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Stabilization of nonlinear systems using event-triggeredoutput feedback controllers

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz and Dragan Nešić

Abstract—The objective is to design output feedback event-triggered
controllers to stabilize a class of nonlinear systems. One of the main
difficulties of the problem is to ensure the existence of a minimum
amount of time between two consecutive transmissions, which is essential
in practice. We solve this issue by combining techniques from event-
triggered and time-triggered control. The idea is to turn on the event-
triggering mechanism only after a fixed amount of time has elapsed since
the last transmission. This time is computed based on results on the
stabilization of time-driven sampled-data systems. The overall strategy
ensures an asymptotic stability property for the closed-loop system. The
results are proved to be applicable to linear time-invariant (LTI) systems
as a particular case.

I. I NTRODUCTION

Networked control systems (NCS) are systems in which the com-
munication between the plant and the controller occurs through a
shared digital channel. Since the network has a limited bandwidth
and is typically used by other tasks, it is essential to develop
communication-aware control strategies. Event-triggered control is
a relevant paradigm in this context as it adapts transmissions to the
current state of the plant, seee.g. [1]–[5] and the references therein.
In that way, transmissions only occur when it is needed according to
the control objectives.

A fundamental issue in the implementation of event-triggered
controllers is to ensure the existence of a minimum amount of
time between two consecutive transmissions to respect the hardware
limitations. This task becomes particularly challenging when we have
to design the controller using only an output of the system and not
the full state vector (see [6]), in particular when we aim to guarantee
asymptotic stability properties. To the best of our knowledge, this
problem has been first addressed in [7] and then in [6], [8]–[12] for
linear time-invariant (LTI) systems and in [13] for nonlinear systems.

In this paper, we design output feedback event-triggered controllers
for nonlinear systems which guarantee a (global) asymptotic stability
property and the existence of a uniform strictly positive lower bound
on the inter-transmission times. The proposed strategy combines the
event-triggering condition of [3] adapted to output measurements and
the results on time-driven sampled-data systems in [14]. Indeed, the
event-triggering condition is only (continuously) evaluated afterT
units of times have elapsed since the last transmission, where T
corresponds to themaximum allowable sampling period(MASP)
given by [14]. This two-step procedure is justified by the fact that the
adaptation of the event-triggering condition of [3] to output feedback
on its own can lead to Zeno phenomenon (see [6]). Although the
rationale of the approach is intuitive, the analysis is not trivial. Indeed,
we need to construct a hybrid Lyapunov function which handles
the features of both the time-triggering condition and of the event-
triggering one to prove stability. The obtained function isonly locally
Lipschitz (and not differentiable everywhere). As a consequence,
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we need to invoke non-smooth analysis tools to conclude about the
stability of the closed-loop system (like in [4]).

This type of triggering rules has been used in [15] to stabilize
nonlinear singularly perturbed systems under a different set of as-
sumptions. Note that the idea of enforcing a given time between two
jumps is linked to time regularization techniques, see [16]. Similar
approaches have been followed in [10], [11], [17], [18] in different
contexts, mainly for linear systems. It is worth mentioningthat our
strategy is essentially different from the aforementionedtechniques
in the sense that the enforced lower bound on the inter-transmission
times corresponds to the MASP for time-triggered controllers [14].
This is not the case in the previous works where the lower bound in
[10] comes from the event-triggering condition, or taken small only
to rule out the Zeno phenomenon [11], [17], [18]. This seems to
be the first study where tools from time-triggered control and event-
triggered control are combined to stabilize nonlinear systems with
output feedback laws. The only result that addresses this class of
systems is [13], to the best of our knowledge. Compared to [13],
we propose a different approach and we rely on a different setof
assumptions, which allows to consider classes of systems for which
the results of [13] do not apply as we show in the paper.

Our results rely on similar assumptions as in [14], so that we
can derive an explicit expression for the upper bound on the MASP.
These conditions are shown to be verified by the nonlinear Lorenz
model of thermal convection [19] and the nonlinear model of asingle
link robot arm [20]. Furthermore, the required conditions are always
satisfied by LTI systems that are stabilizable and detectable, in which
case these are reformulated as a linear matrix inequality (LMI). In the
particular case of LTI systems, the proposed technique alsoappears to
provide interesting features compared to [6], [10], [11]. Indeed, unlike
[10], [11], our approach is not necessarily based on an observer.
This has the advantage to potentially lighten the implementation since
the triggering mechanism only needs to have access to an output of
the plant, and not the controller state variable (but our results are
also applicable in this case). Compared to [6], we ensure a global
asymptotic stability property as opposed to ultimate boundedness.
Finally, simulation results show that our technique may generate less
transmissions than existing techniques for LTI systems.

