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Abstract: Relevant material and environmental parameters are required in modelling chloride 
ingress into concrete. They could be determined from experimental data (concrete cores taken 
during inspection) but in practice data availability is limited by time-consuming and expensive 
tests. Consequently, the main objective of this paper is to develop an approach based on 
Bayesian networks (BN) to improve the parameter identification when inspection data is 
limited. We aim at proposing appropriate inspection configurations that reduce inspection costs 
and identification errors for different exposure conditions and materials. It was found that it is 
possible to define an optimal number of inspection points in depth for allowed identification 
errors defined by decision makers. The optimal number of inspection points depends on both 
exposure and material properties. The random variables identified with the improved BN 
configurations are used to assess the probability of corrosion initiation. The results indicate that 
the improved BN configurations are useful to identify model parameters even from scarce 
inspection data. 
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identification; Inspection; Deterioration modelling.  

1. Introduction 
Reinforced concrete (RC) structures located close to the seashore or in contact with de-
icing salts are subjected to chloride-induced corrosion deterioration. Corrosion of rebars 
affects load carrying capacity through various mechanisms: reduction of reinforcement 
cross-section, loss of bond between steel and concrete, concrete cracking and 
delamination [1–3]. These mechanisms reduce their serviceability and safety levels 
during the whole service life. Thus, the assessment of the chloride content in concrete is 
an important task to determine corrosion initiation risks and therefore to plan and 
quantify maintenance operations of structures [4–7]. 

Various condition assessment techniques consisting of destructive and non-
destructive methods have been developed to assess chloride ingress. Destructive 
inspection techniques (coring), could provide accurate inspection results, however, they 
are more expensive and time-consuming. Non-destructive techniques are less expensive 
but require still technical developments [8–10] and specific post-treatment methods for 
assessing the chloride content from multi-technique measurements [9–12]. Data 
collected after inspection campaigns are often used to determine parameters for chloride 
ingress or corrosion propagation models. This information is helpful for lifetime 
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assessment and optimisation of maintenance strategies. This study focuses on the 
corrosion initiation stage that is estimated from chloride penetration models. Under 
natural exposure conditions, chloride ingress involves important uncertainties related 
mainly to material properties and exposure conditions [1, 6, 13–17]. These uncertainties 
are also affected by temporal and spatial variability of associated deterioration processes 
and their characterisation requires larger amount of inspection data [18–22]. 
Nevertheless, in real practice, the number of inspections is limited by the difficulties to 
implement tests that increase inspection times and costs. Therefore, it is necessary to 
use the available information in the best way for uncertainty quantification by using 
statistic and/or probabilistic methods. An appropriate method to deal with this kind of 
issue is to use metamodels. To characterize the randomness of model parameters, the 
metamodels should also introduce a function for random parameter identification. 
Metamodels can be categorised into two groups: response surface methods and 
networks. The group of response surface methods (physical response surface, 
polynomial response surface, polynomial Chaos expansion, etc) cannot ensure a good 
convergence for the results and for solving the inverse stochastic problem, they also 
require a very large number of coefficients [23]. In contrast, metamodels methods based 
on networks (Neural network, Bayesian network (BN)) can bring a fast convergence 
independently of the choice of the initial condition. Among this group, Bayesian 
network (BN) is an robust method with some characteristics which meet the demand of 
chloride ingress model’s data, for example: (i) BN can readily handle incomplete data 
set, (ii) BN can allow to learn about causal relationships, (iii) BN can deal with discrete 
evidences, and (iv) BN in conjunction with Bayesian statistical techniques facilitate the 
combination of domain knowledge data. Consequently, BN are considered in this study 
to deal with this problem. 

Bayesian networks were used in previously for parameter identification purposes. 
Some studies [24–27]  proposed an approach based on the use of BN updating from 
experimental data. They showed, after identification, a good agreement between 
numerical predictions and experimental measurements. In this study, we search for 
improved BN configurations that reduce the amount of inspection data for parameter 
identification. Based on the approach proposed by Tran et al. [27], data from numerical 
simulations, representing inspection data is used to identify information about two 
chloride ingress model parameters: chloride surface concentration (Cs) and the chloride 
diffusion coefficient (D). Various cases representing different exposure conditions and 
material quality are investigated. Optimal configurations for each analysed case are 
suggested by evaluating the identification errors. 

