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Multiple Camera Types Simultaneous Stereo Calibration

Guillaume Caron and Damien Eynard

Abstract— Calibration is a classical issue in computer vision
needed to retrieve 3D information from image measurements.
This work presents a calibration approach for hybrid stereo rig
involving multiple central camera types (perspective, fisheye,
catadioptric). The paper extends the method of monocular
perspective camera calibration using virtual visual servoing.
The simultaneous intrinsic and extrinsic calibration of central
cameras rig, using different models for each camera, is devel-
oped. The presented approach is suitable for the calibration
of rigs composed by N cameras modelled by N different
models. Calibration results, compared with state of the art
approaches, and a 3D plane estimation application, allowed
by the calibration, show the effectiveness of the approach. A
cross-platform software implementing this method is available1.

I. INTRODUCTION

Stereoscopic sensors are generally composed by two cam-
eras of the same type. Considering two perspective cameras
leads to a limited field of view whereas two omnidirectional
cameras have a non uniform and limited spatial resolution.
Mixing different types of camera on a same rig can merge
the wide field of view of an omnidirectional camera and the
precision of a perspective camera [1], [2].

Perspective and omnidirectional cameras are central but
only under certain conditions for the latter type [3]. Per-
spective cameras are generally modelled by the pinhole
model. All central omnidirectional cameras can be modelled
by the unified spherical projection model [4]. This model
is also valid for perspective cameras but more complex
than the pinhole model. For instance, the Lucas-Kanade
optical flow computation was designed for perspective model
and offers a better efficiency on perspective images than
on omnidirectional ones [5]. This is due to the fact that
the planar model preserves a square and regularly sampled
neighbourhood around a point whereas it is not the case in
the spherical model [6]. So for intensity based methods, there
is no need to model a perspective camera by a sphere. Hence,
using different models for central cameras is still useful
with the main advantage of applying algorithms adapted for
specific models.

The main application field of mixed systems are video-
surveillance and autonomous navigation. Using a hybrid
fisheye and perspective stereo rig, mixing spherical and
planar perspective models, Eynard et al. [2] extend the
plane-sweeping algorithm to estimate the altitude of a UAV.
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The algorithm estimates the deepness of the ground plane
minimising intensity differences on the planar image, but
needs the knowledge of intrinsic and extrinsic parameters of
the stereo rig. For this technique, attitude has to be computed
before the plane estimation and it can be estimated using
the fisheye view. This multi-task collaboration between two
camera types is another example of the interest of mixing
cameras on a same rig.

So to retrieve 3D information, such mixed stereo rigs have
to be calibrated. The calibration of parametric models is
a numerical process allowing to find parameter values of
the model. This paper proposes a new approach to estimate
simultaneously the projection parameters and relative poses
of N different cameras composing a stereo rig.

Camera calibration is a common problem as well in
perspective vision [7], [8] as in omnidirectional vision [10]–
[12]. Marchand et al. [8] proposed a virtual visual servoing
(VVS) based perspective camera calibration. VVS [13],
[14] is a non-linear optimisation technique useful for pose
computation and extendable to calibration, receiving the wide
knowledge of visual servoing.

Works about calibration of stereo rigs generally tackle
perspective cameras [9] (based on [7]) or only estimates
extrinsic parameters in hybrid systems [15]. This paper gen-
eralises the VVS based central stereoscopic pose estimation
method [16] to the calibration of N cameras defined by
N different models, using points. The generic formulation
of the problem allows to deal with any projection model.

After a recall of projection models, VVS based single
camera calibration is tackled, followed by the calibration of
stereoscopic system composed by different types of camera.
Finally, calibration results are evaluated and a 3D plane
estimation method is applied, using the calibration obtained
by the method presented in this paper, in order to show the
parameters accuracy.

II. PROJECTION MODELS

A. Perspective Model

The perspective projection (Fig. 1(a)) models pinhole cam-
eras. Thus, X =

(
X Y Z 1

)T
, a 3D point expressed

in the camera frame, is projected on the image plane as
x =

(
x y 1

)T
:

x = pr(X) with

{
x = X

Z

y = Y
Z

. (1)

x is the point on the normalised image plane and
u =

(
u v 1

)T
, the pixelic point, is obtained by the rela-



(a) (b)

Fig. 1. (a) Perspective model used for pinhole cameras. (b) Spherical model
used for omnidirectional cameras.

tion u = Kx. K is the intrinsic parameters matrix, knowing
parameters γ1 = {px, py, u0, v0}:

K =

px 0 u0
0 py v0
0 0 1

 (2)

So the full perspective projection of a 3D point to the pixelic
image plane is prγ1(X) = Kpr(X).

