processes. Based solely on the
relative visual motion known as the Optic Flow (OF) assessed
with minimalistic 6-pixel 1-D OF sensors and Inertial Measure-
ment Unit measurements, an optimal reference trajectory in
terms of the mass was defined for the approach phase. Linear
and nonlinear control laws were then implemented in order
to track the optimal trajectory. To deal with the demanding
weight constraints, a new method of OF estimation was applied,
based on a non-gimbaled OF sensor configuration and a linear
least squares algorithm. The promising results obtained with
Software-In-the-Loop simulations showed that the present full
GNC solution combined with our OF bio-inspired sensors is
compatible with soft, fuel-efficient lunar spacecraft landing and
might also be used as a backup solution in case of conventional
sensor failure.

LIST OF ABBREVIATIONS
GNC: Guidance Navigation and Control
HG: High Gate
LG: Low Gate
LMS: Local Motion Sensor
LROC: Lunar Reconnaissance Orbiter Camera
MPC: Model Predictive Control
OF: Optic Flow
PANGU: Planet and Asteroid Natural scene Generation Utility
SIL: Software-In-the-Loop
TTC: Time-To-Contact
VLSI: Very Large Scale Integration
VMS: Visual Motion Sensor

I. INTRODUCTION

The latest vision-based systems are of great interest for
Guidance Navigation and Control (GNC) applications and
are therefore being widely used in space exploration mis-
sions, especially during the entry, descent and landing phases.
Several recent studies have focused on visual methods for
estimating the position and velocity of spacecraft such as
planetary landers [1]–[4] or performing hazard avoidance [5].
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Most of these methods involve the use of cameras and other
classical remote sensors such as RADAR (RAdio Detection
And Ranging) or LIDAR (LIght Detection And Ranging)
devices [6]. To deal with potential failure of the main sensors,
the latest small spacecraft often feature redundant conventional
sensors that are heavy, bulky and highly energy-consuming.
In the case of a backup solution, our strategy presented here,
featuring lightweight sensors do away with redundant heavy
equipment of this kind.

The need for miniature GNC devices entails challenging
constraints in terms of weight, size, cost, and power con-
sumption. Developing advanced miniature GNC sensors is an
important challenge for the years to come: these requirements
could possibly be met, for instance, by combining the ad-
vantages of visual sensors, LIDAR, and RADAR in a small,
lightweight, low-cost GNC sensor. In parallel with the time-
consuming size-reduction efforts involved in reaching these
goals, it is necessary to develop an efficient, reliable sensor
fusion algorithm to compensate for the losses incurred by
the miniaturization. Another alternative might be to apply
an innovative robotic approach to lunar landing problems:
miniature biologically-inspired sensors could be developed,
for example, based on the visual cues used by tiny airborne
creatures such as insects to control their flight.

Based on their previous neurophysiological studies on the
fly’s eye, Franceschini et al. [7] developed a simple principle,
which was subsequently called the “Time of Travel principle”
(see Fig. 3). This algorithm can be used to calculate the
angular velocity of the images sweeping backward across
the view field in one direction forming the 1-D Optic Flow
(OF), which is detected by a small device known as a 2-
pixel Local Motion Sensor (LMS) (see [8]–[10] for several
implementations). Nature has shown the great potential of the
rich visual OF information used by flying insects [7], [11],
[12] to perform hazardous robotic tasks in complex, unknown
environments. OF processing methods could be used in control
systems in several ways:
• First as a means of estimating the usual states of the

system in combination with other more classical sensors
such as Inertial Measurement Units (IMUs), sonars, GPS,
and/or accelerometers [13],

• Secondly, OF data can be used directly in a control
loop without any need for information about the velocity,
acceleration, altitude or even about the characteristics
of the terrain, and hence without any bulky, power-
consuming sensors. Many OF based robotic control sys-
tems have been developed which are able to perform take-
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Fig. 1. Sketch of the full GNC solution presented in this paper. In the non-gimbaled sensor configuration presented here, twenty 6-pixel VMSs feed the data
fusion block along with an IMU. The data fusion block based on a linear least squares algorithm feeds the nonlinear controller with the high interest OF
values estimated. The control allocation block transforms the control signal into a braking force defining the magnitude of the thrust vector. The inner attitude
control loop delivers the control signal uθ assessed via a linear output feedback controller and the sub-optimal guidance strategy defining the orientation of
the thrust vector. The reference signals ω∗

x(t), ω∗
z (t) and θ∗(t) are precomputed using nonlinear programming methods.

off, terrain-following and landing safely and efficiently
by mimicking insects’ behavior [9], [14], avoiding frontal
obstacles [15]–[18], tracking a moving target [19] as well
as hovering and landing on a moving platform [20],

• Finally, the OF has been used to extract relative-state
information for navigation purposes in the Wide Field
Integration methods presented by [21]–[23].

Several spacecraft landing studies have been recently per-
formed by using direct means of regulating the downward
OF (measured in the local vertical direction) and the Time
To Contact (TTC, an index to the ground height, i.e., the
local altitude, divided by the vertical velocity) to achieve soft
landing. In [24], the authors presented the first simulations
involving neuromorphic principles to process the 1-D OF and
make a successful autonomous lunar landing. The autopilot
used only the OF and the acceleration to regulate the space-
craft’s flight without any need for velocity and height estimates
or measurements. Results obtained in [24], [25] in terms
of final velocities, pitch, and power consumption were too
large to be compatible with the soft and fuel-efficient landing
requirements: nevertheless, the autopilot’s performances were
assessed by running simulations on PANGU software (Planet
and Asteroid Natural scene Generation Utility) developed for
ESA by the University of Dundee (see [26], [27] for further
information). PANGU is a tool which can be used to simulate
visual environments on planetary surfaces. In 2011, Izzo et
al. [28], [29] calculated optimal trajectories in terms of the
duration of the landing phase and the fuel consumption by
performing numerical simulations: the authors compared the
fuel consumption penalty involved in various ventral OF and
TTC-based flight paths imposed in open loop. Lastly, in [30],
[31], optimal control and image processing were combined in
a nonlinear Model Predictive Control (MPC) coupled to a state
estimation scheme based on a sensor fusion process; with this
MPC control strategy, the optimal control sequences had to be

computed online at each time step.

In all these previous studies [24], [25], [28]–[31], the OF
sensors were assumed to be always pointing vertically down-
ward, which required the use of additional gimbal actuated
systems that are too bulky for small planetary landers. Here,
sub-optimal soft lunar landing performances were achieved
using bio-inspired principles and devices without any state
estimation methods, bulky classical sensor suites (such as
RADAR, LIDAR, cameras, etc.), and especially, without any
gimbal systems.

Step by step, the full GNC solution featuring several OF
sensors fixed to the lander’s structure, two control loops acting
in parallel to make the spacecraft follow a pre-calculated
mass optimal OF-based trajectory and requiring few online
computational resources was developed. The reference OF
profiles were neither constant nor did they take the form of
classical functions: they were computed to avoid unnecessary
fuel expenditure thanks to the use of optimal control tools.
The reference trajectory computed (including the OF profiles)
is optimal in terms of the fuel consumption during the nominal
descent trajectory. The guidance scheme is said to be sub-
optimal since it provides the control laws with the offline-
computed trajectory, which might not be completely optimal
during the actual descent due to the occurrence of tracking
errors. A linear least squares algorithm was used here to
estimate high interest OF values using several sensors oriented
in different directions fixed to the structure. A dedicated
method of determining the appropriate number of OF sensors
was applied. To the best of our knowledge, no previous studies
have addressed the problem of non-gimbaled OF sensors in
the planetary landing context. Special efforts were made here
with the simulations in order to develop a Matlab/Simulink
simulator which was as realistic as possible. The OF sensor
model used in the present Software-In-the-Loop (SIL) sim-
ulations with the PANGU environment benefited from recent
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Fig. 2. Reference trajectory for lunar landing and notations (Lander sketch: by courtesy of Airbus Defence and Space (previously named ASTRIUM EADS).
a) The landing phase addressed in this study is defined as that between High Gate (HG) and Low Gate (LG) and called the approach phase. The objectives
of the lander are to reach LG (at a height of 10 m) at both vertical and horizontal velocities of less than 1 m/s (in absolute values) and a pitch angle in the
±2◦ range. Modified from [32]. b) Diagram of the lander in a planar motion, showing the inertial reference frame ( ~X, ~Z), the velocity vector ~V , the mean
thruster force uth, and its projections in the Local Vertical (collinear to ~Z axis) Local Horizontal (collinear to ~X axis) (LVLH) reference frame. Two specific
optic flows are depicted on the lunar surface ω90◦ and ω135◦ . It can be noted that the point in the direction of motion of the lander is called the focus of
expansion (FoE) and has an OF equal to zero. Adapted from [33].

advances in 6-pixel Visual Motion Sensors (VMS) [34], which
are self-contained devices. These VMSs involving analog and
digital filtering stages as well as a contrast thresholding step
were previously installed onboard a real large scale Unmanned
Aerial Vehicle [35].

