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I. INTRODUCTION

Networked control systems (NCS) are systems in which the communication between the plant and the controller occurs through a shared digital channel. Since the network has a limited bandwidth and is typically used by other tasks, it is essential to develop communication-aware control strategies. Event-triggered control is a relevant paradigm in this context as it adapts transmissions to the current state of the plant, see e.g. [START_REF] Årzén | A simple event-based PID controller[END_REF]- [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] and the references therein. In that way, transmissions only occur when it is needed according to the control objectives.

A fundamental issue in the implementation of event-triggered controllers is to ensure the existence of a minimum amount of time between two consecutive transmissions to respect the hardware limitations. This task becomes particularly challenging when we have to design the controller using only an output of the system and not the full state vector (see [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF]), in particular when we aim to guarantee asymptotic stability properties. To the best of our knowledge, this problem has been first addressed in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF] and then in [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF], [START_REF] Lehmann | Event-based output-feedback control[END_REF]- [START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF] for linear time-invariant (LTI) systems and in [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF] for nonlinear systems.

In this paper, we design output feedback event-triggered controllers for nonlinear systems which guarantee a (global) asymptotic stability property and the existence of a uniform strictly positive lower bound on the inter-transmission times. The proposed strategy combines the event-triggering condition of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] adapted to output measurements and the results on time-driven sampled-data systems in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]. Indeed, the event-triggering condition is only (continuously) evaluated after T units of times have elapsed since the last transmission, where T corresponds to the maximum allowable sampling period (MASP) given by [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]. This two-step procedure is justified by the fact that the adaptation of the event-triggering condition of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] to output feedback on its own can lead to Zeno phenomenon (see [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF]). Although the rationale of the approach is intuitive, the analysis is not trivial. Indeed, we need to construct a hybrid Lyapunov function which handles the features of both the time-triggering condition and of the eventtriggering one to prove stability. The obtained function is only locally Lipschitz (and not differentiable everywhere). As a consequence, we need to invoke non-smooth analysis tools to conclude about the stability of the closed-loop system (like in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]).

This type of triggering rules has been used in [START_REF] Abdelrahim | Event-triggered control of nonlinear singularly perturbed systems based only on the slow dynamics[END_REF] to stabilize nonlinear singularly perturbed systems under a different set of assumptions. Note that the idea of enforcing a given time between two jumps is linked to time regularization techniques, see [START_REF] Johansson | Simulation of zeno hybrid automata[END_REF]. Similar approaches have been followed in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF], [START_REF] Mazo | Decentralized event-triggered control over wireless sensor/actuator networks[END_REF], [START_REF] Wang | Asynchronous task execution in networked control systems using decentralized event-triggering[END_REF] in different contexts, mainly for linear systems. It is worth mentioning that our strategy is essentially different from the aforementioned techniques in the sense that the enforced lower bound on the inter-transmission times corresponds to the MASP for time-triggered controllers [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]. This is not the case in the previous works where the lower bound in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] comes from the event-triggering condition, or taken small only to rule out the Zeno phenomenon [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF], [START_REF] Mazo | Decentralized event-triggered control over wireless sensor/actuator networks[END_REF], [START_REF] Wang | Asynchronous task execution in networked control systems using decentralized event-triggering[END_REF]. This seems to be the first study where tools from time-triggered control and eventtriggered control are combined to stabilize nonlinear systems with output feedback laws. The only result that addresses this class of systems is [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF], to the best of our knowledge. Compared to [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF], we propose a different approach and we rely on a different set of assumptions, which allows to consider classes of systems for which the results of [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF] do not apply as we show in the paper.

Our results rely on similar assumptions as in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], so that we can derive an explicit expression for the upper bound on the MASP. These conditions are shown to be verified by the nonlinear Lorenz model of thermal convection [START_REF] Wan | Nonlinear feedback control with global stabilization[END_REF] and the nonlinear model of a single link robot arm [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF]. Furthermore, the required conditions are always satisfied by LTI systems that are stabilizable and detectable, in which case these are reformulated as a linear matrix inequality (LMI). In the particular case of LTI systems, the proposed technique also appears to provide interesting features compared to [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF], [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF]. Indeed, unlike [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF], our approach is not necessarily based on an observer. This has the advantage to potentially lighten the implementation since the triggering mechanism only needs to have access to an output of the plant, and not the controller state variable (but our results are also applicable in this case). Compared to [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF], we ensure a global asymptotic stability property as opposed to ultimate boundedness. Finally, simulation results show that our technique may generate less transmissions than existing techniques for LTI systems.

