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Abstract

We mainly study a system of two coupled nonlinear Schrödinger equations
where one equation includes gain and the other one includes losses. This
model constitutes a generalization of the model of pulse propagation in bire-
fringent optical fibers. We answered partially to a question of some authors
in [8], that in the Manakov case, the solution stays in L2(0, T ; H1), that
means that the solution can not blow up in finite time. More precisely, the
bound that is provided in this paper does not seem to be optimal but differ-
ent than those that has been given from a previous study [8]. Thanks to the
way we treat the a priori estimate, we obtain a sharp bound in L2(0, T ; H1),
which would be difficult to reach from the study of other authors [8]. The
result is illustrated by numerical results which have been obtained with a
finite element solver well adapted for that purpose.

Keywords: Coupled nonlinear Srchödinger equations, Manakov model,
Parity-time symmetry, finite element, solitons
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1. Introduction

Hereafter, a basic model of propagation of weakly dispersive waves is
considered by a coupled nonlinear Schrödinger (NLS) equations, which reads
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as follows:{
ıut = −uxx + κv + ıγu− (g11|u|2 + g12|v|2)u,
ıvt = −vxx + κu− ıγv − (g12|u|2 + g22|v|2)v,

(1)

with the coefficients of the nonlinear parts being real. The ı is the complex
such that ı2 = −1 and the coefficients κ and γ are positive constants that
characterize gain and loss in wave components. This model is known for its
pertinence for several applications of nonlinear optics and has been studied
by several authors [3, 1, 8].

Following the study of [8], let us recall that the solution of the system (1),
obeys a parity-time symmetry as soon as there is an equality between coef-
ficients g11 = g22. Actually, the parity symmetry is defined by the mapping:
P(u, v) = (v, u) and the time reversal operator is defined by the following
map:

T (u(t), v(t)) = (ū(−t), v̄(−t)),

where the notation ū(t) represents the complex conjugate of u(t).
Then, the nonlinearity of the system (1) is such that for any solution

(u(t), v(t)) defined in a symmetric interval I = [−t0, t0], there exists another
one (uPT (t), vPT (t)) defined in I,

(uPT (t), vPT (t)) = (v̄(−t), ū(−t)).

2. Main results

According to [8], one knows the existence of a unique global solution
(u(t), v(t)) ∈ C(IR, (H1(IR))2) of the Cauchy problem for the generalized
Manakov system (1) with (u(0), v(0)) = (u0, v0) ∈ (H1(IR))2.

In the Hamiltonian case (for γ = 0), it is known that for (u, v) ∈
C(IR, H1(IR) × H1(IR)), the two following quantities are conserved, namely
the density,

Q(t) =

∫
IR

(|u|2 + |v|2)dx,

and the total energy of the system (1)

E(t) =

∫
IR

(
|ux|2 + |vx|2 + κ(ūv + uv̄)− g11

2
|u|4 − g22

2
|v|4 − g12|u|2|v|2

)
dx

Our next theorem results in another technique which allows us to find an
estimate of the semi-norm in H1 of the solution of the generalized Manakov
system, sharper than that can be obtained from the previous study [8].
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Theorem 1. Assuming that g11 = g12 = g22 then, for the unique solution
(u(t), v(t)) ∈ C(IR, (H1(IR))2) of the Cauchy problem for the generalized Man-
akov system (1) with (u(0), v(0)) = (u0, v0) ∈ (H1(IR))2, there exists a pos-
itive constant C such that the semi–norm of the solution has the following
upper bound, for t ≤ T∫ T

0

(‖ux‖2
L2 + ‖vx‖2

L2)dt ≤ 4g2C2Q(0)3e6γT + 2Q(0)e2γT (κ + π
(T

ω
+ 3

)
)

+ 2πQ(0) (2)

Proof. The proof started similarly to those given in [8], by the fact that
the density and the total energy are well defined in the energy space, and
that as soon as γ 6= 0 the integral quantities are not constant in time.

