
HAL Id: hal-01270339
https://hal.science/hal-01270339v1

Submitted on 26 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Big continuous data: dealing with velocity by composing
event streams

Genoveva Vargas-Solar, Javier Alfonso Espinosa Oviedo, José-Luis
Zechinelli-Martini

To cite this version:
Genoveva Vargas-Solar, Javier Alfonso Espinosa Oviedo, José-Luis Zechinelli-Martini. Big continuous
data: dealing with velocity by composing event streams . Shui Yu; Song Guo. Big Data Concepts,
Theories and Applications, Springer Verlag, 2016, 978-3-319-27763-9. �hal-01270339�

https://hal.science/hal-01270339v1
https://hal.archives-ouvertes.fr


Big continuous data: dealing with velocity by 
composing event streams 

Genoveva Vargas-Solar1, Javier A. Espinosa Oviedo1, José Luis Zechinelli 
Martini2 

1CNRS, LIG LAFMIA 

681 rue de la Passerelle BP 72 

38402 Saint Martin d’Hères, France 
2 Fundación Universidad de las Américas Puebla, LAFMIA 

Exhacienda Sta. Catarina Mártir s/n 

72810 San Andrés Cholula, México  

genoveva.vargas@imag.fr, javier.espinosa@imag.fr, joseluis.zechinelli@udlap.mx  

Abstract.  The rate at which we produce data is growing steadily, thus creating 
even larger streams of continuously evolving data. Online news, micro-blogs, 
search queries are just a few examples of these continuous streams of user activi-
ties. The value of these streams relies in their freshness and relatedness to on-
going events. Modern applications consuming these streams need to extract be-
haviour patterns that can be obtained by aggregating and mining statically and dy-
namically huge event histories. An event is the notification that a happening of in-
terest has occurred. Event streams must be combined or aggregated to produce 
more meaningful information. By combining and aggregating them either from 
multiple producers, or from a single one during a given period of time, a limited 
set of events describing meaningful situations may be notified to consumers. 
Event streams with their volume and continuous production cope mainly with two 
of the characteristics given to Big Data by the 5V’s model: volume & velocity. 
Techniques such as complex pattern detection, event correlation, event aggrega-
tion, event mining and stream processing, have been used for composing events. 
Nevertheless, to the best of our knowledge, few approaches integrate different 
composition techniques (online and post-mortem) for dealing with Big Data veloc-
ity. This chapter gives an analytical overview of event stream processing and 
composition approaches: complex event languages, services and event querying 
systems on distributed logs. Our analysis underlines the challenges introduced by 
Big Data velocity and volume and use them as reference for identifying the scope 
and limitations of results stemming from different disciplines: networks, distribut-
ed systems, stream databases, event composition services, and data mining on 
traces. 



2  

1 Introduction 

The rate at which we produce data is growing steadily, thus creating even larg-
er streams of continuously evolving data. Online news, micro-blogs, search que-
ries are just a few examples of these continuous streams of user activities. The 
value of these streams relies in their freshness and relatedness to on-going events. 
Massive data streams that were once obscure and distinct are being aggregated and 
made easily accessible.  

Modern applications consuming these streams require to extract behaviour pat-
terns that can be obtained by aggregating and mining statically and dynamically 
huge event histories. An event is the notification that a happening of interest has 
occurred. Event streams are continuous flows of events stemming from one or 
several producers. They must be combined or aggregated to produce more mean-
ingful information. By combining and aggregating them either from multiple pro-
ducers, or from a single one during a given period of time, a limited set of events 
describing meaningful situations may be notified to consumers.  

Event streams with their volume and continuous production cope mainly with 
two of the characteristics given to Big Data by the 5V’s model: volume & veloci-
ty. Event-based systems have gained importance in many application domains, 
such as management and control systems, large-scale data dissemination, monitor-
ing applications, autonomic computing, etc. Event composition has been tackled 
by several academic research and industrial systems. Techniques such as complex 
pattern detection, event correlation, event aggregation, event mining and stream 
processing, have been used for composing events. In some cases event composi-
tion is done on event histories (e.g. event mining) and in other cases it is done on-
line as events are produced (e.g. event aggregation and stream processing). Never-
theless, to the best of our knowledge, few approaches integrate different composi-
tion techniques (online and post-mortem) for dealing with Big Data velocity and 
volume.  

This chapter gives an analytical overview of event stream processing and com-
position approaches that can respond to the challenges introduced by Big Data 
volume and velocity. Examples of these approaches are complex event languages, 
services and event querying systems on distributed logs. Our analysis underlines 
the challenges introduced by Big Data velocity and volume and use them as refer-
ence for identifying the scope and limitations of results stemming from different 
disciplines: networks, distributed systems, stream databases, event composition 
services, and data mining on traces.  

Accordingly, this chapter is organized as follows. Section 2 introduces the 
problem related to Big Data velocity by studying two main techniques: event his-
tories and online event processing. It also describes target applications where data 
velocity is a key element. Section 3 gives an overview of existing event stream 



3 

models. It discusses the main principles for modelling event streams. Section 4 
gives an overview of event composition techniques. It compares existing ap-
proaches for exploiting streams either by composing them or by applying analytics 
techniques. Finally, section 5 concludes the chapter and discusses big data veloci-
ty outlook. 

2 Big data velocity issues 

This section introduces the challenges associated with Big Data velocity. In 
particular it describes stream processing challenges and results that are enabling 
ways of dealing with Big Data velocity. First the section gives the general lines of 
stream processing and existing prominent systems. Then it discusses event histo-
ries, which provide a complementary view for dealing with continuous data pro-
duced in a producers/consumers setting. The notion of event histories can be seen 
as Big Data produced at high rates and that must be analysed taking into consider-
ation their temporal and spatial features. Finally, the section describes target ap-
plications families where Big Data velocity acquires particular importance. 

2.1 Stream processing and velocity 

Stream processing is a programming paradigm that processes continuous event 
(data) streams. They arise in telecommunications, health care, financial trading, 
and transportation, among other domains. Timely analysis of such streams can be 
profitable (in finance) and can even save lives (in health care). In the streaming 
model, events arrive at high speed, and algorithms must process them in one pass 
under very strict constraints of space and time. Furthermore, often the events vol-
ume is so high that it cannot be stored on disk or sent over slow network links be-
fore being processed. Instead, a streaming application can analyse continuous 
event streams immediately, reducing large-volume input streams to low-volume 
output streams for further storage, communication, or action. 

The challenge is to setup a processing infrastructure able to collect information 
and analyse incoming event streams continuously and in real-time. Several solu-
tions can be used in that sense. For instance, stream database systems were a very 
popular research topic a few years ago. Their commercial counterparts (such as 
Streambase41 or Truviso52) allow users to pose queries using declarative lan-

                                                             

1 http://www.streambase.com 



4  

guages derived from SQL on continuous event streams. While extremely efficient, 
the functionalities of such systems are intrinsically limited by built in operators 
provided by the system. Another class of systems relevant to Big Data velocity are 
distributed stream processing frameworks. These frameworks typically propose a 
general-purpose, distributed, and scalable platform that allows programmers to 
develop arbitrary applications for processing continuous and unbounded event 
streams. IBM InfoSphere, StreamBase [1], Apache S4 [2], Storm [3], SAMOA 
and Twitter Storm are popular examples of such frameworks. 

Streaming algorithms use probabilistic data structures and give fast, approxi-
mated answers. However, sequential online algorithms are limited by the memory 
and bandwidth of a single machine. Achieving results faster and scaling to larger 
event streams requires parallel and distributed computing.  

The streaming paradigm is necessary to deal with the data velocity; and distrib-
uted and parallel computing to deal with the volume of data. Much recent work 
has attempted to address parallelism by coping data structures used for composing 
streams with physical architectures (e.g., clusters). This makes it easier to exploit 
the nested levels of hardware parallelism, which is important for handling massive 
data streams or performing sophisticated online analytics. Data models promoted 
by the NoSQL trend is addressing variety and also processing efficiency on clus-
ters  [4].  

There are two approaches for dealing with streams consumption and analytics. 
The first one, event histories querying, supposes that there are histories or logs 
that are continuously fed with incoming events and that it is possible to perform 
dynamic and continuous (i.e., recurrent) querying and processing. The second one, 
complex event processing (CEP) [5], supposes that streams cannot be stored and 
that on-line processing and delivery are performed at given rates eventually com-
bining them with stored data. The following sections describe these approaches. 