It has to be noted that the event-triggering mechanism that we propose is different from the periodic event-triggered control (PETC) paradigm, see e.g. [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], [START_REF] Heemels | Periodic Event-triggered Control[END_REF], where the triggering condition is verified only at some periodic sampling instants. In our case, the triggering mechanism is continuously evaluated once T units of time have elapsed since the last transmission. The first results of this work have been presented in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF]. In comparison to our previous works, we provide all the proofs of the results. We also show how the proposed technique can be fruitfully employed in the context of state feedback control as a special case, to directly tune the lower bound on the inter-transmission times. Finally, we apply the results on a different physical nonlinear example to better motivate our results and we compare our event-triggered controllers with the existing results on linear examples.

II. PRELIMINARIES Let

R := (-∞, ∞), R ≥0 := [0, ∞) and Z ≥0 := {0, 1, 2, ..}. A continuous function γ : R ≥0 → R ≥0 is of class K if it is zero at zero, strictly increasing, and it is of class K∞ if in addition γ(s) → ∞ as s → ∞. A continuous function γ : R ≥0 × R ≥0 → R ≥0 is of class KL if for each t ∈ R ≥0 , γ(•, t) is of class K,
and, for each s ∈ R ≥0 , γ(s, •) is decreasing to zero. We denote the minimum and maximum eigenvalues of the symmetric matrix A as λmin(A) and λmax(A), respectively. We write A T to denote the transpose of A. We use In to denote the identity matrix of dimension n. We write (x, y) to represent the vector [x T , y T ] T for x ∈ R n and y ∈ R m . For a vector x ∈ R n , we denote by |x| := √ x T x its Euclidean norm and for a matrix A ∈ R n×m , |A| := λmax(A T A). We will consider locally Lipschitz Lyapunov functions (that are not necessarily differentiable everywhere), therefore we will use the generalized directional derivative of Clarke which is defined as follows. For a locally Lipschitz function V : R n → R ≥0 and a vector υ ∈ R n , V • (x; υ) := lim sup h→0 + , y→x (V (y + hυ) -V (y))/h. For a continuously differentiable function V , V • (x; υ) reduces to the standard directional derivative ∇V (x), υ , where ∇V (x) is the (classical) gradient. We will invoke the following result, see Lemma II.1 in [START_REF] Liberzon | Lyapunov-based small-gain theorems for hybrid systems[END_REF].

Lemma 1 (Lemma II.1 [START_REF] Liberzon | Lyapunov-based small-gain theorems for hybrid systems[END_REF]). Consider two functions U1 : R n → R and U2 : R n → R that have well-defined Clarke derivatives for all x ∈ R n and υ ∈ R n . Introduce three sets A := {x :

U1(x) > U2(x)}, B := {x : U1(x) < U2(x)}, Γ := {x : U1(x) = U2(x)}. Then, for any υ ∈ R n , the function U (x) := max{U1(x), U2(x)} satisfies U • (x; υ) = U • 1 (x; υ) for all x ∈ A, U • (x; υ) = U • 2 (x; υ) for all x ∈ B and U • (x; υ) ≤ max{U • 1 (x; υ), U • 2 (x; υ)} for all x ∈ Γ.
In this paper, we consider hybrid systems of the following form using the formalism of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] 

ẋ = F (x) x ∈ C, x + = G(x) x ∈ D, (1) 
where x ∈ R n is the state, F is the flow map, C is the flow set, G is the jump map and D is the jump set. The vector fields F and G are assumed to be continuous and the sets C and D are closed. The solutions to system (1) are defined on so-called hybrid time domains. A set