In Section II, the method used to design the full GNC solu-
tion and the landing scenario is presented. In Sections III and
IV, the high-interest OF measurement variables, nonlinear dy-
namic model and vision-based SIL simulations are defined. In
Section V, we describe how sub-optimal guidance laws were
computed by performing nonlinear programming. Section VI
describes the nonlinear controller based on Lyapunov theory
developed for the OF feedback loop and the linear controller
developed for the pitch feedback loop. In Section VII, we
discuss the challenge involved in using non-gimbaled sensors
and present a method based on a least squares algorithm. The
full-GNC results were obtained by performing SIL simulations
to calculate the fuel consumption and the final velocities (see
Section VIII). Lastly, Section IX describes some paths for
future research and ends with some final comments.

II. SCENARIO DEFINITION AND ITS FULL GNC SOLUTION

In this paper, we present the full GNC solution for lunar
landing step by step (see Fig. 1) by:
• describing the dynamic model for the lander,
• defining the sub-optimal guidance laws with respect to

the lander’s fuel-consumption in terms of the OF and the
pitch trajectories,

• developing a nonlinear controller based on Lyapunov
theory,

• suggesting a control allocation scheme,
• fusing the 20 local OF measurements into relevant OF

measurements for trajectory tracking,
• simulating the full GNC solution using a lunar environ-

ment simulated with PANGU software.

The lunar landing trajectory was divided into the following
four phases (see Fig. 2.a):

1) De-orbit Phase,
2) Approach Phase,
3) Final Descent,
4) Free Fall.

The approach phase from High Gate (HG) (1800 m ±10%
Above Ground Level -AGL-) to Low Gate (LG) (10 m
AGL) defines the autonomous lunar landing problem. HG
corresponds to the height at which the landing site can be
detected by the spacecraft’s visual system. LG corresponds to
the height at which visual contact with the landing site is no
longer possible due to the lunar dust raised by the thrusters.
When reaching the LG, another GNC strategy is expected to
take control of the final descent. Initial parameters are the
horizontal velocity (Vx0

= 69 ± .03 m/s), vertical velocity
(Vz0 = −36 ± .03 m/s), pitch angle (θ0 = −61 ± 3◦),
ground height (h0 = 1800 ± 180 m), and lander’s mass
(mldr0 = 762± 11 kg) (see Fig. 2.a).

This reference trajectory is therefore very similar to that
involved in the Apollo test case scenario often used in the
literature [36]. The solution targeted involves the following
demanding final constraints at LG (hf = 10 m):

•
∣∣Vxf

∣∣ ≤ 1 m/s,
•
∣∣Vzf

∣∣ ≤ 1 m/s,
• |θf | < 2◦.

The objectives are thus defined in terms of the velocity and
the attitude. The position on the x-axis is not dealt with here
since we are aiming at soft landing without any requirements
about the final downrange. With the present approach, the
propellant consumption will be decreased as far as possible
by the autonomous lunar landing strategy. The main difficulty
to be overcome is that the entire state vector is not given by
the measurements. For instance, the velocities and positions
are neither measured nor estimated: only the angular rates,
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attitude, mass, and OF are measured and thus available for use
as inputs to the controllers. To achieve soft lunar landing, the
autopilot must be able to reduce the magnitude of its velocity
vector and control the orientation of the velocity vector, which
is called the flight path angle and denoted γ (see Fig. 2.b). This
was achieved by jointly adjusting the lander’s two available
control signals: its pitch and its main thrust.

In this study, the approach phase is first defined by de-
termining an optimal fuel-saving trajectory by computing the
control sequence that requires the least fuel to reach the LG
and complies with the demanding final constraints. The second
step corresponds to following this trajectory during the actual
landing phase, using IMU measurements, OF measurements,
and linear/nonlinear controllers.

The GNC strategy described above is designed to take over
control at the high gate. However, regarding backup solution
application, if a sensor failure occurs, the GNC solution might
suffice to control the system. Indeed in the case of a backup
solution, the sensor failure might happen at any time between
the high gate and the low gate. In this configuration, to
initialize the GNC architecture, the last known value of the
states (height, velocity, and attitude) could be used to switch
to the corresponding part of the reference trajectory.

III. LUNAR LANDER DYNAMIC MODEL AND OPTIC FLOW
EQUATIONS

The autopilot consists here of an OF-based control system
operating in the vertical plane ( ~X, ~Z), which controls the
spacecraft’s main thruster force and pitch angle. To stabilize
the lander, it is necessary to cope with nonlinearities and the
inherent instability of the system. Since the lunar atmosphere
is very thin, no friction or wind forces are applied to the
lander. In the present model, the heave and surge dynamics
are coupled via the lander’s pitch (see Fig. 2.b). To incor-
porate the physical constraints into the model in line with
the ESA/Airbus Defence and Space preliminary studies, the
following assumptions are adopted:

(H1)

{
The braking thrusters can produce only positive forces and the

thrust is limited to 3820 N, which means 0 ≤ uth ≤ 3820 N.

(H2)

{
The attitude thrusters can produce forces up to
44 N , which means − 44 ≤ uθ ≤ 44 N.

In line with the ESA/Airbus Defence and Space preliminary
studies, few other values related to thrusters performances,
lander’s characteristics and physical constants are defined in
table I.

TABLE I
CONSTANT PARAMETERS BASED ON ESA/AIRBUS DEFENCE AND SPACE

STUDIES

Specific impulse (s) Gravitational acc. (m/s2) Initial mass (kg)
Ispth = 325 gEarth = 9.81 mldr(t0) = 762
Ispθ = 287 gMoon = 1.63

The specific impulse Isp, an efficiency parameter de-
fined by the ratio between the thrust and the mass flow
rate times the Earth’s gravitational acceleration constant

(Ispth = uth/(ṁldr.gEarth)) is denoted Ispth in the case of
the braking thrusters and Ispθ in that of the attitude thrusters.
The lunar acceleration due to the gravity is taken to be constant
due to the low initial altitude

In line with previous authors’ assumptions, the lunar ground
is taken to be flat (with an infinite radius of curvature) [37].
The dynamic motion of the lander can be described in the time
domain by the following dynamic system in the inertial frame
I associated with the vector basis ( ~X, ~Z):





aldrz (t) =
cos(θ(t))
mldr(t)

uth(t)− gMoon

aldrx(t) =
sin(θ(t))
mldr(t)

uth(t)
(1)

where uth corresponds to the control force applied to the
lander, aldrx,z are the lander’s accelerations in the lunar inertial
reference frame, mldr stands for the lander’s mass, θ is the
pitch angle, t denotes the time, and gMoon denotes the lunar
acceleration due to the gravity. The pitch dynamics of the
system are modeled as follows:

I

R

d2θ

dt2
= uθ(t) (2)

where uθ is the input signal controlling the spacecraft’s pitch
and θ is assessed independently via an IMU, I is the moment
of inertia, and R is the eccentricity of the attitude thrusters
with respect to the center of mass. The lander’s mass depends
directly on the fuel consumption, as given by the following
relation:

ṁldr(t) =
−uth(t)

Ispth .gEarth
+
− |uθ(t)|
Ispθ .gEarth

(3)

This means that:

mldr(t) = mldr(t0)−
1

gEarth

∫ t

t0

(
uth(ε)

Ispth
+
|uθ(ε)|
Ispθ

)
dε (4)

Since the initial mass is known and the lander’s mass depends
linearly on the integral of the lander’s thruster control signal,
the mass can be computed and assessed at any time during the
descent.

Once the dynamic model of the spacecraft has been defined,
one needs to state the OF equations to find what information
can be deduced from this visual cue. The general OF ω(Φ)
can be described as the sum of the two distinct components
defined by [38], e.g. the translational and rotational OF in the
vertical plane as follows:

ω(Φ) = ωT + ωR (5)

The translational OF ωT depends on the linear velocity V
expressed in the inertial frame, the distance from the ground
D in the gaze direction and the elevation angle Φ (i.e. the
angle between the gaze direction and the heading direction).

ωT =
V

D
sin(Φ) (6)

See Fig. 2.b for geometric notations.
The rotational OF ωR depends only on the angular velocity

Ωj expressed in the body’s fixed frame B associated with the
vector basis ( ~xb, ~zb), where j denotes the axis of rotation, and
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on the elevation angle, λ, between the gaze direction and the
axis of rotation.

