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Abstract 

Big Data is the buzzword everyone talks about. Independently of the application domain, today 

there is a consensus about the V’s characterizing Big Data: Volume, Variety, and Velocity. By 

focusing on Data Management issues and past experiences in the area of databases systems, this 

chapter examines the main challenges involved in the three V’s of Big Data. Then it reviews the 

main characteristics of existing solutions for addressing each of the V’s (e.g., NoSQL, parallel 

RDBMS, stream data management systems and complex event processing systems). Finally, it 

provides a classification of different functions offered by NewSQL systems and discusses their 

benefits and limitations for processing Big Data.  

1. Introduction 

Big Data is the buzzword everyone talks about since it concerns every human activity generating 

large quantities of digital data (e.g., science, government, economy). However, it is still difficult 
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to characterize the Big Data phenomenon since different points of view and disciplines attempt 

to address it. It is true that everyone sees behind the term a data deluge for processing and 

managing big volumes of bytes (Peta 1015, Exa 1018, Zetta 1021, Yotta 1024, etc.). But beyond this 

superficial vision, there is a consensus about the three V’s [1] characterizing Big Data: Volume, 

Variety (different types of representations: structured, not-structured, graphs, etc.), and Velocity 

(streams of data produced continuously).  

Big Data forces to view data mathematically (e.g., measures, values distribution) first and 

establish a context for it later. For instance, how can researchers use statistical tools and 

computer technologies to identify meaningful patterns of information? How shall significant data 

correlations be interpreted? What is the role of traditional forms of scientific theorizing and 

analytic models in assessing data? What you really want to be doing is looking at the whole data 

set in ways that tell you things and answers questions that you’re not asking [2][3]. All these 

questions call for well-adapted infrastructures that can efficiently organize data, evaluate and 

optimize queries, and execute algorithms that require important computing and memory 

resources. With the evolution towards the cloud, data management requirements have to be 

revisited [4][5]. In such setting, it is possible to exploit parallelism for processing data, and 

thereby increasing availability and storage reliability thanks to replication. Organizing Big Data 

in persistence supports (cache, main memory or disk), dispatching processes, producing and 

delivering results implies having efficient and well-adapted data management infrastructures. 

These infrastructures are not completely available in existing systems. Therefore it is important 

to revisit and provide systems architectures that cope with Big Data characteristics. The key 

challenge is to hide the complexity for accessing and managing Big Data but also to provide 

interfaces for tuning them according to application requirements.  
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By focusing on Data Management issues, the chapter examines the main challenges 

involved in the three V’s of Big Data and discusses systems architectures for proposing V’s 

model aware data management solutions. Accordingly, the remainder of the chapter is organized 

as follows. Section 2 characterizes Big Data in terms of the V’s model. In particular it insists on 

the aspects that lead to new challenges in data management and on expected characteristics of 

processed Big Data. Section 3 describes data processing platforms including parallel approaches, 

NoSQL systems, and Big Data management systems (BDMS). Section 3 introduces the life cycle 

of Big Data processing. It also describes possible application markets underlining the expected 

requirements that will lead to push the limits of what can be expected when fine-grained data are 

observed. Finally, section 5 concludes the chapter and discusses Big Data perspectives. 

2. The Big Data V’s  

While some initial successes have already been achieved such as the Sloan Digital Sky 

Survey [6], genome databases, the library of Congress, etc., there remain many technical 

challenges that must be addressed to fully exploit Big Data potential. For instance, the sheer size 

of the data is a major challenge and is the one that is most easily recognized. However, there are 

challenges not just in Volume, but also in Variety (heterogeneity of data types, representation, 

and semantic interpretation) and Velocity (rate at which data arrive and the time in which it must 

be processed) [7]. 

2.1 Variety 

Data variety has been a recurrent issue since it has been possible to digitalize multimedia 

data and since the production of documents has become a day-by-day practice in organizations 

and in the domestic context. Continuous work has been done for modeling data and documents 
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that are digitalized in different formats. Raw data representation has been standardized (PDF 

documents, JPEG, GIF for images, MP3 for audio, etc.) and then coupled with data models in 

order to facilitate manipulation and information retrieval operations.  

