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Rome, Italy.
Tel.: +39-064458-5276
Fax: +39-06-44585292
E-mail: ivan.giorgio@uniroma1.it

U. Andreaus
Dept. of Structural and Geotechnical Engineering, Università di Roma La Sapienza, 18 Via Eudossiana,
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1 Introduction

The first scientific papers about the use of vibrations for therapeutic purposes in human
bones date back to 1949, when Toscani et al (1949) reported the positive effects obtained
through the application of vibrations generated by a special bed swinging on bedridden pa-
tients in cast immobilization, suffering from metabolic abnormalities. The ability of the bone
tissue of changing its conformation depending on the intensity and frequency of the load has
been investigated by numerous researchers over the past years (Turner et al, 1994). In par-
ticular, it is seen that in the cortical bone subjected to bending a fluid passage occurs from
the compressed areas to those in tension, thus determining the onset of the fluid flow which
induces shear stress on osteocyte, therefore leading to the mechano-transduction. Bone is
a mechanically sensitive biological tissue, which adapts its size, shape, mass and density
based on its mechanical environment. It has been long recognized that a dynamic stimu-
lus is required for bone adaptation (Lanyon and Rubin, 1984; Rubin and Lanyon, 1985;
Turner, 1998). Researchers have shown that the adaptation depends on a combination of
different mechanical stimuli such as the magnitude (Burr et al, 2002; Lanyon et al, 1982)
and frequency of applied load (Burr et al, 2002; Lanyon et al, 1982; Hsieh and Turner, 2001;
Warden and Turner, 2004), number of cycles (Rubin and Lanyon, 1984; Turner, 1998), and
bouts of the applied loading (Robling et al, 2002; Srinivasan et al, 2007). Turner et al (1994)
observed significant cortical bone adaptation when the loading frequency exceeded 0.5 Hz.
At low frequencies (between 0.5 and 10 Hz), it has been observed that adaptation in rat ul-
nae follows an approximately linear dose-response relationship with frequency (Hsieh and
Turner, 2001). Warden and Turner (2004) found no significant increase in the adaptation re-
sponse when the frequency of loading was increased beyond 10 Hz. Rubin et al (2001, 2002)
investigated the effect of very low magnitude high frequency (greater than 30 Hz) loading
on sheep. Bentolila et al (1998) used supraphysiological cyclic axial loading of the ulna of
rats in vivo to induce bending with consequent fatigue and microdamage, revealing that rat
bone undergoes remodeling in response to high levels of cyclic strain (see e.g. Andreaus et al
(1987); Andreaus and Vidoli (1999); Andreaus and Colloca (2009); Andreaus et al (2010);
Andreaus and Ancillao (2013); Lu and Lekszycki (2015); Placidi (2014, 2015); Rinaldi and
Placidi (2014); Yang and Misra (2010); Yang et al (2011) for damage modeling by using
second gradient theories particularly suitable for poroelastic materials such as bone). Besdo
(2011) presented a phenomenological theory aiming to finite element simulation of bone
remodelling and to prediction of dynamically changing anisotropic elastic parameters (see
also for numerical implementation Federico et al (2008)). Tormena et al (2013) proposed
a model based on the thermodynamic framework to describe the process of bone remod-
eling and modeled a trabecula subjected to cyclic loading and calibrated the model with
experimental data.

Cortical tissue is made up of a solid matrix crossed by canals and other porosity host-
ing vasculature and bone cells. Blood vessels hosted in the Haversian and Volkmann canals,
running through the osteon in the longitudinal and transversal directions, respectively, allow
the chemical exchanges necessary the transport of tracers and for bone nutrition. Cancellous
(or spongy) bone tissue is composed of irregularly arranged trabeculae. In both cortical and
spongy tissue, osteocytes are finely dispersed in lacunae of the solid matrix and are con-
nected with each other and with the vascular porosity by cytoplasmic extensions (dendritic
processes) running through tiny canals called canaliculi. The lacuno-canalicular network is
saturated by an interstitial fluid. In this respect, Sansalone et al (2013) numerically assessed
the influence of the physical and material parameters affecting the canalicular fluid flow,
namely the fluid viscosity, the so-called zeta potential, the ionic concentration, and the peri-
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cellular matrix permeability. According to Rho et al (1998), there are three levels of bone
porosity within cortical bone and within the trabeculae of cancellous bone, all containing a
fluid. Osteons are cylindrical structures of 100-150 µm radii that lie very roughly along the
long axes of a bone and contain at their center an osteonal canal. This canal contains blood
vessel(s), a nerve and some space occupied by bone fluid. The canaliculi are passageways
that run between lacunae or from the lacunae to the osteonal canal. The porosities include
the vascular porosity (PV), the lacunar-canalicular porosity (PLC) and the collagen-apatite
porosity (PCA) as well as a porosity that does not contain bone fluid —the porosity of the
inter-trabecular space (PIT). There are, therefore, three porosities of bone associated with
bone fluid; the fourth level of bone porosity, PIT, contains substances more viscous than
bone fluid. The fluid in the space outside the blood vessels and nerves in the Volkmann and
osteonal canals is called ‘serum’ and the fluid in the extracellular space in the lacunae and
the canaliculi ‘extracellular fluid’. Both of these fluids are called bone fluids here. All the
quasi-cylindrical passageways in the bone matrix —the osteonal canals and the Volkmann
canals— that contain the vasculature, nerves and bone fluid, are responsible for PV. The
characteristic lineal dimension associated with this space is the radius of the Volkmann and
osteonal lumens (order 20 µm); by this criterion, this porosity is the largest bone fluid poros-
ity. Bone fluid freely exchanges with the vascular fluids because of the high permeability of
the thin endothelium, the absence of a smooth-muscle layer, and the sparse basement mem-
brane layer of the capillary walls. The bone fluid pressure in PV cannot generally exceed
the local blood pressure as the vessels would collapse. Thus the pressure of the bone fluids
is probably similar to the blood pressure in bone, on the order of 40-60 mm Hg, which is
low compared to the bone fluid pressures in the lower characteristic lineal dimension PLC,
described below. All the space in the lacunae and the canaliculi determine the PLC. The
characteristic lineal dimension associated with this space is the radius of the canaliculus (or-
der 0.1 µm). Since the bone fluid porosity with the largest lineal dimension, PV, is always at
a low pressure, the middle characteristic lineal dimension porosity, PLC, appears to be the
most important porosity for the consideration of mechanical and mechanosensory effects
in bone. Calculations in Cowin (1999) show that the bone fluid in PLC can sustain higher
pressures for longer times due to mechanical loading. Thus PV functions as a low-pressure
reservoir that interchanges bone fluid with PLC. This interchange is facilitated by the fact
that the lineal dimension associated with PV is two orders of magnitude larger than that
associated with PLC, and PV is typically at blood pressure, which is low in bone. PLC is the
porosity associated with the slower relaxation of the excess pore pressure due to mechanical
loading. It is also the porosity associated with osteocytes; the osteocyte is the prime can-
didate for the mechanosensory cell in bone. PCA, associated with the spaces between the
collagen and the crystallites of the mineral apatite (order 10 nm radius), is the lowest char-
acteristic lineal dimension porosity. The movement of the bone fluid in the collagen-apatite
porosity is negligible because most of the bone water in that porosity is bound by interaction
with the ionic crystal. This portion of the bone water is considered to be part of the collagen-
apatite structure. The bone porosity with the largest, but quite variable, characteristic lineal
dimension (up to 1 mm) is associated with cancellous bone; it is referred to here as PIT of
cancellous bone. It is the porosity external to, and surrounding, the trabeculae. This porosity
is well connected to the medullary cavity and may contain marrow, fat and blood vessels.
These materials have a viscosity one to two orders of magnitude larger than the viscosity
of the bone fluid in PV or PLC (Bryant, 1988; Sobotková et al, 1988). The characteristic
lineal dimension of PIT varies with anatomical location; it is smaller near the load bearing
surfaces and increases to its greatest magnitude as the medullary canal is approached. The
permeability associated with this porosity was surveyed by Arramon and Cowin (1997).
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It has been shown that osteocytes can more effectively sense the interstitial fluid flow
through their processes and respond to fluid-induced shear stress (Adachi et al, 2010). In
view of its biological relevance, biochemical and mechanical effects of canalicular fluid
flow have been investigated by many authors (Knothe Tate, 2003; Fritton and Weinbaum,
2009). Several groups have examined the relationship between mechanical loading on bone
and the associated fluid flow inside the various internal porosities. Knothe Tate and Knothe
(2000) observed the fluid flow in and out of cortical bone in sheep forearms under applied
load. Knothe Tate et al (2000) showed similar load-induced fluid flow in rat tibia subjected
to bending, and also indicated the role of the fluid flow in mechano-transduction. Numerous
mechanisms have been proposed to explain the effect of fluid flow on the osteocytes e.g.,
via shear stress on the cell surface (Reich et al, 1990), drag force on the transverse fibrils
that tether the osteocyte to the canalicular walls (Weinbaum et al, 1994), strain generated
electric potentials (Pollack et al, 1984; Salzstein and Pollack, 1987), biochemical diffusive
gradients (Robling et al, 2008), or chemical contributions (Ganghoffer, 2010). Fritton and
Weinbaum (2009) and Santos et al (2009) with their extensive reviews provide a more com-
plete description of fluid flow induced mechanotransduction in cortical bone. Kumar et al
(2011) presented a finite element study of a poroelastic rectangular beam subjected to oscil-
latory bending loads. Then they proposed the use of the dissipation energy of the poroelastic
flow as a mechanical stimulus for bone adaptation, and showed that it can predict the ef-
fect of frequency of the applied load. They showed that the dissipation energy stimulus
and the resulting increase in second moment of inertia of the cross section increase linearly
with frequency in the low frequency range (less than 10 Hz) and saturate at the higher fre-
quency range (greater than 10 Hz). Similar non-linear adaptation frequency response also
has been observed in numerous experiments. Kumar et al (2012) employed the above men-
tioned model for the adaptation of cortical bone in response to mechanical loading to study
the effect of loading frequency on the computed response, and they compared their results
to previous experimental measurements on rat ulnae. They represented the cortical bone as
a poroelastic material with orthotropic permeability. Bone adaptation in the model is related
to a mechanical stimulus derived from the dissipation energy of the poroelastic flow induced
by deformation. Baı̈otto and Zidi (2009) propose a model of bone remodeling which take
viscosity properties of the tissue into account. They employed Zener’s law to describe the
mechanical behavior of the bone and proposed a specific law of the apparent bone density
rate.

