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Stabilization of nonlinear systems using event-triggereautput feedback controllers

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz anddnr&lesic

Abstract—The objective is to design output feedback event-triggece
controllers to stabilize a class of nonlinear systems. Onefdhe main
difficulties of the problem is to ensure the existence of a mimum
amount of time between two consecutive transmissions, wiids essential
in practice. We solve this issue by combining techniques fra event-
triggered and time-triggered control. The idea is to turn on the event-
triggering mechanism only after a fixed amount of time has elpsed since
the last transmission. This time is computed based on resdton the
stabilization of time-driven sampled-data systems. The @rall strategy
ensures an asymptotic stability property for the closed-lop system. The
results are proved to be applicable to linear time-invariart (LTI) systems
as a particular case.

I. INTRODUCTION

we need to invoke non-smooth analysis tools to conclude tateu
stability of the closed-loop system (like in [4]).

This type of triggering rules has been used in [15] to stadili
nonlinear singularly perturbed systems under a differetta$ as-
sumptions. Note that the idea of enforcing a given time betwvo
jumps is linked to time regularization techniques, see .[Biinilar
approaches have been followed in [10], [11], [17], [18] iffetient
contexts, mainly for linear systems. It is worth mentionthgt our
strategy is essentially different from the aforementiotechniques
in the sense that the enforced lower bound on the interstreason
times corresponds to the MASP for time-triggered contrslid4].
This is not the case in the previous works where the lower éann

Networked control systems (NCS) are systems in which the-coifl0] comes from the event-triggering condition, or takerafironly

munication between the plant and the controller occursutyioa
shared digital channel. Since the network has a limited Waiitl

to rule out the Zeno phenomenon [11], [17], [18]. This seems t
be the first study where tools from time-triggered contrad ament-

and is typically used by other tasks, it is essential to dgveltriggered control are combined to stabilize nonlinear esyst with

communication-aware control strategies. Event-trigdetentrol is
a relevant paradigm in this context as it adapts transmmissio the

current state of the plant, seeg.[1]-[5] and the references therein.

In that way, transmissions only occur when it is needed aliegrto
the control objectives.

A fundamental issue in the implementation of event-trigder
controllers is to ensure the existence of a minimum amount
time between two consecutive transmissions to respectdtuiware
limitations. This task becomes particularly challenginigew we have
to design the controller using only an output of the systeith moi
the full state vector (see [6]), in particular when we aim t@mgntee
asymptotic stability properties. To the best of our knowlkedthis
problem has been first addressed in [7] and then in [6], [@]ar
linear time-invariant (LTI) systems and in [13] for nonlaresystems.

In this paper, we design output feedback event-triggeratiaters
for nonlinear systems which guarantee a (global) asyngpsbébility
property and the existence of a uniform strictly positivedo bound
on the inter-transmission times. The proposed strategybtws the
event-triggering condition of [3] adapted to output measuents and
the results on time-driven sampled-data systems in [14fedd, the
event-triggering condition is only (continuously) evake after T’
units of times have elapsed since the last transmissionyenfie
corresponds to thenaximum allowable sampling perioMASP)
given by [14]. This two-step procedure is justified by thet that the
adaptation of the event-triggering condition of [3] to auttfeedback

output feedback laws. The only result that addresses thiss obf
systems is [13], to the best of our knowledge. Compared t¢, [13
we propose a different approach and we rely on a differenobet
assumptions, which allows to consider classes of systemwlich
the results of [13] do not apply as we show in the paper.

Our results rely on similar assumptions as in [14], so that we
oén derive an explicit expression for the upper bound on th&sSRI
These conditions are shown to be verified by the nonlineaehor
model of thermal convection [19] and the nonlinear model single
link robot arm [20]. Furthermore, the required conditiome always
satisfied by LTI systems that are stabilizable and detegtabhich
case these are reformulated as a linear matrix inequalit)(LUn the
particular case of LTI systems, the proposed techniqueagdpears to
provide interesting features compared to [6], [10], [LhHeed, unlike
[10], [11], our approach is not necessarily based on an wbser
This has the advantage to potentially lighten the impletér since
the triggering mechanism only needs to have access to amtooftp
the plant, and not the controller state variable (but outltesare
also applicable in this case). Compared to [6], we ensureobagl
asymptotic stability property as opposed to ultimate bewaiméss.
Finally, simulation results show that our techniqgue mayegate less
transmissions than existing techniques for LTI systems.