2.2 Querying event histories 

Events can be stored in event histories or logs. An event history is a finite set of 
events ordered by their occurrence time, and in which no two events have the 
same identifier. Because the number of produced events can reach thousands of 
events per second or higher [6], the size of an event history can be huge, increas-
ing the difficulty of its analysis for composing events. 

                                                                                                                                            
2 http://www.dbms2.com/category/products-and-vendors/truviso/ 



5 

Distributed event processing approaches, deal with events with respect to sub-
scriptions managed as continuous queries, where results can also be used for fur-
ther event compositions. According to the type of event-processing strategy 
(i.e., aggregation, mining, pattern look up or discovery), event-processing results 
can be notified as streams or as discrete results. In both cases, event processing is 
done with respect to events stemming from distributed producers. Provided that 
approaches enable dynamic and post-mortem event processing, they use different 
and distributed event histories for detecting event patterns. For example, the over-
all load of a cluster system is given by memory and CPU consumption. So, in or-
der to compute the load model of the cluster, the event histories representing 
memory and CPU consumption of each computer in the cluster have to be com-
bined and integrated with on-line event streams. Thus, histories must be analysed 
and correlated with on-line event streams to obtain the load (memory and CPU 
consumption) of the cluster.  

Furthermore, event processing must handle complex subscriptions that inte-
grate stream processing and database lookup to retrieve additional information. In 
order to do such kind of event processing, a number of significant challenges must 
be addressed. Despite the increasingly sizes of event histories, event processing 
needs to be fast. Filtering, pattern matching, correlation and aggregation must all 
be performed with low latency. The challenge is to design and implement event 
services that implement event processing by querying distributed histories ensur-
ing scalability and low latency. 

Continuous query processing have attracted much interest in the database 
community, e.g., trigger and production rules processing, data monitoring [7], 
stream processing [8], and publish/subscribe systems [9–11]. In contrast to tradi-
tional query systems, where each query runs once against a snapshot of the data-
base, continuous query systems support queries that continuously generate new re-
sults (or changes to results) as new data continue to arrive [12]. Important projects 
and systems address continuous query processing and data streams querying. For 
example, OpenCQ [9], NiagaraCQ [13], Alert [14], STREAM (STanford stream 
datA Management) [1], Mobi-Dic [15], PLACE (Pervasive Location-Aware Com-
puting Environments) [16, 17] and PLASTIC – IST FP6 STREP. 

Concerning query languages, most proposals define extensions to SQL with 
aggregation and temporal operators. Languages have been proposed for expressing 
the patterns that applications need to observe within streams: ESPER [18], FTL, 
and Streams Processing Language (SPL) [19]. For example, SPL is the program-
ming language for IBM InfoSphere Streams [20], a platform for analysing Big Da-
ta in motion meaning continuous event streams at high data-transfer rates. In-
foSphere Streams processes such events with both high throughput and short 
response times. SPL abstracts away the complexity of the distributed system, in-
stead exposing a simple graph-of-operators view to the user. To facilitate writing 
well-structured and concise applications, SPL provides higher-order composite 



6  

operators that modularize stream sub-graphs. Optimization has been addressed 
with respect to the characteristics of sensors [21]. Other approaches such as [22] 
focus on the optimization of operators. For example, to enable static checking 
while exposing optimization opportunities, SPL provides a strong type system and 
user-defined operator models. 

2.3 Complex event processing 

A special case of stream processing is complex event processing (CEP) [5]. 
CEP refers to data items in input streams as raw events and to data items in output 
streams as composite (or derived) events. A CEP system uses patterns to inspect 
sequences of raw events and then generates a composite event for each match, for 
example, when a stock price first peaks and then dips below a threshold. Promi-
nent CEP systems include NiagaraCQ [23], SASE (Stream-based and Shared 
Event processing) [17], Cayuga [16], IBM WebSphere* Operational Decision 
Management (WODM) [24], Progress Apama [12], and TIBCO Business 
Events [25].  

The challenge of CEP [5] is that there are several event instances that can satis-
fy a composite event type. Event consumption has been used to decide which 
component events or an event stream are considered for the composition of a 
composite event, and how the event parameters of the composite event are com-
puted from its components. The event consumption modes are classified in recent, 
chronicle, continuous and cumulative event contexts (an adaptation of the parame-
ter contexts [26, 27]). 

Consider the composite event type E3 = (E1 ; E2) where E1, E2 represent 
event types and “;” denotes the operator sequence. The expression means that we 
are looking for patterns represented by E3 where instances of E1 are produced af-
ter instances of E2. Consider the event history H = {{e11}, {e12}, {e13}, 
{e21}}. Thus, the event consumption mode determines which instances e1-
event(s) to combine with e21 for the production of instances of the composite 
event of type E3. An instance of the type E1 will be the initiator of the composite 
event occurrence, while an instance of type E2 will be its terminator. 

- Recent: Only the newest instance of the event type E1 is used as initiator for 
composing an event of type E3. In the above example, the instance e11 of event 
type E1 is the initiator of the composite event type E3 = (E1 ; E2). If a new in-
stance of type E1 is detected (e.g. e12), the older instance in the history is overwrit-
ten by the newer instance. Then, the instance e21 of type E2 is combined with the 
newest event occurrence available: (e13, e21).  

An initiator will continue to initiate new composite event occurrences until a 
new initiator occurs. When the composite event has been detected, all components 



7 

of that event (that cannot be future initiators) are deleted from the event history. 
Recent consumption mode is useful, e.g. in applications where events are happen-
ing at a fast rate and multiple occurrences of the same event only refine the previ-
ous value. 

- Chronicle: For a composite event occurrence, the (initiator, terminator) pair is 
unique. The oldest initiator and the oldest terminator are coupled to form the com-
posite event. In the example, the instance e21 is combined with the oldest event 
occurrence of type E1 available: (e11, e21).  

In this context, the initiator can take part in more than one event occurrence, 
but the terminator does not take part in more than one composite event occurrence. 
Once the composite event is produced, all constituents of the composite event are 
deleted from the event history. The chronicle consumption mode is useful, e.g. in 
application where there is a connection between different types of events and their 
occurrences, and this connection needs to be maintained. 

- Continuous: Each initiator event starts the production of that composite event. 
The terminator event occurrence may then trigger the production of one or more 
occurrences of the same composite event, i.e. the terminator terminates those 
composite events where all the components have been detected (except for the 
terminator). In the example, e21 is combined with all event of type E1: (e11, 
e21), (e12, e21) and (e13, e21); and does not delete the consumed events.  

The difference between the continuous and the recent and chronicle consump-
tion modes is that in the latter one initiator is coupled with one terminator, where-
as the continuous consumption mode one terminator is coupled with one or many 
initiators. In addition, it adds more overhead to the system and requires more stor-
age capacity. This mode can be used in applications where event detection along a 
moving time window is needed. 

- Cumulative: All occurrences of an event type are accumulated until the compo-
site event is detected. In the example, e21 is combined with all event occurrences 
of type E1 available (e11, e12, e13, e21).  

When the terminator has been detected, i.e. the composite event is produced; all 
the event instances that constitute the composite event are deleted from the event 
history. Applications use this context when multiple occurrences of component 
events need to be grouped and used in a meaningful way when the event occurs. 

2.4 Target applications 

Big Data is no longer just the domain of actuaries and scientists. New technol-
ogies have made it possible for a wide range of people – including humanities and 
social science academics, marketers, governmental organizations, educational in-



8  

stitutions, and motivated individuals – to produce, share, interact with, and organ-
ize data. This section presents three challenges where Big Data velocity is particu-
larly important and it is an enabling element for addressing application require-
ments: digital shadow analytics that relates velocity, volume, and value; smart 
cities and urban computing and industry 4.0 that relate velocity and volume and 
veracity.  

2.4.1 Extracting value out of the digital shadow 

The digital shadow of individuals is growing faster every year, and most of the 
time without knowing it. Our digital shadow is made up of information we may 
deem public but also data that we would prefer to remain private. Yet, it is within 
this growing mist of data where big data opportunities lie — to help drive more 
personalized services, manage connectivity more efficiently, or create new busi-
nesses based on valuable, yet-to-be-discovered intersections of data among groups 
or masses of people.  