The aim of this paper is to develop a numerical model to predict the processes of growth
and resporption of bone tissue and resorption of bioresorbable material, modeled as fluid-
infiltrated poroelastic materials under repeated loads. In order to achieve this goal, the use
of different mechanical stimuli is proposed, namely the strain energy density of the poroe-
lastic material and the dissipation energy of the poroelastic flow, that can predict the effect
of frequency of the applied load. Furthermore, a linear combination of the two above men-
tioned stimuli is considered, which allows for an optimal choice of their relative weights.
Osteocytes are interconnected through the processes inside the canalicular space, and it is
reasonable to assume that they can communicate with each other through these processes
and exchange information on the current state of the stimulus at each location. Thus, adap-
tation process in the model depends on the weighted average of the mechanical stimulus
in a ‘zone of influence’ near each point, in order to incorporate the non-locality in the
mechanotransduction of osteocytes present in the lacunae and to diversify the distribution
of porosity experimentally observed in inner and outer parts. It has to be remarked that at
least two time scales are of relevance in the considered context: i) the characteristic time
of bone growth and resorption and ii) the characteristic time of varying externally applied
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loads. In the first approximation which we will consider, the second time scale will be as-
sumed to be negligible and mechanical phenomena will be assumed to be quasi-static. In
particular, we focus our attention on the remodeling process in a two-dimensional sample
constituted by two coupled elements, namely bone living tissue and artificial bio-resorbable
material. We consider this sample as a biphasic mixture porous medium which is subjected
to a cyclic bending load slowly variable in time and the mass of which may vary in time;
a non-linear theory of porous visco-elastic materials is employed, which is based on classi-
cal models (Cowin and Nunziato, 1983; Biot, 1962b,a), to describe the poroelastic material,
and the Darcy-Brinkman model (Brinkman, 1949a,b; Biot, 1962a) to simulate the fluid flow
through the voids of the mixture. The model proposed by Lekszycki and dell’Isola (2012)
is utilized to follow the evolution of the remodeling processes. Herein, we employ a model
that should result from a suitable homogenization process. The system under study presents
high complexity and therefore needs dedicated tools especially if one is interested in get-
ting a homogenized limit through discrete measure functional approximation, as done e.g.
in Goda et al (2012); Alibert and Della Corte (2015); Cecchi and Rizzi (2001).

2 Modeling

In this work, we consider a solid mixture composed of two phases, living trabecular bone
and a graft constituted by artificial bio-resorbable material endowed with a microstructure
that takes into account the presence of connected pores (PIT). These last are filled with
marrow which very reasonably plays an important role in dissipation phenomena occurred
in bone (Braidotti and Stagni, 2007) and here considered as a highly viscous fluid (Bryant
et al, 1989; Birmingham et al, 2013). Indeed, the graft is used for creating an osteoconductive
structural scaffold in bone neoformation after a vascularization process that makes it active.
For the particular nature of its use, therefore, a bio-resorbable graft should be structurally
similar to bone and such as to avoid the formation of holes that could compromise the
structural integrity of the bone during the process of resorption of bio-material and bone and
formation of new bone.

Of course new developments in material engineering have to be taken into account when
designing newly conceived grafts of the type of those proposed in the present work. Indeed,
it is interesting to notice that the possibilities provided by computer-aided manufacturing
are widely increasing the range of material properties which are at disposal, and for instance
metamaterials (Del Vescovo and Giorgio, 2014) displaying very advantageous properties as
strength-to-weight ratio, safe behavior in fracture or smart interactions with piezoelectric
micro-actuators (see for instance dell’Isola et al (2015a,b); Madeo et al (2015); Giorgio et al
(2015, 2009)).

