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An extension of the Tusnady inequality for general
distributions

Ion Grama
Université de Bretagne Sud, France

ion.grama@univ-ubs.fr

Under mild assumptions an analog of Tusnady’s inequality for conditional
distributions of partial sums of independent nonidentically distributed r.v.’s is
obtained. These type of inequalities provide very sharp bounds for couplings of
random variables via quantile transformations, which are main tools for proving
various strong invariance principles for sums of independent random variables.
We reffer to Komlós, Major and Tusnády (1975, 1976), Sakhanenko (1984),
Zaitsev (1996), Grama, I. and Nussbaum, M. (2002), Carter and Pollard (2004)
and to references therein for details. Recently quantile transformations have
been applied for establishing a constructive asymptotic equivalence of statistical
experiments, see Brown, Carter, Low and Zhang (2004).

Let (Ω,F , P ) be a probability space and λ be a real number satisfying 0 <
λ < ∞. Denote by D(λ) the subset of all real valued random variables S on the
probability space (Ω,F , P ), which admits for some n ≥ 1, a representation of
the form S = X1 + ... + Xn, where X1, ..., Xn are independent r.v.’s, satisfying
assumptions

A1 The r.v.’s X1, ..., Xn are of means zero and finite variances:

EXi = 0, 0 < EX2
i < ∞, i = 1, ..., n.

A2 The following Sakhanenko’s condition holds true:

λE |Xi|3 exp {λ |Xi|} ≤ EX2
i , i = 1, ..., n.

Let i =
√−1 and ε, ν be real numbers, such that 0 < ε ≤ 1/96 and 0 < ν <

∞. Denote by D1(λ) the subset of all r.v.’s S ∈ D(λ) which additionally satisfy
the smoothness assumption

S1 The r.v. S is such that,

sup
|h|≤λ

∫

|t|>ελ

∣∣∣∣
E exp {(it + h)S}

Eexp {hS}

∣∣∣∣ dt ≤ ν

λES2
.

Denote by D2(λ) the subset of all r.v.’s S ∈ D(λ) which take discrete values
a + ∆k, k ∈ {0,±1,±2, ...} with maximal span ∆, where 0 ≤ a < ∆ and
λ∆ ≤ π/ε, and which additionally satisfy the assumption (S2)

S2 The r.v. S is such that,

sup
|h|≤λ

∫

ελ<|t|≤π/∆

∣∣∣∣
Eexp {(it + h)S}

Eexp {hS}

∣∣∣∣ dt ≤ ν

λES2
.
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Let us agree that X is the range of a r.v. S in the class D1(λ) or D2(λ), i.e.
X = R, if S ∈ D1(λ) and X = {a + ∆k : k = 0,±1,±2, ...} , if S ∈ D2(λ).

Assume that we are given three r.v.’s S0, S1 and S2 with mean 0 and finite
variance, so that S1 and S2 are independent and S0 = S1 + S2, Si ∈ D(λ). Set
B2

k = ES2
k, k = 0, 1, 2 and B = B1B2/B0. Let Ψk(h) be the cumulant generating

function of the r.v. Sk, i.e.

Ψk(h) = log E exp{hSk}, |h| ≤ λ, k = 0, 1, 2.

It is easy to see that Ψ′0(h) is strictly increasing, for |h| ≤ λ. Let H0(x) = h
be the solution of the equation Ψ′0(h) = x, for x in the range of Ψ′0(h). Set
B = B1B2/B0,

µ(y) = Ψ′1(H0(y)) = y −Ψ′2(H0(y)),

and
σ2(y) = Ψ′′1(H0(y))Ψ′′2(H0(y))/Ψ′′0(H0(y)).

Define the conditional distrubution function

F (x|y) = P (S1 ≤ x|S0 = y) .

In the sequel ci, i = 0, 1, ... denote positive absolute constants and θi, i = 1, 2, ...
real numbers satisfying |θi| ≤ 1.

Theorem 1. Assume that S0, S1, S2 ∈ D1(λ) or S0, S1, S2 ∈ D2(λ), for
some 0 < λ < ∞. Then, for any x, y ∈ X satisfying |x| ≤ c0λB2 and |y| ≤
c0λB2, we have

F (x + µ(y)|y) = Φ
(

x

σ(y)
+ θ1

c1

λσ(y)

(
1 +

x2

σ2(y)

))
,

provided λB ≥ c2. Moreover, for y ∈ X satisfying |y| ≤ c0λB2, we have

µ(y) = β1y + θ2c3
y2

λB2
,

1
σ2(y)

=
1

B2
+ θ3c4

|y|
λB4

,

where β1 = B2
1/B2

0 .
In the case case of sums of i.i.d. r.v.’s we get the following result. Let

ξ1, ..., ξn, n ≥ 1 be a sequence of i.i.d. r.v.’s of means 0 and finite variances
σ2 = Eξ2

i < ∞, obeying one of the two conditions (G1) or (G2) below:

G1 For some 0 < λ < ∞ and q ≥ 1,

sup
|h|≤λ

∫ ∞

−∞
|Eexp((it + h)ξi)|q dt < ∞.