B. Spherical Model

The unified spherical projection model [4] is suitable for
central catadioptric cameras and is also valid for some fish-
eye cameras [17]. Following the spherical model (Fig. 1(b)),
a 3D point X is first projected onto a unitary sphere, centred
at
(
0 0 ξ

)T
. The obtained point is then perspectively pro-

jected on the image plane as x, knowing intrinsic parameters
γ2 = {px, py, u0, v0, ξ}:

x = prξ(X) with

{
x = X

Z+ξρ

y = Y
Z+ξρ

, (3)

and ρ =
√
X2 + Y 2 + Z2. This is also known as a stereo-

graphic projection and a pixelic image point is obtained from
a 3D point using prγ2(X) = Kprξ(X) (eq. 2).

C. Stereovision

For a rig of N cameras, each camera is modelled by
its more suitable model: perspective model for perspective
cameras, spherical model for omnidirectional cameras (cata-
dioptric, fisheye). Poses of N − 1 cameras cj of the rig,
modelled by homogeneous matrices cjMc1 , are defined w.r.t.
the reference one, c1.

III. SINGLE CAMERA CALIBRATION

The pose computation problem using points can be defined
as a VVS issue. Usually, image based visual servoing aims to
move a camera to a desired pose minimising errors between
current image features and features of the image acquired
at the desired pose. The VVS virtualises the camera and
starting from an initial pose, moves the virtual camera to
make a perfect correspondence between the object forward
projection, for its virtual pose, and the object in the real
image. Camera model parameters can be simultaneously

estimated since the projection function is involved in the
features motion in the pixelic image.

The virtual camera c is defined by its projection function
prγm() and its position cMo, w.r.t. a reference object or the
world. With r, the pose vector, the method estimates the real
pose minimising the error ∆ between detected points u∗

k and
current points obtained by forward projection for the current
pose uk(r):

∆ =
∑
k

(prγm(cMo
oXk)− u∗

k)2. (4)

oXk is the k-th 3D point expressed in the object coordinate
system, as the calibration target, for instance (X = cMo

oX).
The error to be regulated is, hence, e = u(r)− u∗. Im-

posing an exponential decoupled decrease of the error, the
features motion is linked to the virtual camera by ė = −λe,
only depending on u̇ [8]:

u̇ =
∂u

∂r

dr

dt
+

∂u

∂γm

dγm
dt

=
∂u

∂x

∂x

∂r

dr

dt
+

∂u

∂γm

dγm
dt

. (5)

Lx = ∂x
∂r is known as the pose interaction matrix related to a

perspective normalised image plane point [18] as well as to a
normalised omnidirectional image plane point [19]. Actually,
∂x
∂r = ∂x

∂X
∂X
∂r and it means that to compute a camera pose

with another model, one has to express an image point as a
function of a 3D point to compute the Jacobian ∂x

∂X . Jacobian
∂X
∂r [20] does not depend on any camera or projection model.

Intrinsic parameters Jacobians are detailed below.
The VVS control law for calibration using p images is

then [8]:

(
v1 v2 ... vp ˙γm

)T
= −λH+


u1 − u∗1

u2 − u∗2

...
up − u∗p

 (6)

with vi, the camera pose velocity vector associated to image
i, ˙γm the time variation of intrinsic parameters (unique for
the images set) and u∗i

, the points set detected in image i.
H+ is the left pseudo inverse of H which is:

H =


L1
u . . . 0 ∂u1

∂γm
...

. . .
...

...
0 . . . Lpu

∂up

∂γm

 where Liu = ∂ui

∂ri (7)

with ri, the pose vector linked to image i. For brevity, there
is no particular notation to show the used projection model
to compute Liu. ∂u

∂γm
depends on the projection model and

is different if the perspective model is used with γ1 [8] or
the spherical model:

∂u

∂γ2
=

(
x 0 1 0 − pxρx

Z+ξρ

0 y 0 1 − pyρy
Z+ξρ

)
(8)

Poses are then updated using the exponential map of
se(3) [21] using cMt+1

o = cMt
oe

[v] and intrinsic parameters
are updated by γt+1

m = γtm + ˙γm.
Non-linear optimisation methods need an initial guess.

Each camera parameters set is coarsely initialised with u0,



v0 at the image centre, px, py at the half vertical size of
the image (mirror radius, for catadioptric cameras). ξ is
initialised with its known theoretical values [4], depending on
the omnidirectional camera type. The pose of the calibration
grid w.r.t. a camera is initialised with a linear perspective
camera pose method [22] designed for pinhole cameras, and
the adaptation we did of this method for spherical cameras.
VVS has proven to be robust to bad initial guesses for
perspective intrinsic calibration [8], that is why these coarse
initialisations can be used.