The basic kinematic field is the displacement u(X , t) —designated by the components
ui— where t is time and X stands for the selected space parametrization, i.e. three material
coordinates in a Lagrangian formulation. Then, to include the notion of deformation, the
Green–Saint-Venant strain tensor E is employed and its components are expressed as

Eij(X, t) =
1
2
�
ui,j +uj,i +ui,k uk,j

�
(1)

In addition, following the framework of the mixture theory (see e.g. Valentı́n et al
(2013); Placidi et al (2004); Placidi and Hutter (2005, 2006); Grillo et al (2009); Tomic
et al (2014)), we introduce rb, rm and rf as apparent mass densities of bone, bio-material
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and marrow respectively, and define the mixture mass density by:

r = Â
i=b,m,f

ri = Â
i=b,m,f

r̂i Vi = r̂b Vb + r̂m Vm + r̂f (1� Vb � Vm) (2)

in which Vb and Vm are the volume fraction respectively of bone and bio-material, while the
Lagrangian porosity is

f = 1� (Vb + Vm) (3)

and r̂i with {i = b,m,f} are the true mass densities of the phases.
Herein each material point at the position X in the reference configuration is also en-

dowed with an internal degree of freedom that, in a sense, equips this point with a structure
(see e.g. Altenbach et al (2010); Altenbach and Eremeyev (2008); Federico et al (2007)).
Specifically, the geometric object representing the microstructure, in our context, is a scalar
quantity assumed to be the change of the effective volume of the fluid content per unit vol-
ume of the body with respect to an equilibrium volume, z –i.e. the change of the Lagrangian
porosity:

z (X, t) = f(c(X, t), t)�f

⇤(X, t) (4)

where f

⇤ stands for the porosity in the reference configuration. All quantities in the reference
configuration are denoted by means of a superscript *. For nonhomogeneous porosity, the
change of the porosity can be expressed as:

z =�— · [f (U �u)] =�— ·w (5)

where u is the displacement of the solid matrix and U is the average fluid-displacement
vector. This vector is defined in such a way that the volume of fluid displaced through any
inner surface S endowed with a normal n is given by

Q =
Z

S
f U ·n dS (6)

Therefore, w = f (U �u) is the flow of the fluid relative to the solid but measured in terms
of volume (of fluid displaced) per unit area (Biot, 1962b). For the purposes of this work we
postulate that the stored energy E (E,z ;r

⇤
b ,r

⇤
m) is a second order polynomial function in the

finite strain measure E and the fluid volume distortion z from the reference configuration,
kinematic quantities that are objective1, namely

E =
1
2
Cijhk(r

⇤
b ,r

⇤
m)EijEhk +

1
2

K1(r
⇤
b ,r

⇤
m)z

2 +
1
2

K2z,iz,i �K3(r
⇤
b ,r

⇤
m)z Eii (7)

where, assuming the hypothesis of isotropic material, the Piola stress tensor can be expressed
in terms of Young’s modulus and Poisson’s ratio as

T e
ij =Cijhk(r

⇤
b ,r

⇤
m)Eij = 2Y (r⇤

b ,r
⇤
m)

2(1+n) Eij +
Y (r⇤

b ,r
⇤
m)n

(1�2n)(1+n) Ekkdij (8)

It is worth noting that the energy also depends on the parameters r

⇤
b , r

⇤
m evaluated in a

reference —i.e. free-stress— configuration which vary with the time in accordance with
evolution rules driven by a mechanical stimulus.

1 i.e. they are invariant under superimposition of a rigid body motion.
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Fig. 1 Sample used in numerical simulations. The labels ‘B’ and ‘M’ stand for Bone and graft Material,
respectively.

The stored energy density (7) is non-negative if the following inequalities are satis-
fied (Cowin and Nunziato, 1983):

Y > 0, �1 > n > 0.5,

K1 > 0, K2 > 0, Y
3(1�2n)K1 > 4K2

3 (9)

Notice that the term of the energy in Eq. (7) depending on the gradient of z allows
us to consider typical features of second gradient fluids as e.g. capillarity (see for more
details Cahn and Hilliard (1958); Seppecher (2002); Rosi et al (2013)). For a different view
on second-gradient fluid that are known for exhibiting special concentrated interaction we
refer to Giusteri (2013).

Material properties of the mixture are assumed inhomogeneous. The Young modulus Y
of the mixture is assumed obeying the power-law model:

Y = Y Max
b (Vb

⇤)bb +Y Max
m (Vm

⇤)bm (10)

and varies with reference mass densities (Currey, 1988; Lekszycki and dell’Isola, 2012).
The material constants Y Max

b and Y Max
m are the maximal elastic moduli of the constituents

of the mixture, and the parameters bb and bm are constants that specify the shape of the
stiffness. As a first approximation, we assume that Poisson’s ratio is constant. The material
parameter K1 can be interpreted as a compressibility coefficient related to the fluid phase
inside the pores, and then evaluated by:

K1 =

✓
f

⇤

Kf
+

(aB �f

⇤)(1�aB)

Kdr

◆�1
(11)

where Kf is the fluid bulk modulus, Kdr = Y/(3(1�2n)) is the drained bulk modulus of the
porous matrix and aB is the Biot-Willis coefficient that lie within the range f

⇤ 6 aB 6 1
(see e.g. Müller and Sahay (2014)).

The material parameter K3 is related to the interaction between the solid and the mi-
crostructure which herein is assumed to be spherical. It can be easily demonstrated that
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an equivalent Lamé parameter leq = l �lv can be introduced to consider the presence of
pores (Andreaus et al, 2015).

We hypothesize that the correction due to the presence of pores lv is a fraction of l

depending on the reference porosity and as a result K3 is expressed by

lv = K 2
3 /K1 = ĝ(f ⇤)l ) leq = (1� ĝ(f ⇤))l )

K3 =
p

ĝ(f ⇤)l K1 (12)

where the function ĝ(f ⇤) is non-negative and less than one. The function ĝ(f ⇤) maximizes
the effect of pores when the level of porosity is high and nullifies this effect when porosity
tends to zero; an example of such a function is:

ĝ(f ⇤) =
Ak3

p

⇢
atan


sk3

✓
f

⇤ � 1
2

◆�
+ atan

⇣ sk3

2

⌘�
(13)

in which Ak3 2 (0,1] and sk3 are coefficients that define the basic shape of the ĝ function and
therefore can be chosen to characterize the coupling law used. The coefficient K2 related to
the gradient porosity term, as a first approximation, is assumed to be constant.

2.1 Dissipation Sources

Since bone is a hierarchical composite characterized by multiple structures at different
length scales, dissipation can arise from a variety of mechanisms. In this work dissipative
phenomena occurring in bones reconstructed with bio-resorbable materials are assumed to
belong to three main groups: i) Darcy-Brinkman dissipation resulting from fluid flow inside
the pores of the mixture (PIT); ii) a viscosity related to the porous mixture under consider-
ation (PLC/PCA); iii) a microstructure viscosity related to the marrow, considered as a very
viscous fluid.