ωR = Ωj sin(λ) (7)

On the vertical plane, λ = −π
2 and Ωj = θ̇ and hence, ωR =

−θ̇. Lastly, on the 2-D plane, the ground-truth OF can be
monitored as follows:

ωgrd−trh =
V

D
sin(Φ)− θ̇ (8)

For the sake of clarity, the specific local translational optic
flow ωT (Φ) will be written as follows:

• ω90◦ in the case of the downward OF, i.e. in the nadir
direction (90◦ between the gaze direction and the local
horizontal)

• and, ω135◦ in that of the OF oriented at 135◦ from the
local horizontal.

An illustration of ω90◦ and ω135◦ is presented in Fig. 2.b. From
the previous equation, from the point of view of hazardous
obstacle avoidance, it can be seen that whenever an obstacle
appears in the OF sensor’s line of sight, the distance D to the
obstacle will be decreased or increased depending on whether
it is a boulder or a crater: it will cause the autopilot to react
by decelerating or accelerating accordingly so as to ensure the
lander’s soft descent regardless of the topology of the terrain.
The rotational OF ωR is subtracted from the general OF ω(Φ)
(see (5)), using the lander’s mechanical rotation sensed by
the IMU in order to benefit from the useful properties of the
translational OF ωT : this operation is known as the derotation
process [39].

Taking equation (6), under the assumption that the ground is
practically flat (i.e. D = h/ cos(π2 −Φ + γ), where γ denotes
the flight path angle (the orientation of the velocity vector
with respect to the local horizontal as described in Fig. 2.b)
and Φ − γ denotes the angle between the gaze direction and
the local horizontal), then:

ω90◦ =
Vx
h

(9)

with V = Vx/ cos(γ) and h the ground height.
For Φ− γ = 135◦:

ω135◦ =
V

2h
(cos(γ)− sin(γ)) =

ω90◦

2
(1− tan(γ)) (10)

where tan(γ) = Vz
Vx

.
Lastly, the relevant values of OF, i.e., the ventral OF ωx and

the expansion OF ωz used in the present regulators are then
expressed directly in terms of ω90◦ and ω135◦ :

ωx =
Vx
h

= ω90◦ (11)

ωz =
Vz
h

= ω90◦ − 2ω135◦ (12)
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Fig. 3. Simplified processing algorithm of the VMS. Adapted from [34].

IV. SIMULATED VISUAL ENVIRONMENT: PANGU
SOFTWARE AND OPTIC FLOW SENSOR MODEL

To enhance the realism of the simulation, PANGU software
was used to generate images of the lunar surface, taking
the position of the system, the elevation of the sun and the
camera’s properties into account. The simulated lunar surface
was irregular and sometimes included craters up to 40 m deep.
The images generated by PANGU contained 256 gray-scale
levels and had a resolution of 256×256 pixels.

Each OF sensor included six photoreceptors: the visual axes
of each pair of photoreceptors were separated by the inter-
receptor angle ∆ϕ = 0.1◦. The angular sensitivity of each
photoreceptor obeyed a 2-D Gaussian function mimicking
the angular sensitivity of the fly’s photoreceptor with the
acceptance angle (the angular width at half height) ∆ρ =
∆ϕ = 0.1◦. A simplified model of the processing algorithm
of the VMS is presented in Fig. 3. Five OF are computed
for each pair of photodiodes but only the median value is
delivered as an output at 2kHz (a full description of the
algorithm can be found in [35]). As soon as a contrast is
detected, the time of travel algorithm calculates the time ∆t
elapsing between its detection by two adjacent photodiodes.
The OF is directly computed using this equation ω = ∆ϕ/∆t.
These small inter-receptor and acceptance angle values make
it possible to compute very low velocities. Since we have such
a narrow field of view, even high spatial frequency contrasts
will be detected by the photodiodes, which is very helpful at
low OF levels, where fewer contrasts occur in the sensor’s line
of sight.

In the simulated VMS model, the photoreceptors’ output is
simulated at each simulated time step (1 ms) by convolving the
PANGU-generated lunar surface image with the 2-D Gaussian
filter. The simulated 6-pixel VMSs then assess the OF. The
Matlab/Simulink model of the 6-pixel VMS is exactly the
same as that embedded in the real OF thus providing SIL1.

To validate the simulated sensor model in a realistic visual
environment, we implemented, simulated and analyzed the
above improvements on Lunar Reconnaissance Orbiter Cam-
era (LROC) images2. We also compared the sensor output
obtained in a LROC simulation with the results obtained

1Toolbox used for rapid prototyping available at http://www.kerhuel.eu
2Images available at http://lroc.sese.asu.edu
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outdoors with a real-life implementation of the low speed 6-
pixel VMS, upon applying the same angular speed pattern.

As shown in Fig. 4, the characteristics of the sensor model
were found to be very similar to those of the real-life im-
plementation of the 6-pixel VMS. The OF measured closely
matched the reference signal, with a refresh rate of 6.64Hz in
the case of the real measurements and 6.93Hz in that of the
simulated VMS to which LROC images were applied. Since
the visual environment differed between the simulation (lunar
ground) and the real-life experiment (scrubland on a sunny
day), the simulated results were expected to be more satisfac-
tory. It is worth noting that the simulated sensor responded
appropriately to a LROC image by following precisely the
OF reference signal called ωgrd−trh without any outliers.
Likewise, the results obtained in the outdoor experiments with
an actual 6-pixel VMS were also accurate. The OF sensor
code therefore proved to be fairly reliable when working with
PANGU.

Although interesting results were obtained with LROC
images, the fixed resolution of 0.24 m/px decreased the realism
of the simulation at low altitudes. We therefore decided to use
PANGU instead, which gives images with a variable resolution
depending on the lander’s height and attitude. PANGU yielded
images with a definition of 256 × 256 px, regardless of the
lander’s position and attitude, which is nearer to reality. The
main drawback of simulations involving the use of PANGU
is the duration of the landing simulation. The approach phase
lasts around 50 seconds, which means making 50000 TCP-IP
requests to PANGU from Matlab/Simulink plus the remaining
calculations required by the closed-loop system. A simulation
involving two 6-pixel VMSs took 4.5 hours on an Intel R©
Core i7-2600 @ 3.40GHz and another one with twenty 6-pixel
VMSs took more than 26 hours. This explains why the results
of only two of these time-consuming closed-loop simulations
are presented in this paper.

V. OFFLINE COMPUTATION OF THE OPTIMAL
FUEL-EFFICIENT OPTIC FLOW REFERENCE TRAJECTORY

We need to find an OF-based trajectory to be followed
during landing. A valid strategy previously studied in literature
was that obtained by keeping the OF constant around the
value defined by the final constraints. For instance, the first
possibility would be to set the reference value at ωxref =
Vxf
hf

= 0.1rad/s in order to reach 10m at a velocity equal
to or lower than 1m/s. However, at the beginning of the
trajectory, the OF is lower than this reference value during
a few seconds (Vx0h0

≈ 0.04 < 0.1 rad/s with Vx0
= 69m/s

and h0 = 1800m). This would cause the lander to accelerate
horizontally and/or vertically in order to reach the reference
value: it would instantaneously decrease its height and thus
increase the OF. However, there is no need to reach 0.1rad/s
so quickly or to wait without applying any actuation until the
OF increases spontaneously, because the main goal here is to
gradually brake the system efficiently while meeting the final
constraints in terms of the overall fuel consumption.

Based on these findings, we decided to compute and analyze
the optimal trajectory in order to obtain OF reference signals
corresponding to the least fuel-consuming trajectory. The
mass optimization problem was defined here along with the
associated constraints, and its solution was computed in terms
of the trajectory and the OF profiles.

In order to meet the low computational requirements, the
optimal problem was solved offline only once: the OF and
pitch profiles were determined and implemented in the form
of constant vectors in the lander.