IV. STEREOSCOPIC CALIBRATION

Extending the mono camera approach, the optimisation
criterion becomes [16], for a rig of N cameras:

∆S =

N∑
j=1

kj∑
k=1

(prγmj
(cjMc1

c1Mo
oXk)− cju∗

k)2. (9)

with prγmj
, the projection function of camera j (mj = 1

or mj = 2, depending on the used projection model).
Considering Lj , the camera j pose interaction matrix, the
stereo pose interaction matrix is then [16]:

L =


L1

L2
c2Vc1

...
LN

cNVc1

 with cjVc1 =

[
cjRc1 [cjtc1 ]×

0 cjRc1

]
.

(10)
cjVc1 is the twist transformation matrix between velocity
vectors of camera 1 c1v and camera j cjv. cjRc1 and
cjtc1 are the rotation and translation blocs of cjMc1 and
[cjtc1 ]×, the skew-symmetric matrix of cjtc1 . So, with cj u̇i,
the set of time variation of camera j features in image i, the
stereoscopic calibration virtual control law for p shots is:(
v1
1 ... vp1 v1,2 ... v1,N ˙γm1

... ˙γmN

)T
= H+

S

(
c1 u̇1 ... cN u̇1

c1 u̇2 ... cN u̇2 ... cN u̇p
)T

(11)
where vi1 is the stereo rig pose velocity vector, for each set of
N images and v1,j , the relative pose velocity vector between
camera j and camera 1. Considering Li, the interaction
matrix of the stereo rig pose i and Li1,j , the interaction matrix
of relative pose between camera 1 and camera j for pose i,
the expression of HS is:

HS =



L1

0 . . . 0 0 . . . 0 ∂ c1u1

∂γm1
0 . . . 0

... . . .
... L1

1,2 . . . 0 0 ∂ c2u1

∂γm2
. . . 0

... . . .
...

...
. . .

...
... . . .

. . .
...

0 . . . 0 0 . . . L1
1,N 0 . . . 0 ∂ cN u1

∂γmN

... . . .
. . .

...
...

...
...

...
...

...
...

0 . . . 0

Lp

0 . . . 0
∂ c1up

∂γm1
0 . . . 0

... . . . 0 Lp1,2 . . . 0 0
∂ c2up

∂γm2
. . . 0

... . . .
...

...
. . .

...
... . . .

. . .
...

0 . . . 0 0 . . . Lp1,N 0 . . . 0
∂ cN up

∂γmN



.

This generic formulation of simultaneous hybrid stereo cal-
ibration allows to deal with any projection model m if a
pixelic point can be related to a 3D point and Jacobians ∂u

∂X

and ∂u
∂γm

expressed.

V. RESULTS

This section evaluates the presented calibration
approach, comparing results obtained with our
software (available as an installer and a demo video:
http://damien.eyn.free.fr/HYSCAS/) to existing toolboxes,
for omnidirectional camera [10] and perspective stereo
rig [9]. The evaluation of VVS based single perspective
camera calibration is done in [8].

A. Single omnidirectional camera calibration

(a) (b)

Fig. 2. (a) Catadioptric sensor. (b) An image used for calibration (two
calibration pattern types).

In this section, calibration results are evaluated for a
single camera modelled by a sphere. Comparison is made
between results obtained using our calibration software,
implementing the method proposed in this paper, and the
Mei’s toolbox [10].

The calibration grid is a 82 cm × 105 cm chessboard of
7× 9 squares. Another calibration pattern, available in our
software, is made of 36 dots placed in a 80 cm × 80 cm
square.

This experiment shows the calibration of a catadioptric
camera composed by a camera (Sony DFW-SX910) and a
Remote Reality (Fig. 2(a)) paraboloid optic. Six images of
1280×960 pixels resolution are used for a total of 288 points.



Calibration is done without taking into account distortions
and results are reported in the table I. For a fair results com-
parison, the same set of subpixelic image points, extracted
from the corners of the chessboard target, is used. The last
column of this table shows results obtained using the second
target type composed by dots. For the comparison, the two
pattern types appear in each calibration image (Fig. 2(b)).
Results show higher accuracy with corners than with dots for
which their centre of gravity in the image is considered as
their real centre. This is only an approximation in perspective
images as well as in omnidirectional images. However, their
detection is easier and more robust to low image quality or
tough conditions than corners.