Darcy-Brinkman dissipation In order to examine the mechanics of flow through the porous
mixture, it is possible to write a dissipation function, DDB, which depend on the rate of flow
of the fluid, i.e. the time derivative of the volume flow vector ∂w/∂ t —a Darcy’s dissipation
due to the drag at the pores— and on its gradient related to Brinkman dissipation due mainly
to shear in the fluid bulk (see Brinkman (1949a,b) and more recently dell’Isola et al (2009);
Srinivasan and Rajagopal (2014)). In this case, the dissipation function can be given by

2DDB(ẇ,—ẇ) = KDẇ · ẇ+KB—ẇ : —ẇ (14)

where KD and KB are the Darcy permeability second order tensor and the fourth order
Brinkmann tensor, respectively. For the particular case of an isotropic medium, this two
tensors are reduced to two positive scalar constants. In particular, we can take KD = h/k ,
where h is the dynamic viscosity of the fluid and k is the coefficient of permeability of the
porous mixture (Biot, 1962a).

It is worth noting that the related viscous force can be evaluated by means of the virtual
work done by this kind of dissipation on any sub-body C of the whole body B:

dWdiss

DB =
Z

C
(KDẇkdwk +KBẇk,idwk,i)dV (15)
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Indeed, the viscous force exerted by the ‘fluid’ marrow on the inner porous surface comes
from an integration by parts of the Eq. (15) and can be recognized as the dual quantity of
the relative flow of the fluid w, which yields the Brinkmann force density:

FDiss
DB = KDẇ�— · (KB—ẇ) (16)

This equation has the advantage of approximating the Darcy action (proportional to KD) for
low values of permeability (k) while the other term becomes progressively important when
the permeability increases (Brinkman, 1949a) as in PIT. Therefore, in the case under study
the generalization due to Brinkman is not negligible.

Mixture viscosity In Garner et al (2000) a damping increase with frequency in both wet
and dry bone was observed; as a result, it is reasonable to attribute the damping not only to
the fluid flow but also to other sources. Indeed, the solid part of the bone is made mainly
of an inorganic mineral in the form of small crystals of hydroxyapatite and collagen, that
is a natural fibrous polymer. Thus, due to its composition, the bone of a trabecula presents
dissipation related to phenomena similar to those which have been already observed to occur
in polymers (Garner et al, 2000), and to an interstitial fluid flow in the bone canaliculi.
Therefore, for the sake of simplicity, we consider a standard way to describe viscoelastic
materials, the Kelvin–Voigt model, in which the elastic term is given by the Eq. (8), while
the viscous part highlighting the shear contribution and the volumetric one, is expressed by

T v
ij (Ė) = 2µ

v
✓

Ėij �
1
3

Ėkkdij

◆
+k

v Ėkkdij (17)

where µ

v is the shear viscosity and k

v is bulk viscosity evaluated for the mixture of trabec-
ular bone and bio-resorbable material (PLC/PCA). Consequently the Rayleigh dissipation
function in the solid matrix is

2Ds = T v
ij Ėij (18)

It should be noted that dissipation in bone can also arise from the frictional sliding of
the faces of the micro-cracks present in the solid matrix (see e.g. Scerrato et al (2014, 2015)
where internal mechanisms of dissipation in solids are investigated when no relevant damage
phenomena occur at the macroscopic level). In this paper, however we do not take account
of this possible source of dissipation because the evolution rules of the process of adaptive
bone remodeling seem to be related to a viscous effect (in Turner (1998), on the basis of
experimental observations, evolution rules are assumed to be rate dependent) rather than to
a Coulomb-like dissipation that is rate independent.

Microstructure viscosity Also the microdeformation related to the variable z can be associ-
ated with dissipative mechanisms (see e.g. Cowin and Nunziato (1983)). Thus, by motivat-
ing our hypothesis by the pragmatic reasoning of simplicity, we can assume the dissipative
potential as follows:

2D
z

(ż ) = K
z

ż

2 (19)

where K
z

is a positive damping coefficient.
Given the complex nature of the system considered, more general models of dissipation

can be employed to better describe experimental observations, in particular in relation to the
dynamic behavior of bone resulting from the application of time-varying loads, as studied
in Carcaterra and Akay (2011); Carcaterra et al (2014).
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2.2 Mechanical governing equations

In order to describe the mechanical behavior of the body under study, we employ the Gener-
alized Principle of Virtual Work (Green and Rivlin (1965); Mindlin (1965); Germain (1973)
and more recently Lekszycki (1991); dell’Isola and Placidi (2012)) according to which the
total virtual work done by the actions applied inside the body dWins and those which are
applied on its boundary dWboun during any arbitrary virtual displacement ui and virtual
change of porosity z equals the virtual dissipated energy dWdiss. Mathematically:

dWins+dWboun = dWdiss (20)

As a consequence of the assumption (7) on the stored energy and neglecting the inertial
effect, the work due to inside interactions have the following form:

dWins = �
Z

B

h
T e

ij dEij +K1 z dz +K2 z,idz,i �K3 (Eiidz +z dEii)�bidui

i
dV , (21)

the work done by the contact interactions which can be exerted at the boundary of the con-
sidered body can be represented as:

dWboun =
Z

∂

t

B
tiduidS +

Z

∂B
X dz dS , (22)

where ti is the surface traction on the boundary ∂

t

B, and X is a microstructural action intro-
duced to describe the local dilatant behavior of a porous material induced by pore opening,
elastic and capillary interaction phenomena among neighboring pores. Interface conditions
can be imposed at the boundary between trabecular bone and bio-material zones ∂Bint (see
Fig. 1), by assuming the energy density (Andreaus et al, 2015):

Eint =
1
2

K4
�
z

+�z

��2
=

1
2

K4 [[z ]]
2 K4 > 0 (23)

Where appropriate, similar interactions can be also used for the displacement field to sim-
ulate a not perfect gluing, instead of the continuity conditions used here for that field. As a
result, the virtual boundary work (22) becomes:

dWboun =
Z

∂

t

B
tiduidS +

Z

∂B
X dz dS �

Z

∂Bint
K4 [[z ]]d [[z ]]dS (24)

The total virtual dissipated energy can be expressed as

dWdiss =
Z

B

h
T v

ij dEij +K
z

ż dz +KDẇkdwk +KBẇk,idwk,i

i
dV (25)

In Eq. (20) an additional kinematic descriptor, i.e. the flow w of the fluid relative to the
solid was introduced to describe the state of fluid-solid interaction. Albeit it is an unknown of
the problem, this variable is not an independent one as it is clear from Eq. (5) and therefore
some further discussions are needed to solve our mechanical problem (20). Specifically, we
assume this vector w as the gradient of a scalar function, y . In this case the newly introduced
potential (y) satisfies Poisson’s equation:

z =�— ·w =�— · (—y) (26)
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that should be solved together with the Eq. (20) and Neumann boundary condition for y ,
i.e. boundary condition for the relative fluid flow of the kind:

w ·n = a(X , t) on ∂B (27)

where n denotes the unit normal vector to the boundary ∂B and therefore a is the normal
component of the w imposed on the same boundary. With this assumption the virtual work
done by the Darcy-Brinkman dissipative action becomes:

dWdiss

DB =
Z

B
[KDẇkdwk +KBẇk,idwk,i]dV =

=
Z

B
[KDẏ,kd (y,k)+KBẏ,kid (y,ki)]dV (28)

It should be noted that the gradient of ẇ with the assumption of potential flow and, by
virtue of Schwarz’s theorem is a symmetric second order tensor; as a result, the dissipative
function (14), and in particular the second term, is correctly-set, that is any relative rigid
motion does not entail dissipation. Without this assumption, a more convenient dissipative
function should be written in term of the symmetric part of such a gradient Sym(—ẇ) as
employed in Srinivasan and Rajagopal (2014).