First of all, the optimal control sequence u∗ =(
u∗th, u∗θ

)
was computed, taking u∗th to denote the braking

thrust and u∗θ to denote the pitch force (the upper script ∗

indicates the optimality in terms of the mass, i.e., the fuel
consumption). In this paper, optimality refers to the outputs
of the optimization problem

(
u∗th, u∗θ

)
and the associated

reference trajectory (V ∗x , V
∗
z , h

∗, θ∗).
Looking for the least fuel-consuming trajectory is equivalent

to finding the control sequence u∗ that minimizes the use of
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Vzf = −1m/s

Vxf
= 1m/s

tf = 51.46s

∆m = 33.57kg
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Fig. 5. Open loop trajectory under the optimal control sequences u∗th and u∗θ . a) Height h∗ versus downrange x∗, orientation and normalized magnitude

of the optimal control u∗th. b) Optimal control sequence u∗th =
√
u∗2x + u∗2z . The saturation imposed on the control signals u∗th was chosen so that

0 N ≤ u∗th ≤ 3438 N. c) Velocities V ∗
x , V ∗

z . d-e) Optimal reference OF profile versus time. f) Pitch reference trajectory θ∗ obtained under the optimal
control sequence u∗θ .

the control signal (see (3)).
The optimization problem can then be expressed as follows:
Solve

min
uth(t),uθ(t)

∫ tf

t0

(uth(t) + |uθ(t)|) dt (13)

subject to



V̇z
V̇x
ż
ẋ

θ̈
ṁ




=




cos(θ)
m uth − gMoon

sin(θ)
m uth
Vz
Vx
I
Ruθ

−uth
Ispth .gEarth

+ −|uθ|
Ispθ .gEarth




(14)





Vz(t0) = −36 m/s,
∣∣Vzf

∣∣ < 1 m/s
Vx(t0) = 69 m/s,

∣∣Vxf
∣∣ < 1 m/s

h(t0) = 1800 m, hf = 10 m
θ(t0) = −61◦, |θf | < 2◦

(15)





0 < uth < 3438 N
−44 < uθ < 44 N ∀t ∈ [t0, tf ]

(−Vz, Vx, h, x) > 0∣∣∣θ̇
∣∣∣ < 1.5◦/s

(16)

This offline optimal control problem was implemented using
Matlab optimization software on the nonlinear system under
constraints to bring the system from HG to LG. To solve this
continuous time optimization problem, many freely available
Matlab toolboxes using various methods can be used. The
solution provided by ICLOCS (Imperial College London Opti-
mal Control Software, [40]) based on the IPOPT solver suited
our needs for the numerical implementation of a nonlinear
optimization procedure in the case of the continuous system

subjected to boundary and state constraints using the interior
point method. The simulation of the open loop optimal control
was therefore run on the nonlinear system to assess the optimal
OF and pitch profiles

(
ω∗x, ω∗z , θ∗

)
.

Equation (14) describes the dynamic lander model, (15) the
initial and final conditions and (16) the actuator and system
constraints along the trajectory. For safety reasons, a 10%
clearance from the thrusters’ physical saturation is added when
pre-computing the optimal trajectory. This supplementary con-
straint gives the lander greater maneuverability around the
pre-computed trajectory in closed loop. It is worth noting
that a terminal constraint could be added if required to the
downrange x to make pinpoint landing possible, but this might
greatly increase the fuel consumption.

Since it may occur that θ̇ = −ωR > ωT and thus
ωmeasured < 0, we had to use a two-directional version of
the 6-pixel VMS adapted for use in the following measurement
range: ωmeasuredε [−20◦/s; −0.1◦/s]∪[0.1◦/s; 20◦/s] (see Sec.
IV)

The fuel consumed decreases the lander’s mass by ∆m,
which is defined as the difference between the initial and final
mass of the lander ∆m = mldr0 −mldr(tf ) where mldr0 =
762 kg and

mldr(tf ) = mldr(t0)− 1

gEarth

∫ tf

t0

(
uth(ε)

Ispth
+
|uθ(ε)|
Ispθ

)
dε

(17)
To ensure that the sum ωgrd−trh = ωT + ωR does not cancel
itself out (i.e. ωT = −ωR), the pitch rate (ωR = θ̇) was
constrained as follows:

∣∣∣θ̇
∣∣∣ = |ωR| < 1.5◦/s.

Under all these conditions, the optimal control sequences
(u∗th, u

∗
θ) were processed: the optimal solution was obtained

with tf = 51.46s and a decrease in the mass of ∆m < 33.6 kg
(amounting to 4.4% of the initial mass).
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The trajectory computed under these constraints can be said
to be optimal in the case of a more highly constrained problem
than the system fully allows (due to the addition of constraints
on θ̇ and the 10% margin on the thrust to account for the
sensors’ and actuators’ operating ranges). In any case, both of
these additional constraints (the pitch rate and the 10% margin
added to the thrust) result in a very similar fuel expenditure
to that obtained without them (amounting to a difference of
only 0.21%).

Controlling the nonlinear system using the precomputed
sequences (u∗th, u

∗
θ) gives an idea of the optimal trajectory

taken by the lander to reach the final conditions targeted.
Figure 5 gives an overview of the evolution of the states
and outputs during the landing phase when the nonlinear
system is subjected to the optimal open-loop control sequences
(u∗th, u

∗
θ). Figure 5.a gives the trajectory of the lander in

the plane and shows the evolution of the orientation and the
normalized magnitude of the optimal control signal u∗th. Figure
5.b presents the optimal control sequence u∗th =

√
u∗2x + u∗2z .

It can be seen from this figure that the control signal u∗th
delivered never reaches either the upper or the lower satu-
ration, and that the variations are quite smooth during the
entire trajectory. Figure 5.c shows the evolution of the vertical
and horizontal velocities (in the LVLH frame), which meet
the terminal constraints at tf . The nonlinear control strategy
described below in Sec. VI is used to perform the tracking of
the optimal OF profiles presented in Fig. 5.d-e

It is worth mentioning that in the optimal control problem,
the HG conditions are taken to be constant values. These
nominal values are not necessarily reached when this GNC
solution is switched on. As described in II, the initial height,
velocity and mass can vary at HG. We decided to compute
only one optimal trajectory from the initial HG conditions to
the expected final conditions and let the nonlinear controller
cancel any tracking errors which occur. An improvement to the
guidance scheme could be made by solving the optimal control
problem several times at various initial altitudes covering the
admissible range. A bank of reference trajectories could be
embedded into the GNC computer, and a selection algorithm
would eventually choose the best suitable candidate trajectory
at the actual HG on the basis of the available measurements.
This enhanced guidance scheme would still be sub-optimal
since the trajectories would be computed offline, but the initial
errors with respect to the actual position and reference position
would be greatly reduced.

As can be expected, neither the optimal OF profiles nor the
ventral OF ω∗x nor the expansion OF ω∗z , are constant during
the entire descent phase. The OF profiles end up as follows:
• ωz decreases slowly down to −19.16◦/s before increasing

sharply toward ωzf = −5.7◦/s,
• ωx increases linearly during the first half of the descent

up to 2.5◦/s and then exponentially up to ωxf = 5.7◦/s.
The inner loop dynamics (i.e., the pitch evolution) are pre-
sented in Fig. 5.f under the optimal pitch control signal u∗θ: the
pitch starts at −61◦ and ends up at 0◦, as was to be expected.

The final velocities are such that Vxf = −Vxf = 1m/s. In
the final velocity ranges specified in 15, the solution is optimal
in terms of the fuel expenditure (the task is less demanding

in terms of braking). If tracking errors occur during the actual
landing, this might prevent final objectives from being met.
Another way of setting the constraints on the system’s states
would be to require that Vxf = −Vxf = 0m/s, thus increasing
the error margin allowed at LG in the final velocities.

At this point, optimal, fuel-efficient, OF reference signals
as well as pitch reference signal were computed along with
the control sequences (u∗th, u

∗
θ) using nonlinear programming

methods.

VI. CONTROL LAW DESIGN

A. Optic-flow nonlinear control

Once the optimal OF reference trajectory had been defined,
we had to design the control laws required to close the
loop based on the OF measurements obtained during the
descent. Nonlinear controllers were therefore designed for this
purpose, including a feedforward term based on the given
optimal control sequences and output feedback with ωx and
ωz measurements. Since both the height and the velocity show
considerable variations during the approach phase, it was de-
cided not to linearize the system around an equilibrium point,
which would have differed from the actual dynamics most
of the time. No state estimation methods, but only the visual

OF cues
[
ωx
ωz

]
=

[
Vx/h
Vz/h

]
and the inertial measurements

were therefore used to perform soft lunar landing. We can now
write: 




aldrz (t) = V̇z = uz(t)

mldr(t)
− gMoon

aldrx(t) = V̇x = ux(t)

mldr(t)

(18)

along with the two virtual control inputs ux(t) =
uth(t) sin(θ(t)) and uz(t) = uth(t) cos(θ(t)).
Let the candidate Lyapunov function L1 be defined by:

L1 =
1

2
(hωx − h∗ω∗x) 2 (19)

where h∗ and ω∗x correspond to the height and the ventral
OF impinging on the lander during the landing scenario with
the optimal control sequences (u∗th, u

∗
θ) computed offline (see

Sect.V). L1 is always positive (L1 ≥ 0). Its time derivative
can then be expressed as follows:

L̇1 = (Vx − V ∗x )
(
V̇x − V̇ ∗x

)
(20)

where V̇x = aldrx = ux(t)

mldr(t)
.

In the case of a control signal such that:

ux = mldr

(
V̇ ∗x − kx(t) (ωx − ω∗x)

)
(21)

where kx(t) is a strictly positive time varying gain (described
below the proof), we obtain:

L̇1 = (Vx − V ∗x )

(
−kx(t)

(
Vx
h
− V ∗x
h∗

))
(22)

This yields:

L̇1 = (Vx − V ∗x )

(−kx(t)

h

(
Vx − V ∗x +

δhV ∗x
h∗

))
(23)
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where δh = h∗ − h. Lastly:

L̇1 = −kx(t)
√

2

h

[√
2L1 + δhω∗xsign (Vx − V ∗x )

√
L1

]
(24)

where sign (X) =

{
1 X ≥ 0

−1 X < 0
.