E ⊂ R ≥0 × Z ≥0 is called a compact hybrid time domain if E = ∪ j∈{0,...,J -1}
([tj, tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤ ... ≤ tJ and it is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, ..., J}) is a compact hybrid time domain. A function φ : E → R n is a hybrid arc if E is a hybrid time domain and if for each j ∈ Z ≥0 , t → φ(t, j) is locally absolutely continuous on I j := {t : (t, j) ∈ E}. A hybrid arc φ is a solution to system (1) if: (i) φ(0, 0) ∈ C ∪ D; (ii) for any j ∈ Z ≥0 , φ(t, j) ∈ C and φ(t, j) = F (φ(t, j)) for almost all t ∈ I j ; (iii) for every (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ, φ(t, j) ∈ D and φ(t, j + 1) = G(φ(t, j)). A solution φ to system ( 1) is maximal if it cannot be extended, complete if its domain, dom φ, is unbounded, and it is Zeno if it is complete and sup t dom φ < ∞.

III. PROBLEM STATEMENT

Consider the nonlinear plant model

ẋp = fp(xp, u), y = gp(xp), (2) 
where xp ∈ R np is the plant state, u ∈ R nu is the control input, y ∈ R ny is the measured output of the plant. We focus on general dynamic controllers of the form

ẋc = fc(xc, y), u = gc(xc, y), (3) 
where xc ∈ R nc is the controller state. We emphasize that the xcsystem is not necessarily an observer. Moreover, (3) captures static feedbacks as a particular case by setting u = gc(y). The functions fp, fc are assumed to be continuous and the functions gp, gc are assumed to be continuously differentiable. We follow an emulation approach in this paper to design the event-triggered controllers. Hence, we assume that the controller (3) renders the origin of system (2)-( 3) uniformly (globally) asymptotically stable in the absence of a network. Afterwards, we take into account the communication constraints and we synthesize the triggering condition. In particular, we consider the scenario where controller (3) communicates with the plant via a digital channel. Hence, the plant output and the control input are sent only at transmission instants ti, i ∈ I ⊆ Z ≥0 . We are interested in an event-triggered implementation in the sense that the sequence of transmission instants is determined by a criterion based on the output measurement and the control input, see Figure 1. At each transmission instant, the plant output is sent to the Plant Event-triggering mechanism Controller

y(t) y(t i ) u(t) u(t i )
Fig. 1. Event-triggered control schematic [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF] controller, which computes a new control input that is instantaneously transmitted to the plant. We assume that this process is performed in a synchronous manner 1 and we ignore the computation times and the possible transmission delays. In that way, we obtain

ẋp = fp(xp, û) t ∈ [ti, ti+1] ẋc = fc(xc, ŷ) t ∈ [ti, ti+1] u = gc(xc, ŷ) y = gp(xp) ẏ = 0 t ∈ [ti, ti+1] u = 0 t ∈ [ti, ti+1] ŷ(t + i ) = y(ti) û(t + i ) = u(ti),                        (4) 
where ŷ and û respectively denote the last transmitted values of the plant output and the control input. We assume that zero-order-hold devices are used to generate the sampled values ŷ and û, which leads to ẏ = 0 and u = 0. We introduce the network-induced error e := (ey, eu) ∈ R ne , where ey := ŷy and eu := ûu which are reset to 0 at each transmission instant.

Remark 1. We can alternatively define the sampling-induced error eu as eu := xcxc, where xc denotes the value of xc at the last transmission instant. All the results presented hereafter apply in this case, provided the required conditions hold. This allows to encompass the case where the controller state, rather than the output of the controller, is used by the event-triggering mechanism which may help reducing the amount of transmissions, as shown in Example 2.

We model the event-triggered control system using the hybrid formalism of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] as in, e.g., [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF], for which a jump corresponds to a transmission. In that way, we obtain

    ẋ ė τ     =     f (x, e) g(x, e) 1     q ∈ C,     x + e + τ +     =     x 0 0     q ∈ D, (5) 
where q := (x, e, τ [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] are defined according to the triggering condition we will define. As long as the triggering condition is not violated, the system flows on C and a jump occurs when the state enters in D. When (x, e, τ ) ∈ C ∩ D, the solution may flow only if flowing keeps (x, e, τ ) in C, otherwise the system experiences a jump. The functions f and g are continuous (in view of the assumptions made on fp, fc, gp and gc), and the sets C and D will be closed (which ensure that system (5) is well-posed, see Chapter 6 in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]).