It has to be noted that the event-triggering mechanism that we
propose is different from the periodic event-triggered control (PETC)
paradigm, seee.g.[21], [22], where the triggering condition is verified
only at some periodic sampling instants. In our case, the triggering
mechanism iscontinuouslyevaluated onceT units of time have
elapsed since the last transmission. The first results of this work
have been presented in [20]. In comparison to our previous works, we
provide all the proofs of the results. We also show how the proposed
technique can be fruitfully employed in the context of statefeedback
control as a special case, to directly tune the lower bound onthe
inter-transmission times. Finally, we apply the results ona different
physical nonlinear example to better motivate our results and we
compare our event-triggered controllers with the existingresults on
linear examples.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞) andZ≥0 := {0, 1, 2, ..}. A
continuous functionγ : R≥0 → R≥0 is of classK if it is zero at zero,
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strictly increasing, and it is of classK∞ if in addition γ(s) → ∞
as s → ∞. A continuous functionγ : R≥0 × R≥0 → R≥0 is of
classKL if for each t ∈ R≥0, γ(·, t) is of classK, and, for each
s ∈ R≥0, γ(s, ·) is decreasing to zero. We denote the minimum
and maximum eigenvalues of the symmetric matrixA as λmin(A)
and λmax(A), respectively. We writeAT to denote the transpose
of A. We useIn to denote the identity matrix of dimensionn.
We write (x, y) to represent the vector[xT , yT ]T for x ∈ R

n and
y ∈ R

m. For a vectorx ∈ R
n, we denote by|x| :=

√
xTx its

Euclidean norm and for a matrixA ∈ R
n×m, |A| :=

√
λmax(ATA).

We will consider locally Lipschitz Lyapunov functions (that are
not necessarily differentiable everywhere), therefore wewill use
the generalized directional derivative of Clarke which is defined as
follows. For a locally Lipschitz functionV : Rn → R≥0 and a vector
υ ∈ R

n, V ◦(x;υ) := lim suph→0+, y→x(V (y + hυ) − V (y))/h.
For a continuously differentiable functionV , V ◦(x;υ) reduces to
the standard directional derivative〈∇V (x), υ〉, where∇V (x) is the
(classical) gradient. We will invoke the following result,see Lemma
II.1 in [23].

Lemma 1 (Lemma II.1 [23]). Consider two functionsU1 : Rn → R

and U2 : Rn → R that have well-defined Clarke derivatives for all
x ∈ R

n and υ ∈ R
n. Introduce three setsA := {x : U1(x) >

U2(x)}, B := {x : U1(x) < U2(x)}, Γ := {x : U1(x) = U2(x)}.
Then, for anyυ ∈ R

n, the functionU(x) := max{U1(x), U2(x)}
satisfiesU◦(x; υ) = U◦

1 (x; υ) for all x ∈ A, U◦(x;υ) = U◦
2 (x;υ)

for all x ∈ B and U◦(x;υ) ≤ max{U◦
1 (x; υ), U

◦
2 (x; υ)} for all

x ∈ Γ. �

In this paper, we consider hybrid systems of the following form
using the formalism of [24]

ẋ = F (x) x ∈ C, x+ = G(x) x ∈ D, (1)

wherex ∈ R
n is the state,F is the flow map,C is the flow set,

G is the jump map andD is the jump set. The vector fieldsF and
G are assumed to be continuous and the setsC andD are closed.
The solutions to system (1) are defined on so-called hybrid time
domains. A setE ⊂ R≥0 × Z≥0 is called acompact hybrid time
domain if E = ∪

j∈{0,...,J−1}
([tj , tj+1], j) for some finite sequence

of times 0 = t0 ≤ t1 ≤ ... ≤ tJ and it is ahybrid time domainif
for all (T, J) ∈ E,E ∩ ([0, T ]× {0, 1, ..., J}) is a compact hybrid
time domain. A functionφ : E → R

n is a hybrid arc ifE is a
hybrid time domain and if for eachj ∈ Z≥0, t 7→ φ(t, j) is locally
absolutely continuous onIj := {t : (t, j) ∈ E}. A hybrid arcφ is a
solution to system (1) if: (i)φ(0, 0) ∈ C ∪D; (ii) for any j ∈ Z≥0,
φ(t, j) ∈ C and φ̇(t, j) = F (φ(t, j)) for almost allt ∈ Ij ; (iii) for
every (t, j) ∈ domφ such that(t, j + 1) ∈ domφ, φ(t, j) ∈ D and
φ(t, j + 1) = G(φ(t, j)). A solution φ to system (1) ismaximal if
it cannot be extended,completeif its domain, domφ, is unbounded,
and it isZeno if it is complete andsupt domφ < ∞.