Since the reference scenario adopted in this paper focuses
on the approach phase from HG (1800m) to LG (10m), the
height is always positive ∀t ≥ 0.

Therefore, even with (kx(t), h) ≥ 0, a sign study had to be
conducted in order to determine the evolution of L̇1. Several
possible cases could occur:

1) sign (δh) = sign (Vx − V ∗x )
It can be seen here that L̇1 is strictly negative.
This means that with L1 = 1

2 (hωx − h∗ω∗x) 2 =
1
2 (Vx − V ∗x ) 2 ≥ 0 and L̇1 < 0, Vx tends asymptotically
toward V ∗x .

2) sign (δh) 6= sign (Vx − V ∗x )
Therefore,

L̇1 = −kx(t)
√

2

h

[√
2L1 − |δh|ω∗x

√
L1

]
(25)

The sign of
√

2L1−|δh|ω∗x
√L1 then has to be studied:

a)
√

2L1 − |δh|ω∗x
√L1 > 0, which means:

L1(t) >

(
ω∗x(t) |δh(t)|√

2

)2

(26)

Hence, as long as L1 is greater than the curve

described by
(
ω∗
x(t)|δh(t)|√

2

)2

, L̇1 will be strictly
negative.

b)
√

2L1 − |δh|ω∗x
√L1 < 0, which means:

L1(t) <

(
ω∗x(t) |δh(t)|√

2

)2

(27)

Therefore, as long as L1 is smaller than the curve

described by
(
ω∗
x(t)|δh(t)|√

2

)2

, L̇1 will be strictly
positive.

Up to this point, we have proved that L1 converge toward(
ω∗
x(t)|δh(t)|√

2

)2

. Let us now have a look at the system’s
behavior when we have equality. The latter case will now
be studied to explain what the aforementioned convergence
means from the physical point of view.

c)
√

2L1 − |δh|ω∗x
√L1 = 0, which means:

L1(t) =

(
ω∗x(t) |δh(t)|√

2

)2

(28)

Since L1 = 1
2 (hωx − h∗ω∗x) 2, as long as L1 is

located on the curve described by
(
ω∗
x(t)|δh(t)|√

2

)2

(which means (28) is verified), we have:

|hωx − h∗ω∗x| = ω∗x |δh| (29)

Lastly, a trivial sign study has to be conducted
on (29). The first case would be sign (δh) =
sign (hωx − h∗ω∗x) = sign (Vx − V ∗x ), which is

not in keeping with the hypothesis stated above
(sign (δh) 6= sign (Vx − V ∗x )).
The only possible solution is then sign (δh) 6=
sign (hωx − h∗ω∗x) which yields:

hωx − h∗ω∗x = −ω∗xδh = ω∗xh− ω∗xh∗ (30)

with δh = h∗ − h, we obtain

hωx − h∗ω∗x = ω∗xh− ω∗xh∗

Finally, when (28) is satisfied, this means that ωx =
ω∗x.

Although the signs of δh and (Vx − V ∗x ) are unknown and
depend on the initial conditions, it was observed in practice
that these signs remain unchanged throughout the descent. As
can be seen from Fig. 6, at all values of δh0 ∈ [−180; 180],
L1(t) increases when it is smaller than the curve described by(
|δh|ω∗

x√
2

)2

and decreases when it is greater, which means that
ωx tends toward ω∗x. This theoretical sign study showed that:

-100
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=
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×
(V

x
−
V

∗ x
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(|δ
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√
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h
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√
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Fig. 6. a) Evolution of the Lyapunov function L1 = 1
2

(hωx − h∗ω∗
x) 2

(solid blue) for h0 = h∗0 ± 10% and Vx0 = V ∗
x0

+ 0.03 b) Evolution of
the Lyapunov function L1 (solid blue) versus time with h0 = h∗0 − 100 and
Vx0 = V ∗

x0
+ 0.03

• the control law ux ensures that Vx tends asymptotically
toward V ∗x when there exists a time t∗ > 0 such that
t ≥ t∗ sign (δh) = sign (Vx − V ∗x ),

• the control law ux ensures that ωx tends asymptotically
toward ω∗xwhen there exists a time t∗ > 0 such that t ≥ t∗
sign (δh) 6= sign (Vx − V ∗x ).

In addition, although the convergence of Vx cannot be ensured
in all cases, one can see that the Lyapunov function tends in
practice toward 0 (i.e., Vx tends toward V ∗x ) with all initial
heights as from 1800 m ± 10%. The insert in Fig. 6 gives a
typical example, where h0 = h∗0− 100 and Vx0

= V ∗x0
+ 0.03.

To deal with the vertical dynamics, we apply the same
Lyapunov based approach, taking the control signal to be:

uz = mldr

(
gMoon + V̇ ∗z − kz(t) (ωz − ω∗z)

)
(31)
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Which yields the same sign results and conclusions with:

L̇2 = −kz(t)
√

2

h

[√
2L2 + δhω∗zsign (Vz − V ∗z )

√
L2

]
(32)

where kz(t) is a strictly positive time varying gain (described
below the proof). Based on a similar sign study, it can be
proved that when sign (δh) = sign (Vz − V ∗z ), the control
law uz ensures that Vz tends asymptotically toward V ∗z and
when sign (δh) 6= sign (Vz − V ∗z ), the control law uz ensures
that ωz tends asymptotically toward ω∗z . It can be noted
that a feedforward term was included in both ux and uz
(see (21),(31)). The pre-determined optimal horizontal and
vertical acceleration trajectories (V̇ ∗x and V̇ ∗z , respectively) are
therefore used in this control scheme.

In order to account for the physical saturation of the
delivered control signal uth =

√
u2
x + u2

z , the gains kx(t) and
kz(t) are expressed as the product of a nominal part (positive
constants) and a time varying part 0 < λ ≤ 1 preventing
saturation so that:

(
kx(t)
kz(t)

)
= λ

(
kx
kz

)
(33)

We now have to find an analytical solution for λ. Let recall
the expression of the magnitude of the control signal:

uth = mldr

√(
V̇ ∗x − λkxεωx

)2

+
(
gMoon + V̇ ∗z − λkzεωz

)2

In cases where uth ≤ umax (where umax = 3820 N), λ is
adopted so that λ = 1 (no saturation is required).

In the saturated case (uth > umax), the actually delivered
control signal is set to uth = umax and we have to prove that
a value of λ exists such that the stability proof holds (there
exists a 0 < λ ≤ 1 such that positive gains kx(t) and kz(t)
exist).

We know that when λ = 1, we have uth > umax (the
saturated case). In addition, when λ = 0, we have uth = u∗th
(with no feedback) and we know that uth = u∗th < umax (a
10% margin on the control signal is added in the optimal
control problem so that the optimal control sequence does
not reach saturation). Since the expression for uth(λ) is a
continuous function in λ ∈]0; 1[, there exists a λ ∈]0; 1[ such
that:

mldr

√(
V̇ ∗
x − λkxεωx

)2
+
(
gMoon + V̇ ∗

z − λkzεωz
)2

= umax
(34)

Lastly, it can be concluded that ∀t ≥ 0 there exists a 0 <
λ ≤ 1 such that the control signal can be saturated (uth =
umax) if necessary.

It is worth noting that all the optimal signals appearing in
the control laws (marked with a ∗) could be replaced by any
pre-computed reference signals, which do not have to be the
optimal ones.

B. Pitch control law

The inner control loop is based on a sub-optimal guidance
scheme feeding a proportional derivative controller with a
feedforward action.

Since the pitch dynamics were defined as a double integrator
(2), the control law was designed as follows:

uθ(t) = uffθ (t) +Kpεθ(t) +Kd
d

dt
εθ(t) (35)

where uffθ (t) corresponds to the optimal control sequence
u∗θ(t) computed in Sec. V and εθ(t) = θmeas(t)− θ∗(t).

Another possible approach would have consisted in defining
the reference pitch trajectory based on the control signals
ux and uz such that θref (t) = arctan

(
ux
uz

)
. However, the

results obtained using this strategy showed that θref (t) =

arctan
(
ux
uz

)
were liable to give a very noisy, non-smooth

reference signal (e.g. when uz → 0). In addition, since the
closed-loop system closely matches the optimal OF trajectory,
which was defined in keeping with a optimal pitch trajectory,
θ∗(t) was used as the attitude control loop reference signal.
In conclusion, this virtual decoupling between the two loops
prevents noise from being transmitted from the 6-pixel VMS
to the pitch controller while providing a consistent reference
pitch trajectory.