Today, social-network research involves mining huge digital data sets of col-
lective behaviour online. The convergence of these developments — mobile com-
puting, cloud computing, big data, and advanced data mining technologies — is 
compelling many organizations to transition from a "chasing compliance" mind 
set to a risk management mind set. Big streams’ value comes from the patterns 
that can be derived by making connections between pieces of data, about an indi-
vidual, about individuals in relation to others, about groups of people, or simply 
about the structure of information itself. 

Advertisers, for instance, would originally publicize their latest campaigns stat-
ically using pre-selected hash-tags on Twitter. Today, real-time data processing 
opens the door to continuous tracking of their campaign on the social networks, 
and to online adaptation of the content being published to better interact with the 
public, e.g., by augmenting or linking the original content to new content, or by 
reposting the material using new hash-tags. Online social networks, like Facebook 
or Twitter, are increasingly responsible for a significant portion of the digital con-
tent produced today. As a consequence, it becomes essential for publishers, stake-
holders and observers to understand and analyse the data streams originating from 
those networks in real-time. However, current (de-facto standard) solutions for big 
data analytics are not designed to deal with evolving streams. 

Open issues are related with the possibility of processing event streams (vol-
ume) in real-time (velocity) in order to have a continuous and accurate views of 
the evolution of the digital shadow (veracity). This implies to make event streams 
processing scale and provide support for making decisions on which event histo-
ries should persist and those that are volatile, those that should be filtered and cor-
related to have different perspectives of peoples and crowds digital shadow ac-



9 

cording to application requirements. Event stream types, processing operators, 
adapted algorithms and infrastructures need to be understood and revisited for ad-
dressing digital shadow related challenges. 

2.4.2 Smart cities and urban computing 

The development of digital technologies in the different disciplines, in which 
cities operate, either directly or indirectly, is going to alter expectations among 
those in charge of the local administration. Every city is a complex ecosystem 
with a lot of subsystems to make it work such as work, food, cloths, residence, of-
fices, entertainment, transport, water, energy etc. With the growth there is more 
chaos and most decisions are politicised, there are no common standards and data 
is overwhelming. 

Smart cities are related to sensing the city’s status and acting in new intelligent 
ways at different levels: people, government, cars, transport, communications, en-
ergy, buildings, neighbourhoods, resource storage, etc. A vision of the city of the 
“future”, or even the city of the present, remains on the integration of science and 
technology through information systems. For example, unlike traditional maps, 
which are often static representations of distributed phenomena at a given moment 
in time, Big data collection tools can be used for grasping the moving picture of 
citizens' expressions, as they are constantly changing and evolving with the city it-
self (identifying urban areas and colour them according to the time period of the 
day they are pulsing the most) [28].  

Big data streams can enable online analysis of users’ perceptions related to 
specific geographic areas; and post-mortem analysis for understanding how spe-
cific user groups use public spaces; discover meaningful relationships and connec-
tions between places, people and uses. Big event histories can be analysed for un-
derstanding how specific features of city spaces, services and events affect 
people's emotions; detect post-event/fair reactions and comments by citizens and 
participants. These analytics processes can support the development of tools 
aimed at assisting institutions and large operators, involved in monitoring, design-
ing and implementing strategies and policies oriented to improve the responsive-
ness of urban systems to the requests of citizens and customers. 

2.4.3 Robotics and Industry 4.0 

Big data analytics and cloud architectures allow leveraging large amounts of 
structured, unstructured and fast-moving data. Putting this technology into robot-
ics can lead to interesting dimensions to well-known problems like SLAM and 
lower-skilled jobs executions (assembly line, medical procedures and piloting ve-
hicles). Rather than viewing robots and automated machines as isolated systems, 



10  

Cloud Robotics and Automation is a new paradigm where robots and automation 
systems exchange data and perform computation via networks. Extending work 
linking robots to Internet, Cloud Robotics and Automation builds an emerging re-
search in cloud computing, machine learning, big data, and industry initiatives in 
the Internet of Things, Industrial Internet, and Industry 4.0. 

For example, SLAM is a technique used by digital machines to construct a map 
of an unknown environment while keeping track of the machine's location in the 
physical environment. This requires a great deal of computational power to sense 
a sizable area and process the resulting data to both map and localize. Complete 
3D SLAM solutions are highly computationally intensive as they use complex re-
al-time particle filters, sub-mapping strategies or combination of metric topologi-
cal representations. Robots using embedded systems cannot fully implement 
SLAM because of their limitation in computing power. Big Data can enable inter-
active data analysis with real-time answers that can empower intelligent robots to 
analyse enormous and unstructured datasets (big data analytics) to perform jobs. 
This of course requires the processing of huge amounts of event streams coming 
from robots that must be processed efficiently to support on-line dynamic deci-
sion-making. 

3 Event stream models  

A vast number of event management models and systems have been and con-
tinue to be proposed. Several standardization efforts are being made to specify 
how entities can export the structure and data transported by events. Existing 
models have been defined in an ad hoc way, notably linked to the application con-
text (active DBMS event models), or in a very general way in middleware (Java 
event service, MOMs). Of course, customizing solutions prevents systems to be 
affected with the overhead of an event model way too sophisticated for their 
needs. However, they are not adapted when the systems evolve, cooperate and 
scale, leading to a lack of adaptability and flexibility.  

This section introduces the background concepts related to event streams and 
related operators. It mainly explains how event types become streams and how 
this is represented in models that are then specialized in concrete event stream sys-
tems. 

3.1 From event types to streams 

The literature proposes different definitions of an event. For example, in [29] 
an event is a happening of interest, which occurs instantaneously at a specific 



11 

time. [30] characterizes an event as the instantaneous effect of the termination of 
an invocation of an operation on an object. In this document we define an event in 
terms of a source named producer in which the event occurs, and a consumer for 
which the event is significant.  

An event type characterizes a class of significant facts (events) and the context 
under which they occur. An event model gives concepts and general structures 
used to represent event types. According to the complexity of the event model, the 
event types are represented as sequences of strings [31], regular expressions – pat-
terns – [32] or as expressions of an event algebra [26, 33, 34]. In certain models, 
the type itself contains implicitly the contents of the message. Other models repre-
sent an event type as a collection of parameters or attributes. For example, Up-
dateAccount(idAccount:string, amount:real) is an event type that 
represents the updates executed on an account with number idAccount  and 
where the amount implied in the operation is represented by the attribute 
amount. Event types have at least two associated parameters: an identifier 
and a timestamp.  

In addition, an event type can have other parameters describing the circum-
stances in which events occurred. This information describes the event production 
environment or event context. In some models, the event type is represented by a 
set of tuples of the form (variable, domain). Generally, these parameters represent 
for instance the agents, resources, and data associated with an event type, the re-
sults of the action (e.g., return value of a method), and any other information that 
characterizes a specific occurrence of that event type. For example, in active sys-
tems, the parameters of an event are used to evaluate the condition and to execute 
the action of an ECA rule. 

Event types can be classified as primitive event types that describe elementary 
facts, and composite event types that describe complex situations by event combi-
nations. 

A primitive event type characterizes an atomic operation (i.e., it completely oc-
curs or not). For example, the update operation of an attribute value within a struc-
ture, the creation of a process. In the context of databases, primitive event types 
represent data modification (e.g. the insertion, deletion or modification of tuples), 
transactions processing (e.g. begin, commit or abort transactions). In an object-
oriented context, a method execution can be represented by a primitive event type. 

Many event models classify the primitive event types according to the type of 
operations they represent (databases, transactional, applicative). These operations 
can be classified as follows: 

• Operations executed on data: an operation executed on a structure, for exam-
ple, a relational table, an object. In relational systems this operation can corre-
spond to an insert/update/delete operation applied to one or more n-tuples. In 
object-based systems, it can be a read/write operation of an object attribute. 



12  

• Operations concerning the execution state of a process: events can represent 
specific points of an execution. In DBMS, events can represent execution 
points of a transaction (before or after the transaction delete/commit). In a 
workflow application, an event can represent the beginning (end) of a task. The 
production of exceptions within a process can be represented by events. 

• User operations: an operation on a widget in an interactive interface, the con-
nection of the user to the network, correspond to events produced by a user.  

• Operations produced within the execution context: events can represent situa-
tions produced in the environment: (i) specific points in time (clock), for exam-
ple, it is 19:00 or 4 hours after the production of an event; (ii) events concern-
ing to the operating system, the network, etc. 