III. PROBLEM STATEMENT

Consider the nonlinear plant model

ẋp = fp(xp, u), y = gp(xp), (2)

wherexp ∈ R
np is the plant state,u ∈ R

nu is the control input,
y ∈ R

ny is the measured output of the plant. We focus on general
dynamic controllers of the form

ẋc = fc(xc, y), u = gc(xc, y), (3)

wherexc ∈ R
nc is the controller state. We emphasize that thexc-

system is not necessarily an observer. Moreover, (3) captures static
feedbacks as a particular case by settingu = gc(y). The functions

fp, fc are assumed to be continuous and the functionsgp, gc are
assumed to be continuously differentiable. We follow an emulation
approach in this paper to design the event-triggered controllers.
Hence, we assume that the controller (3) renders the origin of system
(2)-(3) uniformly (globally) asymptotically stable in theabsence of
a network. Afterwards, we take into account the communication
constraints and we synthesize the triggering condition. Inparticular,
we consider the scenario where controller (3) communicateswith the
plant via a digital channel. Hence, the plant output and the control
input are sent only at transmission instantsti, i ∈ I ⊆ Z≥0. We
are interested in an event-triggered implementation in thesense that
the sequence of transmission instants is determined by a criterion
based on the output measurement and the control input, see Figure
1. At each transmission instant, the plant output is sent to the

Plant

Event-triggering
mechanism

Controller
y(t)y(ti)u(t)u(ti)

Fig. 1. Event-triggered control schematic [6]

controller, which computes a new control input that is instantaneously
transmitted to the plant. We assume that this process is performed
in a synchronous manner1 and we ignore the computation times and
the possible transmission delays. In that way, we obtain

ẋp = fp(xp, û) t ∈ [ti, ti+1]
ẋc = fc(xc, ŷ) t ∈ [ti, ti+1]
u = gc(xc, ŷ)
y = gp(xp)
˙̂y = 0 t ∈ [ti, ti+1]
˙̂u = 0 t ∈ [ti, ti+1]

ŷ(t+i ) = y(ti)
û(t+i ) = u(ti),






(4)

where ŷ and û respectively denote the last transmitted values of the
plant output and the control input. We assume that zero-order-hold
devices are used to generate the sampled valuesŷ and û, which
leads to ˙̂y = 0 and ˙̂u = 0. We introduce the network-induced error
e := (ey , eu) ∈ R

ne , whereey := ŷ− y andeu := û− u which are
reset to0 at each transmission instant.

Remark 1. We can alternatively define the sampling-induced error
eu as eu := x̂c − xc, where x̂c denotes the value ofxc at the last
transmission instant. All the results presented hereafterapply in this
case, provided the required conditions hold. This allows toencompass
the case where the controller state, rather than the output of the
controller, is used by the event-triggering mechanism which may help
reducing the amount of transmissions, as shown in Example 2.�

We model the event-triggered control system using the hybrid
formalism of [24] as in,e.g., [4], [6], [11], for which a jump
corresponds to a transmission. In that way, we obtain




ẋ

ė

τ̇


 =




f(x, e)

g(x, e)

1


 q ∈ C,




x+

e+

τ+


 =




x

0

0


 q ∈ D, (5)

1See Section VII for a discussion on the asynchronous case.
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where q := (x, e, τ ) ∈ R
nx+ne+1 with x := (xp, xc) ∈ R

nx and
τ ∈ R is a clock variable which describes the time elapsed since
the last jump,f(x, e) :=

(
fp(xp, gc(xc, y + ey) + eu), fc(xc, y +

ey)
)

and g(x, e) :=
(

− ∂
∂xp

gp(xp)fp(xp, gc(xc, y + ey) +

eu), − ∂
∂xc

gc(xc, y + ey)fc(xc, y + ey)
)

. The flow and jump sets
of (5) are defined according to the triggering condition we will
define. As long as the triggering condition is not violated, the
system flows onC and a jump occurs when the state enters inD.
When (x, e, τ ) ∈ C ∩ D, the solution may flow only if flowing
keeps(x, e, τ ) in C, otherwise the system experiences a jump. The
functionsf andg are continuous (in view of the assumptions made
on fp, fc, gp and gc), and the setsC andD will be closed (which
ensure that system (5) is well-posed, see Chapter 6 in [24]).

The main objective of this paper is to design the flow and the jump
sets of system (5),i.e. the triggering condition which involvese and
y, to ensure a (global) asymptotic stability property for system (5).

IV. M AIN RESULTS

We first present the conditions that we impose on system (5), then
we present the triggering technique and finally we state the main
result. We make the following assumption on system (5), which is
inspired by [14].

Assumption 1. There exist∆x,∆e > 0, a locally Lipschitz function
V : Rnx → R≥0, a locally Lipschitz positive semi-definite function
W : Rne → R≥0, a continuous functionH : Rnx → R≥0, real
numbersγ, L ≥ 0, α, α, α ∈ K∞ and a continuous, nonnegative
functionδ : Rny → R≥0 such that, for allx ∈ R

nx

α(|x|) ≤ V (x) ≤ α(|x|), (6)

for all |e| ≤ ∆e and almost all|x| ≤ ∆x

〈∇V (x), f(x, e)〉 ≤ −α(|x|)−H2(x)− δ(y) + γ2W 2(e) (7)

and for all |x| ≤ ∆x and almost all|e| ≤ ∆e

〈∇W (e), g(x, e)〉 ≤ LW (e) +H(x). (8)

We say that Assumption 1 holds globally if (7) and (8) hold foralmost
all x ∈ R

nx and e ∈ R
ne . �

Conditions (6)-(7) imply that the systeṁx = f(x, e) is L2-
gain stable fromW to (H,

√
δ). This property can be analysed by

investigating the robustness property of the closed-loop system (2)-(3)
with respect to input and/or output measurement errors in the absence
of sampling. We also assume an exponential growth conditionof the
e-system on flows in (8) which is already used in [14], [25]. We
provide an example of a nonlinear system which satisfies Assumption
1 at the end of this section and we can always guarantee it for any
stabilizable and detectable linear system.