Gains Kp and Kd were defined using classical pole place-
ment methods on a double integrator system, thus giving the
closed-loop faster dynamics than the outer loop (OF control).

C. Simulation results

The results of the closed-loop simulation performed with
PANGU using 2 gimbaled OF sensors show that the GNC
strategy implemented with software-in-the-loop constitutes an
efficient means of performing soft landing, since the final
constraints in terms of the velocity and the attitude are almost
met (Vxf is slightly higher than 1 m/s). In this study, the
attitude measurements were taken to be perfect throughout
the whole simulated descent phase. Well-known drawbacks of
IMU devices such as drift and measurement noise extensively
studied in the literature are beyond the scope of this paper.
Figure 7 shows the landing scenario simulated in closed loop
using the sub-optimal guidance strategy, the two decoupled
feedback loops in a SIL simulation using PANGU and 2
gimbaled 6-pixel VMSs taking simplified actuator dynamics
(as first order systems) and thrust saturation into account.

From Fig. 7.a, Fig. 7.d and Fig. 7.e, the present sub-optimal
guidance and control scheme makes it possible to obtain a
trajectory (Vx(t), Vz(t), x(t), h(t), θ(t)) which is similar to
the optimal trajectory computed using non-linear programming
methods. In Fig. 7.b, it can be seen that the OF follows
the reference signals. Figure 7.c shows the control input
(uth), which is very similar to the optimal control sequences
presented in Fig. 5.b).

The black dots in this figure indicate the sensor initiation
phase. Two seconds before reaching HG, the sensors are
switched on. In simulations, the lander is in open loop up to
h = 1800m. In real landings, however, another GNC strategy
would have to be used prior to High Gate.
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High Gate

Vzf = −0.12m/s

Vxf
= 1.17m/s

∆m = 33.7kg

θf = −0.04◦

θ̇f = 1.49◦/s

hf = 9.16m

Closed-loop trajectory using 2 gimbaled OF sensors
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Fig. 7. Closed-loop response from HG to LG in a SIL simulation performed on PANGU using 2 gimbaled OF sensors. a) Height h versus downrange x
(green dashed), optimal trajectory h∗(x) (solid blue line), orientation and normalized magnitude of the control input uth. b) Optimal reference OF profiles
(dashed black lines), ground-truth OF (solid red lines) and measured OF (dotted blue lines). c) Control sequence uth =

√
u2x + u2z . Saturation of the control

signal uth is such that 0 N ≤ uth ≤ 3820 N. d) Velocities Vx, Vz (dashed lines) and optimal references (solid lines). e) Optimal pitch reference trajectory
(solid line) and actual pitch (dashed line). Black dots indicate the times at which the lander reaches HG.

Up to this point, we have taken the two 6-pixel VMSs to be
gimbaled and therefore to be able to directly measure ωx = Vx

h

and ωz = Vz
h (see (11) and (12)).

In the following section, a linear least squares regression is
performed to estimate ωx and ωz using 20 OF sensors fixed
to the lander’s structure, thus doing away with the need to use
any gimbaled system.

VII. NON-GIMBALED OF SENSOR SET-UP

A. Problem formulation
Since the goal pursued here consists in ensuring soft lunar

landing and the solution therefore needs to be cost- and

weight-saving, it was not proposed to embed a gimbal system
onboard the lander. In the presence of sensors fixed to the
lander’s structure, the OF measurements depend on the pitch
angle, which directly affects the distance to the ground in the
gaze direction D, as illustrated in Fig. 8.

The control strategy based on the OF regulators described in
section VI involved the use of only a few specific OF values,
which were of particular interest due to their mathematical
expressions: ωx and ωz , as defined in (11)-(12). ωx and ωz
can easily be obtained from ω90◦ and ω135◦ when they are
available, but this is rarely the case. An estimation algorithm
is therefore required to approximate the values of ωx and ωz
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from the OF measurements available at each time step. The
main idea here is to increase the number of VMSs on the
lander so as to be able to estimate these useful values. To
express ωx and ωz based on just a few measurements, we
implemented and simulated a method involving the use of a
linear least squares algorithm using multiple sensors’ outputs.

The general expression for the translational OF after the
derotation process (i.e. ωΦ = ωT = ωmeasured−ωR) is defined
as follows:

ωΦ =
V

D
sin(Φ) (36)

with Φ = α+θ+γ, where α > 0 is the fixed angle between the
orientation of the OF sensor and the vector ~xb and (θ; γ) < 0.

Figures 8.a-c and Fig. 8.e show the actual low-speed VMS
electronic board (Fig. 8.b gives the front view, and Fig. 8.c
gives the rear view) and custom-made packaging (Front view
in Fig. 8.a, top view in Fig. 8.e), Fig. 8.d gives the notations,
reference frames and illustrates the previous statement Φ =
α+θ+γ about an enhanced OF sensor configuration. Figures
8.f-g show the lander equipped with 20 VMSs installed 5◦

apart.
We now have to find the equation that describes the evo-

lution of the OF at a given ground height h and velocity
V , depending on the gaze direction (defined by α and θ).
Assuming the presence of a flat terrain, the distance to the
ground in the gaze direction can be expressed as follows:

D =
h

cos(α− π
2 +θ)

=
h

sin(α+ θ)
(37)

Finally, we obtain:

ωα+θ(t) =
V (t)

h(t)
sin(α+ θ(t)) sin(α+ θ(t) + γ(t)) (38)

where α and θ are initially given and measured parameters,
respectively.

Equation (38) describes the evolution of the OF in the case
of a sensor oriented at the angle α. It is worth noting that this
is a nonlinear time varying expression.
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Fig. 9. a) Evolution of ωα+θ(t) with time in the case of the optimal reference
descent trajectory presented in Fig. 5. b) OF characteristics depending on the
gaze direction at t = 25.72 s (i.e. for Vx = 29.25 m/s, Vz = −44.52 m/s
and h = 675.12 m). Values of particular interest ω90◦ and ω135◦ are given
in red.

Figure 9 gives the evolution of the OF ωα+θ(t) with time
during the optimal reference descent trajectory presented in
Fig. 5 with θ(ti) = 0 and α ∈ [0;π] (the boundary values
correspond to an infinite ground). The insert in the Fig. 9
shows the values of particular interest ω90◦ and ω135◦ at time
ti. It is worth noting that from one time step to the next, the
number of ground-oriented OF sensors is liable to vary, which
affects the magnitude and hence the difficulty of the problem.

Assuming the presence of a flat ground, the OF sensor fixed
at the angle α will no longer be ground-oriented when the
following inequality is not satisfied:

−α ≤ θ ≤ −α+ π (39)

It is necessary to identify all the OF sensors that do not
satisfy the ground orientation condition (39). Figure 10 gives
an overview of the evolution of the orientation of each OF
sensor depending on the pitch angle. Only the OF sensors
oriented between 0◦ and 180◦ (between the two dash-dotted
black lines in Fig. 10) will provide useful OF measurements,
since they are oriented toward the ground. Under real-life
conditions, these boundaries have to be tightened due to the
fact that the lunar radius is not infinite. The OF at the Focus
of Expansion (FoE) is always null, and in the immediate
neighborhood, it is approximately null: there is therefore no
point in having any OF sensors oriented in this direction. The
red dashed line in Fig. 10 gives the orientation of the FoE
defined by tan−1

(
Vz
Vx

)
.
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Fig. 10. Evolution of the OF sensor’s orientation θ(t)+αi during a reference
descent trajectory in a set-up including 20 OF sensors oriented every 5◦.

It is worth noting that in this configuration, at least 19 out of
the 20 sensors are pointing in an appropriate direction at any
time, i.e., in a ground-oriented direction which is far enough
from the FoE.

Equation (39) is checked in the case of each OF sensor by
applying a ground-oriented sensor selection algorithm at each
time step.

During the PANGU simulations, OF sensors were sky-
oriented even when the condition described in (39) was met,
because of the size of the Digital Elevation Model, which is
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Fig. 8. a) Front view of the custom-made protective case of the VMS. b)-c) Front and back view of the low-speed 6-pixel VMS. From [35]. d) Lander with
20 embedded VMSs with a non-null pitch angle: ωi = V

D
sin(αi+ θ+γ), (θ; γ) < 0. e) Top view of the VMS. f) Zoom on the proposed implementation of

the VMSs fixed to the lander’s structure (1 sensor every 5◦ from 90◦ to 185◦). g) Overall view of the lander equipped with 20 embedded VMSs approaching
the lunar ground.

limited to 2n×2nm (n is usually set at 12 or 13 depending on
the sensor configuration). Without knowing either the height
or the absolute position on the Digital Elevation Model, geo-
metric criteria cannot be used to determine which OF sensors
are pointing out of the map. Whenever a 6-pixel OF sensor
is sky-oriented, its photodiodes’ raw visual signals decrease
to approximately zero (PANGU generates stars, which trigger
a residual visual signal): this OF sensor is then rejected as
long as

∑6
i=1 phi < threshold, where phi denotes the ith

photodiode signal (threshold is set experimentally at a higher
value than the sum of six photodiodes oriented toward a sky
full of stars).