It has to be noted that the event-triggering mechanism theat w
propose is different from the periodic event-triggeredtoan(PETC)
paradigm, see.qg.[21], [22], where the triggering condition is verified

on its own can lead to Zeno phenomenon (see [6]). Although tlwly at some periodic sampling instants. In our case, thygéring

rationale of the approach is intuitive, the analysis is rieidl. Indeed,

mechanism iscontinuously evaluated oncel’ units of time have

we need to construct a hybrid Lyapunov function which hasidleelapsed since the last transmission. The first results of wuirk

the features of both the time-triggering condition and & #vent-
triggering one to prove stability. The obtained functiomigy locally
Lipschitz (and not differentiable everywhere). As a consgge,
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linear examples.
Il. PRELIMINARIES

Let R := (—o0,00), R5j := [0,00) andZ>o := {0,1,2,..}. A
continuous functiony : R», — R is of classKC if it is zero at zero,



strictly increasing, and it is of clas§ if in addition v(s) — co  fp, fo are assumed to be continuous and the functigng. are
as s — oo. A continuous functiony : R, x Ry, — R., is of assumed to be continuously differentiable. We follow an letin
classKCL if for eacht € R~q, v(-, 1) is of classk, and, for each approach in this paper to design the event-triggered cherso
s € Rxq, v(s,-) is decreasing to zero. We denote the minimurkience, we assume that the controller (3) renders the orfggystem
and maximum eigenvalues of the symmetric matfixas Amin(A4)  (2)-(3) uniformly (globally) asymptotically stable in thebsence of
and Amax(A), respectively. We writeA” to denote the transposea network. Afterwards, we take into account the commurdeati

of A. We usel,, to denote the identity matrix of dimension.
We write (z,y) to represent the vectdr”,y”]” for z € R™ and
y € R™. For a vectorz € R", we denote byjz| := vVazTz its
Euclidean norm and for a matrig € R™*™, |A] := \/Amax (AT A).
We will consider locally Lipschitz Lyapunov functions (thare
not necessarily differentiable everywhere), therefore wi# use
the generalized directional derivative of Clarke which &fided as
follows. For a locally Lipschitz functio’v : R™ — R, and a vector
v € R", VO(z;v) = limsup,_,o+ ,.(V(y + hv) — V(y))/h.
For a continuously differentiable functiol, V°(x;v) reduces to
the standard directional derivativ&V (z),v), whereVV (z) is the
(classical) gradient. We will invoke the following resudee Lemma
1.1 in [23].
Lemma 1 (Lemma II.1 [23]). Consider two function$/; : R" — R
and U> : R™ — R that have well-defined Clarke derivatives for all
xz € R™ and v € R"™. Introduce three setsd := {z : Ui(z) >
Ux(z)}, B :={z: U1(z) < U2(x)}, T := {z : U1(x) = U2(x)}.
Then, for anyv € R", the functionU(z) := max{U: (z),Uz2(z)}
satisfiesU° (z;v) = Uy (x;v) for all z € A, U°(z;v) = Us(x;v)
for all x € B and U°(z;v) < max{U7 (z;v),Us (z;v)} for all
zel. ]
In this paper, we consider hybrid systems of the followingrfo
using the formalism of [24]

z=F(z) z€C, tt =G(x) zeD,

)

wherez € R" is the state,F' is the flow map,C is the flow set,
G is the jump map and is the jump set. The vector fields and

G are assumed to be continuous and the éét@nd D are closed.
The solutions to system (1) are defined on so-called hybritk ti
domains. A setE C Rso X Zxo is called acompact hybrid time

domainif £ = . U }([tj,tjﬂ],j) for some finite sequence
j€{0,...,dJ—1
of times0 = tp < t; < ... <ty and it is ahybrid time domainf

forall (T,J) € E,EN([0,T] x{0,1,...,J}) is a compact hybrid
time domain. A functiong : E — R" is a hybrid arc ifE' is a
hybrid time domain and if for each € Z>q,t — ¢(t, ) is locally
absolutely continuous o := {t : (t,5) € E}. A hybrid arcé is a
solution to system (1) if: (iy(0,0) € C'U D; (ii) for any j € Z>o,
o(t,§) € C and d(t, j) = F(4(t, 7)) for almost allt € I7; (i) for
every (t, j) € dome¢ such that(¢, 5 + 1) € dome, ¢(t,j) € D and
o(t,j+1) = G(¢(t,7)). A solution ¢ to system (1) isnaximalif
it cannot be extendeaompleteif its domain, domy, is unbounded,
and it isZenoif it is complete andsup, dom¢ < oo.