First of all, by using the duality between the Sobolev spaces H−1 and
H1, we apply the first equation of system (1) to u and the second one to v
to form the density.

Then, adding the two previous dual products of left hand side of system
(1) and thanks to an integration by parts, we get from the imaginary part
that

d

dt

∫
IR

(|u|2 + |v|2)dx = 2γ

∫
IR

(|u|2 − |v|2)dx.

That gives a control to the evolution of the density

dQ

dt
= 2γ(‖u‖2

L2 − ‖v‖2
L2) ≤ 2γQ(t), (3)

and by the Grönwall inequality, the density does not blow up in finite time:

∀t ∈ [−t0, t0], Q(t) ≤ Q(0) exp(2γ|t|). (4)

And from the real part, we obtain that∫
IR

(
|ux|2 + |vx|2

)
dx +

∫
IR

Re{ı(utū + vtv̄)}dx = −κ

∫
IR

(vū + uv̄)dx

+

∫
IR

g(|u|4 + |v|4 + 2|u|2|v|2)dx. (5)

Let us focus onto the second integral of the left hand side. As we assume
that u can not vanish, we consider that during a time interval its imaginary
part is not null (or it can be replaced by its real part). Then, using the same
argument for v, we write that

Re{ı(utū + vtv̄)} = |u|2
(
arctan

(Re u

Im u

))
t
+ |v|2

(
arctan

(Re v

Im v

))
t
. (6)
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By integration by parts and thanks to the absolute continuity of their repre-
sentants,∫ T

0

Re{ı(utū + vtv̄)}dt =

[
|u|2 arctan

(Re u

Im u

)
+ |v|2 arctan

(Re v

Im v

)]t=T

t=0

−
∫ T

0

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dt.

From the absolute continuity of the representants of u and v and thanks to the
oscillating behaviour of Q ([8]) and relation (3), one can compute explicitly
‖u‖2

L2 and ‖v‖2
L2 . So, one obtains that they are oscillating functions also:

‖u‖2
L2 = 1

2γ

[
γκC
ω2 + (γA1 + ωA2) cos 2ωt + (γA2 − ωA1) sin 2ωt

]
,

‖v‖2
L2 = 1

2γ

[
γκC
ω2 + (γA1 − ωA2) cos 2ωt + (γA2 + ωA1) sin 2ωt

]
.

Then, easy computations provide that during each time period the time
derivative of ‖u‖2

L2 and ‖v‖2
L2 vanishes at two specific times for each com-

ponent. We denote the specific instants by t
(1)
u , t

(2)
u = t

(1)
u + π/(2ω) and

t
(1)
v , t

(2)
v = t

(1)
v + π/(2ω). Setting α = γ/ω, and β = A1/A2, one obtains

t(1)u =
1

2ω
arctan

(αβ − 1

α + β

)
.

If α 6= β, one has the expression for t
(1)
v ,

t(1)v =
1

2ω
arctan

(αβ + 1

α− β

)
,

and if α = β one gets:

t(1)v =
π

4ω
.

An interesting reader can sort the zeros of the time derivative of ‖u‖2
L2 and

‖v‖2
L2 according to the values of parameters. But our concern is to derive

an upper bound which is valid for each case, if the sign of
(
‖u‖2

L2

)
t

and(
‖v‖2

L2

)
t

are the same or not. Let us give details in the case of the sign of
each component is different and that their sign change from an interval of
the subdivision to the next one. For instance, (|u|2)t ≤ 0 and (|v|2)t ≥ 0 in
[t1, t2] whereas (|u|2)t ≥ 0 and (|v|2)t ≤ 0 in [t2, t3].
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Let us denote by I, the integral that follows:∫ T

0

∫
IR

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dx dt

≤
∫ t1

t0

∫
IR

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dx dt+

N−1∑
j=0

[∫ t2

t1

∫
IR

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dx dt

+

∫ t3

t2

∫
IR

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dx dt

]
.