As a note, an investigation of stability and bifurcation problems is also important for
a possible loss of stability during growth or resorption process, and deserves attention for
future investigations (see e.g. Yeremeyev et al (2007); Rizzi et al (2013); Ruta et al (2008);
Di Egidio et al (2007)).

2.3 Evolution equations for the mass densities of the two solid phases

According to the current understanding of the biological phenomena involved in osteoge-
nesis, bone cellular populations are organized in basic multicellular units, i.e. temporary
structures that operate as smart remodeling actuators (van Bezooijen et al, 2005; Turner,
1991). Osteocytes (i.e. sensor cells) transmit to the effector cells (osteoclasts, which remove
bone from unloaded sites and osteoblasts, which add bone to highly loaded regions) a ‘me-
chanical stimulus’ that is transduced by forming a dense network throughout the whole bone
tissue (Klein-Nulend et al, 2012; Baı̈otto and Zidi, 2004). In this way, effector cells are able
to optimize the bone mass, shape and architecture according to the loading conditions in a
process called bone adaptation (Lekszycki, 2002). Evolution has created bones that are as
light as possible to accomplish their functions of support and protection (see Ambrosi et al
(2011) for a more general reference on biological growth and remodeling). In order to make
effective use of amount of material, bones adapt their shape and architecture to the loads ap-
plied. Indeed, a balance between bone resorption and bone formation determines the current
distribution of bone mass density.

Below the basic assumptions made in order to formulate a proper description of the
remodeling process in the considered mixture (constituted by bone tissue and bio-resorbable
material) are listed (Lekszycki and dell’Isola, 2012; Andreaus et al, 2014b):

– sensor cells are situated only inside the living bone tissue and not in the artificial graft;
– the number of sensor cells present in a given material particle of the considered mixture

is proportional to the apparent density of the bone tissue r

⇤
b evaluated for the free-stress

configuration;
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– since osteocytes constitute an interconnected network of sensor cells, they can modulate
the signal sent to actor cells in order to compensate any loss of signal due for instance
to their lower density;

– the signal sent from osteocytes to the actor cells decays with increasing source distance,
such as an exponential function;

– actor cells elaborate and integrate all signals sent by surrounding sensor cells which
reach them;

– osteoblasts and osteoclasts activities are proportional to the stimulus from the osteo-
cytes;

– the number of the actor cells in a given place depends on the porosity of the composite
material;

– the bone tissue can be resorbed or synthesized but the graft material can be only re-
sorbed.

The differential equations describing the processes of bone and graft material remodel-
ing involve the apparent mass density in the reference configuration that characterizes the
evolution of both constituents of the considered mixture as mentioned above. The evolution
equations are of the first order and are given by

(
ṙ

⇤
b = Ab (S) H (f) with 0 < r

⇤
b 6 r̂b

ṙ

⇤
m = Am (S) H (f) with 0 < r

⇤
m 6 r

0
m

(29)

where r̂b and r

0
m are the true mass density of the bone and the initial mass density of the

bio-material, respectively. The two constituents in the mixture are different and thus their
resorption and synthesis rates will be different. Specifically, the dependence on the stimulus,
S, is assumed piece-wise linear as follows:

Ab (S) =
⇢

sbS for S � 0
rbS for S < 0 (30)

Am (S) =
⇢

0 forS � 0
rmS forS < 0 (31)

where sb, rb and rm are positive constants and they represent synthesis and resorption rate
of the bone and the resorption rate of the graft material, respectively.

The function H depends on porosity and is evaluated on the basis of a normalized spe-
cific surface (Ss) i.e. the inner surface area of the pores per unit volume of bone (Martin,
1984) (see next section and Fig. 2(b)). This function is conceived in order to account for the
influence of ‘effective’ porosity (i.e. effective for the deposit of actor cells) on the biological
activity of actor cells: when effective porosity is too large there is not enough material on
which actor cells may deposit; when it is too small, there is not enough free space in the
pores to allow their mobility and deposit (Lekszycki and dell’Isola, 2012). For the above
reasons, and in particular since the actor cells operate on the internal surface of the pores,
the function H was related to the aforesaid normalized specific surface, as it will be seen in
more detail in the following section.

In the present context the explicit expression of the stimulus is

S(X , t) =

8
><

>:

P(X , t)�Ps
ref

for P(X , t)> Ps
ref

0 for Pr
ref
6 P(X , t)6 Ps

ref

P(X , t)�Pr
ref

for P(X , t)< Pr
ref

(32)
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where Ps
ref

and Pr
ref

are two activation thresholds, the first for synthesis and the other for
resorption, that define the width of the ‘lazy zone’ associated with a biological equilibrium
state while the signal generated by osteocytes can be expressed in the non-local integral
form as

P(X , t) =
R

B Es (X0, t) v

⇥
r

⇤
b (X0, t)

⇤
e�

kX�X0k2

2D2 dX0

R
B e�

kX�X0k2

2D2 dX0

(33)

in which the characteristic length D represents the range of action of sensor cells and the
signal coming from osteocytes is assumed depending on the density of strain energy of
solid matrix 2Es = (CE) : E in the region where they are located. Since sensor cells are
interconnected through dendritic processes inside the canalicular network, we assume that
they can exchange information each other through these processes on the current state of the
stimulus. To mimic this non-local behavior, we employed a spatially averaged stimulus over
a spherical ‘zone of influence’ as in Kumar et al (2011). The function v can be interpreted,
in the framework of the feedback control theory (Turner, 1991), as a proper gain for the
strain energy that takes the real activities of the osteocytes into account, and therefore we
set it as

v (r⇤
b ) = h tanh(x r

⇤
b ) 0 < h 6 1 (34)

The key idea here is to reach a saturation when a critical number of sensor cells, tuned with
the positive parameter x , is exceeded in order to have the best gain possible when there
are enough cells and then a good estimate of the strain energy. On the contrary, if there
are only few sensor cells, they compensate their insufficient number with a greater activity
compatibly with the hypothesis that the number of sensor cells is proportional to the apparent
mass density of the bone tissue.

It is a matter of common knowledge that the outside layer of bones consists of a compact
tissue, called cortical bone, while the inner core is constituted by a more porous tissue, called
cancellous, spongy or trabecular bone. The overall porosity of the bone increases when
approaching its inner part. Keeping in mind this observation, the expression of the stimulus
proposed in the present paper, i.e. the Eq. (33), seems to better fit the distribution of porosity
experimentally observed than the stimulus employed in Lekszycki and dell’Isola (2012);
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(a) Averaged form - Eq. (33) (b) Simple form - Eq. (35)

Fig. 3 Initial normalized stimulus in the case of a pure bending deformation on a specimen as sketched in
Fig. 1. The labels ‘B’ and ‘M’ stand for Bone and graft Material, respectively.