I1l. PROBLEM STATEMENT
Consider the nonlinear plant model

fo(zp, ), gp(Tp), 2
wherez, € R"? is the plant statey € R™* is the control input,

Tp = =

Y

constraints and we synthesize the triggering conditiorpdrticular,
we consider the scenario where controller (3) communiocateésthe
plant via a digital channel. Hence, the plant output and therol
input are sent only at transmission instanisi € Z C Zx>o. We
are interested in an event-triggered implementation inséese that
the sequence of transmission instants is determined byteriori
based on the output measurement and the control input, geeeFi
1. At each transmission instant, the plant output is senth® t

y(ti)
DY

y(t)

Controller

Event-triggerin
mechanism

;,,,

<

Fig. 1. Event-triggered control schematic [6]

controller, which computes a new control input that is instaeously
transmitted to the plant. We assume that this process isnpeefl

in a synchronous manrfeand we ignore the computation times and
the possible transmission delays. In that way, we obtain

iy = fp(zp, Q) t € [ti, tisa]
e = fe(®e, ) t € [ti, tit1]
u = gcixcsﬁ)
¥y = 9p\Tp
:l.j = 0 te [ti,ti.H] (4)
u = 0 te [ti,ti.H]
Bt = ()
it = ults),

wherey and 4 respectively denote the last transmitted values of the
plant output and the control input. We assume that zerordrdiel
devices are used to generate the sampled vajuesd @, which
leads toj = 0 and4 = 0. We introduce the network-induced error
e := (ey,eu) € R", wheree, := § — y ande, := 4 — u which are
reset to0 at each transmission instant.

Remark 1. We can alternatively define the sampling-induced error
ey a8Se, := . — xc, Wherei. denotes the value af. at the last
transmission instant. All the results presented hereadfgly in this
case, provided the required conditions hold. This allowsrtoompass
the case where the controller state, rather than the outguthe
controller, is used by the event-triggering mechanism tviniay help
reducing the amount of transmissions, as shown in Example2.

We model the event-triggered control system using the bybri
formalism of [24] as in,e.qg, [4], [6], [11], for which a jump

y € R™ is the measured output of the plant. We focus on genef2fTeSPonds to a transmission. In that way, we obtain

dynamic controllers of the form

fc(l'my)y (3)

wherez. € R"¢ is the controller state. We emphasize that the
system is not necessarily an observer. Moreover, (3) captsiatic
feedbacks as a particular case by setting g.(y). The functions

= u = gC(xC7y)7

Te

z fz,e) zt
e | =1 glz,e) q € C, e =10 ge D, (5
T 1 Tt

1see Section VIl for a discussion on the asynchronous case.



whereq := (z,e,7) € R™ ¥ with  := (zp,2.) € R™ and Indeed, wheny = 0, an infinite number of jumps occurs for any
7 € R is a clock variable which describes the time elapsed sinealue ofx such thatg,(z,) = y = 0. In [6], this issue is overcome
the last jump,f(z,e) := (fp(xp,gc(xwy +ey) +ew), fe(ze,y + by adding a constant to the triggering condition, which wblgad
5 to v2W?2(e) < 8(y) + ¢ here fore > 0, from which we can derive
ey)) and g(z,e) = ( = 5a, 9 (@) fo(@p. ge(Te;y + €) + 4 practical stability property. The event-triggered medta that we
€u), —a—icgc(xc, Y+ ey)fe(xe,y + ey)). The flow and jump sets propose allows us to guarantee an asymptotic stabilitygstpgior the
of (5) are defined according to the”triggering condition wel wi closed-loop while ensuring that the inter-transmissiores are lower
define. As long as the triggering condition is not violatetle t bounded by a strictly positive constant. The idea is to ataluhe
system flows onC' and a jump occurs when the state entergin event-triggering condition only aftéf units have elapsed since the
When (z,e,7) € C N D, the solution may flow only if flowing last transmission, wher€ corresponds to the MASP given by [14].
keeps(z, e, 7) in C, otherwise the system experiences a jump. TH& that way, we allow the user to directly tune the minimunmeint
functions f and g are continuous (in view of the assumptions madi!mp interval, up to a certain extent as explained in theofuithg.
on fp, fe, gp andg.), and the set€ and D will be closed (which We thus define the triggering condition as follows
ensure that system (5) is well-posed, see Chapter 6 in [24]). 21172
The main objective of this paper is to design the flow and thapju YW (e) < 9(y) or r € [0, 7], ©)
sets of system (5),e. the triggering condition which involves and where we recall that € R, is the clock variable introduced in (5).
y, to ensure a (global) asymptotic stability property forteys (5). Consequently, the flow and jump sets of system (5) are
IV. MAIN RESULTS C= {(x’e’ 7) 7 WHe) S d(y) orT € [0, T]} (10)
We first present the conditions that we impose on system g t D= {(x, e,7) v W?2(e) > 6(y) and T > T}.
we present the triggering technique and finally we state thém . ) . ) )
result. We make the following assumption on system (5), i Hence, the inter-jump times are uniformly lower boundedIbyT his

inspired by [14]. constant is selected such that< 7 (v, L), where
1
Assumption 1. There existA,, A. > 0, a locally Lipschitz function Ir arctan(r) v>L
V i R™ — R, a locally Lipschitz positive semi-definite function TOnL):=9 1 v=1L 11