Thus, by identyfying the sign of each term, and denoting the next left hand
side by Ij∫ t2

t1

∫
IR

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dx dt

+

∫ t3

t2

∫
IR

{
arctan

(Re u

Im u

)(
|u|2

)
t
+ arctan

(Re v

Im v

)(
|v|2

)
t

}
dx dt

≤
∫ t2

t1

∫
IR

{∣∣∣∣arctan
(Re v

Im v

)∣∣∣∣ (
|v|2

)
t
−

∣∣∣∣arctan
(Re u

Im u

)∣∣∣∣ (
|u|2

)
t

}
dx dt

+

∫ t3

t2

∫
IR

{∣∣∣∣arctan
(Re u

Im u

)∣∣∣∣ (
|u|2

)
t
−

∣∣∣∣arctan
(Re v

Im v

)∣∣∣∣ (
|v|2

)
t

}
dx dt

The arctan function being bounded,

Ij ≤ π
2

∫
IR

{∫ t2

t1

[(
|v|2

)
t
−

(
|u|2

)
t

]
+

∫ t3

t2

[(
|u|2

)
t
−

(
|v|2

)
t

]}
≤ π

2

∫
IR

(
|v(t2)|2 − |u(t2)|2 − |v(t1)|2 + |u(t1)|2

+|u(t3)|2 − |v(t3)|2 − |u(t2)|2 + |v(t2)|2
)
dx

≤ π
2 (Q(t1) + 2Q(t2) + Q(t3)).

Obviously, the way that has been generated the upper bound for this sign
configuration can be extended to any other configuration. Hence, combining
and adding the upper bound for each term, one gets that,

I ≤ π

2

[
Q(t0) + Q(t1) +

p−1∑
j=0

(Q(t1) + 2Q(t2) + Q(t3))

]
.
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Thanks to the density estimate (4), one obtains

|I| ≤ π

2
(Q(0) + (4p + 5)Q(0)e2γT ).

Returning to the integral of the second term of equation (6) left hand side,
the upper bound is as follows.∫ T

0

∫
IR

Re{ı(utū + vtv̄)}dx dt ≤ π
2Q(0)(1 + e2γT ) + π

2Q(0)(1 + (4p + 5)e2γT )

≤ πQ(0)(1 +
(

T
w + 3

)
e2γT ).

Setting D(T ) =
∫ T

0
(‖ux‖2

L2+‖vx‖2
L2)dt, and thanks to the Gagliardo–Nirenberg

inequality which is valid for function of H1 Sobolev space [7], we then obtain
that,

D(T ) +

∫ T

0

∫
IR

Re{ı(utū + vtv̄)}dx dt ≤ κ

∫ T

0

Q(t) dt

+ 2gC

∫ T

0

(‖u‖3
L2‖ux‖L2 + ‖v‖3

L2‖vx‖L2) dt. (7)

Using the relation a3b + c3d ≤ (a2 + b2)3/2(b2 + d2)1/2, one obtains from the
inequality (7), Jensen inequality (concavity of the square root function) and
relation (4) that,

D(T )− 2gCQ(0)3/2e3γT D(T )1/2−κQ(0)e2γT −πQ(0)(1+
(T

w
+3

)
e2γT ) ≤ 0,

that can be considered as an univariable quadratic function of unknown
D(T )1/2. The discriminant is computed as

∆ = 4g2C2Q(0)3e6γT + 4Q(0)e2γT (κ + π
(T

w
+ 3

)
) + 4πQ(0),

which is undoubtedly positive as the density. Thus, computing the solutions,
the variable D(T )1/2 being positive, it must stay clustered as follows:

D(T )1/2 ≤ gCQ(0)3/2e3γT +

√
g2C2Q(0)3e6γT + Q(0)e2γT (κ + π

(T

ω
+ 3

)
) + πQ(0).