In the 1980’s the relational model (structured data model) was defined on a solid 

theoretical basis namely mathematical relations and first order logic. The relational approach 

does an important distinction between schema (intention) and the extension of the relation. This 

dichotomy schema-data is fundamental for the database approach. Relations enable the 

manipulation of structured data independently of their physical representation in a computer. 

Given that a relation is a set of tuples that only contain atomic values, several consequences have 

to be considered. First a relation cannot contain repeated data; in a tuple an attribute cannot have 

as associated value a set, a table, or another relation; there cannot be an undefined or missing 

value in a tuple. These constraints led to extensions to the relational model, which is considered 

not expressive enough. The first approach was to relax the first normal form of relations and 

authorize attribute values to be of type relation. Generalizing the use of constructors of type 

Cartesian product and set, and then adding lists and tables led to the definition of the complex 

object model, which is more expressive. Attempts have been made to define Object-Oriented 

DBMS and these systems were characterized in [8]. 

The structured and semi-structured models (HTML, XML, JSON) are today managed by 

existing database management systems and by search engines exploring the Web and local files 

in computers. Semi-structured data are mostly electronic documents that emerged with the Web. 

We consider also that Object Oriented Databases influenced the JSON model (JavaScript Object 

Notation) today used as data exchange model on the Web. JSON is a generic format for textual 
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data derived from the Javascript objects notation.1  

 

Place Table 1.1 HERE 

 

Later, with the vague of NoSQL systems, other data models have emerged and are being 

used for dealing with Big Data. The key-value2 data model associates a key to a simple or 

complex value. Records are distributed across nodes within a servers network using, for 

example, a hash function over the key. The key-value model being the simplest model is used for 

dealing with non-complex data like those in logs, user sessions, shopping cart data, that have to 

be retrieved fast and where there is no manipulation of the value elements. In the document 

model, data are semi-structured documents corresponding to nested structures that can be 

irregular (similar to markup languages like XML)3. In the column model data are grouped into 

columns in contrast to traditional relations stored in rows. Each element can have a different 

number of columns (non fixed schema)4. Document and column-family models are mainly used 

for event logging, blogging and Web analytics (counters on columns). The manipulation of 

documents is done on the content with few atomicity and isolation requirements and column-

families are manipulated with concurrency and high throughput. Graph models provide concepts 

like nodes, edges, and navigation operations for representing respectively objects and querying 

operations. Nodes and edges can have properties of the form <key,	   value>5. Graph data 

models are adapted for highly connected data used for when information is retrieved based on 

                                                

1 Several NoSQL systems like CouchDB [44] proposed in 2005 and MongoDB in 2009 are based on JSON (see NoSQL section). 
2 Memcached, Redis and Riak are examples of systems that use this model. 
3 MongoDB and CouchDB are the most prominent examples of systems adopting this model. 
4 HBase, Cassandra and Hypertable are examples of systems that adopt this data model. 
5 Neo4J is an example of system that uses this model. 
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relationships. Every model has associated manipulation operations that are coupled to the data 

structure it relays on (see Table 1.1). The figure shows the way data can be looked up and 

retrieved: by key, aggregating data and navigating along relationships. For every possibility there 

are specific functions provided by the NoSQL systems API’s. 

Semantic content representations also appeared in order to support the Semantic Web 

(ontology languages like OWL, and tagging models like RDF) and lookup tools deployed on 

computers and other devices. For improving scalability, current research [9] is applying parallel 

models to the execution of reasoning engines where ontologies and linked data have millions of 

nodes and relationships.  

This diversity is somehow the core of Big Data challenges (and of database integration in 

general), since it is no longer pertinent to expect to deal with standardized data formats, and to 

have generic models used for representing content. Rather than data models, the tendency is to 

have data representations that can encourage rapid manipulation, storage and retrieval of 

distributed heterogeneous, almost raw data. Key challenges are (i) to cope database construction 

(data cleaning) with short “time to market” (despite the volume of data and its production rate); 

(ii) to choose the right data model for a given data set considering data characteristics, the type of 

manipulation and processing operations applied to data, and “non functional properties” provided 

by the system. “Non functional properties” of systems include the performance of look up 

functions given the possibility of associating simple or complex indexing structures to data 

collections. 