A brief description of the BN and its application for chloride ingress modelling are 
presented in section 2. Section 3 presents the procedure for the improvement of the BN 
configuration for parameter identification. Section 3 describes the different studied 
cases and the approach to select an optimal configuration of BN for each case. Finally, 
the identified parameters are employed in Monte Carlo simulation for the assessment of 
the probability of corrosion initiation (section 4).  
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2. Chloride ingress modelling and identification by using Bayesian networks  

2.1. Bayesian networks theory 
Generally, a BN is Direct Acyclic Graph (DAG) consisting of a set of nodes that are 
connected by edges to illustrate their dependencies. Nodes in BNs are graphical 
representation of objects and events that exist in the real world and can be presented as 
continuous or discrete random variables. To each child node with its parents is assigned 
a conditional Probability Density Function (PDF), f(X|pa(X)) or Probability Mass 
Function (PMF), p(x|pa(X)), where pa(X) represents for parents of X in the graph. An 
edge may represent causal relationships between the variables (nodes) but this is not a 
requirement. The graphical structure of a BN reflects the conditional independence 
assumption among the random variables. Hence, a BN is a compact model representing 
the joint PDF or PMF among random variables. In this study, only BNs with discrete 
random variables are considered. Figure 1 illustrates a simple BN that consists of three 
nodes representing to three discrete random variables X1, X2 and X3 in which X2 and X3 
are children of the parent node X1. For each node in the BN, its PMF defines conditional 
dependences on its parents and the joint PMF of the BN presented in Figure 1 is formed 
as a product of these conditional probabilities: 

   
P X1, X2 , X3( )= P X1( )P X2 | X1( )P X3 | X1( )  (1) 

where P(Xi|Xj) denotes the conditional probability of Xi given Xj. 

BNs allow introducing new information (evidences) from the observed nodes to 
update the probabilities in the network. For example, if we have some evidences to 
introduce to the node X2(X2 = o), this information can propagate through the network 
and the joint PMF of the two other nodes can be recalculated as: 

   

P X1, X3 | o( )=
P X1,o, X3( )

P o( )
=

P X1( )P o | X1( )P X3 | X1( )
P X1( )P o | X1( )

X1

∑
 

(2) 

Therefore, the a posteriori probabilities of X1 and X3 are updated and Eq. (2) will be 
the key of parameter identification from inspection data. Assuming that the marginal 
probability P(X1) is of interest. Both exact and approximate inference algorithms are 
available for such a computation. However, to illustrate the principle of exact inference 
which is used latter in this paper, this probability can be derived from the joint PMF of 
the BN as follows: 

   

P X1( )= P X1, X2 , X3( )
X2 ,X3

∑ = P X1( )P X2 | X1( )P X3 | X1( )
X2 ,X3

∑

= P X1( ) P X2 | X1( )
X2

∑ P X3 | X1( )
X3

∑
 (3) 

The summation operations in the second line of Eq. (3) are performed in a smaller 
domain and imply node eliminations. The calculation order starts from the last term on 
the right to the left, hence X3 is the first node to eliminate followed by node X2. 
Elimination order is arbitrary and the size of the domains to handle due to elimination 
order defines the complexity of inference. Therefore, the objective of exact inference 
algorithms is to determine the elimination order yielding the smallest domains to handle 
[28]. Among exact inference algorithms, junction tree inference which can be seen as an 
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extension of node elimination, can compute the a posteriori probabilities for all nodes in 
a BN simultaneously and consider multiple evidences cases. The junction tree algorithm 
is selected for inference of all BNs in this paper. 

2.2. Application to chloride ingress 

2.2.1. Chloride ingress and modelling 
In saturated concrete, the Fick’s diffusion equation [29] is usually used to assess 
unidirectional chloride ingress at a distance x from the concrete surface: 

2

2
c cf fC C
D

t x
∂ ∂

=
∂ ∂

 (4) 

where Cfc (kg/m3) is the concentration of chloride dissolved in pore solution, t (year) is 
the time and D (m/s2) is the effective chloride diffusion coefficient. Assuming that, at a 
given scale, concrete is a homogeneous and isotropic material with the following initial 
conditions: (i) the concentration is zero at time t = 0 and (ii) the chloride surface 
concentration is constant during the exposure time, the free chloride ion concentration 
C(x,t) at depth x after time t for a semi-infinite medium is: 