Taking the square, we finally get the upper bound for t ≤ T that completes
the proof.

D(T ) ≤ 4g2C2Q(0)3e6γT + 2Q(0)e2γT

{
κ + π

(T

ω
+ 3

)}
+ 2πQ(0). (8)

�
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Remark 1. The previous theorem provides an upper bound of the velocity
norm in L2(0, T ; H1) as roughly a constant times exp(6γT ). One can not
compare straightly with the results that have been obtained by other studies.
But, if we wish to derive from the previous study [8], an approximation in
L2(0, T ; H1) norm, one has to combine their inequality (21) with their equal-
ity (20) and the behaviour of the mass (11). And it likely seems that this
combination provides an upper bound as a constant times exp(10γT ) which
is less sharp than the bound that we have obtained.

Theorem 2. Let us assume that g11 = g22 = g12.

• if γ < κ, for (u0, v0) ∈ (H1(IR))2 a local solution at t = 0 of the system
(1), there exists a constant Qmax > 0 such that the solution of the (1)
verifies:

sup
t∈IR

(
||u(t)||2L2 + ||v(t)||2L2

)
≤ Qmax. (9)

• if γ ≥ κ, there exists a global solution of the system (1) such that,

lim
t→∞

(
||u(t)||2L2 + ||v(t)||2L2

)
= ∞.

The proof is given in [8].

Theorem 3. Let us assume that g11 = g22 = g12.

• if γ < κ, for (u0, v0) ∈ (H1(IR))2 a local solution at t = 0 of the system
(1), there exists a constant Emax > 0 such that the solution of the (1)
verifies: ∫ T

0

(||u(t)||2H1 + ||v(t)||2H1)dt ≤ Emax, (10)

• if γ ≥ κ, there exists a global solution of the system (1) such that,

lim
t→∞

(
||u(t)||2H1 + ||v(t)||2H1

)
= ∞. (11)

Proof. As g11 = g22 = g12 and γ < κ and according to the conclusions of
theorem 2, the density Q(t) est bounded, i.e. there exists a positive constant
Qmax such that

sup
t∈IR

(
||u(t)||2L2 + ||v(t)||2L2

)
≤ Qmax.

Moreover the estimate (2) shows that D(T ) exists. Consequently, the solution
of the generalized Manakov system lies in L2(0, T ; H1), i.e. there exists a
positive constant Emax such that∫ T

0

(||u(t)||2H1 + ||v(t)||2H1)dt ≤ Emax.
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The case γ ≥ κ is a direct consequence of conclusion of theorem 2, that ends
the proof. �

3. Numerical results

The results of theorem 3 indicate that for γ < κ, the global solutions of
Parity-Time symmetric system (1) remain bounded in L2(0, T ; H1). In order
to confirm this result and to investigate the behaviour of the solutions in
other cases, numerical solutions have been computed.

As we started from an existing solver that we developped already for
one NLS equation, to solve the system (1), we developped an algorithm
that substitutes the solution of the first equation into the second equation.
The numerical approximation is based on Crank-Nicholson scheme for the
temporal discretization and Lagrange P1-Galerkin finite element method for
spatial discretization.

By conformal-finite element approximation in H1
0 (I), for I =] − l, l[ an

open interval, N a positive integer, we then consider h = 1/(N + 1) a mesh
space and the following approximation space:

Vh = {vh ∈ C0(Ī), vh(±l) = 0, vh|]−l+(i−1)h,−l+ih[ ∈ C[X], i = 1, . . . , N + 1}.

Obviously, the approximation space is spanned by classical hat functions
denoted by (Ψi)1≤i≤N and the nonlinearity is approached in a common way
by: ∫ −l+ih

−l+(i−1)h

|u|2uΨkdx ≈
N∑

j=1

|uj|2uj

∫ −l+ih

−l+(i−1)h

Ψj(x)Ψk(x)dx.