Calibration results using VVS or Mei’s Toolbox are the
same, up to 10−4 of a pixel for standard deviation of
backprojection error in favour of VVS.

pattern corners corners dots
method VVS Mei VVS
px 460.33 460.33 459.24
py 459.65 459.65 458.11
u0 635.99 635.99 632.94
v0 490.19 490.19 489.90
ξ 1.14 1.14 1.14
µu 0.168 0.168 0.197
σu 0.137 0.137 0.177

nb iterations 21 60 22

TABLE I
ESTIMATED PARAMETERS AND COMPARISON. µu IS THE MEAN

BACKPROJECTION ERROR AND σu ITS STANDARD DEVIATION.

To evaluate the robustness of the calibration using VVS
w.r.t. initialisation, table II shows convergence results under
various initial values. The technique is robust to important
initialisation errors on all parameters and converges to the
optimal values even starting from a huge initial residual error:
more than a thousand pixels in a mean.

px py u0 v0 ξ µu init iter
480 480 640 480 1 95 23

0 0 640 480 1 174 21
2500 2500 640 480 1 815 24
2500 0 640 480 1 473 29
480 480 0 0 1 601 22

0 0 0 0 1 610 23
2500 2500 0 0 1 1030 24

0 2500 0 0 1 1050 36
480 480 640 480 0 4069 NC
480 480 640 480 0.5 178 22
480 480 640 480 2.0 98 27

TABLE II
INTRINSIC PARAMETERS ROBUSTNESS TO INITIALISATION. WHEN

CONVERGING, ESTIMATED PARAMETERS ARE THE ONE OF THE FIRST

COLUMN OF THE TABLE I, WITH THE SAME RESIDUAL ERROR. “µu INIT”
IS THE INITIAL MEAN REPROJECTION ERROR AND THE LAST COLUMN IS

THE NUMBER OF ITERATIONS TO CONVERGE (NC: NO CONVERGENCE).

B. Stereoscopic calibration

1) Perspective stereo rig calibration: In this experiment
we use two perspective cameras (IDS µEye) with differ-
ent focal length (8 mm and 6 mm) but same resolution
(752 × 480 pixels). The stereo rig has a baseline of 30 cm
and we assume that both camera principal axes are parallel.
Table III shows intrinsic and extrinsic calibration results
obtained with our method and compares them with the ones
estimated using the Bouguet’s toolbox [9]. Calibration is
done using five pairs of chessboard images (36 points by
image) without estimating distortions. The same set of image
points is used for both methods for a fair comparison.

c1 c2
VVS Bouguet VVS Bouguet

px 1118.27 1122.55 1412.82 1418.39
py 1118.01 1122.14 1408.10 1413.70
u0 414.91 414.23 342.99 342.43
v0 216.24 212.31 253.14 254.70
tx / / -0.304 -0.305
ty / / 0.007 -0.006
tz / / 0.054 0.056
θx / / 2.64 2.64
θy / / 0.64 0.85
θz / / 2.69 2.70

TABLE III
PARAMETERS COMPARISON FOR PERSPECTIVE STEREO CALIBRATION.

TRANSLATIONS ARE IN METERS AND ROTATIONS IN DEGREES.

The standard deviation of backprojection error with
Bouguet’s toolbox for this calibration is 0.150 pixel whereas
with our method, it is 0.119 pixel.

Extrinsic calibration results are clearly similar with a
difference in translation estimation of around 1 mm and
validate our approach.

2) Mixed stereo rig calibration:
a) First configuration of the hybrid stereo rig: The

calibration of a mixed stereo rig (Fig. 3), composed by a
fisheye camera modelled by a sphere and a perspective cam-
era modelled by a plane, is now presented. The calibration
pattern is composed of dots with 4.75 cm radius and 4.6 cm
spacing (Fig. 4(a) and 4(b))). Six pairs of calibration images
are used with 36 points in each image.

Fig. 3. First mixed stereo sensor.

For this experiment, backprojection mean error is 0.170
pixel and 0.187 of standard deviation. Both cameras are fixed
on the same straight stand and in order to have their principal
axes parallel, which is estimated (Tab. IV(a)). The stereo rig
has a baseline of manually measured 30 cm along the X-
axes of both cameras. So the estimated translation error is
about 6 mm (2%).



fisheye perspective
px 482.11 1164.57
py 484.15 1170.25
u0 344.92 385.70
v0 242.97 218.47
ξ 1.22 /
tx / -0.293
ty / 0.006
tz / -0.010
θx / 1.80
θy / -0.69
θz / 1.89

fisheye perspective
px 512.08 673.12
py 507.87 679.59
u0 325.94 337.34
v0 241.15 212.02
ξ 1.05 /
tx / -0.075
ty / -0.075
tz / 0.029
θx / 0.27
θy / 3.84
θz / 90.28

(a) (b)

TABLE IV
CALIBRATION RESULTS OF TWO SPHERICAL / PERSPECTIVE STEREO

RIG. TRANSLATIONS ARE IN METERS AND ROTATIONS IN DEGREES.