2.2 Volume  

The first thing anyone thinks about Big Data is its size [10][11]. In the era of Internet, social 

networks, mobile devices and sensors producing data continuously, the notion of size associated 
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to data collections has evolved very quickly [7][12]. Today it is normal for a person to produce 

and manage Terabytes of information in personal and mobile computing devices [13]. Managing 

large and rapidly increasing volumes of data has been a challenging issue for many decades 

[14][13][15]. In the past, this challenge was mitigated by processors getting faster, following 

Moore’s law, to provide us with the resources needed to cope with increasing volumes of data. 

But, here is a fundamental shift underway now: data volume is scaling faster than compute 

resources and CPU speeds are not significantly evolving. Cloud computing now aggregates 

multiple disparate workloads with varying performance goals (e.g., interactive services demand 

that the data processing engine return back an answer within a fixed response time cap) [5]. This 

level of resources sharing on expensive and large clusters requires new ways of determining how 

to (i) run and execute data processing jobs to meet cost-effectively the goals of each workload; 

and (ii) deal with system failures that occur more frequently on large clusters [12][11]. 

2.3 Velocity 

The term ‘velocity’ refers to the speed of data generation and the time for processing it. Big Data 

are the result of a fine-grained continuous reading of the environment, society, and organizations, 

natural and social phenomena. Observations are done in different conditions and with different 

devices and therefore Big Data are raw heterogeneous continuously produced data (i.e., streams) 

that must be processed for extracting useful information. A stream is a sequence (a priori 

infinite) of couples (ti,	  vi) where ti is a time stamp and vi is a (simple or complex) value. 

There are two possible interpretations for a stream and either as a data flow or as an event flow. 

Two aspects must be considered: data and users mobility in a spatio-temporal context, and the 

existence of several data or event streams produced continuously that must be processed under 

real time constraints more or less strict.  
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Several works have addressed stream processing and have proposed Stream Management 

Systems (SMS) and Complex Event Processing (CEP). Briefly, the difference between both 

approaches relies on the semantics associated to the data. For instance, a SMS compute the 

average of temperature during the day, while a CEP test whether the temperature in a room is not 

higher than a threshold and if it is then react in consequence[16].   

There are two main reasons to consider stream processing. First it is not possible to store the 

data in their entirety: in order to keep storage requirements practical some level of analysis must 

occur as the data streams in. The issue is not just the velocity of the incoming data: it is possible 

to stream fast-moving data into bulk storage for later batch processing, for example. The 

importance lies in the speed of the feedback loop, taking data from input to decision. The second 

reason to consider streaming is where the application mandates immediate response to the data. 

Thanks to the rise of mobile applications and online gaming this is an increasingly common 

situation. 

3. Big Data Processing Platforms 

Schematically, (relational) databases and Web data management have evolved in parallel. 

On one hand, there is the success of relational, parallel Database Management Systems (DBMS) 

with SQL. On the other hand, specific distributed systems for managing Web data were 

developed using the Map-Reduce model (see NoSQL systems). The classical database approach 

seemed non suitable to manage Web data because it required successive design phases (ETL: 

Extract Transform, Load). These phases were considered too rigid with respect to (i) non-

structured data sources (e.g. documents); (ii) specific Web applications; (iii) high availability and 

scalability for an increasing number of users. Furthermore, DBMS are expensive systems with 

few open source proposals like MySQL-C. Big Data processing platforms offer strategies with 
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good performance despite the data volume and greedy processing algorithms. Today these 

strategies start to converge and exploit the best of both worlds. From an application point of 

view, the question is how they can be combined to exploit Big Data?  