1
W : R™ — Ry, a continuous function/ : R™* — R, real - arctanh(r) v<L

> @ o i , i . .

fnuunn;tti)grr]s;: %"; g Ig;oaguceh {[f]at,a;gg a%xcznﬁggous NONNEQative i, ;. .— |(£)2 — 1| and L,y come from Assumption 1.

- Remark 3. The triggering condition (10) requires to continuously

monitor both the plant output and the control input which aseded

for all |e| < A, and almost alljz| < A, to evaluateW (e). This may be difficult to implement in practice.

5 9 o We have decided to present the triggering condition withe)

(VV(2), f(x,e)) < —al|z]) = H(z) = d(y) +7"W(e) (7)  which depends on both, and e, for the sake of generality. Indeed,

and for all |z| < A, and almost allle| < A, this formulation encompasses the following important enggntation

scenarios as particular cases:

a(lz]) < V() <a(|x)), (6)

(VW(e),g(z,e)) < LW(e) + H(z). (8) « when only the output measurement is sampled and the cartroll
We say that Assumption 1 holds globally if (7) and (8) holdaflanost is directly connected to the actuators, in this case e,;
all z € R™ ande € R, 0 « when only the control input is sampled but goin this case =
B . ‘ , ew. Note that in this case the event-triggering rglgiw?(e,.) <
Conditions (6)-(7) imply that the system = f(xz,e) is Lo- 8(y) depends on both and v, i.e. the controller and the sensors

gain stable fromW to (H,+/3). This property can be analysed by  peed to be co-located.
investigating the robustness property of the closed-lgspesn (2)-(3)
V\;'th respl)_ect t\?\/lnp:ﬂ andfor output measur(ta_mlent (\i:trrc])rseradldjﬂsg;ce we need to sample both and w, asynchronous event-triggered
of sampling. Ve aiso assume an exponential gro con € implementations are probably more relevant, like in [6],0]1for

e-sy§tem on flows in (8) Wh.iCh Is already u_sed in_ [.14]’ [2.5]' W(?_TI systems. The proposed mechanism can be adapted to ¢iwer t
provide an example of a nonlinear system which satisfiesption implementation scenario for nonlinear systems, see [27]. O
a

1 at the end of this section and we can always guarantee itnfpr
stabilizable and detectable linear system. We are ready to state the main result.

When the controller and the plant/sensors are not co-lataad

Remark 2. Note that, sincdV is positive semi-definite and contin-Theorem 1. Suppose that Assumption 1 holds and consider system
uous (since it is locally Lipschitz), there exists€ Ko, such that (5) with the flow and jump sets (10), where the constéris such
W(e) < x(le]) (by following similar arguments as in the proof ofthatT € (0, 7 (v, L)). There existA > 0 and 8 € KL such that any
Lemma 4.3 in [26]). Hence, conditions (6), (7) imply that #ystem solution ¢ = (¢z, de, ¢~ ) With |(¢2(0,0), ¢<(0,0))| < A satisfies

@ = f(x,e) is input-to-state stable (ISS), however the converse i . . .

not ne((:ess)arily true. Although this requirement is strarthan 1SS, To. (8, )] < B(1(62(0,0),6(0,0))], t+7)  ¥(t,) € domg. (12)

it is satisfied by important classes of systems as we shove ipaper Moreover, the inter-transmission times are lower boundgd band
and in [20] as well. We rely on Assumption 1 to design the MASP ¢ is maximal, then it is complete. If Assumption 1 holds gligbal
that we enforce as a lower bound on the inter-transmissionesi as then (12) holds globally. d

we explain in the sequel. Example 1. Consider the controlled Lorenz equations which model

Under Assumption 1, the adaptation of [3] leads to a triggeri a thermal convection loop [19}1 = —ax1 + ax2, 2 = bz —
condition of the formy?1W?2(e) < §(y). The problem is that Zeno x> — 123 + u, &3 = z122 — cx3 andy = z1, wherea, b,c > 0.
phenomenon may occur with this type of triggering condgion The static output feedback law = f(’;—;a + b)z1, wherepy, p2 >