A composite event type characterizes complex situations. A composite event type 
can be specified as a regular expression (often called a pattern) or as a set of prim-
itive or other composite event types related by event algebra operators such as dis-
junction, conjunction, sequence).  For example, consider the composite event type 
represented as the regular expression (E1 | E2)* E3 where E1, E2, and E3 are 
event types, “|” represents alternation3, and “*” represents the Kleene closure4. 
The composite event type E4 = E1 op (E2 op E3) is specified by an event al-
gebra where E1, E2, and E3 are primitive or composite event types, and op can 
be any binary composition operator, e.g. disjunction, conjunction, sequence. 

- The occurrence or instance of an event type is called an event. Events occur in 
time and then they are associated to a point in time called event occurrence time 
or occurrence instant. The occurrence time of an event is represented by its 
timestamp. The timestamp is an approximation of the event occurrence time. The 
accuracy of timestamps depends on the event detection strategy and on the 
timestamping method.  

The granularity used for representing time (day, hour, minute, second, etc.) is 
determined by the system. Most event models and systems assume that the time-
line representation corresponds to the Gregorian calendar time, and that it is pos-
sible to transform this representation as an element of the discrete time domain 
having 0 (zero) as origin and ∞ as limit. Then, a point in time (event occurrence 
time) belongs to this domain and it is represented by a positive integer. The event 
(updateAccount(idAccount:0024680, amount:24500), ti) is an 
occurrence of the event type UpdateAccount(idAccount:string, 
amount:real) produced at time ti, where the time may represent an instant, a 
duration or an interval. A duration is a period of time with known length, e.g. 8 

                                                             
3 E1|E2 matches either events of type E1 or E2. 

4 E* is the concatenation of zero or more events of type E. 



13 

seconds. An interval is specified by two instants as [01/12/2006, 
01/12/2007]. 

The notion of event type provides a static view of a happening of interest or a 
behaviour pattern in time. Yet it is not sufficient to represent the dynamic aspect 
of events flowing, that is to say, being produced at a continuous rate. The notion 
of stream provides means to represent event flows. 

3.2 Event streams 

An event stream is represented by an append-only sequence of events having 
the same type T. We note Stream(T) the stream of events of type T. Event streams 
can be continuous, or potentially unbounded (i.e. events can be inserted in a 
stream at any time). A finite part of an event stream of type T is noted Streamf(T). 
In order to define how to deal with this “dynamic” structure used to consume a 
continuous flow of event occurrences, several works have proposed operators to 
represent the partition of the stream so that this partitions can be processed and 
consumed in continuous processes [35].  

The operator window is the most popular one. A window partitions an event 
stream into finite event streams. The result is a stream of finite streams, which we 
note Stream(Streamf(E)). The way each finite stream is constructed de-
pends on the window specification, which can be time-based or tuple-based. 

3.2.1 Time based windows 

Time based windows define windows using time intervals.  
• Fixed window: win:within(tb, te, ESi). Defines a fixed time interval 

[tb, te]. The output stream contains a single finite event stream EiSjf such 
that an event ei of type Ei belong to ESif iff tb ≤ 
ei.receptionTime ≤ te. 

• Landmark window: win:since(tb, ESi). Defines a fixed lower bound 
time tb. The output stream is a sequence of finite event streams ESi,kf k = 
1,…n such that each ESi,kf contains events ei received since the time lower 
bound tb. That is, ∀ 𝑘, 𝑒𝑖 ∈𝐸𝑆𝑖,𝑘𝑓 iff 𝑡𝑏 ≤ 𝑒𝑖.𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒. 

• Sliding window: win:sliding(tw, ts, ESi). Defines a time duration tw 
and a time span ts. The output stream is a sequence of finite event streams 
ESi,kf k = 1,…n such that each ESi,kf contains events of type Ei pro-
duced during tw time unit. The finite event streams in the sequence are pro-
duced each ts time unit. That is, if ESi,kf is produced at time t, then ESi,k+1 
will be produced at time t+ts.  



14  

3.2.2 Tuple based windows 

Tuple based windows define the number of events for each window.  

• Fixed size windows: win:batch(nb, ESi). Specifies a fixed size nb of 
each finite stream. The output stream is a sequence of finite event streams 
ESi,kf k = 1,…n, each finite event stream ESi,kf containing nb most re-
cent events and are non-overlapping. If we consider windows of size 3, the 
event stream ESi, = {ei,1, ei,2, ei,3, ei,4, ei,5, ei,6, …} will be 
partitioned in finite event streams {ESi,1f, ESi,2f,...} such that ESi,1f 
= { ei,1, ei,2, ei,3}, ESi,2f = { ei,4, ei,5, ei,6}, and so on. 

• Moving fixed size windows: win:mbatch (nb, m, ESi). Defines a fixed 
size nb of each finite stream, and a number of events m after which the window 
moves. The output stream is a sequence of finite event streams ESi,kf k = 
1,…n such that each ESi,kf contains nb most recent events of type Ei,. 
ESi,k+1 is started after m events are received in ESi,kf (moving windows). As 
result, an event instance may be part of many finite event streams. This is the 
case if m ≤ nb. For example, if we consider windows of size nb=3 moving af-
ter each m = 2 events, the event stream ESi = {ei,1, ei,2, ei,3, 
ei,4, ei,5, ei,6, ei,7, …} will be partitioned into finite event 
streams {ESi,1f, ESi,2f, ESi,3f , …} such that ESi,1f 
={ei,1, ei,2, ei,3}, ESi,2f = {ei,3, ei,4, ei,5}, 
ESi,3f = { ei,5, ei,6, ei,7}, and so on. 

 

The notions of type and event occurrence are useful for dealing with event 
streams processing phases. Event types are important when addressing the expres-
sion of interesting happenings that can be detected and observed within a dynamic 
environment. As discussed in this section, it is possible to associate to the notion 
of type, operators that can be applied for defining complex event types. An event 
definition language can be developed using such operators. The notion of event 
occurrence is useful to understand and model the association event – time, and 
then model a continuous flow under the notion of stream.  Then it is possible to 
define strategies for composing streams (on-line) and for analysing streams. These 
strategies are discussed in the following section. 

4 Complex event composition 

Event composition is the process of producing composite events from detected 
(primitive and composite) event streams. Having a composite event implies that 
there exists a relation among its component events, such causal order and temporal 
relationships.  



15 

Several academic research and industrial systems have tackled the problem of 
event composition. Techniques such as complex pattern detection [33, 34, 36, 37], 
event correlation [38], event aggregation [6], event mining [39, 40] and stream 
processing [41–43], have been used for composing events. In some cases event 
composition is done on event histories (e.g. event mining) and in other cases it is 
done dynamically as events are produced (e.g. event aggregation and stream pro-
cessing). Analysing an event history searching or discovering patterns produces 
events. Composite events can be specified based on an event composition algebra 
or event patterns.  

This section introduces different strategies used for composing event streams. 
In general these strategies assume the existence of a history (total or partial) and 
thus adopt monotonic operators, in the case of algebras, or monotonic reasoning in 
the case of chronicles or codebooks and rules used as composition strategies.  Rule 
based approaches assume that events streams patterns can be detected and they 
can trigger rules used to notify them. 

4.1 Composition algebras 

An algebra defines a collection of elements and operators that can be applied 
on them. Thus, the event composition algebra defines operators for specifying 
composite event types based on primitive or composite event types related by 
event operators. An event composition algebra expression is of the form E1 op E2. 
The construction of such an expression produces composite events. The types of 
these events depend on the operators. Operators determine the order in which the 
component events must occur for detecting the specified composite event. The oc-
currence time and parameters of a composite event depend on the semantics of the 
operator. Therefore, the parameters of a composite event are derived from the pa-
rameters of its component events depending on the operator. 

Many event models that characterize composite events consider operators such 
as disjunction, conjunction and sequence. Others add the selection and negation 
operators. In the following paragraphs, we classify the event operators in: binary, 
selection and temporal operators. Table 1 synthesizes the operator families that 
can be used for composing event streams. Their definition is presented in Appen-
dix A.  



16  

 
Table 1 Event composition operators 

The operators are used for defining well-formed algebraic expressions consid-
ering their associativity and commutability properties. Combined the estimated 
execution cost it is possible to propose optimization strategies for reducing event 
stream production. 