   
C x,t( )= Cs 1−erf x

2 D ⋅t

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (5) 

where Cs (kg/m3) is the chloride surface concentration and erf(.) is the error function. 
Eq. (5) remains valid when RC structures are saturated and subjected to constant 

concentration of chlorides on the exposure surfaces. In real structures, these conditions 
are rarely presented because concrete is a heterogeneous material and the chloride 
concentration in the exposed surfaces could be time-variant. Besides, this solution does 
not consider chloride binding capacity, concrete aging and other environmental factors 
such as the influence of surrounding temperature and humidity in chloride ingress 
process [13, 16, 30–32]. Although this solution neglects some important physical 
phenomena, this model is used herein to illustrate the proposed methodology for the 
identification of random variables using BN because its complexity is sufficient to 
account for non-linear effects in x-direction and in time and to perform sensitivity 
analyses. The methodology can be after extended to more realistic chloride ingress 
models: only the computation time for building the model will increase from the larger 
number of variables involved and consequently the larger size of the BN on one hand 
and the computation time of the model itself on the other one. 

2.2.2. Bayesian network identification of chloride ingress model parameters 
Chloride ingress could be modelled by the BN described in Figure 2 where Cs and D are 
the two parent nodes representing the random variables to identify. There are n child 
nodes C(xi, tj) representing the discrete chloride concentration measurement in time and 
space – i.e. at depth xi and at inspection time tj. Adding/removing nodes therefore 
account for the discretisation in space (number of points of measurements) and time 
(number of inspections times). The total number of child nodes n which represents the 
number inspection points is computed as: 

x tn n n=  (6) 
where nx is the total number of points in depth and nt is the total number of inspection 
times. Assuming that Cs and D are two independent random variables, the values of 
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C(xi, tj) could be easily estimated from Eq. (5). Both exact and approximate inference 
algorithms can be used to update probabilities of the BN described in Figure 2. Exact 
inference is useful to analytically compute the conditional probability distribution over 
the variables of interest. However, they can only be applied to a very limited set of 
cases: when all nodes are discrete or when all nodes have linear Gaussian distribution. 
In the case of complex and densely connected BNs, exact inference may require 
intractably amount of computational time and approximate inference can be seen as an 
alternative. Most of approximate algorithms are based on stochastic sampling. However, 
these techniques still have some algorithmic difficulties that provide some limitations in 
the rate of convergence [33, 34]. In this study, chloride ingress model is described in an 
analytical form and the number of parent nodes (parameters to identify) is limited. 
Exact inference algorithms could therefore be difficult to apply here regarding their 
shortcomings. Continuous parameters are then replaced by discrete random variables. 
However the discretisation of continuous random variables generates approximation 
errors depending on the discretisation of the problem. Each node is defined over a 
specific range (upper and lower bounds) and discretised into a given number of states 
per node, Ns. The range should in theory contain all the possible values of each 
parameter. These ranges can be defined on the basis of existing databases, similar study 
cases, or expert knowledge. Here, the ranges for Cs and D were defined enough large to 
contain values representative of the variability of environmental exposure and material 
properties when the prior information about these parameters is very poor. The 
theoretical distributions presented in Table 1 can be used in this case to estimate upper 
and lower bounds for a given confidence interval. The adopted values cover a 
confidence interval larger than 99% by ensuring that the parameters to identify belong 
to this wide a priori range. Figure 2 also illustrates the discretisation considered for each 
node. For example, the node C(x1,tj) was divided into Ns = 50 states over a predefined 
range. In this BN, if all nodes are discrete, the probability of chloride concentration 
p(C(xi, tj)) can be calculated as follows [24, 35]: 

   
p C xi ,t j( )( )= p C xi ,t j( ) | D,Cs( )

D ,Cs

∑ p D,Cs( )
                                               

 (7) 

With assumption that Cs and D are two independent variables, the joint probability 
of Cs and D can be rewritten as p(D, Cs) = p(D) p(Cs).  The BN allows entering evidences and then updating the probabilities in the 
network. In this study, the evidences could be computed from measures of chloride 
concentration at given points and times (chloride profiles). Let us denote Cxt1, Cxt2,…, 
Cxtn as n measurements obtained at depth xi and inspection time tj: 

   

C
1≤i≤nx
1≤ j≤nt

xi ,t j( ) . The 

joint probability mass function of the BN presented in Figure 2 can be written in the 
form: 

     
p Cs , D,Cxt1...Cxtn( )= p Cxt1 | Cs , D( ),..., p Cxtn | Cs , D( ) p Cs( ) p D( )

                                             
 (8) 

where the conditional probabilities p(Cxt1|Cs,D),…,p(Cxtn|Cs,D) can be derived from 
the Conditional Probability Tables (CPT). Monte Carlo simulations of the model (from 
Eq. (5)) are used for the computation of CPT [27]. Supposing that k observations: Cxt1, 
Cxt2,…,Cxtk can be used to update the BN, we aim at computing the a posteriori 
distributions p(Cs|o) and p(D|o) as: 

   
p Cs | o( )= p Cs , D | o( )