Remark 2. Note that, sinceW is positive semi-definite and contin-
uous (since it is locally Lipschitz), there existsχ ∈ K∞ such that
W (e) ≤ χ(|e|) (by following similar arguments as in the proof of
Lemma 4.3 in [26]). Hence, conditions (6), (7) imply that thesystem
ẋ = f(x, e) is input-to-state stable (ISS), however the converse is
not necessarily true. Although this requirement is stronger than ISS,
it is satisfied by important classes of systems as we show in the paper
and in [20] as well. We rely on Assumption 1 to design the MASP
that we enforce as a lower bound on the inter-transmission times as
we explain in the sequel. �

Under Assumption 1, the adaptation of [3] leads to a triggering
condition of the formγ2W 2(e) ≤ δ(y). The problem is that Zeno
phenomenon may occur with this type of triggering conditions.

Indeed, wheny = 0, an infinite number of jumps occurs for any
value ofx such thatgp(xp) = y = 0. In [6], this issue is overcome
by adding a constant to the triggering condition, which would lead
to γ2W 2(e) ≤ δ(y) + ε here forε > 0, from which we can derive
a practical stability property. The event-triggered mechanism that we
propose allows us to guarantee an asymptotic stability property for the
closed-loop while ensuring that the inter-transmission times are lower
bounded by a strictly positive constant. The idea is to evaluate the
event-triggering condition only afterT units have elapsed since the
last transmission, whereT corresponds to the MASP given by [14].
In that way, we allow the user to directly tune the minimum inter-
jump interval, up to a certain extent as explained in the following.
We thus define the triggering condition as follows

γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ], (9)

where we recall thatτ ∈ R≥0 is the clock variable introduced in (5).
Consequently, the flow and jump sets of system (5) are

C =
{
(x, e, τ ) : γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ]

}

D =
{
(x, e, τ ) : γ2W 2(e) ≥ δ(y) andτ ≥ T

}
.

(10)

Hence, the inter-jump times are uniformly lower bounded byT . This
constant is selected such thatT < T (γ, L), where

T (γ, L) :=





1
Lr

arctan(r) γ > L
1
L

γ = L
1
Lr

arctanh(r) γ < L
(11)

with r :=
√∣∣( γ

L
)2 − 1

∣∣ andL, γ come from Assumption 1.

Remark 3. The triggering condition (10) requires to continuously
monitor both the plant output and the control input which areneeded
to evaluateW (e). This may be difficult to implement in practice.
We have decided to present the triggering condition withW (e)
which depends on bothey and eu for the sake of generality. Indeed,
this formulation encompasses the following important implementation
scenarios as particular cases:

• when only the output measurement is sampled and the controller
is directly connected to the actuators, in this casee = ey;

• when only the control input is sampled but noty, in this casee =
eu. Note that in this case the event-triggering ruleγ2W 2(eu) ≤
δ(y) depends on bothy andu, i.e. the controller and the sensors
need to be co-located.

When the controller and the plant/sensors are not co-located and
we need to sample bothy and u, asynchronous event-triggered
implementations are probably more relevant, like in [6], [10] for
LTI systems. The proposed mechanism can be adapted to cover this
implementation scenario for nonlinear systems, see [27]. �

We are ready to state the main result.

Theorem 1. Suppose that Assumption 1 holds and consider system
(5) with the flow and jump sets (10), where the constantT is such
thatT ∈ (0, T (γ, L)). There exist∆ > 0 andβ ∈ KL such that any
solutionφ = (φx, φe, φτ ) with |(φx(0, 0), φe(0, 0))| ≤ ∆ satisfies

|φx(t, j)| ≤ β(|(φx(0, 0), φe(0, 0))|, t+j) ∀(t, j) ∈ domφ. (12)

Moreover, the inter-transmission times are lower bounded by T , and
if φ is maximal, then it is complete. If Assumption 1 holds globally,
then (12) holds globally. �

Example 1. Consider the controlled Lorenz equations which model
a thermal convection loop [19],̇x1 = −ax1 + ax2, ẋ2 = bx1 −
x2 − x1x3 + u, ẋ3 = x1x2 − cx3 and y = x1, wherea, b, c > 0.
The static output feedback lawu = −( p1

p2
a + b)x1, wherep1, p2 >
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0, globally stabilizes the origin. This can be proved by usingthe
quadratic Lyapunov functionV (x) = p1x