B. Least squares estimation

It was then proposed to estimate both ωx and ωz based
on a limited number of OF measurements giving results
which were at least as accurate as those which would have
been obtained with a gimbaled mounted sensor subjected
to the same measurement dispersion. Instead of estimating
(ω90◦ , ω135◦) to compute ω̂x and ω̂z , an expression for the
OF measurement can be obtained for every αi in terms of
ωx = Vx(t)

h(t) and ωz = Vz(t)
h(t) .

ωαi+θ
(t) =

1

2

[
1 − cos

(
2

(
αi + θ(t)

))
sin

(
2

(
αi + θ(t)

)) ][ Vx(t)
h(t)
Vz(t)
h(t)

]

(40)

It is therefore theoretically possible to deduce ωx and ωz
based on only two measurements as long as the matrix is
invertible:
[
ωx
ωz

]
=

1

2

[
1 − cos (2 (α1 + θ)) sin (2 (α1 + θ))
1 − cos (2 (α2 + θ)) sin (2 (α2 + θ))

]−1
[

ωα1+θ
ωα2+θ

]
(41)

By increasing the number of measurements, the estimated
output can be improved and null determinant issues can
be avoided. However, since the matrix will no longer be a
square matrix, the Moore-Penrose pseudoinverse defined as

A+ = (ATA)−1AT can be used to obtain an estimation of[
Vx(t)/h(t) Vz(t)/h(t)

]T
.

[
ω̂LSx (t)
ω̂LSz (t)

]
=

1

2
A+



ωα1+θ(t)

...
ωαN+θ(t)


 (42)

where

A =




1− cos (2 (α1 + θ(t))) sin (2 (α1 + θ(t)))
...

...
1− cos (2 (αN + θ(t))) sin (2 (αN + θ(t)))




(43)
and the upper script LS denotes the output of the linear
least squares algorithm. It is worth noting that the expressions
described in (11) and (12) correspond to a specific case of
the least squares formulation, where two gimbaled sensors are
oriented toward 90◦ and 135◦ from the local horizontal.

C. Results

A study of the standard deviation of the error was conducted
in order to determine the number of OF sensors to be used in
the least squares algorithm. This basically amounts to making
a trade-off between the accuracy required in the estimation
and the complexity and weight of the embedded sensors and
the algorithm. Figure 11.a shows the standard deviation of
the error for all possible implementations from 2 sensors to
50. The noise added to the measurements consists of pseudo-
random values based on the standard uniform distribution in
the interval [−3◦/s, 3◦/s].

To make the number of sensors selected at least as accurate
as that obtained with the gimbaled solution, the standard
deviation error of the ω̂LSx , ω̂LSz estimated using N non-
gimbaled OF sensors was compared with the result obtained
using a direct method of estimation based on 2 gimbaled
sensors ωG90◦ and ωG135◦ (see (11)-(12)), where the upper script
G denotes the output of a gimbaled sensor. As a design
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Fig. 11. a) Standard deviation of the error between ωx and ω̂LSx (blue) (ωz and ω̂LSz (green)) versus the number of OF sensors equally spaced between 90◦

and 185◦ during an optimal reference descent trajectory. The dashed horizontal line gives the standard deviation of the error of the estimates obtained using
2 gimbaled OF sensors: ωGx = ωG90◦ and ωGz = ωG90◦ − 2ωG135◦ where ωGi◦ denotes the measurement obtained with an OF sensor oriented downward at i◦
from the local horizontal. A total number of 20 sensors (placed 5◦ apart) therefore constitutes an acceptable compromise between the accuracy requirements
and the complexity of the implementation. b) Validation of the least squares algorithm with a 20 OF sensor configuration. Comparison between the true values
of ωx, and ωz during a descent trajectory (red) and the estimated values ω̂LSx and ω̂LSz (blue) and the values that would have been measured with a sensor
mounted on a gimbal system subjected to the same noise level(s) ωGx and ωGz (green). Black dots indicate the times at which the lander reaches HG.

criterion for setting the number of OF sensors, the standard
deviation of the error in the least squares estimation had to be
of the same order of magnitude as the value obtained in the
case of gimbaled sensors.

The results of the simulation showed that the use of the
linear least squares algorithm to estimate ω̂LSx and ω̂LSz in
a setup including 20 OF sensors separated by a fixed angle
is a suitable procedure. The angle between each of the
sensors was set experimentally at 5◦, from αmin = 90◦ up
to αmax = 185◦. With this configuration, it can be seen
from Fig. 11.a that σ

(∣∣ω̂LSx − ωx
∣∣) = 0.47◦/s is below

σ
(∣∣ωGx − ωx

∣∣) = 0.87◦/s and σ
(∣∣ω̂LSz − ωz

∣∣) = 0.89◦/s
is way below σ

(∣∣ωGz − ωz
∣∣) = 2.11◦/s and very near

σ
(∣∣ω̂Gx − ωx

∣∣) = 0.87◦/s (0.02◦/s higher), which means that
20 OF sensors is a number giving an appropriate trade-off
when the non-gimbaled method is used to estimate ωx and ωz .
This procedure was then tested using PANGU: this simulation
was run in open loop on the optimal scenario in order to test
the validity of the navigation solution. The results obtained
with the least squares algorithm using 20 non-gimbaled OF
sensors on PANGU and the results of the estimation based on
2 gimbaled OF sensors are given in Figure 11.b.

It can be seen from Fig. 11.b as expected, that the
standard deviation of the error with ω̂x was reasonably
similar to the value obtained with the gimbaled measure-
ments (σ

(∣∣ω̂LSx − ωx
∣∣) = 0.27◦/s versus σ

(∣∣ωGx − ωx
∣∣) =

0.11◦/s) and that the standard deviation of the error with
ω̂LSz was even better than in the case of gimbaled measure-
ments (σ

(∣∣ω̂LSz − ωz
∣∣) = 0.61◦/s versus σ

(∣∣ωGz − ωz
∣∣) =

0.76◦/s). Differences with the results of the theoretical study
presented in Fig. 11.a are due to the fact that the actual
VMS noise (occurring with the simulated VMS on PANGU
generated images) differed from the pseudo-random values
based on the standard uniform distribution. It can be noted that
σ
(∣∣ω̂LSz − ωz

∣∣) is slightly higher than σ
(∣∣ωGx − ωx

∣∣). These
results again confirm that the estimation of ωx and ωz via a

least squares algorithm and 20 non-gimbaled 6-pixels VMS is
sufficiently accurate in comparison with that obtained with the
2 gimbaled OF sensor method.

A well-known drawback of the least squares method of
estimation is its sensitivity to noise. Even with noisy measure-
ments, however, the linear least squares algorithm is accurate
enough in the present context. Other estimation techniques
could be used in this framework. One possibility which comes
to mind is to use an improved least squares regression method
using weighting matrices, iterative methods or nonlinear least
squares, but this method failed to improve the estimates
obtained in the preliminary investigations (not shown).

VIII. COMPLETE GNC SIMULATION USING PANGU

Lastly, the full GNC strategy presented in this paper was
simulated using PANGU. The main features on which this
strategy is based are:

• sub-optimal OF and pitch guidance with respect to the
fuel consumption,

• two decoupled control loops for performing OF and pitch
reference tracking

• and the non-gimbaled OF fusion algorithm for estimating
ωx and ωz using 20 OF sensors in SIL simulations.

In the simulation 20 OF sensors are fixed to the lander’s
structure every 5◦ at an angle of α ∈ [90◦; 185◦].

Table II gives the results of the SIL simulation performed
in closed-loop with PANGU using 2 gimbaled versus 20 non-
gimbaled OF sensors and shows the relative errors in the fuel
consumption, vertical velocity braking and horizontal velocity
braking:
Relative error computation

ε∆m = ∆m−∆m∗

∆m∗ , εV(x,z)
=

(V(x,z)0
−V(x,z)f

)(V ∗
(x,z)0

−V ∗
(x,z)f

)

V ∗
(x,z)0

−V ∗
(x,z)f

.

This simulation shows that the closed-loop control strategy
almost meets the demanding final constraints despite the
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d) Velocities Vx, Vz . e) Pitch reference trajectory (solid line) and actual pitch signal. Black dots indicate the times at which the lander reaches HG.

decoupling of the two control loops, the control input transfor-
mation

(
uth =

√
u2
x + u2

z

)
and the input control saturation.