D
∑  and 

   
p D | o( )= p Cs , D | o( )

Cs

∑
                                  

 
(9) 
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where: 

     
p Cs , D | o( )= p Cs , D | Cxt1...Cxtk( )=

p Cs , D,Cxt1...Cxtk( )
p Cxt1...Cxtk( )                                              

 (10) 

These a posteriori distributions can be estimated by marginalising the joint 
distribution in Eq. (8) to obtain the joint distribution over the subsets of the variables: 

     
p Cs , D,Cxt1...Cxtk( )= p Cs , D,Cxt1...Cxtn( )

Cxt j ( k< j≤n )

∑
                                             

 
(11) 

and 

     
p Cxt1...Cxtk( )= p Cs , D,Cxt1...Cxtn( )

Cs ,D ,Cxt j ( k< j≤n )

∑
                                             

 
(12) 

To perform probabilistic inference, the computation of above probabilities is 
possible but it requires computational effort. The more efficient way is to use inference 
algorithms. As previously mentioned in this section, only exact inference algorithms 
(junction tree algorithm [34]) are considered to perform inference. The inference is 
carried out by a BN Tool Box which is built on the Matlab® Software. Note that we 
assume that the measurements are not affected by errors. Measurement errors can be 
modelled by adding additional nodes to represent its PDF and its dependence on the 
magnitude of the measured values [36].  

3. BN configurations for parameter identification 

3.1. Basic considerations 

3.1.1. Exposure conditions and material properties 
The effects of exposure conditions on parameter identification are considered by 
accounting for two levels of environmental aggressiveness:  

• High: Structure situated to 0.1 km or less from the coast, but without direct 
contact with seawater. RC structures subjected to de-icing salts can also be 
classified in this level. 

• Extreme: Structure subjected to wetting and drying cycles; the processes of 
surface chloride accumulation are wetting with seawater, evaporation and salt 
crystallisation. 

Each level corresponds to one value of chloride surface concentration (Cs) and one 
value for concrete cover depth (c) (Table 1). Three concrete qualities are proposed in 
this studied to characterise (i) chloride diffusion coefficient (D) and (ii) threshold 
chloride concentration (Cth) (Table 1).  

Table 1 presents the considered probabilistic models for the random variables. The 
COV for Cs and D are respectively reduced to 20% and 15% with respect to other 
values presented in the literature [37]. This is due to the fact that within one type of 
concrete, the variation is narrowed. The assumption that Cs and D follow lognormal 
distributions is also in agreement with other studies [38, 39]. Six case studies are 
proposed by combining one level of environmental aggressiveness with one concrete 
quality (Table 2). 

3.1.2.  Generation of numerical evidences 
This section aims at determining an improved configuration of a BN for the 
identification of parameters of chloride ingress models. In this case, the BN is used to 
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update probabilistic models for the parameters to identify. The evaluation of the 
effectiveness of the identification for a given configuration should be based on a given 
criterion. Preferably, it should include a larger amount of experimental data (chloride 
profiles) that can be used to estimate ‘real’ probabilistic models of model parameters 
and consequently to test and compare various BN configurations. However, such a 
database is in practice very hard to obtain because chloride profiles are computed from 
semi-destructive tests that are expensive and time-consuming. Therefore, in order assess 
the error associated to each BN configuration and to provide general recommendations 
that minimise the identification errors, we consider a large number of numerical 
evidences (chloride profiles) generated from Monte Carlo simulations. The numerical 
chloride profiles are generated from theoretical probabilistic models of the random 
variables to identify. 

3.1.3.  Assessment of the identification error 
The theoretical probabilistic models given in Table 1 are used to generate 10,000 
chloride profiles for each study case. Different configurations of the BN corresponding 
to different discretisation of total inspection depth are investigated to select an optimal 
configuration by comparing the error of the identified parameter (Zidentified) with respect 
to theoretical value (Ztheory): 

( ) | |
100%identified theory

theory

Z Z
Error Z

Z
−

=  (13) 

where Z represents the mean or the standard deviation of the parameter to identify – 
e.g., the mean or standard deviation of Cs, Zidentified is determined from the a posteriori 
histograms of parent nodes (Cs and D), and Ztheory is the value of the mean or standard 
deviation used to generate numerical evidences provided in Table 1. In practice it is 
unrealistic (almost impossible) to collect 10,000 chloride profiles. However, this larger 
database is necessary for obtaining a convergence on the error assessment. 