4.2 Composition techniques 

Different techniques can be adopted for composing event streams, depending 
whether this task is done on-line or post-mortem. For an on-line composition, au-
tomata (of different types) are the most frequent adopted structure. When detected 
event streams are continuously (i.e., recurrently) fed to nodes that process them 
and disseminate them to other nodes that implement composition operators. De-
pending on the type of automaton, different patterns can be produced and deliv-
ered to consumers. Post-mortem event streams composition, assume that it is pos-
sible to store all events streams produced during a given period, or at least a 
representative sample of event streams. These event histories sometimes called 
event traces are used to apply knowledge discovery techniques seeking to extract 
patterns, correlations, to understand and predict behaviour models. The following 
sections introduce prominent examples of these techniques. 

4.2.1 Automata oriented event composition 

In current research projects, the composition process is based on the evaluation 
of abstractions such as finite state automata, Petri nets, matching trees or graphs. 

 

 

FILTERING BINARY,(temporal,correlation)
Window Instance(based
Time(based Disjunction (E1-|-E2)-
! Fixed win:within(tb,-te,-ESi) Conjunction (E1-,-E2)-

Landmark win:since(tb,-ESi) Sequence (E1-;-E2)
Sliding win:sliding(tw,-ts,-ESi) Concurrency (E1-║-E2)

Interval(based
Tuple(based ! During (E2-during-E1)

Fixed-size win:batch(nb,-ESi) Ovelap (E1-overlaps-E2)
Moving-fixed-size win:mbatch-(nb,-m,-ESi) Meet (E1-meets-E2)

Start (E1-starts-E2)
End (E1-ends-E2)

Selection TEMPORAL

First-occurrence (*E-in-H) Temporal!offset
History (Times(n,-E)-in-H) Interval!expresions
Negation (Not-E-in-H)



17 

• Finite state automata: Considering that composite event expressions are 
equivalent to regular expressions if they are not parameterized, it is possible to 
implement them using finite state automata. A first approach using automata 
has been made in the active data base system Ode [36, 44, 45]. An automaton 
can be defined for each event, which reaches an accepting state exactly when-
ever the event occurs. The event history provides the sequence of input events 
to the automaton. The event occurrences are fed into the automaton one at a 
time, in the order of their event identifiers. The current marking of an automa-
ton determines the current stage of the composition process. If the automaton 
reaches an accepting state, then the composite event implemented by the au-
tomaton occurs. Nevertheless, automata are not sufficient in case of event pa-
rameters have to be supported. The automata have to be extended with a data 
structure that stores the event parameters of the primitive events from the time 
of their occurrence to the time at which the composite event is detected. 

• Petri nets are used to support the detection of composite events that are com-
posed of parameterized events. SAMOS [33, 46] uses the concepts of Coloured 
Petri nets and modifies them to so-called SAMOS Petri Nets. A Petri net con-
sists of places, transitions and arcs. Arcs connect places with transitions and 
transitions with places. The places of a Petri net correspond to the potential 
states of the net, and such states may be changed by the transitions. Transitions 
correspond to the possible events that may occur (perhaps concurrently). In 
Coloured Petri nets, tokens are of specific token types and may carry complex 
information. When an event occurs, a corresponding token is inserted into all 
places representing its event type. The flow of tokens through the net is then 
determined; a transition can fire if all its input places contain at least one token. 
Firing a transition means removing one token from each input place and insert-
ing one token into each output place. The parameters corresponding to the to-
ken type of the output place are derived at that time. Certain output places are 
marked as end places, representing composite events. Inserting a token into an 
end place corresponds to the detection of a composite event. 

• Trees: Another approach to implement event composition uses matching trees 
that are constructed from the composite event types. The leaves represent prim-
itive event types. The parent nodes in the tree hierarchy represent composite 
event types. Primitive events occur and are injected into the leaves correspond-
ing to their event type. The leaves pass the primitive events directly to their 
parent nodes. Thus, parent nodes maintain information for matched events, 
such as mapping of event variables and matching event instances. A composite 
event is detected if the root node is reached and the respective event data are 
successfully filtered.  

• Graph-based event composition has been implemented by several active rule 
systems like SAMOS [26, 27, 47], Sentinel [48] and NAOS [34]. An event 
graph, is a Direct Acyclic Graph (DAG) that consists of non-terminal nodes (N-
nodes), terminal nodes (T-nodes) and edges [26]. Each node represents either a 
primitive event or a composite event. N-nodes represent composite events and 



18  

may have several incoming and several outgoing edges. T-nodes represent 
primitive events and have one incoming and possibly several outgoing edges. 
When a primitive event occurs, it activates the terminal node that represents the 
event. The node in turn activates all nodes attached to it via outgoing edges. Pa-
rameters are propagated to the nodes using the edges. When a node is activated, 
the incoming data is evaluated (using the operator semantics of that node and 
the consumption mode) and if necessary, nodes connected to it are activated by 
propagating the parameters of the event. If the node is marker as a final node, 
the corresponding composite event is signalled. 

These structures are well adapted for on-line stream event composition where 
windows and filters are used for controlling the consumption rate of streams com-
bined with other processing operators for causally or temporally correlating them. 
These structures can also be matched towards parallel programs that can make in 
some cases event stream composition more efficient. Having parallel programs as-
sociated to these composition structures has not yet been widely explored. The 
emergence of the map-reduce and data flow model and associated infrastructures 
can encourage the development of solutions adapted for addressing Big Data ve-
locity and volume. 

4.2.2 Event correlation 

The process of analysing events to infer a new event from a set of related 
events is defined as event correlation. It is mostly used to determine the root cause 
of faults in network systems [49]. Thus, an event correlation system correlates 
events and detects composite events. There are several methods for correlating 
events, including compression, count, suppression, and generalization. Compres-
sion reduces multiple occurrences of the same event into a single event, allowing 
to see that an event is recurring without having to see every instance individually. 
Count is the substitution of a specified number of similar events (not necessarily 
the same event) with a single event. Suppression associates priorities with events, 
and may hide a lower priority event if a higher priority event exists. Finally, in 
generalization the events are associated with a superclass that is reported rather 
than the specific event.  

Other methods of event correlation are by causal relationships (i.e., event A 
causes event B), and by temporal correlations where there is a time period associ-
ated with each possible correlation, and if the proper events occur during a par-
ticular time period, they may be correlated. Event correlation techniques have 
been derived from a selection of computer science paradigms (AI, graph theory, 
information theory, automata theory) including rule-based systems, model based 
reasoning systems, model traversing techniques, code-based systems, fault propa-
gation models and the code-book approach. 



19 

Rule-based systems [50, 51] are composed of rules of the form if condi-
tion then conclusion. The condition part is a logical combination of propo-
sitions about the current set of received events and the system state; the conclusion 
determines the state of correlation process. For example, a simple rule that corre-
lates the event occurrences e1 of type E1 and e2 of type E2 for producing an event 
e3 is: if e1 and e2 then e3. The system operation is controlled by an infer-
ence engine, which typically uses a forward-chaining inference mechanism.  

In [49] composite events are used for event correlation. It presents a composite 
event specification approach that can precisely express complex timing constraints 
among correlated event instances. A composite event occurs whenever certain 
conditions on the attribute values of other event instances become true, and is de-
fined in the following format: 

define composite event CE with 
attributes ([NAME, TYPE], …, [NAME, TYPE]) 
which occurs 
whenever timing condition 
TC is [satisfied | violated] 
if condition 
C is true 
then 
ASSIGN VALUES TO CE’s ATTRIBUTES; 

The rules for correlation reflect the relationship among the correlated events, 
such as causal or temporal relationship. If these relationships can be specified in 
the composite event definitions, the results of correlation are viewed as occurrenc-
es of the corresponding composite events. Thus, relationships among events for 
correlation, either causal or complex temporal are expressed as conditions on 
event attributes for composite events. Considering a common event correlation 
rule in networks with timing requirements: “when a link-down event is received, if 
the next link-up event for the same link is not received within 2 minutes and an 
alert message has not been generated in the past 5 minutes, then alert the network 
administrator”; the composite event LinkADownAlert is defined as follows: 

define composite event LinkADownAlert with 
attributes ([“Occurrence Time” : time] 

  [“Link Down Time” : time]) 
which occurs 
whenever timing condition 
not LinkUp in [occTime(LinkADown),  
    occTime(LinkADown)+2min] 
and not LinkADownAlert in  

[occTime(LinkADown)-3min,  
 occTime(LinkADown)+2min] 

is satisfied 



20  

if condition true is true 
then { 
“Link Down Time” := occTime(LinkADown); 
} 

where LinkADown and LinkAUp correspond to the up and down events of a 
link A. The composite event will occur at 2 minutes after an occurrence of LinkA-
Down event if no LinkAUp event occurs during 2-minute interval and no LinkA-
DownAlert event was triggered during the past 5-minute interval. 