In addition, simulations performed with 2 gimbaled (Fig. 7)
and 20 non-gimbaled (Fig. 12) OF sensors yielded practically
the same results at LG, which confirms the validity of our
new navigation strategy based on OF sensors fixed to the
structure. Figure 12 gives the results obtained on PANGU
using the linear least squares algorithm. Figure 12.a gives the
trajectory taken and the final conditions obtained at LG. It
can be seen that the vertical velocity (Fig. 12.e along with

the horizontal velocity) and the pitch angle (Fig. 12.f) met
the final constraints. The horizontal velocity was still slightly
higher than necessary: Vxf = 1.2m/s, which amounts to a
0.3% error in the expected braking (from 69m/s at HG to
1m/s at LG). In terms of the fuel consumption, 33.74kg of
propellant was consumed, which amounts to only 0.51% more
than in the optimal open-loop control case. The input signals in
Fig. 12.d are quite far from the upper saturation point (except
during the last few seconds); and the output of the linear least
squares algorithm run using the 20 bidirectional low speed OF
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TABLE II
COMPARISON BETWEEN FINAL CONDITIONS IN THE OPTIMAL OPEN LOOP CONTROL AND SUB-OPTIMAL CLOSED-LOOP SIMULATIONS WITH PANGU

(RELATIVE ERRORS IN THE FUEL CONSUMPTION AND VELOCITIES WITH RESPECT TO THE OPTIMAL TRAJECTORY ARE PRESENTED).

Optimal computed trajectory in terms of
the fuel consumption (u∗x, u

∗
z)

Closed-loop response with 2 gimbaled OF
sensors oriented at angles of 90◦ and 135◦

Closed-loop response with non-gimbaled
20 OF sensors oriented every 5◦

hf (m) 10 9.16 9.79
xf (m) 1585 1610 1614

∆m (kg) 33.57 33.7 (0.39%) 33.74 (0.51%)
Vxf (m/s) 1 1.17 (-0.25%) 1.2 (-0.29%)
Vzf (m/s) -1 -0.12 (2.51%) 0.11 (3.17%)
θf (◦) 0 -0.04 -0.04
θ̇f (◦/s) 1.49 1.49 1.49

sensors as shown in Fig. 12.b-c is quite smooth. In conclusion,
the present results show that our sub-optimal GNC approach
based on the use of non-gimbaled bio-inspired OF sensors
meets the demanding final constraints at LG without any need
for linear velocity or altitude data.

IX. CONCLUSION

The novel GNC solution to the complex challenge of
autonomous lunar landing presented here was achieved using
only an IMU and insect inspired visual motion sensors. This
solution involving the use of lightweight sensors might also
be used as a backup GNC solution in the case of main sensors
failure.

This study shows that optimal OF and pitch trajectories in
terms of the fuel consumption can be obtained from the opti-
mal control sequence computed using nonlinear programming
methods in the lander’s dynamic model. The optimal profiles
can be fed as reference signals to the two decoupled loops
driving the translational/expansional OF (ωx and ωz) and the
attitude (i.e. the pitch angle). In this new approach to the
problem of OF based landing, which has been widely studied
in the literature, the entire OF and pitch profiles are determined
in order to follow the optimal trajectory during the descent
instead of taking an arbitrary constant reference OF value or
one dictated by the objectives.

The next step will consist in increasing the complexity of the
model used to deal with the optimal control problem, using
a 3-D set-up (a 6 degree of freedom (DOF) configuration).
Adopting planar motion for planetary landing in the case of
a planet with atmosphere such as Mars would be a strong
assumption. Since the wind gusts on Mars might induce strong
lateral translation and rotation movements, the 6-DOF setup
is mandatory even at this stage in the design process. There
exist no external phenomena on the moon liable to create
very strong motion on the roll, yaw and ey axes. Thrusters’
manufacturing flaws and misalignments could result in small
movements (on the roll, yaw and ey axes) that might be taken
care of by an attitude control designed to keep the roll and
yaw angles (and/or angular rates) at a zero reference value
throughout the descent. Null yaw and roll angles (and angular
rates) keep the y-motion down to zero, which means that the
planar case would correspond to a full 6-DOF configuration.

However, as it is, our application could be sensitive to small
angular roll and yaw motions. The time of travel scheme
assesses the OF by computing the difference between the

times at which two adjacent photodiodes detect a contrast,
assuming that the contrast is moving in a straight line. In
the case of lateral motion, contrasts are no longer moving in
straight lines, which could add some bias to the measurements.
If we go one step further, we could imagine hazard avoidance
strategies that could be performed during the approach phase.
Avoidance maneuvers might require creating strong lateral
motion to move from one landing site to another. It is therefore
mandatory to provide the GNC solution with 6-DOF abilities
in the following design steps. Using sensors of this kind, this
could be achieved by increasing the number of pixels and
adopting matrix-shaped photoreceptors.

In order to further improve the robustness of this control
strategy to initial uncertainties, a set of optimal reference
trajectories could be calculated offline and the most suitable
one could be chosen as soon as the lander reaches High
Gate, since the uncertainty about the initial OF is mainly
due to uncertainty about the initial height. As previously
discussed, the guidance scheme could be improved by adding
a final constraint on the downrange. In addition to the bank of
reference trajectories, this should make it possible to achieve
roughly the same level of accuracy as that observed in the
present case: landing within ±30m of the optimal landing site,
which would correspond to making the GNC strategy capable
of dealing with pinpoint landing.

Even with an elementary control scheme based on a non-
linear controller, the performances obtained here were similar
to the optimal OF reference values and hence to the optimal
landing profile. The closed-loop fuel consumption showed that
the objectives in terms of the fuel costs and the velocities
are almost met (the horizontal velocity is 0.2m/s higher than
the objective at LG). It is now planned to further improve
the control design in terms of the control allocation and the
controllers themselves to prevent the occurrence of decoupling
between the OF and the pitch feedback loop. Here we have
provided theoretical proof of the asymptotic convergence of
the OF and that of the velocities with the reference values in
the nonlinear system.

The second major improvement made in this study was
the use of a non-gimbaled sensor setup. Instead of using
a bulky gyro-stabilized system, which is not feasible with
these lightweight sensors, we introduced a new method of
fusion using 20 sensors oriented in fixed directions to extract
the same information as that which can be obtained with a
heavy gimbaled sensor system. These sensors are used to
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accurately determine the translational and expansional OF
(ωx and ωz). The results obtained show that thanks to the use
of a suitable number of sensors, the values of

(
ω̂LSx , ω̂LSz

)

estimated have similar standard deviations of the error as those(
ωGx , ω

G
z

)
obtained using two gimbaled OF sensors measuring

(ω90◦ , ω135◦) subjected to the same noise levels. This strategy
basically amounts to making a trade-off between the accuracy
of the estimation and the complexity of the physical imple-
mentation (and the weight of the system). We have focused
here on the methodological aspects of the solution, and this
numerical application was based on a compromise between
the computational cost and the estimation accuracy, which can
be adapted to the application in question. The mathematical
formulation of the problem is presented above and the solution
obtained was implemented for the first time to our knowledge
with such minimalistic sensors.

One of the main advantages of this distributed OF sensor
configuration is that if one VMS failure occurs, the solution
will keep on functioning, giving slightly lower performances
but without jeopardizing the success of the entire landing,
contrary to what occurs with classical solutions based on a
single main sensor.

The next step will be to develop a theoretical approach
for determining the optimal orientation, spacing and number
of sensors required to ensure accurate estimates. Thanks to
the light weight of our bio-inspired sensors, which weigh
only about 2.8g despite the relatively large number of OF
devices used, the present solution is still much lighter than
the traditional sensor suite used to meet this GNC challenge.

This approach should therefore constitute a promising can-
didate for future lunar exploration missions. Every constitutive
block of the GNC solution was found to be efficient in a
SIL simulation involving the actual VMS code and the use of
simulated images of the lunar ground generated by PANGU
software.

In conclusion, the results presented here provide a promising
answer to the challenge of designing means of handling the
autonomous approach phase in terms of the guidance, navi-
gation, and control of a lunar lander using the 6-pixel insect-
inspired sensors mounted onboard, which were validated here
using simulated images of the lunar ground.
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[14] Hérissé, B., Hamel, T., Mahony, R., and Russotto, F. Autonomous Robots

29(3-4), 381–399 (2010).
[15] Barrows, G. and Neely, C. In SPIE : Critical technologies for the future

of computing, volume 4109, 52–63 (, San Diego, CA, USA, 2000).
[16] Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., and Beard,

R. IEEE Robotics & Automation Magazine 13, 34–43 (2006).
[17] Ruffier, F. and Franceschini, N. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 1266–1273. IEEE, (2008).
[18] Beyeler, A., Zufferey, J., and Floreano, D. In European Micro Aerial

Vehicle Conference (EMAV), volume 27 (, Delft, Nederlands, 2009).
[19] Kendoul, F., Nonami, K., Fantoni, I., and Lozano, R. Autonomous Robots

27, 165–188 (2009).
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