3.2. BN configurations and identification procedure 

3.2.1. Discretisation of nodes 
We aim at identifying the parameters Cs and D by using chloride profiles as evidences. 
Section 3.3 will detail the configurations of the BN considered in this study that are 
basically based on the general case described by Figure 2. 

Table 3 describes the discretisation of each node as well as the considered a priori 
distributions. As detailed in Figure 2, each node is divided into Ns states over a given 
range. Ns will vary to determine a value that diminishes identification errors. The range 
(upper and lower bounds) for each parameter should in theory contain all the possible 
values of each parameter. These ranges can be defined on the basis of existing 
databases, similar study cases, or expert knowledge. Here, the ranges for Cs and D were 
defined enough large to contain values representative of the variability of environmental 
exposure and material properties when the a priori information about these parameters is 
very poor. In fact, by limiting the upper bound, it is possible to have some extreme 
realisations out of these ranges. Therefore, an improved discretisation should consider 
that the upper direction is unbounded. However this kind of consideration is beyond the 
scope of the study.  

The theoretical distributions presented in Table 3 can be used in this case to estimate 
upper and lower bounds for a given confidence interval. The adopted values cover a 
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confidence interval larger than 99% by ensuring that the parameters to identify belong 
to this wide a priori range. A priori characteristics (type of distribution, mean, standard 
deviation, etc.) are commonly considered to define the configuration of the parent nodes 
Cs and D. However, to avoid hypothesis about priori information, we suppose that Cs 
and D follow uniform distributions defined over given ranges. The assumption of 
uniform distributions for unknown parameters avoids making any assumption about the 
distribution shapes [24, 40, 41].  

A priori distributions of parent nodes (Cs and D) are used to generate a sufficient 
random number of chloride concentrations at depth x and an inspection time of 10 years 
by using Eq. (5) for each child node. This a priori data is used to compute the CPT for 
each child node in the BN. Tran et al. [27] suggested that  different ranges for 
discretising each child node (upper and lower boundaries) should be used to take 
advantage of information from deeper points where chloride content is low. This 
numerical aspect is applied in this study to minimise the errors in parameter 
identification. 

3.2.2. BN configurations and 2-steps identification procedure 
Parameter identification using BN is a complex problem that requires an improved 
configuration to reduce identification errors. Due to physical and model characteristics, 
Tran et al. [27] found that there are BN configurations that reduce the identification 
errors for each parameter. Inspection data near the surface is more valuable than those 
in the deeper part for identifying Cs. Therefore, the BN configuration with one child 
node representing for chloride content at the concrete surface (x≈0) (Figure 3a) is used 
for the identification of Cs. The one-point-at-surface BN configuration includes also a 
parent node D because in real conditions Cs cannot be determined at x=0 and then Cs 
and D are dependent. For example, from a practical point-of-view the coring technique 
used to determine a chloride content estimates an average chloride value for the 
grinding depth dg (dg=0.3cm) at the average depth x=0.15cm. In addition, Cs at x ≈ 0 is 
largely influenced by the exposure (rain, wetting and drying cycles, wind, etc.) under 
unsaturated conditions. Therefore taking a single measurement of Cs at x=0.15cm could 
induce larger errors when wetting or drying processes modify the value of Cs at the 
inspection time because a convection zone could appear. In this case, it will be more 
useful to use data from a point close to concrete surface but out of the effect of 
convection zone to identify Cs. This aspect is not illustrated in this study because it 
requires real experimental data. 

The use of a single BN that uses several points in depth (Figure 3b) generates 
additional errors for the identification of Cs. Figure 4 illustrates this point by comparing 
the a posteriori histograms of Cs obtained from one-point-at-surface (Figure 3a) and 
several points (Figure 3b). It is clear that the one-point-at-surface configuration 
provides results closer to the theoretical histogram. 