2
1 + p2x

2
2 + p2x

2
3, which

verifies condition (6) withα(|x|) = min{p1, p2}|x|2 andα(|x|) =
max{p1, p2}|x|2. We take into account the network-induced error
e = ŷ − y (it is not necessary to consider the error inu as the
controller is static) and we selectW (e) = |e|. Hence, condition (8)
is satisfied withL = 0, H(x) = a(|x1|+|x2|). By takingp1 > 1 and
p2 > 2a, condition (7) holds withα(|x|) = min{a(p1 − 1), (p2 −
2a), 2p2c}|x|2, δ(y) = a(p1 − 1)y2 and γ2 = p2(

p1
p2

a + b)2. For
the parameter valuesa = 10, b = 28, c = 8/3 used in [19], we set
p1 = 2, p2 = 3a and we obtainT = 0.01. Figure 2 shows that
the Zeno phenomenon occurs when we transmit only based on the
event-triggering ruleγ2W 2(e) ≤ δ(y), i.e.with T = 0 in (10), which
supports the discussion above (9). We note that the results in [13] are
not applicable to this system because condition (3) of Proposition 1
in [13] does not hold. �
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Fig. 2. Inter-transmission times with [3].

V. L INEAR SYSTEMS

We now focus on the particular case of linear systems. Consider
the LTI plant model

ẋp = Apxp +Bpu, y = Cpxp, (13)

wherexp ∈ R
np , u ∈ R

nu , y ∈ R
ny andAp, Bp, Cp are matrices of

appropriate dimensions. We design the following dynamic controller
to stabilize (13) in the absence of sampling

ẋc = Acxc +Bcy, u = Ccxc +Dcy, (14)

where xc ∈ R
nc and Ac, Bc, Cc, Dc are matrices of appropriate

dimensions. Afterwards, we take into account the communication
constraints. Then, the hybrid model (5) is



ẋ

ė

τ̇


 =




A1x+ B1e

A2x+ B2e

1


 q ∈ C,




x+

e+

τ+


 =




x

0

0


 q ∈ D,

(15)

whereq := (x, e, τ ), A1 :=

(
Ap+BpDcCp BpCc

BcCp Ac

)
,

B1 :=

(
BpDc Bp

Bc 0

)
, A2 :=

(
−Cp(Ap+BpDcCp) −CpBpCc

−CcBcCp −CcAc

)
and

B2 :=

(
−CpBpDc −CpBp

−CcBc 0

)
.

We obtain the following result.

Proposition 1. Consider system (15). Suppose that there exist
ε1, ε2, µ > 0 and a positive definite symmetric real matrixP such
that


AT

1 P + PA1 +AT
2 A2 + ε1C

T

p Cp + ε2Inx
PB1

BT
1 P −µIne


 ≤ 0, (16)

where Cp = [Cp 0]. Then Assumption 1 holds withV (x) =
xTPx, α(|x|) = λmin(P )|x|2, α(|x|) = λmax(P )|x|2,W (e) =

|e|, H(x) = |A2x|, L = |B2|, γ =
√
µ, α(|x|) = ε2|x|2, δ(y) =

ε1|y|2, for anyx ∈ R
nx , y ∈ R

ny , e ∈ R
ne . �

Proposition 1 provides a sufficient condition, namely (16),for the
verification of Assumption 1, which thus allows us to apply the results
of Section IV. It has to be noted that LMI (16) can always be satisfied
when system (13) is stabilizable and detectable. Indeed, inthis case,
we can select the controller (14) such thatA1 is Hurwitz. Noting that
(16) is equivalent to the following inequalities, by using the Schur
complement of (16) (see Section A.5.5 in [28]),AT

1 P + PA1 +

AT
2 A2 + ε1C

T

p Cp + ε2Inx
+ 1

µ
PB1BT

1 P ≤ 0. We see that we can

select the matrixP such thatAT
1 P + PA1 +AT

2 A2 + ε1C
T

p Cp +
ε2Inx

is negative definite. It then suffices to chooseµ sufficiently
large to ensure the last inequality.

Example 2. We consider Example 1 in [10] where both the output
measurement and the controller state are used to trigger transmissions.
We thus redefine the sampling-induced erroreu to beeu = x̂c−xc, as
explained in Remark 1, and we modify the matricesA1,A2,B1,B2 in
(15) accordingly. In this case,L = |B2| = 23.7340. By solving LMI
(16), we obtainε1 = 86.1643, ε2 = 15.1622, γ = 151.4831. The
guaranteed minimum inter-transmission time isT = 0.009, according
to (11). We have run simulations for 100 randomly distributed initial
conditions for 5 s such that|xp(0, 0)| ≤ 100, |xc(0, 0)| ≤ 100,
ey(0, 0) = 0, eu(0, 0) = (0, 0), and τ (0, 0) = 0 and we compare
our result with architecture II in [10]. Table I provides theobtained
minimum and average inter-transmission times, respectively denoted
as τmin and τavg. We notice that less transmissions are generated
when eu = x̂c − xc. We also note that in this case our technique
yields larger values of bothτmin and τavg than [10]. �

[10] Proposed mechanism with Proposed mechanism with
eu = û− u eu = x̂c − xc

Guaranteed
0.57×10−3 0.9029×10−3 9.4476×10−3

lower bound
τmin 0.57×10−3 0.9029×10−3 9.4476×10−3

τavg 3.8310×10−3 1.2207×10−3 10.1955×10−3

TABLE I
SIMULATION COMPARISON WITH [10].