Hence, since the composite events are used to represent the correlation rules, 
the correlation process is essentially the task of composite event detection through 
event monitoring. Therefore, if some time constraints are detected as being satis-
fied or violated according to the composite event definitions, the condition evalua-
tor is triggered. The conditions on other event attributes are evaluated. Once the 
conditions are evaluated as true, the attribute values of the corresponding compo-
site event are computed and their occurrences are triggered. As a result of the 
hard-coded system connectivity information within the rules, rule-based systems 
are believed to lack scalability, to be difficult to maintain, and to have difficult to 
predict outcomes due to unforeseen rule interactions. 

Model-based reasoning incorporates an explicit model representing the struc-
ture (static knowledge) and behavior (dynamic knowledge) of the system. Thus, 
the model describes dependencies between the system components and/or causal 
relationships between events. Model-based reasoning systems [49, 52, 53] utilize 
inference engines controlled by a set of correlation rules, whose conditions usually 
contain model exploration predicates. The predicates test the existence of a rela-
tionship among system components. The model is usually defined using an object-
oriented paradigm and frequently has the form of a graph of dependencies among 
system components.  

In the codebook technique [54] causality is described by a causality graph 
whose nodes represent events and whose directed edges represent causality. Nodes 
of a causality graph may be marked as problems (P) or symptoms (S). The causali-
ty graph may include information that does not contribute to correlation analysis. 
For example a cycle represents causal equivalence. Thus, a cycle of events can be 
aggregated into a single event. Similarly, certain symptoms are not directly caused 
by any problem but only by other symptoms. They do not contribute any infor-
mation about problems that is not already provided by these other symptoms. The-
se indirect symptoms may be eliminated without loss of information. The infor-
mation contained in the correlation graph must be converted into a set of codes, 
one for each problem in the correlation graph. A code is simply a vector of 0s and 
1s. The value of 1 at the ith position of a code generated for problem pj indicates 
cause-effect implication between problem pj and symptom si. The codebook is a 
subset of symptoms that has been optimized to minimize the number of symptoms 



21 

that have to be analysed while ensuring that the symptom patterns distinguish dif-
ferent problems. 

4.2.3 Chronicle recognition  

A chronicle is a set of events, linked together by time constraints [DGG93, 
Gha96, Dou96]. The representation of chronicles relies on a propositional reified 
logic formalism where a set of multi-valued domain attributes are temporally qual-
ified by predicates such as event and hold.  

The persistence of the value v of a domain attribute p during the interval 
[t,t’] is expressed by the assertion:  

hold(p:v,(t,t’)). 

An event is a change of the value of a domain attribute, the predicate event is 
defined through the predicate hold:  

event(p:(v1,v2),t) ≡ 
∃τ<t<τ’|hold(p:v1,(τ,t))^hold(p:v2,(t,τ’))^(v1≠v2) 

A chronicle model represents a piece of the evolution of the world; it is com-
posed of four parts: (i) a set of events which represents the relevant changes of he 
world for this chronicle; (ii) a set of assertions which is the context of the occur-
rences of the chronicle events; (iii) a set of temporal constraints which relates 
events and assertions between them; and (iv) a set of actions which will be pro-
cessed when the chronicle is recognized. 

The chronicle recognition is complete as long as the observed event stream is 
complete. This hypothesis enables to manage context assertions quite naturally 
through occurrences and non-occurrences of events. Then, to process assertion 
hold(p:v,(t,t')), the process verifies that there has been an 
event(p:(v',v),t") with t"<t and such that no event p:(v,v") occurs 
within [t",t']. 

The recognition process relies on a complete forecasting of expected events 
predicted by chronicle. An interval, called window of relevance D(e) is defined, 
which contains all possible occurrence times for a predicted event e of a partial in-
stance S, in order for e to be consistent with constraints and known times of ob-
served events in S.  

A chronicle instance may progress in two ways: (i) a new event may be detect-
ed, it can be either integrated into the instance and make the remaining predictions 
more precise, or it may violate a constraint for an assertion and make the corre-
sponding chronicle invalid; or (ii) time passes without nothing happening and, 
perhaps, may make some deadline violated or some assertions constraints obso-
lete.  



22  

When an observed event e matches an model event ek, the reception time 
r(e)=now, and either 

• d(e)∉D(ek): e does not meet the temporal constraints of the expected event 
ek of S, 

• d(e)∈D(ek): D(ek) is reduced to the single point d(e). 

The reduction must be propagated to other expected events, which in turn are 
further constrained; i.e., temporal windows are updated. 

propagate(ek, S) 
 for all forthcoming event ei ≠ ek of S 
  D(ei) ← D(ei) ∩ [D(ek) + I(ei - ek)] 

This produces a new set of non-empty and consistent D(ei). In addition, when 
the internal clock is updated, this new value of now can reduce some windows of 
relevance D(ei) and, in this case, it is needed to propagate it over all expected 
events of an instance S: D(ei) ← D(ei) ∩ ([t, +∞] - D(ei)). A clock up-
date does not always require propagation, it is necessary to propagate only when a 
time bound is reached. Therefore, time bounds enable an efficient pruning. 

When an event is integrated in a chronicle, the original chronicle instance must 
be duplicated before the temporal window propagation, and only the copy is up-
dated. For each chronicle model, the system manages a tree of current instances. 
When a chronicle instance is competed or killed, it is removed from this tree. Du-
plication is needed to warranty the recognition of a chronicle as often as it may 
arise, even if its instances are temporally overlapping. 

The size of the tree hypotheses is the main source of complexity. Using dura-
tion thresholds in a chronicle model is a strategy to reduce its size. Further 
knowledge restricting multiple instances of events is also beneficial. There may 
also be chronicles that cannot have two complete instances that overlap in time or 
share a common event; the user may also be interested in recognizing just one in-
stance at a time. For both cases, when a chronicle instance is recognized, all its 
pending instances must be removed. 

4.2.4 Event and traces mining 

Data mining, also known as Knowledge-Discovery in databases (KDD) is the 
practice of automatically analysing large stores of data for patterns and then sum-
marizing them as useful information. Data mining is sometimes defined as the 
process of navigating through the data and trying to find out patterns and finally 
establishing all relevant relationships. Consequently, the event-mining goal is to 
identify patterns that potentially indicate the production of an event within large 
event data sets. Event mining adopts data mining techniques for the recognition of 



23 

event patterns, such as association, classification, clustering, forecasting, etc. 
Therefore, events within a history can be mined in a multitude of ways: unwanted 
events are filtered out, patterns of logically corresponding events are aggregated 
into one new composite event, repetitive events are counted and aggregated into a 
new primitive event with a count of how often the original event occurred, etc. 

Event correlation approaches may be further classified as state-based or state-
less. Stateless systems typically are only able to correlate alarms that occur in a 
certain time-window. State-based systems support the correlation of events in an 
event-driven fashion at the expense of the additional overhead associated with 
maintaining the system state.  

4.3 Discussion 

This section presented expressions of an algebra for composing events. It gave 
a classification of algebraic operators that can be defined depending on whether 
events are considered instantaneous happenings or processes with duration repre-
sented as intervals.  

Event composition in large-scale systems provides a means of managing the 
complexity of a vast number of events. Large-scale event systems need to support 
event composition in order to quickly and efficiently notify relevant complex in-
formation. In addition, distributed event composition can improve efficiency and 
robustness of systems. Thus, event types can be related and thus denote a new 
complex event type. Relationships between event types can be expressed by an 
event composition algebra.  

The different event-based approaches are characterized by their means for 
specifying and detecting primitive and composite events. The composition process 
is based on the evaluation of abstractions such as finite state automata, Petri nets, 
matching trees, graphs. While event tracing enables the detection of performance 
problems at a high level of detail, growing trace-file size often constrains its 
scalability on large-scale systems and complicates management, analysis, and vis-
ualization of trace data. Such strategies can cope to Big streams velocity as long as 
they can be efficiently used or that they can be exploited in parallel in order to en-
sure good performance. 

5 Conclusion and outlook 

Typical Big Data analytics solutions such as batch data processing systems can 
scale-out gracefully and provide insight into large amounts of historical data at the 



24  

expense of a high latency. They are hence a bad fit for online and dynamic anal-
yses on continuous streams of potentially high velocity. 