For D, it is necessary to use the information from the total inspection length (L) to 
provide a better characterisation of the kinetics of the chloride ingress process. The BN 
configuration in such a case consists of several child nodes corresponding to chloride 
content at selected depth points derived from the discretisation of the total inspection 
length (Figure 3b). In the experimental procedure to determine chloride profiles, coring 
technique is used to determine an average chloride content in each grinding depth 
(slice). An average chloride content is determined from the powder extracted from each 
slice. The grinding depth (dg) was selected according to the accuracy of the semi-
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destructive equipment and in this study, dg=0.3cm. Afterwards, it is possible to select 
several inspection points corresponding to discretisation length (Δx) for updating the 
BN (Figure 5). Tran et al. [27] also pointed out that there is an optimal discretisation 
size for each inspection time. This means that there is an improved configuration for 
each analysed case corresponding to a discretisation that reduces the identification 
errors for the parameter D. Moreover, to reduce the level of uncertainty, Tran et al. [27]  
proposed a 2-steps identification procedure (Figure 6) where the used the a posteriori 
histogram of Cs obtained with one depth point configuration (step 1) as a priori 
information for the estimation of D by considering several inspection points of BN 
configuration (step 2). This 2-steps procedure is used herein to improve the 
identification of D. Results in section 3.3.1 will illustrate this point. 

3.3. Results 
As previously mentioned in section 3.2, the BN configuration using one child node 
close to the surface is used for identifying Cs. However, for D, it is necessary to use the 
BN with several child nodes representing for several measurements in depth to obtain a 
better identification. This section focuses on finding an optimal number of inspection 
points in depth representing an improved BN configuration to identify D using the 2-
steps procedure described in section 3.2. Various BNs with different number of 
inspection points are considered to compare the identification errors. For a single 
inspection time nt = 1 and n = nx where the number of inspection points varies from n = 
2 to n = nmax. n = 2 represents the case in which only two inspections points are 
considered placed at the surface and at the total inspection depth (L) – i.e., x1 = 0 cm 
and x2 = L. The maximum number of points nmax for a single inspection corresponds to 
the case in which the minimum experimental discretisation size (∆x = 0.3 cm) is used. 
Figure 5 shows an intermediate case where L = 12 cm, nt = 1, and ∆x = 2 cm. For this 
case n = nx = L/Δx + 1= 7 inspection points in depth.  

A single inspection time (nt = 1) at tins = 10 years was considered for all the cases. 
The total inspection length of each case was defined based on the mean chloride profile 
(Figure 7) to cover all the potential chloride presence. Figure 7 was estimated from the 
mean values provided in Table 1 and tins = 10 years. The values of L and nmax for the 6 
study cases are shown in Table 2.  

3.3.1. Identification errors for D and influence of the discretisation size 
Figure 8 depicts the estimated errors for the parameter D for a high level of 
aggressiveness and moderate concrete quality (case 2) as a function of the number of 
inspection points in depth, nx. Case 2 is selected because it appears frequently in 
practice. For generalisation purposes, we considered a case with a larger number of 
evidences (10,000 chloride profiles). For comparative purposes, Figure 8 also includes 
results from a single BN configuration that considers the information from the total 
depth (Figure 3b). 

In general, identification errors of statistical moments of D are smaller for the 2-
steps procedure. This is due to the fact that considering a one-point-at-surface BN 
configuration in step 1 improves the identification of Cs and the second step is then 
more useful for identifying D. Hence, the identification of D is now performed based on 
the 2-steps procedure. It can be seen that using more inspection points could not 
guarantee a better identification for the mean of D. The errors for the mean are close to 
2% with nx > 4 (Figure 8a). However, for the estimation of the standard deviation, it is 
noted that using more inspection points increases the identification error. For instance, 
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Figure 8b shows an increasing trend when nx > 13. This is mainly related to the 
discretisation size Δx that decreases for larger values of nx – i.e., nx = L/Δx + 1. Figure 9 
presents the probability densities of the evidences of the chloride content for two values 
of ∆x generated from the theoretical values (Table 1). In general, to obtain a good 
identification of D, the value of ∆x should be small to provide sufficient information 
about chloride profiles in depth. However, when ∆x is very small, the chloride content is 
almost the same between the two adjacent points. Therefore, the probability densities of 
the evidences used for updating in BN are very similar for two adjacent inspection 
points (Figure 9) and this will increase the identification errors. In contrast, when ∆x 
increases (x = 0cm and x = 2cm), the probability densities of the evidences are more 
different by reducing the identification errors (Figure 9). When ∆x is larger than the 
optimal value, the identification errors increase because the information becomes poor 
for describing the chloride ingress process [27]. Therefore, we will focus on the 
assessment of the optimal value of that minimises the identification errors for the 
standard deviation. 