) ∈ R nx+ne+1 with x := (xp, xc) ∈ R nx and τ ∈ R
The main objective of this paper is to design the flow and the jump sets of system (5), i.e. the triggering condition which involves e and y, to ensure a (global) asymptotic stability property for system [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF].

IV. MAIN RESULTS

We first present the conditions that we impose on system (5), then we present the triggering technique and finally we state the main result. We make the following assumption on system [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF], which is inspired by [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF].

Assumption 1. There exist ∆x, ∆e > 0, a locally Lipschitz function V : R nx → R ≥0 , a locally Lipschitz positive semi-definite function

W : R ne → R ≥0 , a continuous function H : R nx → R ≥0 , real numbers γ, L ≥ 0, α, α, α ∈ K∞ and a continuous, nonnegative function δ : R ny → R ≥0 such that, for all x ∈ R nx α(|x|) ≤ V (x) ≤ α(|x|), (6) 
for all |e| ≤ ∆e and almost all |x| ≤ ∆x

∇V (x), f (x, e) ≤ -α(|x|) -H 2 (x) -δ(y) + γ 2 W 2 (e) (7) 
and for all |x| ≤ ∆x and almost all |e| ≤ ∆e ∇W (e), g(x, e) ≤ LW (e) + H(x).

We say that Assumption 1 holds globally if [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF] and ( 8) hold for almost all x ∈ R nx and e ∈ R ne .

Conditions ( 6)-( 7) imply that the system ẋ = f (x, e) is L2gain stable from W to (H, √ δ). This property can be analysed by investigating the robustness property of the closed-loop system (2)-( 3) with respect to input and/or output measurement errors in the absence of sampling. We also assume an exponential growth condition of the e-system on flows in [START_REF] Lehmann | Event-based output-feedback control[END_REF] which is already used in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. We provide an example of a nonlinear system which satisfies Assumption 1 at the end of this section and we can always guarantee it for any stabilizable and detectable linear system. Remark 2. Note that, since W is positive semi-definite and continuous (since it is locally Lipschitz), there exists χ ∈ K∞ such that W (e) ≤ χ(|e|) (by following similar arguments as in the proof of Lemma 4.3 in [26]). Hence, conditions ( 6), [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF] imply that the system ẋ = f (x, e) is input-to-state stable (ISS), however the converse is not necessarily true. Although this requirement is stronger than ISS, it is satisfied by important classes of systems as we show in the paper and in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF] as well. We rely on Assumption 1 to design the MASP that we enforce as a lower bound on the inter-transmission times as we explain in the sequel.

Under Assumption 1, the adaptation of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] leads to a triggering condition of the form γ 2 W 2 (e) ≤ δ(y). The problem is that Zeno phenomenon may occur with this type of triggering conditions. Indeed, when y = 0, an infinite number of jumps occurs for any value of x such that gp(xp) = y = 0. In [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF], this issue is overcome by adding a constant to the triggering condition, which would lead to γ 2 W 2 (e) ≤ δ(y) + ε here for ε > 0, from which we can derive a practical stability property. The event-triggered mechanism that we propose allows us to guarantee an asymptotic stability property for the closed-loop while ensuring that the inter-transmission times are lower bounded by a strictly positive constant. The idea is to evaluate the event-triggering condition only after T units have elapsed since the last transmission, where T corresponds to the MASP given by [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF].