0, globally stabilizes the origin. This can be proved by usthg |e|, H(z) = |Asz|,L = |B2|,y = i, o(|z]) = e2|z[*,0(y) =
quadratic Lyapunov functio (z) = p1z? + p2a3 + pex?, which e1y|?, for anyz € Ry € R™ e € R"=. O
ipr oy . . 2 —
verifies °°”d'“2” (6) Wlthg('xl) min{p1, po}|| anq o|z]) Proposition 1 provides a sufficient condition, namely (1@}, the
max{p1,p2}|z|*. We take into account the network-induced error _ ="~ . .
N o : . verification of Assumption 1, which thus allows us to applg thsults
e = g — y (it is not necessary to consider the error«nas the . o
. . o of Section IV. It has to be noted that LMI (16) can always bésfiad
controller is static) and we seletY (e) = |e|. Hence, condition (8) . - o
. g ) : when system (13) is stabilizable and detectable. Indeethisncase,
is satisfied withL, = 0, H (z) = a(|z1|+|z2|). By takingp, > 1 and ; . .
. . . we can select the controller (14) such thét is Hurwitz. Noting that
p2 > 2a, condition (7) holds witha(|z|) = min{a(p: — 1), (p2 — . : Lo o .
9 2 5 " B (16) is equivalent to the following inequalities, by usirfgetSchur
2a), 2pactlzl®, 6(y) = a(pr — 1)y” andy* = p2(Lla + b)*. For : ~ T
P2 complement of (16) (see Section A.5.5 in [28M; P + PA: +
the parameter values = 10,b = 28,¢ = 8/3 used in [19], we set AT A roikel I 1 pB, BT P < 0. We see that we can
p1 = 2, p2 = 3a and we obtainl’ = 0.01. Figure 2 shows that “12 42 T &1Cp Cp Fe2ln, + 5, PD151 P < 0.

B _T_
the Zeno phenomenon occurs when we transmit only based on $#ect the matrix” such thatAf P + PA + A3 Az + €10, Cp +
event-triggering rule2W2(e) < 8(y), i.e.with T = 0in (10), which €2I», is negative definite. It then suffices to chogsesufficiently
supports the discussion above (9). We note that the resu18] are 1arge to ensure the last inequality.
not applicable to this system because condition (3) of Fsitipn 1

! Example 2. We consider Example 1 in [10] where both the output
in [13] does not hold. d

measurement and the controller state are used to triggesmtiasions.
We thus redefine the sampling-induced eerpto bee, = &.—x., as
explained in Remark 1, and we modify the matriges Az, B1, Bz in
(15) accordingly. In this casd, = |B2| = 23.7340. By solving LMI
(16), we obtains; = 86.1643, 2 = 15.1622, v = 151.4831. The
guaranteed minimum inter-transmission tim&is= 0.009, according
to (11). We have run simulations for 100 randomly distrilouitaitial
conditions for 5 s such thaftr,(0,0)| < 100, |z.(0,0)] < 100,
01 002 005 004_ 005 006 007 008 009 01 oL e4(0,0) = 0, e4(0,0) = (0,0), and7(0,0) = 0 and we compare
Transmission instants our result with architecture 1l in [10]. Table | provides tbbtained
Fig. 2. Inter-transmission times with [3]. minimum and average inter-transmission times, respégtienoted
as Tmin and Tayg. We notice that less transmissions are generated

] ) .whene, = Z. — z.. We also note that in this case our technique
We now focus on the particular case of linear systems. Cens'q/ields larger values of both,i, and raq than [10] 0
the LTI plant model ’

-3
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V. LINEAR SYSTEMS

. [10] Proposed mechanism with Proposed mechanism with
Tp = Al)xl) + Bpu7 Yy = Cpxp7 (13) ey =0 —u ey = &e — Te
. Suaranteed | o 5710~ 0902910~ 9.4476¢10~%
wherex, € R"?, u € R™, y € R™ andA,, B,, C}, are matrices of E— 057107 0.9028< 10— 9447610
appropriate dimensions. We design the following dynamictrmdler Taug 3.8310<107 Tféf_%“;" 10195510~
to Stablllze (13) |n the absence Of Sampllng SIMULATION COMPARISON WITH [10]
Ze = Ace + Bey, u = Cexc + Dy, (14)

where z. € R" and A, B.,C., D. are matrices of appropriate VI. STATE FEEDBACK CONTROLLERS

dimensions. Afterwards, we take into account the commtioica

The technigue proposed in Section IV is also relevant in tmeext
constraints. Then, the hybrid model (5) is que prop

of state feedback contrale. wheny = x, as the constarif’ in (10)

i Az + Bre zt x can be used to directly tune the minimum inter-transmissiore
(up to 7 (v, L) in (11)). It has to be noted that in this case, we can
replacey*W(e) < 3(y) in (9) by v*W2(e) < (alja) + H?(x) +