Building robust and efficient tools to collect, analyse, and display large 
amounts of data is a very challenging task. Large memory requirements often 
cause a significant slow down or - even worse - place practical constraints on what 
can be done at all. Moreover, if when streams stem from different providers, be-
fore merging those streams into a single global one, the merge step may require a 
large number of resources creating a potential conflict with given infrastructure 
limits. Thus, the amount of (event) streams poses a problem for (i) management, 
(ii) visualization, and (iii) analysis. The size of a stream history may easily exceed 
the user or disk quota or the operating system imposed file-size limit of 2 GB 
common on 32-bit platforms. Very often these three aspects cannot be clearly sep-
arated because one may act as a tool to achieve the other, for example, when anal-
ysis occurs through visualization.  

Even if the data management problem can be solved, the analysis itself can still 
be very time consuming, especially if it is performed without or with only little 
automatic support. On the other hand, the iterative nature of many applications 
causes streams to be highly redundant. To address this problem, stream collection 
must be coupled with efficient automatic cleaning techniques that can avoid re-
dundancy and information loss.  

Existing, event stream approaches and systems seem to be adapted for dealing 
with velocity but do not completely scale when volume becomes big. Efficient 
parallel algorithms exploiting computing resources provided by architectures like 
the cloud can be used to address, velocity at the different phases of Big stream cy-
cle: collection, cleaning and analysis. The huge volume of streams, calls for intel-
ligent storage methods that can search for a balance between volume, veracity and 
value. Representative stream samples must be stored to support static analytics 
(e.g., event trace mining) while continuous on-line composition processes deal 
with streams and generate a real-time vision of the environment. Concrete applica-
tions are already calling for such solutions in order to build smarter environments, 
social and individual behaviours, and sustainable industrial processes.  



25 

6 References 

1. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over 
append-only databases. ACM SIGMOD Record (1992). 

2. Zheng, B., Lee, D.L.: Semantic caching in location-dependent query 
processing. In Proc. of SSTD (2001). 

3. Urhan, T., Franklin, M.J.: Xjoin: A reactively-scheduled pipelined join 
operator. IEEE Data Eng. Bull. 23, (2000). 

4. Adiba, M., Castrejón, J.C., Espinosa-Oviedo, J.A., Vargas-Solar, G., 
Zechinelli-Martini, J.L.: Big Data Management: Challenges, Approaches, 
Tools and their limitations. Networking for Big Data (2015). 

5. Abiteboul, S., Manolescu, I., Benjelloun, O., Milo, T., Cautis, B., Preda, 
N.: Lazy query evaluation for active xml. In Proc. of the SIGMOD Int. 
Conf. on Management of Data (2004). 

6. Luckham, D.: The Power of Events: An Introduction to Complex Event 
Processing in Distributed Systems. Addison Wesley Professional (2002). 

7. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, 
G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new 
class of data management applications. In Proc. of the 28th Int. Conf. on 
Very Large Data Bases (VLDB ’02) (2002). 

8. Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD 
Rec. 30, (2001). 

9. Liu, L., Pu, C., Tang, W.: Continual queries for internet scale event-driven 
information delivery. IEEE Trans. Knowl. Data Eng. 11, (1999). 

10. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable 
continuous query system for Internet databases. In Proc. of the 2000 ACM 
SIGMOD Int. Conference on Management of Data (SIGMOD ’00). pp. 
379–390. , New York, USA (2000). 

11. Dittrich, J.-P., Fischer, P.M., Kossmann, D.: Agile: adaptive indexing for 
context-aware information filters. In Proc. of the SIGMOD Int. Conf. on 
Management of Data (2005). 



26  

12. Agarwal, P.K., Xie, J., Hai, Y.: Scalable continuous query processing by 
tracking hotspots. Proc. Very Large Data Bases. (2006). 

13. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagracq: A scalable 
continuous query system for internet databases. In Proc. of SIGMOD Int. 
Conf. on Management of Data (2000). 

14. Schreier, U., Pirahesh, H., Agrawal, R., Mohan, C.: Alert: An architecture 
for transforming a passive dbms into an active dbms. Proc. Int. Conf. Very 
Large Data Bases. (1991). 

15. Cao, H., Wolfson, O., Xu, B., Yin, H.: Mobi-dic: Mobile discovery of 
local resources in peer-to-peer wireless network. IEEE Data Eng. Bull. 28, 
(2005). 

16. Mokbel, M.F., Xiong, X., Aref, W.G., Hambrusch, S., Prabhakar, S., 
Hammad, M.: Place: A query processor for handling real-time spa- 
tiotemporal data streams (demo). Proc. Very Large Data Bases. (2004). 

17. Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., 
Hildrum, K., Madden, S., Raman, V., Shah, M.A.: Adaptive query 
processing: Technology in evolution. IEEE Data Eng. Bull. (2000). 

18. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: 
A rule-based language for complex event processing and reasoning. Web 
Reasoning and Rule Systems. pp. 42–57. Springer Berlin Heidelberg 
(2010). 

19. Hirzel, M., Andrade, H., Gedik, B., Jacques-Silva, G., Khandekar, R., 
Kumar, V., Mendell, M., Nasgaard, H., Schneider, S., Soule, R., Wu, K.-
L.: IBM Streams Processing Language: Analyzing Big Data in motion. 
IBM J. Res. Dev. 57, 1–11 (2013). 

20. Zikopoulos, P.C., Eaton, C., DeRoos, D., Deutsch, T., Lapis, G.: 
Understanding Big Data. McGraw-Hill (2011). 

21. Yao, Y., Gehrke, J.: Query Processing in Sensor Networks. CIDR 2003, 
Proceedings of the First Biennial Conference on Innovative Data Systems 
Research (2003). 

22. Zadorozhny, V., Chrysanthis, P.K., Labrinidis, A.: Algebraic optimization 
of data delivery patterns in mobile sensor networks. In Proc. of DEXA 
(2004). 



27 

23. Li, H.-G., Chen, S., Tatemura, J., Agrawal, D., Candan, K., Hsiung, W.-
P.: Safety guarantee of continuous join queries over punctuated data 
streams. Proc. VLDB. (2006). 

24. Wolfson, O., Sistla, A.P., Xu, B., Zhou, J., Chamberlain, S.: Domino: 
Databases for moving objects tracking. In Proc. of the SIGMOD Int. Conf. 
on Management of Data (1999). 

25. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query 
processing. In Proc. of the Int. Conf. on Management of Data (SIGMOD 
’00). pp. 261–272. ACM Press, New York, USA (2000). 

26. Chakravarthy, S., Mishra, D.: Snoop: an expressive event specification 
language for active databases. Data Knowl. Eng. 14, 1–26 (1994). 

27. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite 
events for active databases: Semantics, contexts and detection. In Proc. of 
the 20th Int. Conf. on Very Large Data Bases. pp. 606–606. , Santiago, 
Chile (1994). 

28. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban Computing: 
Concepts, Methodologies and Applications. ACM Trans. Intell. Syst. 
Technol. 5, 1–55 (2014). 

29. Mansouri-Samani, M., Sloman, M.: GEM: A generalized event 
monitoring language for distributed systems. Distrib. Eng. J. (1997). 

30. Rosenblum, D.S., Wolf, A.L.: A Design Framework for Internet-Scale 
Event Observation and Notification. In Proc. of the 6th European Software 
Engineering Conference. , Zurich, Switzerland (1997). 

31. Yuhara, M., Bershad, B.N., Maeda, C., Moss, J.E.B.: Efficient Packet 
Demultiplexing for Multiple Endpoints and Large Messages. In Proc. of 
the 1994 Winter USENIX Conference (1994). 

32. Bailey, M.L., Gopal, B., Sarkar, P., Pagels, M.A., Peterson, L.L.: 
Pathfinder: A pattern-based packet classifier. In Proc. of the 1st Symp. on 
Operating System Design and Implementation (1994). 

33. Gatziu, S., Dittrich, K.R.: Detecting composite events in active database 
systems using Petri nets. In Proc. of the 4th Int. Workshop on Research 
Issues in Data Engineering: Active Database Systems. , Houston, Texas, 
USA (1994). 



28  

34. Collet, C., Coupaye, T.: Primitive and composite events in NAOS. Actes 
des 12ièmes Journées Bases de Données Avancées. , Clermont-Ferrand, 
France (1996). 