VI. STATE FEEDBACK CONTROLLERS

The technique proposed in Section IV is also relevant in the context
of state feedback control,i.e. wheny = x, as the constantT in (10)
can be used to directly tune the minimum inter-transmissiontime
(up to T (γ, L) in (11)). It has to be noted that in this case, we can
replaceγ2W 2(e) ≤ δ(y) in (9) by γ2W 2(e) ≤ (α(|x|) +H2(x) +
δ(x)) when Assumption 1 holds. The following result is a direct
consequence of Theorem 1.

Corollary 1. Suppose that Assumption 1 holds and consider system
(5) with y = x and the flow and jump sets defined as

C=
{
q :γ2W 2(e) ≤ σ(α(|x|) +H2(x) + δ(x)) or τ ∈ [0, T ]

}

D=
{
q :γ2W 2(e) ≥ σ(α(|x|) +H2(x) + δ(x)) and τ ≥ T

}
,

(17)
whereq := (x, e, τ ), σ ∈ (0, 1) andT is such thatT ∈ (0, T (γ, L)).
Then, the conclusions of Theorem 1 hold. �

Example 3. Consider the dynamics of a single-link robot arm
ẋ1 = x1, ẋ2 = − sin(x1) + u, wherex1 denotes the angle,x2 the
rotational velocity andu the input torque. The system can be written
as ẋ = Ax+Bu− φ(x) wherex := (x1, x2) andA = [ 0 1

0 0 ] , B =
[ 01 ] , φ(x) =

[
0

sin(x1)

]
. We designu = Kx + BTφ(x) such that

Ā = A + BK is Hurwitz (which is possible since the pair (A,B)
is controllable). We now take into account the effect of the network
e = x̂ − x and we obtainẋ = Āx + BKe + φ(x + e) − φ(x).
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We takeW (e) = |e|, V (x) = xTPx, for all (x, e) ∈ R
nx+ne ,

where P is a real positive definite symmetric matrix such that
ĀTP + PĀ = −Q. By following similar lines as in Section VI
in [20], we deduce that conditions (7), (8) hold withL = |BK| +
1, H(x) = |A + BK||x|, γ =

√
2(|PBK|+|P |)2

λmin(Q)
, δ(x) = 0 and

α(|x|) = (λmin(Q)
2

−|A+BK|2)|x|2 with λmin(Q) > 2|A+BK|2.
We takeK = [−2 −3] and we obtainL = 4.6056 andγ = 19.1361
which yieldsT = 0.071485 in view of (11). We setT = 0.0714 and
σ = 0.15 in (17) and we run simulations for 100 randomly distributed
initial conditions such that|x(0, 0)| ≤ 100, e(0, 0) = (0, 0) and
τ (0, 0) = 0 for 10 s. We obtainτmin = 0.0714 = T and
τavg = 0.0778 which indicate the interaction between the time-
triggering and the event-triggering rules. To compare with[3], we
setT = 0 and we have obtainedτmin = 0.0192 andτavg = 0.0727.
Hence, the proposed triggering condition generates less transmissions
than [3] for this example. �

VII. C ONCLUSION

We have developed output-based event-triggered controllers for the
stabilization of nonlinear systems. The proposed technique ensures
an asymptotic stability property and enforces a minimum amount
of time between two consecutive transmission instants. Therequired
conditions are shown to be satisfied by any stabilizable and detectable
LTI systems.

We show in [29] that these results can be used as a starting point
to address the challenging co-design problem for linear systems in
which the output feedback law is not obtained by emulation but
is jointly synthesized with the triggering condition. The proposed
approach is relevant for perturbed systems as the enforced dwell-time
prevents the occurrence of the Zeno phenomenon, which may occur
otherwise, see [15], [30]. We address this problem in [31] for systems
affected by plant disturbance, measurement errors and perturbation on
the control input. We also study in [27] the extension of the presented
approach to the asynchronous transmissions of the plant output and
the control input.

APPENDIX

Proof of Theorem 1.First, we prove the result when Assumption 1
holds globally. Letζ : R≥0 → R be the solution to

ζ̇ = −2Lζ − λ(ζ2 + 1) ζ(0) = θ−1, (18)

where θ ∈ (0, 1), λ :=
√

γ2 + η for someη > 0 and L, γ come
from Assumption 1. We denotẽT (θ, η, γ, L) the time it takes forζ
to decrease fromθ−1 to θ. This timeT̃ (θ, η, γ, L) is defined as (28)
in [14] and is a continuous function of(θ, η) which is decreasing in
θ andη. In addition, it holds that̃T (θ, η, γ, L) → T (γ, L) as(θ, η)
tends to(0, 0) (whereT (γ, L) is defined in Section IV), like in [14].
As a consequence, sinceT < T (γ, L), there exists(θ, η) such that
T < T̃ (θ, η, γ, L). We fix the couple(θ, η). Let q := (x, e, τ ). We
define for allq ∈ C ∪ D, R(q) := V (x) + max{0, λζ(τ )W 2(e)}.
Let q ∈ D, we obtain, in view of (5) and the fact thatW is positive
semi-definite ,