T 1 T 0 §(x)) when Assumption 1 holds. The following result is a direct
(15)  consequence of Theorem 1.

e | = | Asx + Bee qeC, et | =

o

q€ D,

Ap+BpD.Cp BpCe . )
whereq := (z,e,7), Ay = (7 7)), Corollary 1. Suppose that Assumption 1 holds and consider system

B.C Ac . _ . ;
5 B,D. B, M 7CP(A‘;+BPDCCP) —CyByC. ) (5) with y = = and the flow and jump sets defined as
= , = an
L B. o )72 —C.B.Cy —CeA. C’:{q 72 W2(e) < o(a(|z]) + H2(z) + 6(x)) or 7 € [0, T]}
B, —CpBpD. —CpBy
>\ —ase 0 ) D:{q A2W2(e) > o(al|z]) + H*(z) + 6(x)) and T > T},
We obtain the following result. 17)

- ] whereq := (z,e,7),0 € (0,1) andT is such thatl" € (0, 7 (v, L)).
Proposition 1. Consider system (15). Suppose that there eXighen the conclusions of Theorem 1 hold. 0
€1,e2, 1 > 0 and a positive definite symmetric real mati such
that Example 3. Consider the dynamics of a single-link robot arm

1 = x1, 2 = —sin(x1) + u, wherez; denotes the angle;, the
AFP 4+ PA, + AT A, + glﬁgﬁp +eol,, PB: rotational velocity and: the input torque. The system can be written
<0, (16) asz = Az + Bu— ¢(z) wherex := (z1,z2) andA =[3}], B=
BTP —ul, [91,0(2) = [sin(ey)]- We designu = Kz + B"¢(z) such that

. A = A+ BK is Hurwitz (which is possible since the paid (B)
where C, = [C, 0]. Then Assumption 1 holds with(z) = is controllable). We now take into account the effect of tie¢work
TPz, a(lz]) = Ann(P)|z]?,@(z]) = Amax(P)|z|?,W(e) = e = & —x and we obtaini = Az + BKe + ¢(z + e) — ¢().



We take W (e) = le|, V(z) = xT Pz, for all (z,e) € R™=Te,

as in the proof of Theorem 1 in [14] sineec K, andV is positive

where P is a real positive definite symmetric matrix such thatlefinite and radially unbounded, there exists a continumsstipe

ATP + PA = —Q. By following similar lines as in Section VI
in [20], we deduce that conditions (7), (8) hold with= |BK| +

L H(z) = |A+ BK|jal,y = /2EEEEEDS 5(2) = 0 and
a|z]) = (Pmn@ A4 BK|?)|z|? with Amin(Q) > 2|A+ BK[%.
We takeK = [-2 —3] and we obtain, = 4.6056 andy = 19.1361

definite functionp; such that

R°(¢; F(q)) < —p1(V(z)) = —p1(R(q)). (20)

Wheng € C and¢(7) > 0, we haveR(q) = V(x) + X ()W 3(e).
As above, in view of Lemma 1, Assumption 1 and (18) and

which yieldsT = 0.071485 in view of (11). We sefl’ = 0.0714 and Py following the same lines as in the proof20f Theorem 1 in
o = 0.15 in (17) and we run simulations for 100 randomly distributedl4], we obtain R°(q; F'(q)) < —oa(|z]) — H (z) — é(y) +

initial conditions such thatz(0,0)| < 100, e(0,0) = (0,0) and
7(0,0) 0 for 10 s. We obtainTmin = 0.0714 = T and

VW 2(e) + 2X¢(T)W () H (z) — N2 ()W 2(e) — A2W?2(e). Us-
ing the fact that2\((T)W (e)H (z) < N¢3(1)W?2(e) + H?(z),

Tag = 0.0778 which indicate the interaction between the timeRO(QSFSQ)) < —aflz]))=8(y) +7*W2(e) =N’ W?(e) < —a(|z])+

triggering and the event-triggering rules. To compare W&h we
setT = 0 and we have obtainet,i, = 0.0192 and 7ayg = 0.0727.
Hence, the proposed triggering condition generates laasHrissions
than [3] for this example. d

VII. CONCLUSION

We have developed output-based event-triggered consdbe the
stabilization of nonlinear systems. The proposed tectmigasures
an asymptotic stability property and enforces a minimum w@mho
of time between two consecutive transmission instants.réhaired
conditions are shown to be satisfied by any stabilizable atectable
LTI systems.