G2 The r.v. ξi takes values on the lattice a + ∆k, k ∈ Z with maximal span ∆
and for some 0 < λ < ∞,

Eexp(λ |ξi|) < ∞.

The common cumulant generating function of ξi-th is denoted by ψ(t) =
log E exp(tξi), for |t| ≤ λ. Let h(x), |x| ≤ λ/8 be the inverse of the monotone
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function ψ′(t), |t| ≤ λ/4. Assume that n1, n2 are positive integers such that n1+
n2 = n. Set S1 = ξ1+...+ξn1 , S0 = ξ1+...+ξn and F (x|y) = P (S1 ≤ x|S0 = y) .

Theorem 2. For any |x| ≤ c0λnσ2 and |y| ≤ c0λnσ2, we have

F (x + µ(y)|y) = Φ
(

x

σ(y)
+ θ1

c1

λσ(y)

(
1 +

x2

σ2(y)

))
.

where
µ(y) =

n1

n
y, σ2(y) =

n1n2

n
ψ′′

(
h

( y

n

))
.

Proofs of Theorems 1 and 2 rely on Lemmas 1 and 2 below, which are of
independent interest.

Assume that we are given a real valued r.v. X, which has a density p(x)
w.r.t. Lebesque measure on the real line. We shall impose conditions (C1-C2)
below, where γ0, ..., γ4 > 0 and σ > 1 denote real quantities not depending on
x.

C1 For any |x| ≤ γ0σ,

p(x) =
1√
2π

exp
(
−x2

2
+ θ1

γ1

2
x3

σ

)(
1 + θ2γ2

1 + |x|
σ

)
,

where |θi| ≤ 1, i = 1, 2.

C2 For any |x| ≤ γ0σ and any real z satisfying zx ≥ 0,

p (x + z) ≤ γ3 exp
(
−x2

2
+

γ1

2
x3

σ
− γ4zx

)
.

Lemma 1. Assume that the density p(x) satisfies conditions (C1-C2).
Then, for any x satisfying |x| ≤ c0σ, we have

Φ
(

x− c1
1 + x2

σ

)
≤ P (X ≤ x) ≤ Φ

(
x + c1

1 + x2

σ

)
,

provided σ ≥ c2, where c0, c1 and c2 are constants depending only on γ0, ..., γ4.
Let ∆0 > 0 and ∆ ∈ (0, ∆0]. Assume that we are given a r.v. X, which takes

discrete values ak = a+k∆, k ∈ {0,±1,±2, ...} , with maximal span ∆ and with
a ∈ [0, ∆). In the sequel we shall impose conditions (D1-D2) below, where we
assume that γ0, ..., γ4 > 0 and σ > 1 denote real quantities not depending on
values ak, k ∈ {0,±1,±2, ...} . For the sake of brevity we set xk = ak/σ.

D1 For any integer k satisfying |xk| ≤ γ0σ,

P (X = ak) =
∆√
2πσ

exp
(
−x2

k

2
+ θ1

γ1

2
x3

k

σ

)(
1 + θ2γ2

1 + |xk|
σ

)
.

D2 For any integers k, j satisfying |xk| ≤ γ0σ and (xk+j − xk)xk ≥ 0,

P (X = ak+j) ≤ γ3
∆
σ

exp
(
−x2

k

2
+

γ1

2
x3

k

σ
− γ4(xk+j − xk)xk

)
.
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Lemma 2. Assume that conditions (D1-D2) are satisfied. Then, for any
xk satisfying |xk| ≤ c0σ,

Φ
(

xk − c1
1 + x2

k

σ

)
≤ P (X ≤ ak) ≤ Φ

(
xk + c1

1 + x2
k

σ

)
,

provided σ ≥ c2, where c0, c1 and c2 are constants depending only on γ0, ..., γ4

and ∆0.
Note that condition ∆ ∈ (0, ∆0] is used to assure the uniformity of the

assertion of the lemma in ∆.
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