In that way, we allow the user to directly tune the minimum interjump interval, up to a certain extent as explained in the following. We thus define the triggering condition as follows

γ 2 W 2 (e) ≤ δ(y) or τ ∈ [0, T ], (9) 
where we recall that τ ∈ R ≥0 is the clock variable introduced in (5). Consequently, the flow and jump sets of system ( 5) are

C = (x, e, τ ) : γ 2 W 2 (e) ≤ δ(y) or τ ∈ [0, T ] D = (x, e, τ ) : γ 2 W 2 (e) ≥ δ(y) and τ ≥ T . (10) 
Hence, the inter-jump times are uniformly lower bounded by T . This constant is selected such that T < T (γ, L), where

T (γ, L) :=    1 Lr arctan(r) γ > L 1 L γ = L 1 Lr arctanh(r) γ < L (11) 
with r := ( γ L ) 2 -1 and L, γ come from Assumption 1. Remark 3. The triggering condition [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] requires to continuously monitor both the plant output and the control input which are needed to evaluate W (e). This may be difficult to implement in practice. We have decided to present the triggering condition with W (e) which depends on both ey and eu for the sake of generality. Indeed, this formulation encompasses the following important implementation scenarios as particular cases:

• when only the output measurement is sampled and the controller is directly connected to the actuators, in this case e = ey; • when only the control input is sampled but not y, in this case e = eu. Note that in this case the event-triggering rule γ 2 W 2 (eu) ≤ δ(y) depends on both y and u, i.e. the controller and the sensors need to be co-located. When the controller and the plant/sensors are not co-located and we need to sample both y and u, asynchronous event-triggered implementations are probably more relevant, like in [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF], [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] for LTI systems. The proposed mechanism can be adapted to cover this implementation scenario for nonlinear systems, see [START_REF] Abdelrahim | Event-triggered dynamic feedback controllers for nonlinear systems with asynchronous transmissions[END_REF].

We are ready to state the main result.

Theorem 1. Suppose that Assumption 1 holds and consider system [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] with the flow and jump sets [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], where the constant T is such that T ∈ (0, T (γ, L)). There exist ∆ > 0 and β ∈ KL such that any solution φ = (φx, φe, φτ ) with |(φx(0, 0), φe(0, 0))| ≤ ∆ satisfies |φx(t, j)| ≤ β(|(φx(0, 0), φe(0, 0))|, t+j) ∀(t, j) ∈ dom φ. [START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF] Moreover, the inter-transmission times are lower bounded by T , and if φ is maximal, then it is complete. If Assumption 1 holds globally, then [START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF] , where p1, p2 > 0, globally stabilizes the origin. This can be proved by using the quadratic Lyapunov function V (x) = p1x 2 1 + p2x 2 2 + p2x 2 3 , which verifies condition [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralised event-triggering[END_REF] with α(|x|) = min{p1, p2}|x| 2 and α(|x|) = max{p1, p2}|x| 2 . We take into account the network-induced error e = ŷy (it is not necessary to consider the error in u as the controller is static) and we select W (e) = |e|. Hence, condition ( 8) is satisfied with L = 0, H(x) = a(|x1|+|x2|). By taking p1 > 1 and p2 > 2a, condition (7) holds with α(|x|) = min{a(p1 -1), (p2 -2a), 2p2c}|x| 2 , δ(y) = a(p1 -1)y 2 and γ 2 = p2( p 1 p 2 a + b) 2 . For the parameter values a = 10, b = 28, c = 8/3 used in [START_REF] Wan | Nonlinear feedback control with global stabilization[END_REF], we set p1 = 2, p2 = 3a and we obtain T = 0.01. Figure 2 shows that the Zeno phenomenon occurs when we transmit only based on the event-triggering rule γ 2 W 2 (e) ≤ δ(y), i.e. with T = 0 in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], which supports the discussion above [START_REF] Peng | Output-based event-triggered H∞ control for sampled-data control systems with nonuniform sampling[END_REF]. We note that the results in [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF] are not applicable to this system because condition (3) of Proposition 1 in [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF] does not hold. Transmission instants Inter-transmission times Fig. 2. Inter-transmission times with [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF].