Y W2(e) — A*W?(e). Recall thatA> = ~* + 1, it holds that
R°(q; F(q)) < —a(|z|) — nW?(e). By using the same argument
as in (20), we derive thaR°(q; F(q)) < —p1(V(z)) — nW?3(e)
—p(V(@) = EA0W2(e) = —pi(V(2)) — p2( A0 W(e)),
whereps : s = %5 € Koo. Since¢(r) < 67! for all 7 > 0 in view
of (18), it holds thatR°(¢; F(g)) < —p1(V(x)) — p2(AC(T)W(e)).
We deduce that there exists a continuous positive definitetiton p3
such thatR® (¢; F()) < —ps(V () + A (T)W?(e)) = —p3(R(q)).
In view of the last inequality, (20) and Lemma 1, whéfr) =
0, R°(q; F(q)) < max{—pi(R(q)), ~ps(R(g))}. Consequently, it
holds that, for allg € C, R°(¢q;F(q)) < —p(R(q)). where
p = min{p1, p3} is continuous and positive definite. Lét be a

We show in [29] that these results can be used as a startimg pdgiolution to (5), (10). By definition of the Clarke’s derivati (see

to address the challenging co-design problem for lineategys in

Section 1) and page 100 in [32], it holds that, for glland for

which the output feedback law is not obtained by emulation b@most allt € I7 (wherel” = {t : (t,j) € dom¢})

is jointly synthesized with the triggering condition. Theoposed
approach is relevant for perturbed systems as the enfomel-time

R(6(t,5)) < R°((t,4); F((t,))) < —p(R(¢(t,))), (21)

prevents the occurrence of the Zeno phenomenon, which may ocas ¢(¢,7) € C for all (t,5) € domg. Thus, in view of (19),

otherwise, see [15], [30]. We address this problem in [3ikfstems
affected by plant disturbance, measurement errors andrpation on
the control input. We also study in [27] the extension of thespnted
approach to the asynchronous transmissions of the plaptiband
the control input.

APPENDIX

(21) and since inter-jump times are lower boundedbyn view

of (10), we conclude that, by following the same lines as ia th
end of the proof of Theorem 1 in [14], there existse KL such
that for any solutiong to (5), (10) and for all(¢,j) € domg,
R($(t, 7)) < B(R(4(0,0)),0.5t+0.5T5). In view of Assumption 1
and sincélV is continuous (since it is locally Lipschitz) and positive
semi-definite, there exis@w € Ko such thatiV(e) < aw(le|)

Proof of Theorem 1.First, we prove the result when Assumption 1for all e € R™< by following similar arguments as in the proof of

holds globally. Let{ : R>, — R be the solution to
{=—2LC-XN¢*+1)  ¢0)=067" (18)

wheref € (0,1), A := /42 +n for somen > 0 and L,y come
from Assumption 1. We denol@'(e, 1,7, L) the time it takes fog
to decrease frod™ to 0. This time7 (0,7, v, L) is defined as (28)
in [14] and is a continuous function @b, ) which is decreasing in
6 andn. In addition, it holds that (6, 7,~, L) — T (v, L) as(6,n)
tends to(0, 0) (where7T (v, L) is defined in Section V), like in [14].
As a consequence, sin@é< 7T (v, L), there existg6,n) such that
T < T(0,n,~,L). We fix the couple(d,n). Let ¢ := (z,e,7). We
define for allg € C U D, R(q) := V(z) + max{0, A\((7)W3(e)}.
Let ¢ € D, we obtain, in view of (5) and the fact th#lt" is positive
semi-definite ,

R(G(q)) = V(x) + max{0,\(0)W?(0)} = V(z) < R(q), (19)

whereG(q) := (z,0,0). Letg € C and suppose thal(r) < 0. As a
consequence it holds that> T Indeed,((7) is strictly decreasing
in 7, in view of (18), and¢(T) > ¢(T(0,n,v,L)) = 6 > 0
asT < T(0,n,v,L). As a consequencé(r) < 0 implies that
T > T. Hence,v*W?(e) < 46(y) in view of (10) sinceq € C.
Consequently, in view of Lemma 1, Assumption 1 and the défimit
of the functionR, R°(q; F(q)) = V°(x; f(x,€)) < —a(|z|), where

Lemma 4.3 in [26]. As a result, in view of Assumption 1, (18dan
the definition of the functionR, it holds that, for allg € C U D,
a(lz)) < R(q) < a(z)) + 3aw(le]) < @r(|(z.e)|), where
ar s +— a(s) + 3aw(s) € K. Hence, we deduce that (12)
holds for any solutiong to (5), (10) and for all(¢,j) € domg,
wheref : (s1,s2) — o~ (B(@r(s1), 1 min{1,T}s2)) € KL.