Andreaus et al (2015); Giorgio et al (2014) and shown below for comparison purposes.

P(X , t) =
Z

B
Es (X0, t) v [r⇤

b (X0, t)] e�
kX�X0k

2

2D2 dX0 (35)

In Fig. 3 indeed the distributions over the sample of the two stimuli considered, Eqs. (33)
and (35), in a non-dimensional form (see section 2.6) and in the case of a pure bending
deformation as sketched in Fig. 1 are compared at the initial stage. For the stimulus (35)
a border effect resulting in a lower production of bone right on the borders parallel to the
x-axis in the bone zone can be noticed in contrast to what happens for the stimulus (33).

Finally, we remark that because of the complexity of the model, a large number of con-
stitutive parameters should be taken into account. Therefore, a specific procedure is needed
to identify all these parameters. In that regard, the method outlined in Placidi et al (2015);
Dietrich et al (1998); Lekszycki et al (1992) can be profitably employed.

2.4 Evaluation of the normalized specific surface

To generate the curves shown in Fig. 2(a), we proceeded as sketched in the following way.
First, some geometric shapes have been appropriately selected which were particularly ele-
mental and which, periodically repeated in space, enabled to fill it completely and reproduc-
ing in a schematic way the arrangement of trabeculae (see Wang et al (2009) for a similar
approach). Indeed, we interpret the bone as a cellular solid, i.e. a particular solid made up of
an assembly of ‘cells’ packed together so that they fill space, each of them is constituted by
an interconnected network of solid struts or plates which form the edge or the faces of the
cells (Gibson and Ashby, 1997). In a three dimensional environment a great variety of cell
shapes is possible, which can be packed together to fill space. The considered forms (see
Fig. 4 and Goda et al (2012); Wang et al (2009)) are: a) tetrahedron, b) cube, c) honeycomb,
d) truncated octahedron. The choice of the cellular shape is important because the properties
of this kind of solid depend directly on the shape and structure of the cells. Therefore, it is
necessary to characterize their size, shape and topology.

It is noted that each module is delimited by cylinders which represent a simplified shape
for trabeculae. By using the same radius for all cylinders of the module, the surface area, Si,
of the cylinder face of the inner part of the module was calculated. Then, it was calculated
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(a) Tetrahedral module (b) Cubic module

(c) Honeycomb module (d) Truncated octahedron mod-
ule

Fig. 4 Unit module of idealized periodic model of trabecular bone regarded as cellular solid.

the volume of the void, Vv, obtained by subtracting the volume of the full cylinders to the
volume of the whole module, Vm (e.g. the volume of the cube in the case b) so as to evaluate
the porosity —this procedure takes into account only the inter-trabecular space porosity
(PIT)— as the ratio fIT = Vv/Vm. By varying the radius, the curve which has the porosity
fIT in abscissas and the specific surface in ordinates was built point by point. At the end,
the specific surface Si was normalizing by dividing it by the maximum value of the Si itself,
obtaining in such a way the normalized specific surface Ss. Figure 2(a) shows the curves Ss
related to the various modules (see Fig. 4), in addition to the parabola (Andreaus et al, 2015)
and to the polynomial interpolation (Martin, 1984).

As it can be seen from Fig. 2(a) the Ss curves are concentrated in a rather narrow band; in
particular the curves related to the cubic and the tetrahedral modules coincide and therefore
this has been chosen as the reference curve in the numerical simulation which follows.

The need to introduce a not-effective porosity in close proximity of both the total filling
level and the total vacuum, as already observed in Martin (1984), has led to the curve of
Fig. 2(b) which was obtained by an appropriate contraction of the original curve along the
f -axis. Specifically, the porosity can be decomposed into two contributions, namely fIT
related to the inter-trabecular space and fR related to the vascular, lacunar-canalicular and
collagen-apatite space:

f = fIT +fR (36)

In a first approximation, the not-effective porosity fR can be assumed as a linear function of
fIT :

fR =�n0fIT +n0 (37)
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Table 1 Values of the normalized Specific surface Ss vs fIT and H vs f .

Effective porosity fIT Specific surface Ss Porosity f Function H

0.0000 0.0000 0.0000 0.0300
0.0002 0.0068 0.1662 0.0300
0.0011 0.0218 0.1669 0.0300
0.0032 0.0459 0.1687 0.0321
0.0073 0.0799 0.1721 0.0722
0.0139 0.1247 0.1776 0.1233
0.0239 0.1823 0.1859 0.1817
0.0381 0.2564 0.1978 0.2565
0.0580 0.3591 0.2144 0.3590
0.0861 0.4952 0.2378 0.4942
0.1225 0.6148 0.2682 0.6147
0.1662 0.7188 0.3046 0.7186
0.2161 0.8059 0.3462 0.8058
0.2713 0.8773 0.3923 0.8773
0.3306 0.9324 0.4417 0.9323
0.3929 0.9710 0.4937 0.9709
0.4573 0.9935 0.5474 0.9935
0.5226 1.0000 0.6018 1.0000
0.5878 0.9901 0.6562 0.9900
0.6518 0.9641 0.7096 0.9640
0.7136 0.9217 0.7611 0.9216
0.7720 0.8632 0.8098 0.8631
0.8262 0.7887 0.8551 0.7886
0.8749 0.6977 0.8957 0.6976
0.9171 0.5904 0.9309 0.5902
0.9518 0.4673 0.9598 0.4669
0.9779 0.3277 0.9816 0.3265
0.9943 0.1719 0.9952 0.1279
0.9991 0.0706 0.9992 0.0202
1.0000 0.0000 1.0000 0.0000

being n0 = 0.166 the porosity related to the cortical bone (Martin, 1984); indeed when fIT
is zero there is no inter-trabecular space but only the void space present in the cortical bone.
On the other hand, it is reasonable that decreasing the trabecular solid, the not-effective
porosity fR decreases. With these assumptions and defining from Eqs. (36) and (37):

f = f̂(fIT ) = (1�n0)fIT +n0

we can define the function H as:

Ss(fIT ) = Ss[f̂
�1(f)] := H(f) (38)

In Tab. 1, we set the level of H, near to zero porosity in the range [0,n0], a little larger than
zero to avoid that the material will not have a chance in future to evolve in this domain and
change its porosity any more, what contrasts with a real situation. Indeed, we adopt this low
threshold not only to allow a future evolution, as done in Lekszycki and dell’Isola (2012),
but also to penalize the remodeling process where no effective porosity is available; on the
other hand, we are not interested in considering the effects that happen at cellular level, and
lower.
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2.5 Stimulus driven by Strain and Dissipated Energy

Laboratory experiments (Turner, 1998) have confirmed that both loading frequency and
strain rate are important determinants of bone adaptation. These results have been sum-
marized in the following succinct statements (Turner, 1998): (a) dynamic strains drive bone
adaptation; (b) the strain stimulus is increased if the magnitude or frequency of the dynamic
signal is increased; and (c) increasing strain rate enhances the strain stimulus. To incorpo-
rate these facts into a mathematical formula, Turner (1998) considered that peak strain rate
is proportional to the frequency of the loading waveform and strain magnitude and assumed
that the strain stimulus is proportional to strain rate. From these considerations it is clear
that the strain rate, and then the dissipated energy, which depends on it, play the role of
ideal candidates to represent an important component of the mechanical stimulus. Already,
other researchers (Kumar et al, 2011, 2012; Pereira and Shefelbine, 2014) have studied both
idealized and realistic situations, taking as stimulus just the density of energy dissipation.
They assumed that the load induced fluid flow can occur at the lacuno-canalicular porosities,
and generated a 3D finite-element model of the cortical bone as a continuous, homogenized
linear poroelastic material. The intramedullary canal, which is at a higher scale, is treated as
a source for fluid to move freely into and out of the cortical bone.