Three architectures have emerged to address Big Data analytics: NoSQL systems, Map-

Reduce/Hadoop, and extended RDBMS. At the beginning, these architectures were implemented 

as completely separate systems. Today, the trend is to develop innovative hybrid combinations of 

the three architectures. For example, Cisco and Oracle have delivered the first-ever enterprise 

class NoSQL solution deployed on Cloudera for harnessing large volumes of real-time 

unstructured and semi structured Big Data [17][18]. 

3.1 NoSQL Systems  

At the end of the 1990’s with the development of the Web and companies like Google, Yahoo!, 

Facebook or Amazon, offering efficient data management solutions became crucial. Monolithic 

SQL databases built for OLTP and OLAP were rejected as being too expensive, too complex, 

and/or not fast enough. The « Not Only SQL »6 movement was born [19][20]. For instance, 

Google and Amazon developed their own answers (BigTable and Dynamo, respectively) to meet 

these needs, and then, the Apache open-source community created corresponding clones like 

HBase and Cassandra, two of today’s most popular and scalable key-value stores. Several 

systems have emerged providing their own implementations of the different data models and 

specific manipulation functions. The site of NoSQL databases7 provides a list of existing 

systems.  

The main objectives of NoSQL systems are to increase scalability and extensibility, using classic 

                                                

 
7 The site http://nosql-database.org/ gathers 150 systems with different models and functions. 
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hardware. They also ensure reliability, fault tolerance, and good performance despite the 

increasing number of requests. The common characteristic of these systems is that they enable 

data manipulation without having to define a schema, so data are mainly semi-structured. 

Thereby, they avoid schema definition and database loading after data cleaning. The 

characteristics of these systems architecture are: horizontal extensibility for executing distributed 

simple operations on a multitude of servers; data partitioning and duplication on several servers 

(data sharding); low level interfaces for accessing the systems; concurrent access model more 

flexible than ACID transactions; distributed indexing and in memory storage; easy data structure 

evolution [5]. They provide basic Create Read Update Delete (CRUD) functions adapted for 

efficiently manipulating data structures according to their underlying data model.  

3.2 Parallel Data Processing with Map-Reduce 

Map-Reduce is a programming model (MR [21]) for developing data processing by defining 

the functions Map and Reduce inspired by functional programming. It is possible to parallelize 

data processing by partitioning and duplicating data on N machines, assuming that data are 

managed by a distributed file system. The function Map implements an operation based on a 

divide and conquer strategy. The idea is to divide a data set modeled as <key,	  value> tuples 

into smaller data sets that can be processed independently. Both key and value elements can be 

of atomic or complex data types. Reduce combines the result of the Map function and reduces 

them by applying aggregation or summation functions. Developers must write these functions 

but they can rely on a platform that provides tools for coordinating the jobs executing these 

functions in parallel.  

MR execution platforms consist, in general, of a distributed file system for storing input and 

output data and a process manager that coordinates parallel jobs execution. The first proposal, 
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namely the GFS-Google File System [22] appeared in 2003. The architecture consists of millions 

of interconnected share nothing machines for incrementing data availability and reducing 

response time; ensuring the reliability of the system duplicating both servers and data; exploiting 

the inherent parallelism of the architecture. This system processes URL, user data (most recent 

query results), and geographical information (location of the points of interest in a region, like 

boutiques, hotels, streets satellite images). The scale factor is high with millions of URL, 

different versions of pages, millions of users, millions of queries per second, hundreds of TB for 

satellite images. GFS offers a familiar byte-stream-based file view of data randomly partitioned 

over hundreds or even thousands of nodes in a cluster [23]. GFS is coupled with the 

programming model MR, to enable programmers to process Big Data by writing two user-

defined functions, Map and Reduce. Google builds distributed applications with MR functions 

that are then executed by Hadoop [24] an open source MR execution platform.  

Concerning the architecture, the Hadoop nodes are of different types and all have HDFS 

(Highly Distributed File System open source version of GFS [24]) and MR layers. HDFS is 

based on a master slave architecture consisting of a master, the name node (an instance per 

cluster), that manages meta-data for the data in each node; the backup node of the name node; 

the data node, an instance deployed in every machine of the cluster, manages data storage on 

disk. Similarly, MR components are distributed and manage jobs: with the name node there is a 

job tracker, and with the data node, a task tracker executing the MR functions on local data. 