To evaluate the calibration precision directly in images,
points of the environment are selected in the perspective
image (Fig. 4(a)). Their corresponding epipolar conics are
obtained with the essential matrix computed thanks to
calibration results and are plotted on the fisheye image

(a)

(b)

(c) (d) (e) (f)

Fig. 4. Interest points are selected in a perspective image (a) and
corresponding epipolar lines are computed in the fisheye image (b). (c), (d),
(e) and (f) show more precisely the part of epipolar conics corresponding
to the point selected in the perspective image.

(Fig. 4(b)). When zooming the fisheye image on interest
points corresponding to the selected ones in the perspective
image, it is clear that they are on their epipolar conic
(Fig. 4). This qualitative observation shows the precision and
likelihood of the calibrated parameters.

b) Second configuration of the hybrid stereo rig: A
second configuration of a fisheye and perspective stereo rig
is used with a rotation of 90o between two Sony XCD-V50
cameras (Fig. 5).

Fig. 5. Mixed stereo sensor in a second configuration with the fisheye
camera on the right side of the image and the perspective on the left side.

This mixed stereo rig is calibrated using 7 pairs of images
(640×480 pixels) with 36 points for each image leading
to 504 points. The mean final reprojection error is 0.337
pixels with 0.353 pixels of standard deviation. Table IV(b)
shows the calibration results with a 90.28o estimated rotation
around the Z-axis, the optical axis of the reference camera,
leading to a 0.3% of estimation error for this parameter.

C. Plane-sweeping
An application to validate the VVS based mixed stereo

calibration is the estimation of altitude using plane-
sweeping [2], i.e the distance between the fisheye camera of
the hybrid stereo rig and the ground plane. This algorithm
consists of estimating the ground plane minimising a global
error between a reference image on the perspective view
and the projected fisheye view on this reference. Cameras
intrinsic parameters and relative pose between both cameras
is known from our VVS based simultaneous calibration
and the ground plane normal vector is deduced from an
IMU. Figure 6 shows the altitude estimation accuracy w.r.t.
a laser telemeter. Altitude estimation mean error over 20
measurements and between 55 cm and 215 cm is about
3.2 cm, i.e. an error ratio over real altitudes of about 2.4 %.
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Fig. 6. Comparison between estimated altitude by plane-sweeping and
measured altitude using a laser telemeter. Plane-sweeping is done with a
fisheye and perspective cameras stereo rig calibrated using the VVS based
calibration method of this paper.



VI. MULTI-MODEL STEREO CALIBRATION SOFTWARE

We have developed a software implementing the hybrid
stereo calibration method presented in this paper. It is cross-
platform (Mac OS X 10.6, Windows XP, Vista, Seven and
Linux) as most of available calibration toolboxes developed
using Matlab. Our software is based on the Qt library from
Nokia and the ViSP library [23]. Figure 7 shows the user
interface of this software. It is possible to select different
camera models and for each selected camera to import image
files of calibration pattern. A tab displays calibration results.

(a) Mac OS X 10.6 (b) Windows XP

(c) Linux

Fig. 7. Software screenshots.

Processing time clearly depends on the used number of
cameras, calibration images and points. Several processing
time measures has been made using the windows version of
our software, for a perspective camera, a fisheye camera and
a hybrid stereo rig composed by both of them (36 points for
each image). These measures are the elapsed time between
the last selection click and the display of results (Tab. V).

number of poses perspective fisheye hybrid
4 109 ms 115 ms 681 ms
6 244 ms 253 ms 1467 ms
8 469 ms 492 ms 2786 ms

TABLE V
CALIBRATION PROCESSING TIME OF OUR SOFTWARE. EACH POSE IS AN

IMAGE FOR ONE CAMERA, TWO IMAGES FOR TWO CAMERAS

VII. CONCLUSION

A new generic multi model calibration method of stereo-
scopic hybrid sensor has been presented. The method allows
the simultaneous intrinsic and extrinsic calibration of a
N cameras rig. Results show the achievement of calibration
leading to high accuracy of 3D plane reconstruction in a
plane-sweeping technique. Finally, our generic hybrid stereo
calibration method only needs to formulate two Jacobians
to take into account a new projection model. This work has

been implemented in a cross-platform software which allows
to easily calibrate a camera or a stereo rig, hybrid or not.
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