In the present work, in order to take all these features into account, a further assumption
was added to the above mentioned ones: the stimulus is the linear combination of the strain-
dependent energy, Es, and the dissipation power, Ds (with coefficients a and b , respectively).
Particularly

P(X , t) =
R

B (a Es + b Ds) v

�
r

⇤
b
�

e�
kX�X0k2

2D2 dX0

R
B e�

kX�X0k2

2D2 dX0

(39)

The advantage to propose such an expression for the stimulus is twofold. On the one hand,
it allows to simultaneously address both static and dynamic situations; at the two extremes
there are indeed instantaneous impacts, when the bone is called to perform the function of
shock absorber, and permanent static loads, where carrying capacity of bone ensures the
homeostatic equilibrium. A further advantage of using the expression (39) is to guarantee a
greater generality to processing and the possibility of optimizing the coefficients (weights)
of the linear combination in order to approximate to the best experimental results. This opens
the way for the optimal adaptive control, particularly effective in the preparation of programs
of even extreme training, and of post-traumatic and/or post-operative rehabilitation.

Besides, this kind of stimulus involving the actual spatially averaged values of the elastic
strain and its rate is close related to a Proportional-Derivative (PD) control rule as employed
in Andreaus et al (2011, 2012, 2013, 2014a) where the actual mechanical stimulus is defined
by comparing the Strain Energy Density (SED) with a reference Strain Energy Density
(SED*).

2.6 Non-dimensional form

In numerical simulations, a non-dimensional form of the considered problem is achieved
normalizing the variables involved in the analysis by reference quantities. In this regard,
quantities in non-dimensional form are denoted with a superimposed tilde. In particular, the
stored energy density E , Eq. (7), is normalized with respect to the maximal bone stiffness
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Y Max
b = 18 GPa and therefore takes the form:

Ẽ = E /Y Max
b . (40)

As a consequence of this normalization, the material parameters involved in Eq. (7) become
in a dimensionless form:

Ỹ = (V⇤
b )

bb + Ỹ Max
m (V⇤

m)
bm , (41)

being Ỹ = Y/Y Max
b and Ỹ Max

b = 1, Ỹ Max
m = Y Max

m /Y Max
b and

K̃f = Kf/Y Max
b , K̃2 = K2/(Y Max

b L2
0),

l̃ = l/Y Max
b , K̃4 = K4/(Y Max

b L0),
(42)

with L0 a characteristic length. Herein L0 is assumed to be equal to the length of the sample.
By considering a reference time tref defined as the time duration in which the physiological
processes that lead to fulfillment of the phenomenon of material resorption and bone synthe-
sis are accomplished, the non-dimensional time t̃ = t/tref is introduced. In this paper the ref-
erence time is assumed tref = 6.048⇥105 s in order to have a reference time of a week. Anal-
ogously, by defining the non-dimensional form of the total dissipation, D =DDB+Ds+D

z

,
as follows:

D̃ = (tref/Y Max
b )D (43)

one gets:

K̃D = KDL2
0/(trefY Max

b ), K̃B =KB/(trefY Max
b ),

K̃
z

= K
z

/(trefY Max
b ),

µ̃

v = µ

v/(trefY Max
b ), k̃

v = k

v/(trefY Max
b ).

(44)

The external applied force ti is normalized following the same criterion with respect to the
stiffness Y Max

b .
Non-dimensional mass densities of bone and material are normalized with respect to

r̂b = 1800 kg/m3 and can be defined as:

– mass density of bone, r̃b = rb/r̂b = Vb,
– mass density of material, r̃m = rm/r̂b = (r̂m/r̂b)Vm,

and therefore the non-dimensional total mass density is r̃ = r̃b + r̃m.
The non-dimensional stimulus can be defined as:

S̃ = P̃� P̃i
ref with i = {r,s}, (45)

where P̃i
ref =Pi

ref/Y Max
b and P̃ comes from the assumptions Ẽs = Es/Y Max

b , D̃s =(tref/Y Max
b )Ds

and b̃= b /tref, and from Eq. (33) and Eq. (39). As a result, from Eqs. (29) the non-dimension
form of the evolution equations for the mass densities is:

8
>><

>>:

∂ r̃

⇤
b

∂ t̃
= Ãb(S̃)H(f)

∂ r̃

⇤
m

∂ t̃
= Ãm(S̃)H(f)

, (46)

where with some algebra from Eqs. (30) and (31) it follows:

Ãb
�
S̃
�
=

⇢
s̃b S̃ for S̃ > 0
r̃b S̃ for S̃ < 0 , (47)
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Table 2 Material coefficients in non-dimensional form.

Ỹ Max
b Ỹ Max

m s̃b r̃b r̃m

1 0.8 7.26⇥105 6.05⇥105 9.07⇥105

r̃

0
b r̃

0
m bb = bm Ak3 sk3

0.5 0.5 2 0.9 15

D̃ a b̃ P̃r
ref P̃s

ref

0.1 1 1 4.68⇥10�8 5.72⇥10�8

K̃f K̃D K̃B µ̃

v
k̃

v

0.1 1.32⇥10�2 1.32⇥10�4 2.50⇥10�5 2.00⇥10�5

K̃2 K̃4 K̃
z

x h

1.0⇥10�3 0.1 1.67⇥10�6 10 0.2

Ãm
�
S̃
�
=

⇢
0 for S̃ > 0
r̃m S̃ for S̃ < 0 , (48)

with

s̃b =
Y Max

b tref

r̂b
sb; r̃b =

Y Max
b tref

r̂b
rb; r̃m =

Y Max
b tref

r̂b
rm. (49)