This architecture scales towards millions of nodes that can manage PB of data. Data blocks are 

large enough for avoiding overcharging data access from disk. Data are stored in each block in 

three copies for ensuring fault tolerance, instead of using mirror disks (e.g. RAID). Data location 

is invisible to the upper layers and this opens room for optimizations like those implemented by 
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RDBMS.  

Several works have been devoted for implementing relational operators using MR 

[25][26][27]. For example, a selection corresponds to a filter for Map. Projection is also 

expressed by a simple Map function. For a join, Map [27][28][29] provides tuples with the join 

attribute as key and Reduce performs the join. Thus a relational query can be implemented as a 

set of parallel MR jobs. This kind of approach is provided by Hive [30] or Pig [31] built on top 

of Hadoop that provide SQL like languages for programming data processing and associated 

execution environments.  

3.3 Big Data Management Systems 

Parallel RDBMS use a “shared-nothing” architecture [32] where data are spread over a cluster 

based on a partitioning strategy, usually hash-based, but sometimes range or random partitioning. 

Queries are processed by using parallel, hash-based divide-and-conquer techniques [33]. Parallel 

architectures address two factors expecting to get a linear behavior: (1) linear speed up, using the 

double of resources so that the program runs twice fast, for example processing 10TB using 8 

nodes instead of 4 and thereby dividing the execution time by two; (2) linear speedup, double the 

resources used for processing a database twice bigger in the same response time, for example 

process 10TB on 4 nodes and 4 disks and then process 20TB using 8 nodes and 8 disks. In 

reality, linear speedup is a theoretical vision since other factors are to be considered: 

interconnection time between processors, load balancing among distributed servers. 

  [34] compares RDBMS with the Hadoop platforms for specific data analytics tasks. 

RDBMS seem to achieve good performances under the condition of appropriate tuning as good 

as Hadoop solutions or even better in some cases. These systems are robust and stable, but 

expensive (no open source system available). In contrast, Hadoop platforms are accessible and 
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require less tuning efforts but they lack transparency and require algorithmic design effort when 

implementing binary operations like joins. Application development is always ad-hoc in Hadoop 

since there is no general one fits all solution like in RDBMS. Thus, [34] believes that there is a 

need for designing a highly scalable platform for next-generation information storage, search, 

and analytics: a Big Data Management System (or BDMS). This can be done by combining and 

extending ideas drawn from semi-structured data management, parallel databases, and first-

generation data intensive computing platforms (notably Hadoop/ HDFS). ASTERIX8 aims to be 

able to access, ingest, store, index, query, analyze, and publish very large quantities of semi-

structured data. The design of the ASTERIX BDMS is well-suited to handling use cases that 

range all the way from rigid, relation-like data collections—whose structures are well understood 

and largely invariant—to flexible and more complex data, where little is planned ahead of time 

and the data instances are highly variant and self-describing. 

3.4 Discussion 

Different comparisons have been made between RDBMS, NoSQL and Hadoop platforms 

[35][36][37]. NoSQL systems seem to provide too simple indexing strategies in comparison to 

relational DBMS. They encourage the programming of queries using the MR model in contrast 

to the declarative and optimized approach of relational DBMS. In contrast, Hadoop can process 

data directly without defining a schema as for relational DBMS. Hadoop and NoSQL solutions 

do not provide general “one fits all” systems, and it requires a lot of expertise and programming 

effort for implementing solutions. In all cases, extensibility and fault tolerance are aspects 

addressed by all systems according to their characteristics. In response to Hadoop and NoSQL 

                                                

8 http://asterix.ics.uci.edu 
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systems drawbacks, recently, Google Cloud Dataflow9 has been proposed. The objective is to 

make data and analytics accessible to everyone [38] through a data-centric model. With Dataflow 

programmers can easily express data processing pipeline, monitor its execution, and get 

actionable insights from data, without having to deploy clusters, tuning configuration parameters, 

and optimizing resource usage. 