3.3.2. Optimal number of inspection points per depth for the different study cases  
On the basis of the results presented in Figure 8, it is possible to find optimal ranges of 
nx for given allowable identification error levels defined by decision makers. For 
example, a decision maker can define allowable identification errors smaller than 10% 
and 20% for the identification of the mean and the standard deviation of D, respectively. 
Within this range, the value of nx that minimises the identification error of the standard 
deviation is defined as an optimal value (nx,opt). For case 2, the optimal range is (8 – 15) 
and the optimal number of inspection points is nx,opt = 8. The results for all considered 
cases are summarised in Table 4. In fact, these ranges in real practice cannot ensure the 
same identification errors as we defined in theory (10% and 20% for the mean and 
standard deviation respectively) because there are many uncertainty involved in the 
problem that will vary for each application. However, they can be seen as 
recommendations to reduce the identification errors in real cases.  
 It is worth noticing that nx,opt is larger for RC structures with better concrete quality 
under the same exposure condition. For example, the values of nopt for case 1, case 2 
and case 3 are 19, 8 and 6 respectively, corresponding to good, ordinary and poor 
concrete quality. This phenomenon is related to the chloride diffusion coefficient for 
each concrete quality (Table 1). A chloride profile with a larger diffusion coefficient is 
characterised by a smaller slope in comparison to the other two cases (e.g, case 3, 
Figure 7). This means that the chloride content between the two adjacent inspection 
points is close (Figure 9). Therefore, the identification errors increase for a larger 
number of inspection points [27]. The identification results coming from BN with an 
optimal number of inspection points are used for the assessment of the probability of 
corrosion initiation in section 4. 

4. Assessment of corrosion initiation risks from identified parameters 

4.1. Probability of corrosion initiation 
This section examines the effectiveness of improved BN configurations by using the 
identified data for the evaluation of the probability of corrosion initiation. The time to 
corrosion initiation, tini, is defined as the time at which the chloride concentration at the 
steel reinforcement surface reaches a threshold value, Cth. This threshold represents the 



 
 

11 
 

chloride concentration for which the rust passive layer of steel is destroyed and the 
corrosion reaction begins. Cth depends on many parameters [5, 37, 42]: type and content 
of cement, exposure conditions, time and type of exposure, distance to the sea, oxygen 
availability at the bar depth, type of steel, electrical potential of the bar surface, 
presence of air voids, definition of corrosion initiation, methods and techniques for 
measuring Cth, etc. Then, the determination of an appropriate Cth becomes a major 
challenge for the owner/operator and it is therefore assumed that Cth is a random 
variable. It was found convenient to propose three mean values of Cth depending on the 
quality of concrete [37]. Table 1 contains the considered values for this random 
variable. 

The corrosion initiation is calculated by evaluating the time-dependent variation of 
the chloride concentration at the reinforcing steel that is computed from Eq.(5). The 
limit state function that defines corrosion initiation can be written as: 

( ) ( ) ( ), ,th tcg t C C t= −X X X  (14) 
where Ctc(X, t) is the total concentration of chlorides at the concrete cover depth c at 
time t, function of the vector of random variables X. The probability of corrosion 
initiation, pini is obtained by integrating the joint probability function over the failure 
domain g(X, t) ≤ 0 – i.e., Eq. (14). pini is estimated herein by using Monte Carlo 
simulations. 

4.2. Numerical example 

4.2.1. Assessment of pini for case 2 
We consider a RC component placed in a chloride-contaminated environment with high 
level of aggressiveness and ordinary quality concrete (case 2, Table 1). The BN 
configurations proposed in section 3 are used to identify both the mean and standard 
deviation of the parameters Cs and D by considering an optimal number of inspection 
points in depth – i.e., nx,opt = 8 (Table 4). The identified parameters are then used in 
Monte Carlo simulations to estimate the probability of corrosion initiation. 

Figure 10 compares theoretical values with the predictions estimated from identified 
parameters when we have a large number of inspection data (10,000 numerical profiles) 
and when inspection data is limited (15 numerical profiles). It is clear that by using the 
improved configuration, the assessment of probability of corrosion initiation is close to 
the theoretical values even with 15 chloride profiles. The prediction errors with respect 
to theory described in Figure 10b reveal small errors excepting for the prediction at t=10 
years. In fact, the probability of corrosion initiation at this time is relatively low 
(pini≈0.1) and therefore, more information is required to improve the accuracy at earlier 
times. Consequently, for long-term predictions, this approach provides an acceptable 
assessment of pini. 