R(G(q)) = V (x) + max{0, λζ(0)W 2(0)} = V (x) ≤ R(q), (19)

whereG(q) := (x, 0, 0). Let q ∈ C and suppose thatζ(τ ) < 0. As a
consequence it holds thatτ > T . Indeed,ζ(τ ) is strictly decreasing
in τ , in view of (18), andζ(T ) > ζ(T̃ (θ, η, γ, L)) = θ > 0
as T < T̃ (θ, η, γ, L). As a consequenceζ(τ ) < 0 implies that
τ > T . Hence,γ2W 2(e) ≤ δ(y) in view of (10) sinceq ∈ C.
Consequently, in view of Lemma 1, Assumption 1 and the definition
of the functionR, R◦(q;F (q)) = V ◦(x; f(x, e)) ≤ −α(|x|), where
F (q) := (f(x, e), g(x, e), 1). Hence, by following similar arguments

as in the proof of Theorem 1 in [14] sinceα ∈ K∞ andV is positive
definite and radially unbounded, there exists a continuous positive
definite functionρ1 such that

R◦(q;F (q)) ≤ −ρ1(V (x)) = −ρ1(R(q)). (20)

Whenq ∈ C andζ(τ ) > 0, we haveR(q) = V (x) + λζ(τ )W 2(e).
As above, in view of Lemma 1, Assumption 1 and (18) and
by following the same lines as in the proof of Theorem 1 in
[14], we obtain R◦(q;F (q)) ≤ −α(|x|) − H2(x) − δ(y) +
γ2W 2(e) + 2λζ(τ )W (e)H(x)− λ2ζ2(τ )W 2(e) − λ2W 2(e). Us-
ing the fact that2λζ(τ )W (e)H(x) ≤ λ2ζ2(τ )W 2(e) + H2(x),
R◦(q;F (q)) ≤ −α(|x|)−δ(y)+γ2W 2(e)−λ2W 2(e) ≤ −α(|x|)+
γ2W 2(e) − λ2W 2(e). Recall thatλ2 = γ2 + η, it holds that
R◦(q;F (q)) ≤ −α(|x|) − ηW 2(e). By using the same argument
as in (20), we derive thatR◦(q;F (q)) ≤ −ρ1(V (x))− ηW 2(e) =
−ρ1(V (x)) − ηθ

λ
λθ−1W 2(e) = −ρ1(V (x)) − ρ2(λθ

−1W 2(e)),
whereρ2 : s 7→ ηθ

λ
s ∈ K∞. Sinceζ(τ ) ≤ θ−1 for all τ ≥ 0 in view

of (18), it holds thatR◦(q;F (q)) ≤ −ρ1(V (x))−ρ2(λζ(τ )W
2(e)).

We deduce that there exists a continuous positive definite functionρ3
such thatR◦(q;F (q)) ≤ −ρ3(V (x)+λζ(τ )W 2(e)) = −ρ3(R(q)).
In view of the last inequality, (20) and Lemma 1, whenζ(τ ) =
0, R◦(q;F (q)) ≤ max{−ρ1(R(q)),−ρ3(R(q))}. Consequently, it
holds that, for all q ∈ C, R◦(q;F (q)) ≤ −ρ(R(q)). where
ρ := min{ρ1, ρ3} is continuous and positive definite. Letφ be a
solution to (5), (10). By definition of the Clarke’s derivative (see
Section II) and page 100 in [32], it holds that, for allj and for
almost allt ∈ Ij (whereIj = {t : (t, j) ∈ domφ})

Ṙ(φ(t, j)) ≤ R◦(φ(t, j);F (φ(t, j))) ≤ −ρ(R(φ(t, j))), (21)

as φ(t, j) ∈ C for all (t, j) ∈ domφ. Thus, in view of (19),
(21) and since inter-jump times are lower bounded byT in view
of (10), we conclude that, by following the same lines as in the
end of the proof of Theorem 1 in [14], there existsβ̃ ∈ KL such
that for any solutionφ to (5), (10) and for all(t, j) ∈ domφ,
R(φ(t, j)) ≤ β̃(R(φ(0, 0)), 0.5t+0.5Tj). In view of Assumption 1
and sinceW is continuous (since it is locally Lipschitz) and positive
semi-definite, there existsαW ∈ K∞ such thatW (e) ≤ αW (|e|)
for all e ∈ R

ne by following similar arguments as in the proof of
Lemma 4.3 in [26]. As a result, in view of Assumption 1, (18) and
the definition of the functionR, it holds that, for allq ∈ C ∪ D,
α(|x|) ≤ R(q) ≤ α(|x|) + λ

θ
αW (|e|) ≤ αR(|(x, e)|), where

αR : s 7→ α(s) + λ
θ
αW (s) ∈ K∞. Hence, we deduce that (12)

holds for any solutionφ to (5), (10) and for all(t, j) ∈ domφ,
whereβ : (s1, s2) 7→ α−1(β̃(αR(s1),

1
2
min{1, T}s2)) ∈ KL.