3 Numerical simulations and discussion of the results

This section presents the results obtained through a numerical investigation conducted by the
FEM code COMSOL Multiphysics R�. As for code description, the evolutionary problem in
our case study involves time-dependent differential equations of first order for mass densi-
ties of bone tissue and bio-material coupled with PDE governing mechanical equilibrium.
The solver employs a discrete time step increment algorithm based on the backward differ-
entiation formula method and uses a Newton-type iterative method to solve this nonlinear
systems of PDE’s. Since the integro-differential equations we are integrating are strongly
non-linear, a very delicate issue in the performed numerical simulations regards the choice
of time step that in our case is variable and optimized. The current numerical study is per-
formed by means of a commercial FEM code as mentioned above, however, the objective of
achieving greater accuracy in the solution of a problem as complex as that addressed herein
might justify the adoption of more sophisticated and original techniques based on finite el-
ements such as those proposed in Cazzani et al (2014b); Turco and Aristodemo (1998);
Cazzani et al (2014a, 2015); Greco and Cuomo (2014, 2016); Solari et al (1997); Cuomo
et al (2014). The object of the study is a rectangular sample of bicomponent material initially
characterized by two distinct areas: the host bone, and the biomaterial graft (see Fig. 1). The
mass density distributions of bone and of graft material are assumed to be at the initial stage
constant, with the same value for the two phases (r̃ 0

b = r̃

0
m = 0.5). One edge of the speci-

men is assumed fixed in the longitudinal direction, while on the opposite edge is applied the
bending traction that has a fixed component and a variable one in time with sinusoidal law:

fx(y, t) =
✓

2y
W

�1
◆
[ f0 + f1 sin(W t)] (50)

where f1 = f0/2; according to the non-dimentional form introduced in the Subsect. 2.6, the
following values have been given to the parameters of Eq. (50): f̃0 = 0.0012 and W̃/2p =
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Fig. 5 Time evolutions of bone mass density in the probe point Pm1. Parametric analysis varying load fre-
quencies: {0, 5, 10, 20} cycles per unit of time (a week).

0,5,10,20 cycles per time unit (a week). The values of the parameters introduced in Sec. 2
and used in numerical simulations are summarized in Tab. 2.

Figure 5 shows the time evolutions of bone mass density at the probe point Pm1 (Fig. 1).
In particular, Fig. 5(a) shows the curves obtained by using as a stimulus that provided by
Eq. (33), i.e. the energy density of elastic deformation. It is noted the difference between
static ( f0 6= 0, f1 = 0) and dynamic ( f0 6= 0, f1 6= 0) application, Eq. (50), of the load and the
substantial independence of the frequency on the response. In Fig. 5(b) the adoption of the
mixed stimulus given by Eq. (39) allows to highlight the dependence of the response from
the frequency of the applied load, as experimentally observed. In particular, it is noted that
the growth process is favored by the increase in frequency, even if the level of saturation
of the mass density is reduced —albeit slightly— with increasing frequency, because of the
interaction with the bioresorbable material; in fact, the accelerated growth of the bone does
not allow time to the biomaterial to be reabsorbed and then does not leave space to the bone
to fill it.

Figures 6 and 7 show the distributions of the mass density of bone (Fig. 6) and bio-
material (Fig. 7) over the sample at the end of the process for the different frequencies. The
two initially distinct areas of bone and artificial material are highlighted by the labels ‘B’ and
‘M’. The stimulus combination of strain energy and power dissipation, Eq. (39), was used in
this analysis. With increasing frequency, there is a diversification of the density distribution
of bone mass, which reaches saturation in areas increasingly wide near the edges parallel
to the x-axis in the region of the bone (i.e. in the most stressed zones). In the region of the
bio-material there is a tendency to greater uniformity in the distribution of mass density,
with a groove located at the neutral axis, always less accentuated as the frequency increases.
In general, the increase in the frequency favors a greater uniformity. Figure 7 shows in a
complementary manner the same effects described above seen from the point of view of the
bio-material, that is a lower resorption of the material occurs where bone growth is faster;
this phenomenon is the more marked the higher the frequency. At low frequencies and in the
static case, the bone grows less quickly, and the bio-material has more time to be reabsorbed.

Figure 8 shows the distribution of the porosity of the mixture at the end of the process at
the different frequencies examined. We can observe that the overall porosity decreases with
increasing frequency, and in particular, this decrease is more evident in the region of the
bio-material and in areas close to the edges parallel to the x-axis. Comparing Fig. 8 with the
corresponding Figs. 6 and 7 it can be seen that the low porosity in the zones of the neutral
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(a) Static case (b) load frequency: 5 cycles per unit of time

(c) load frequency: 10 cycles per unit of time (d) load frequency: 20 cycles per unit of time

Fig. 6 Bone mass density at the end of the process. Parametric analysis varying load frequencies: {0, 5, 10,
20} cycles per unit of time (a week). The labels ‘B’ and ‘M’ stand for Bone and graft Material, respectively.

axis is mainly due to the fact that, as the frequency increases, resorption of both bone and
the material is less significant.

4 Conclusions

The subject of this work is the study of biological and mechanical interaction of a graft of
bio-resorbable material with a portion of bone tissue under the action of a bending load;
in this regard some aspects of the phenomena related to the remodeling under mechanical
stimulus have been described. The two-component system is considered as a porous mix-
ture. In particular, the behavior of the material is described according to the model used for
the poro-visco-elastic materials with fully saturated voids. The fluid flow in inter trabecular
porosity (PIT) is evaluated by means of a Darcy-Brinkman dissipative model. At the level of
Collagen-Apatite porosity (PCA) and lacunar-canalicular porosity (PLC) the dissipation is
taken into account by means of the Kelvin-Voigt rheological model. At the level of porosity
of PIT, it is also considered a dissipation associated with the micromorphic variable that is
the change of porosity. A non-linear behavior has been assumed to describe the relation-
ship between strain and displacement. As a stimulus, a linear combination of strain energy
density and power dissipation, duly weighted, has been proposed. The key idea of consid-
ering such a form of the stimulus has been suggested by the knowledge that the bone is
called to play a role in carrying capacity of permanent static loads, fatigue resistance against
excitation varying in time and dynamic resilience against traumatic-impulsive events. The
non-local character of osteocytes’s sensitivity has been schematically accounted for by spa-
tially averaging the stimulus over a suitable zone of influence here supposed to be spherical.
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(a) Static case (b) load frequency: 5 cycles per unit of time

(c) load frequency: 10 cycles per unit of time (d) load frequency: 20 cycles per unit of time

Fig. 7 Biomaterial mass density at the end of the process. Parametric analysis varying load frequencies:
{0, 5, 10, 20} cycles per unit of time (a week). The labels ‘B’ and ‘M’ stand for Bone and graft Material,
respectively.

(a) Static case (b) load frequency: 5 cycles per unit of time

(c) load frequency: 10 cycles per unit of time (d) load frequency: 20 cycles per unit of time

Fig. 8 Porosity at the end of the process. Parametric analysis varying load frequencies: {0, 5, 10, 20} cycles
per unit of time. The labels ‘B’ and ‘M’ stand for Bone and graft Material, respectively.
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The expression used for the stimulus lends itself to the idea of optimizing the values of the
coefficients of the linear combination, in order to obtain a numerical simulation of the ex-
perimental results as much as possible close to real situations. Moreover, this optimization
can lead to interpret the phenomenon of functional adaptation in view of adaptive optimal
control, especially in relation to the preparation of programs of extreme training and of post-
traumatic and/or post-operative rehabilitation. Finally, the definition of the stimulus adopted
in this work allows to put in evidence the dependence of the phenomenon of remodeling
on the frequency of the applied load, as already observed in previous works. Another note-
worthy result achieved in the present work was to have identified the “normalized specific
surface” useful to the characterization of the effect of porosity on remodeling; this iden-
tification was made on the basis of a geometric model based on the assumption of some
modular forms that simulate the trabecular network. The values obtained are very close to
those obtained by similar interpolated curves from experimental results.
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