4.2.2. Error for the assessment of pini in all studied cases 
The errors on the assessment of probability of corrosion initiation with 15 chloride 
profiles for other cases reveal similar trends (Figure 11). The BN configurations used to 
identify both the mean and standard deviation of Cs and D consider the optimal number 
of inspection points indicate in Table 4. The larger errors shown in Figure 11 are related 
with earlier times where the probability of corrosion initiation is smaller. When t > 40 
years the errors are lower than 6% for only 15 chloride profiles. This work considered 
an inspection time of 10 years for all study cases. However, as mentioned in [24], for an 
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specific study case the error could be also reduced if other inspection times are 
considered. Optimal inspection times could be defined for each exposure and concrete 
quality. 

5. Conclusions 
Identification of parameters in chloride ingress models is an important task for 
predicting the level of chloride content penetrating into concrete. Inspection data used 
for identification is always limited due to time-consuming and expensive tests. 
Consequently, BN modelling of this phenomenon it considered herein for identifying 
random variables with a limited number of data in an optimal scheme. Based on a 
previous study about using BN for parameter identification [27], this study proposes an 
approach to select an optimal number of inspection points in depth that minimises the 
identification errors. The results obtained from different study cases indicated that the 
optimal number of inspection points in depth depends on both exposure and concrete 
quality. It was also found that the use of these optimal configurations improves the 
assessment of the probability of corrosion initiation. These findings can be used as 
recommendations for defining inspection schemes even if inspection data is limited.  

Further work in this area will focus on the consideration of: 
• optimal inspection times for each study case, 
• inspection costs, 
• real data, 
• other deterioration models and, 
• measurement errors and model uncertainty [17]. 
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Table 1: Probabilistic models of the variables 

Variables Level of aggressiveness 
or concrete quality 

Distribution Mean COV  Source 

Cs  High Lognormal 2.95 kg/m3 0.2  [2] 
Extreme Lognormal 7.35 kg/m3 0.2  [2] 

c  High Normal* 50 mm 0.25  [2] 
Extreme Normal* 55 mm 0.25  [2] 

Cth  Good Uniform 2 kg/m3 0.14  [37] 
Ordinary Uniform 1.5 kg/m3 0.19  [37] 
Poor Uniform 1 kg/m3 0.29  [37] 

D  Good Lognormal 1x10-12 m2/s 0.15  [37] 
Ordinary Lognormal 4x10-12 m2/s 0.15  [37] 
Poor Lognormal 7x10-12 m2/s 0.15  [37] 

*Truncated at 10mm (lower bound) 
 

Table 2: Description of the considered study cases, inspection depths and maximum 
inspection points per case 

Case Level of aggressiveness Concrete quality Inspection depth L (cm) nmax 
1 High Good 9 31 
2 High Ordinary 15 51 
3 High Poor 20 67 
4 Extreme Good 9 31 
5 Extreme Ordinary 15 51 
6 Extreme Poor 20 67 
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Table 3: Discretisation of nodes and priori distribution 

Parameters Number of states per 
node, Ns 

Priori distribution Range 

Cs (kg/m3) 50 Uniform [0.5; 17] 
D (10-12 m2/s) 50 Uniform [0,1; 20] 
C(xi, t) (kg/m3) 50 -a variable b 
a Computed from a priori information of parent nodes 
b Estimated as a function of the inspection depth 
 
 

Table 4: Optimal values of inspection points for the 6 study cases 

Case Level of 
aggressiveness 

Concrete 
quality 

Optimal range nx,opt 

1 High Good [16 – 24] 19 

2 High Ordinary [8 – 15] 8 

3 High Poor [4 – 9] 6 

4 Extreme Good [10 – 14] 12 

5 Extreme Ordinary [3 – 7] 5 

6 Extreme Poor [3 – 5] 3 
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Figure 1: A simple Bayesian network 

 
 
 
 

 
Figure 2: General BN configuration for modelling chloride ingress 
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Figure 3: BN configurations for: (a) Identifying Cs (b) Identifying D 

 
 

 

 

Figure 4: Comparison of theoretical histogram of Cs with a posteriori histograms 
obtained from one-point-at-surface and several points in depth BNs. 
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Figure 5: Spatial discretisation of chloride ingress measurements 

 
 
 
 
 

 
Figure 6: Two-step procedure for improving identification with limited data 
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Figure 7: Mean chloride profiles for the 6 study cases at t=10 years 

 
 
 
 

 
Figure 8: Error in identification of D for the case 2: (a) Mean, (b) Standard deviation 
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Figure 9: Effect of discretisation size ∆x on the distribution of chloride content: (a) 

∆x=0.3 cm – (b) ∆x=2 cm 

 

 
Figure 10: (a) Probability of corrosion initiation – (b) Prediction error for pini 

 

 
Figure 11: Errors on assessment of probability of corrosion initiation 
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