Regrading the inter-transmission times, we note that the event-
triggering mechanism (10) ensures thatj − j′ ≤ t−t′

T
+ 1, for any

(t′, j′), (t, j) ∈ domφ such thatt′+j′ ≤ t+j. Hence, two successive
transmissions are spaced by at leastT units of time.

We now investigate the completeness of the maximal solutions to
system (5), (10). Letφ be a maximal solution to (5), (10). We first
show thatφ is nontrivial, i.e. its domain contains at least two points
(see Definition 2.5 in [24]). According to Proposition 6.10 in [24],
it suffices for that purpose to prove that{F (q)} ∩ TC(q) 6= ∅ for
any q := (x, e, τ ) ∈ C\D, whereF (q) := (f(x, e), g(x, e), 1) and
TC(q) is the tangent cone2 to C at q. Let q ∈ C\D. If q is in the
interior of C, TC(q) = R

nx+ne+1 and the required condition holds.
If q is not in the interior ofC, necessarilyτ = 0 as q ∈ C\D, in
this caseTC(q) = R

nx+ne ×R≥0 and we see thatF (q) ∈ TC(q), in

2The tangent cone to a setS ⊂ R
n at a pointx ∈ R

n, denotedTS(x),
is the set of all vectorsω ∈ R

n for which there existxi ∈ S, τi > 0
with xi → x, τ → 0 as i → ∞ such thatω = limi→∞(xi − x)/τi (see
Definition 5.12 in [24]).
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view of (5). Hence,φ is nontrivial according to Proposition 6.10 in
[24]. In view of (5), (10) and (12),φx andφτ cannot explode in finite
time. Recall that the network-induced error isφe = (φey , φeu) with
φey = φy(tj , j)−φy(t, j), φeu = φu(tj , j)−φu(t, j) for j > 0 and
(t, j) ∈ domφ where we write domφ = ∪j∈{0,...,J}([tj , tj+1], j)
with J ∈ Z≥0 ∪ {∞}. Hence, in view of (2), (3), (12) and
since gp, gc are continuous, it holds that, for allj > 0 and
(t, j) ∈ domφ, |φey (t, j)| ≤ |gp(φxp

(tj , j))| + |gp(φxp
(t, j))| ≤

2max |gp(z)| with |z| ≤ β(|(φx(0, 0), φe(0, 0))|, 0). Similarly,
we obtain, for all j > 0 and (t, j) ∈ domφ, |φeu(t, j)| ≤
2max |gc(z1, z2)| with |z1| ≤ β(|(φx(0, 0), φe(0, 0))|, 0) and
|z2| ≤ max |gp(z1)|. When j = 0, we have that|φey (t, 0)| ≤
|φey (0, 0)| + |gp(φxp

(0, 0)) − gp(φxp
(t, 0))| and |φeu(t, 0)| ≤

|φeu(0, 0)|+ |gc(φxc
(0, 0), φy(0, 0)) − gc(φxc

(t, 0), φy(0, 0))| and
we can derive similar bounds on the interval[0, t1]. As a result,
and sinceφe is reset to 0 at each jump,φe cannot blow up in
finite time. As a consequence,φ cannot explode in finite time. Let
G(x, e, τ ) := (x, 0, 0) denote the jump map (5). The solutions to
(5), (10) cannot leave the setC ∪D after a jump sinceG(D) ⊂ C
in view of (5), (10). Thus, we conclude that maximal solutions to
(5), (10) are complete according to Proposition 6.10 in [24]. Finally,
we note that if Assumption 1 holds locally, then there exists∆ > 0
such that (19) and (21) hold on the invariant set|(x, e)| ≤ ∆ and
consequently (12) holds locally. �

Proof of Proposition 1. Let W (e) = |e|, for all e ∈ R
ne . Then,

in view of (15), we have that, for allx ∈ R
nx and almost alle ∈

R
ne , 〈∇W (e),A2x + B2e〉 ≤ |A2x| + |B2||e|. Hence, condition

(8) holds withL = |B2| andH(x) = |A2x|. Let V (x) = xTPx,
for all x ∈ R

nx , whereP is real positive definite and symmetric.
Therefore, condition (6) is satisfied withα(|x|) = λmin(P )|x|2 and
α(|x|) = λmax(P )|x|2. Consequently, for alle ∈ R

ne and allx ∈
R

nx , 〈∇V (x),A1x + B1e〉 = xT (AT
1 P + PA1)x + xTPB1e +

eTBT
1 Px. By post- and pre-multiplying LMI (16) respectively by the

state vector(x, e) and its transpose, we obtainxT (AT
1 P +PA1)x+

xTPB1e+ eTBT
1 Px ≤ −ε2|x|2 − |A2x|2 − ε1|Cpx|2 +µ|e|2. As a

result, condition (7) is verified withα(|x|) = ε2|x|2, δ(y) = ε1|y|2
andγ =

√
µ. Thus, Assumption 1 holds. �
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