4. Big Data Life Cycle and Applications 

“Big Data is a paradigm shift in how we think about data assets, where do we collect them, how 

do we analyze them, and how do we monetize the insights from the analysis,” says Kimball [39]. 

Therefore, it is important to analyze Big Data life cycle and underline the challenges in each of 

these phases. Only analytic results matter. In the case of Big Data the whole processing phases 

are challenging: what to keep and what to throw? In which conditions are data acquired and 

cleaned? What is volatile or persistent, for how long? Are results transient or should they be used 

in further analysis? 

4.1 Data Acquisition 

Data is collected from some data-generating source. Much data are of no interest, and they can 

be filtered and compressed by orders of magnitude [12][10][40][11]. One challenge is to define 

these filters in such a way that they do not discard useful information. Data acquisition calls for 

research in the  information reduction science that can intelligently process raw data to a size that 

its users can handle while not missing the needle in the haystack. Furthermore, “on-line” analysis 

techniques are required to process streaming data on the fly, since it is not possible to store first 

and reduce afterwards.  

                                                

9 http://googlecloudplatform.blogspot.fr/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html 
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Furthermore, it is necessary to automatically generate the right metadata to describe what 

data are recorded and measured. Another important issue is data provenance. Recording 

information about the data at its birth is not useful unless this information can be interpreted and 

carried along through the data analysis pipeline [41]. Thus research is required for both 

generating suitable metadata and designing data systems that carry the provenance of data and its 

metadata through data analysis pipelines. 

4.2 Data Cleaning 

Given the heterogeneity of data flood, it is not enough merely to record it and store it into 

a repository. This requires differences in data structure and semantics to be expressed in 

computer understandable forms, and then “robotically” tractable. There is a strong body of work 

in data integration that can provide some of the answers. However, considerable additional work 

is required to achieve automated error-free difference resolution. Usually, there are many 

different ways to store the same information, each of them having their advantages and 

drawbacks. We must enable other professionals, such as domain scientists, to create effective 

database designs, either through devising tools to assist them in the design process or through 

forgoing the design process completely and developing techniques so that databases can be used 

effectively in the absence of intelligent database design. 

4.3 Data Analysis and Mining 

Methods for querying and mining Big Data are fundamentally different from traditional 

statistical analysis on small samples. Big Data are often noisy, dynamic, heterogeneous, inter-

related and untrustworthy. Nevertheless, even noisy Big Data could be more valuable than tiny 

samples. Indeed, general statistics obtained from frequent patterns and correlation analysis 

usually overpower individual fluctuations and often disclose more reliable hidden patterns and 
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knowledge.  

Big Data are enabling the next generation of interactive data analysis with real-time 

answers. In the future, queries towards Big Data will be automatically generated for content 

creation on websites, to populate hot-lists or recommendations, and to provide an ad hoc analysis 

of data sets to decide whether to keep or to discard them [42]. Scaling complex query processing 

techniques to terabytes while enabling interactive response times is a major open research 

problem today.  

Analytical pipelines can often involve multiple steps, with built in assumptions. By 

studying how best to capture, store, and query provenance, it is possible to create an 

infrastructure to interpret analytical results and to repeat the analysis with different assumptions, 

parameters, or data sets. Frequently, it is data visualization that allows Big Data to unleash its 

true impact. Visualization can help to produce and comprehend insights from Big Data. 

Visual.ly, Tableau, Vizify, D3.js, R, are simple and powerful tools for quickly discovering new 

things in increasingly large datasets. 

4.4 Big Data Aware Applications  

Today, organizations and researchers see tremendous potential value and insight to be gained by 

warehousing the emerging wealth of digital information [43]: (i) increase the effectiveness of 

their marketing and customer service efforts; (ii) sentiment analysis; (iii) track the progress of 

epidemics; (iv) studying tweets and social networks to understand how information of various 

kinds spreads and/or how it can be more effectively utilized for the public good. In a broad range 

of application areas, data are being collected at unprecedented scale. Decisions that previously 

were based on guesswork, or on painstakingly constructed models of reality, can now be made 

based on the data itself. 
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The Sloan Digital Sky Survey [6] has become a central resource for astronomers worldwide. 