Regrading the inter-transmission times, we note that thentev
triggering mechanism (10) ensures that j' < % + 1, for any
(t',3'), (t,7) € domg such that’+j' < ¢t+j. Hence, two successive
transmissions are spaced by at I€Astinits of time.

We now investigate the completeness of the maximal solsitton
system (5), (10). Leth be a maximal solution to (5), (10). We first
show that¢ is nontrivial,i.e. its domain contains at least two points
(see Definition 2.5 in [24]). According to Proposition 6.10 [24],
it suffices for that purpose to prove théf'(¢)} N Tc(q) # ¢ for
any q := (z,e,7) € C\D, whereF(q) := (f(x,e),g(x,e),1) and
Tc(q) is the tangent cofeto C' at ¢. Let ¢ € C\D. If g is in the
interior of C, Tc(q) = R™* ™™ *! and the required condition holds.
If ¢ is not in the interior ofC, necessarilyr = 0 asq € C\D, in
this cas€lc(q) = R™ T x R, and we see thak'(q) € Tc(q), in

2The tangent cone to a s€t C R™ at a pointz € R™, denotedTs (),
is the set of all vectorsv € R™ for which there existr; € S,7 > 0
with z; — «,7 — 0 asi — oo such thatw = lim; s (z; — z)/7; (see

F(q) := (f(z,e),g(z,e),1). Hence, by following similar arguments Definition 5.12 in [24]).



view of (5). Hence is nontrivial according to Proposition 6.10 in [9] C. Peng and Q. Han, “Output-based event-triggeféd, control for

[24]. In view of (5), (10) and (12)¢, and¢, cannot explode in finite
time. Recall that the network-induced errorgis = (e, , ¢e, ) With
¢ey = ¢y(tj7j)_¢y(t7j)1 ¢eu = ¢1L(tj7j)_¢u(t7j) fOI’j > 0 and
(t,j) € dom¢ where we write domp = Ujcqo,...,53 ([t5,t5+1), 7)

[20]

with J € Z>o U {oco}. Hence, in view of (2), (3), (12) and[
11

since gp, g. are continuous, it holds that, for ajf > 0 and
(t,4) € dome, [ge, (t.5) < lgp(De, (ts,5))] + |gp (b, (. )] <
2max |gp(z)| with |z] < B(|(¢2(0,0), ¢c(0,0))|,0). Similarly,
we obtain, for all; > 0 and (¢,j) € domg, |pe,(t,7)] <
2max|ge(z1, z2)] With |z1] < B((6:(0,0),6¢(0,0))],0) and
|ze] < max|gy(z1)]. Whenj = 0, we have that|¢., (t,0)| <
(e, (0,0)] + |gp(02,(0,0)) — gp(e, (,0))] and [, (+,0)] <
$e,, (0,0)] + [ge(@z. (0,0), ¢y (0,0)) — ge(¢=.(t,0), ¢4 (0,0))[ and
we can derive similar bounds on the intervél¢;]. As a result,
and since¢. is reset to 0 at each jumpp. cannot blow up in

finite time. As a consequence, cannot explode in finite time. Let

[12]

[13]

[14]

G(z,e,7) := (x,0,0) denote the jump map (5). The solutions tq1s]

(5), (10) cannot leave the sétU D after a jump sinc&7 (D) C C
in view of (5), (10). Thus, we conclude that maximal soluticio
(5), (10) are complete according to Proposition 6.10 in [Fhally,
we note that if Assumption 1 holds locally, then there exists> 0
such that (19) and (21) hold on the invariant #et, e)| < A and
consequently (12) holds locally. O

Proof of Proposition 1. Let W (e) = |e], for all e € R™. Then,
in view of (15), we have that, for alt € R"» and almost alle €
R™, (VW (e), A2z + Bze) < |Azz| + |B2]le|. Hence, condition
(8) holds with . = |B2| and H(z) = |Asz|. Let V(x) = =T P,

[16]

[17]

(18]

[19]

for all z € R™=, where P is real positive definite and symmetric.[20]

Therefore, condition (6) is satisfied with(|z|) = Amin(P)|z|> and
a(|z]) = Amax(P)|z|?. Consequently, for alt € R™ and allz €
R™, (VV(z), A1z + Bie) = 27 (AT P + PAy)x + 27 PBie +

e? B Px. By post- and pre-multiplying LMI (16) respectively by the[21]

state vectorz, e) and its transpose, we obtairf (A7 P+ P A, )z +
2T PBie+eTBf Px < —eolz|? — |Azz|* — £1|Cpz|® + plef*. As a
result, condition (7) is verified withy(|z|) = e2|z|?, 6(y) = e1]y|?
andy = /u. Thus, Assumption 1 holds. a
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