35. Bidoit, N., Objois, M.: Machine Flux de Données: comparaison de 
langages de requêtes continues. 23eme Journees Bases de Donnees 
Avancees (BDA). , Marseille, France (2007). 

36. Gehani, N.H., Jagadish, H. V., Shmueli, O.: Event specification in an 
active object-oriented database. In Proc. of the ACM SIGMOD Int. Conf. 
on Management of Data (1992). 

37. Pietzuch, P.R., Shand, B., Bacon, J.: Composite Event Detection as a 
Generic Middleware Extension. IEEE Netw. Mag. Spec. Issue Middlew. 
Technol. Futur. Commun. Networks. (2004). 

38. Yoneki, E., Bacon, J.: Unified semantics for event correlation over time 
and space in hybrid network environments. In Proc. of the OTM 
Conferences. pp. 366–384 (2005). 

39. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In Proc. of the 11th 
Int. Conf. on Data Engineering. , Taipei, Taiwan (1995). 

40. Giordana, A., Terenziani, P., Botta, M.: Recognizing and Discovering 
Complex Events in Sequences. In Proc. of the 13th Int. Symp. on 
Foundations of Intelligent Systems. , London, UK (2002). 

41. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing 
over Streams. SIGMOD (2006). 

42. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, 
W.M.: Cayuga: A General Purpose Event Monitoring System. CIDR. pp. 
412–422. www.crdrdb.org (2007). 

43. Balazinska, M., Kwon, Y., Kuchta, N., Lee, D.: Moirae: History-
Enhanced Monitoring. CIDR (2007). 

44. Gehani, N.H., Jagadish, H. V.: Ode as an Active Database: Constraints 
and Triggers. In Proc. of the 17th Int. Conf. on Very Large Data Bases. , 
Barcelona, Spain (1991). 



29 

45. Gehani, N.H., Jugadish, H. V., Shmueli, O.: Composite event 
specification in active databases: Model & Implementation. In Proc. of the 
18th Int. Conf. on Very Large Data Bases. , Vancouver, Canada (1992). 

46. Gatziu, S., Dittrich, K.R.: SAMOS: an active object-oriented database 
system. IEEE Q. Bull. Data Eng. Spec. Issue Act. Databases. (1993). 

47. Adaikkalavan, R.: Snoop event specification: formalization algorithms, 
and implementation using interval-based semantics. MS Thesis. Univ. 
Texas Arlington. (2002). 

48. Chakravarthy, S.: SENTINEL: an object-oriented DBMS with event-
based rules. In Proc. of the ACM SIGMOD Int. Conf. on Management of 
Data. , New York, USA (1997). 

49. Jakobson, G., Weissman, M.D.: Alarm Correlation. IEEE Netw. 52–59 
(1993). 

50. Liu, G., Mok, A.K., Yang, E.J.: Composite events for network event 
correlation. In Proc. of the 6th IFIP/IEEE Int. Symp. on Integrated 
Network Management. pp. 247–260 (1999). 

51. Wu, P., Bhatnagar, R., Epshtein, L., Bhandaru, M., Shi., Z.: Alarm 
Correlation Engine (ACE). In Proc. of the IEEE/IFIP Network Operation 
and Management Symposium. pp. 733–742 (1998). 

52. Nygate, Y.A.: Event correlation using rule and object based techniques. In 
Proc. of the IFIP/IEEE Int. Symp. on Integrated Network Management. 
pp. 278–289 (1995). 

53. Appleby, K., Goldszmidth, G., Steinder, M.: Yemanja – A Layered Event 
Correlation Engine for Multi-domain Server Farms. Integr. Netw. Manag. 
7, (2001). 

54. Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High Speed 
and robust Event Correlation. IEEE Commun. Mag. 34, 82–90 (1996). 

55. Roncancio, C.L.: Towards duration-based, constrained and dynamic event 
types. In Proc. of the 2nd Int. Workshop on Active, Real-Time, and 
Temporal Database Systems (1998).  

Appendix A 



30  

The events e1 and e2, used in the following definitions, are occurrences of the 
event types E1 and E2 respectively (with E1 ≠ E2) and can be any primitive or 
composite event type. An event is considered as durative, i.e., it has a duration go-
ing from the instant when it starts until the instant when it ends [55] and its occur-
rence time is represented by a time interval [startI-e, endI-e]. 

6.1 Binary operators 

Binary operators derive a new composite event from two input events (primi-
tive or composite). The following binary operators are defined by most existing 
event models [34, 45, 46, 55]: 

• Disjunction: (E1 | E2)  
There are two possible semantics for the disjunction operator “|”: exclusive-or 
and inclusive-or. Exclusive-or means that a composite event of type (E1 | E2) 
is initiated and terminated by the occurrence of e1 of type E1 or e2 of type E2, 
whereas inclusive-or considers both events if they are simultaneous, i.e. they 
occur “at the same time”. In centralized systems, no couple of events can occur 
simultaneously and hence, the disjunction operator always corresponds to ex-
clusive-or. In distributed systems, two events at different sites can occur simul-
taneously and hence, both exclusive-or and inclusive-or are applicable.  

• Conjunction: (E1 , E2)  
A composite event of type (E1 , E2) occurs if both e1 of type E1 and e2 of 
type E2 occur, regardless their occurrence order. Event e1 and e2 may be pro-
duced at the same or at different sites. The event e1 is the initiator of the com-
posite event and the event e2 is its terminator, or vice versa. Event e1 and e2 
can overlap or they can be disjoint.  

• Sequence: (E1 ; E2) 
A composite event of type (E1 ; E2) occurs when an e2 of type E2 occurs af-
ter e1 of type E1 has occurred. Then, sequence denotes that event e1 “happens 
before” event e2. This implies that the end time of event e1 is guaranteed to be 
less than the start time of event e2. However, the semantics of “happens before” 
differs, depending on whether composite event is a local or a global event. 
Therefore, although the syntax is the same for local and for global events, the 
two cases have to be considered separately.  

• Concurrency: (E1 ║ E2) 
A composite event of type (E1 ║ E2) occurs if both events e1 of type E1 and 
e2 of type E2 occur virtually simultaneously, i.e. “at the same time”. This im-
plies that this operator applied to two distinct events is only applicable in global 
events; the events e1 and e2 occur at different sites and it is not possible to es-
tablish an order between them. The concurrency relation is commutative. 



31 

• During: (E2 during E1) 
The composite event of type (E2 during E1) occurs if an event e2 of type E2 
happens during event e1 of type E1, i.e. e2 starts after the beginning of e1 and 
ends before the end of e1.  

• Overlaps: (E1 overlaps E2) 
The beginning of event e1 of type E1 is before the beginning of event e2 of type 
E2 and the end of e1 is during e2 or vice versa.  

• Meets: (E1 meets E2) 
The beginning of event e2 of type E2 is immediately after the end of event e1 of 
type E1.  

• Starts: (E1 starts E2) 
The beginning of event e1 of type E1 and e2 of type E2 are simultaneous. The 
occurrence interval of (e1 starts e2) is [startT-e1, latest(endT-e1, 
endT-e2)].   

• Ends: (E1 ends E2) 
The end of event e1 of type E1 and event e2 of type E2 are simultaneous. The 
ends relation is commutative. The occurrence interval of (e1 ends e2) is 
[earliest (startT-e1, startT-e2), endT-e2].  

6.2 Selection operators 

Selection operators allow searching occurrences of an event type in the event 
history. The selection E[i] defines the occurrence of the ith element of a sequence 
of events of type E, i ∈ N; where N is a natural number greater than 0, during a 
predefined time interval I. The following selection operators are distinguished in 
event models such as SAMOS [33, 46]: 

• First occurrence: (*E in I) 
The event is produced after the first occurrence of an event of type E during the 
time interval I. The event will not be produced by all the other event occur-
rences of E during the interval. 

• History: (Times(n, E) in I) 
An event is produced when an event of type E has occurred with the specified 
frequency n during the time interval I.  

• Negation: (Not E in I) 
The event is produced if any occurrence of the event type E is not produced 
(i.e. the event did not occur) during the time interval I.  



32  

6.3 Temporal operator 

A composite event can be represented by the occurrence of an event and an off-
set (E + Δ), for example, E = E1 + 00:15 to indicate fifteen minutes before 
the occurrence of an event of type E1. Thus, the occurrence time of E is [endT-
e1, endT-e1 + Δ]. 

 