The field of astronomy was transformed. In old days, taking pictures of the sky was a large part 

of an astronomer’s job. Today these pictures are all in a database already and the astronomer’s 

task is to find interesting objects and phenomena. In the biological sciences, there is now a well-

established tradition of depositing scientific data into a public repository, and also of creating 

public databases for use by other scientists. In fact, there is an entire discipline of bioinformatics 

that is largely devoted to the analysis of such data. As technology advances, particularly with the 

advent of Next Generation Sequencing, the size and number of experimental data sets available 

is increasing exponentially.  

In the context of education, imagine a world in which we have access to a huge database 

where every detailed measure of every student's academic performance is collected. These data 

could be used to design the most effective approaches to education, starting from reading, 

writing, and math, to advanced, college-level, and courses. We are far from having access to 

such data, but there are powerful trends in this direction. In particular, there is a strong trend for 

massive Web deployment of educational activities, and this will generate an increasingly large 

amount of detailed data about students' performance. 

Companies are able to quantify aspects of human behavior that were not accessible before. 

Social networks, news stream, and smart grid, are a way of measuring “conversation”, “interest”, 

and “activity”. Machine-learning algorithms and Big Data tools can identify whom to follow 

(e.g. in social networks) to understand how events and news stories resonate, and even to find 

dates [9]. 

5. Conclusions and Perspectives 

The Big Data wave has several impacts on existing approaches for managing data. First, 
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data are deployed on distributed and parallel architectures. Second, Big Data affects the type and 

accuracy of the models that can be derived. Big Data implies collecting, cleaning, storing and 

analyzing information streams. Each processing phase calls for greedy algorithms, statistics, 

models, that must scale and be performed efficiently. Scaling data management depends on the 

type of applications using data analytics results: critical tasks require on-line data processing 

while more analytic tasks may accept longer production time. Applying different algorithms 

produces results of different precision, accuracy, etc. (i.e., veracity).   

These complex processes call for new efficient data management techniques that can 

scale and be adapted to the traditional data processing chain: storage, memory management 

(caching), filtering, cleaning. New storage technologies, for instance, do not have the same large 

spread in performance between the sequential and random I/O performance. This requires a 

rethinking of how to design storage systems and every aspect of data processing, including query 

processing algorithms, query scheduling, database design, concurrency control methods and 

recovery methods [33]. It is also important to keep track of the type of processes applied to data 

and the conditions in which they were performed, since the processes must be reproduced, for 

instance for scientific applications. These techniques must be guided by hardware characteristics, 

for example memory, storage and computing resources and the way they are consumed. 

Particularly, in cloud architectures that are guided by “pay as you go” business models.  

Future Big Data management systems should take into account the analytic requirements 

of the applications, the characteristics of data (production rate, formats, how critical they are, 

size, validity interval), the resources required and the economic cost for providing useful analytic 

models that can better support decision making, recommendation, knowledge discovery, and data 

science tasks. 
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Table Captions 

Table 1.1 Data models proposed by NoSQL systems 

 

 

Type Operation Data Models! Descrip)on!

Key 

Read(key) 
Key-Value, Graph, 

Document, 
Column-Family, 

Relational 

Read a single record based on primary key 

Insert(key, value) Insert a single record based on primary key 

Update(key, value) Update a single record based on primary key 

Delete(key) Delete a single record based on primary key 

Aggregation 

Read(pattern) 
Document, 

Column-Family, 
Relational 

Read all entities that conform to the specified pattern 

Insert(value) Insert a single record with the specified pattern 

Update(pattern, value) Update all entities that conform to the specified pattern 

Delete(pattern) Delete all entities that conform to the specified pattern  

Connection 

Read(relationship) 

Graph, Relational 

Read all entities that conform to the specified relationship 

Insert(relationship) Create a relationship between entities 

Update(oldRel, newRel) Update a relationship between entities 

Delete(relationship) Delete a relationship between entities 