Its treatment has been done by a fixed-point iterative strategy which was not
so coslty. Let us consider δt the time step, and mention by an upper index
n the approximate value of the component of the solution at time tn = n δt,
then

u(tn, .) ∈ Vh, that means that ∃un
j , u(tn, x) =

N∑
j=1

un
j Ψj(x), x ∈ I.

To solve the first equation, the numerical procedure consists of giving an
initial guest un+1,0

j as un
j and solving the following systems as soon as the
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threshold is not reached, ‖un+1,l+1
j − un+1,l

j ‖ > ε:

N∑
j=1

un+1,l+1
j 〈Ψj, Ψk〉+

ıδt

2

N∑
j=1

un+1,l+1
j 〈∇Ψj,∇Ψk〉−

γδt

2

N∑
j=1

un+1,l+1
j 〈Ψj, Ψk〉

− ıδt

N∑
j=1

(g11|un+1,l
j |2 + g12|vn

j |2)u
n+1,l+1
j 〈Ψj, Ψk〉 =

γδt

2

N∑
j=1

un
j 〈Ψj, Ψk〉

− ıδt

2

N∑
j=1

un
j 〈∇Ψj,∇Ψk〉+

N∑
j=1

un
j 〈Ψj, Ψk〉 −

ıκδt

2

N∑
j=1

vn
j 〈∇Ψj,∇Ψk〉.

At convergence, one obtains
(
un+1

j

)
1≤j≤N

whose values are substituting into

the second equation.
A computer program has been developped in Python interfacing with

Fortran that solves the generalized Manakov system (1) in a finite domain
]− l, l[ endowed by homogeneous Dirichlet boundary continions, with initial
conditions (at t = 0) that have been given by Gaussian beams:

u0(x) =
A

π1/4a1/2
exp

{
− x2

2a2

}
, v0(x) =

B

π1/4b1/2
exp

{
− x2

2b2

}
.

In a first test series, we report the results for the set of initial conditions and
parameters that have considered by other authors with some more details
([8]).

The computational domain has been taken sufficiently large that the nu-
merical value of the initial conditions nearly verifies the homogeneous Dirich-
let boundary conditions at the boundary locations. The first tests serie
stands for different initial conditions (different values of (A, a,B, b)) with
different γ and κ (such that γ < κ) for the case of the Manakov nonlinearity
i.e. g11 = g22 = g12 = 1 (see Fig.1).
In the case of Manakov nonlinearity, the results are in agreement of our the-
oretical computations. The third pattern of Fig. 1 indicates that the density
oscillates in time and that the semi-norm of the solution stays bounded.
Also, from the second pattern, one recovers numerically that the norm of
each component of the solution oscillates but not in phase.

Let us recall that one property already known, is that

S1 =

∫
IR

(ūv + uv̄)dx,

the first Stokes integral of the solution of the Cauchy problem related to the
Manakov system must stay constant in time [8]. The third pattern of Fig.
1 also numerically proves that the solution that is obtained has a Stokes
integral S1 which stays constant in time.
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Figure 1: Numerical results of the Cauchy problem for the PT-symmetric system (1) in
Manakov case (g11 = g22 = g12 = 1). For each line the first plot stands for the initial
condition, the second one traces the L2-norm of u, v and its gradient. The last graph
represents the behavior of the density Q, the semi-norm D of the solution and one Stokes
integral S1.

The second tests serie also tends to illustrate that the H1−norm of the
solution of the Cauchy problem for the PT-symmetric system (1) can blow
up in finite time.

4. Conclusions

In this work we confirm the result that has been found previously by other
authors. Despite the fact that we were not able to clarify if the H1-norm
of the solution of the generalized Manakov system is globally bounded, we
improved the estimate of the solution. Numerical results are also given to
illustrate the theoretical result with a suitable numerical procedure.
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