V. LINEAR SYSTEMS

We now focus on the particular case of linear systems. Consider the LTI plant model

ẋp = Apxp + Bpu, y = Cpxp, (13) 
where xp ∈ R np , u ∈ R nu , y ∈ R ny and Ap, Bp, Cp are matrices of appropriate dimensions. We design the following dynamic controller to stabilize [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving L 2 stability in the presence of communication delays and signal quantization[END_REF] in the absence of sampling

ẋc = Acxc + Bcy, u = Ccxc + Dcy, (14) 
where xc ∈ R nc and Ac, Bc, Cc, Dc are matrices of appropriate dimensions. Afterwards, we take into account the communication constraints. Then, the hybrid model ( 5) is

    ẋ ė τ     =     A1x + B1e A2x + B2e 1     q ∈ C,     x + e + τ +     =     x 0 0     q ∈ D, (15) 
where q := (x, e, τ ), A1 :=

Ap+BpDcCp BpCc BcCp Ac , B1 := BpDc Bp Bc 0 , A2 := -Cp(Ap+BpDcCp) -CpBpCc -CcBcCp -CcAc and 
B2 := -CpBpDc -CpBp -Cc Bc 0 .
We obtain the following result.

Proposition 1. Consider system [START_REF] Abdelrahim | Event-triggered control of nonlinear singularly perturbed systems based only on the slow dynamics[END_REF]. Suppose that there exist ε1, ε2, µ > 0 and a positive definite symmetric real matrix

P such that     A T 1 P + P A1 + A T 2 A2 + ε1C T p Cp + ε2In x P B1 B T 1 P -µIn e     ≤ 0, ( 16 
)
where Cp = [Cp 0]. Then Assumption 1 holds with V (x) =

x T P x, α(|x|) = λmin(P )|x| 2 , α(|x|) = λmax(P )|x| 2 , W (e) = |e|, H(x) = |A2x|, L = |B2|, γ = √ µ, α(|x|) = ε2|x| 2 , δ(y) = ε1|y| 2 , for any x ∈ R nx , y ∈ R ny , e ∈ R ne .
Proposition 1 provides a sufficient condition, namely [START_REF] Johansson | Simulation of zeno hybrid automata[END_REF], for the verification of Assumption 1, which thus allows us to apply the results of Section IV. It has to be noted that LMI [START_REF] Johansson | Simulation of zeno hybrid automata[END_REF] can always be satisfied when system ( 13) is stabilizable and detectable. Indeed, in this case, we can select the controller ( 14) such that A1 is Hurwitz. Noting that ( 16) is equivalent to the following inequalities, by using the Schur complement of ( 16) (see Section A.5.5 in [START_REF] Boyd | Convex Optimization[END_REF]),

A T 1 P + P A1 + A T 2 A2 + ε1C T p Cp + ε2In x + 1 µ P B1B T 1 P ≤ 0.
We see that we can select the matrix P such that A T 1 P + P A1 + A T 2 A2 + ε1C T p Cp + ε2In x is negative definite. It then suffices to choose µ sufficiently large to ensure the last inequality.

Example 2. We consider Example 1 in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] where both the output measurement and the controller state are used to trigger transmissions. We thus redefine the sampling-induced error eu to be eu = xc-xc, as explained in Remark 1, and we modify the matrices A1, A2, B1, B2 in (15) accordingly. In this case, L = |B2| = 23.7340. By solving LMI [START_REF] Johansson | Simulation of zeno hybrid automata[END_REF], we obtain ε1 = 86.1643, ε2 = 15.1622, γ = 151.4831. The guaranteed minimum inter-transmission time is T = 0.009, according to [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF]. We have run simulations for 100 randomly distributed initial conditions for 5 s such that |xp(0, 0)| ≤ 100, |xc(0, 0)| ≤ 100, ey(0, 0) = 0, eu(0, 0) = (0, 0), and τ (0, 0) = 0 and we compare our result with architecture II in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF]. Table I provides the obtained minimum and average inter-transmission times, respectively denoted as τmin and τavg . We notice that less transmissions are generated when eu = xcxc. We also note that in this case our technique yields larger values of both τmin and τavg than [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF]. [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] Proposed mechanism with Proposed mechanism with [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF].

eu = û -u eu = xc -xc Guaranteed 0.57×10 -3 0.9029×10 -3 9.4476×10 -3 lower bound τmin 0.57×10 -3 0.9029×10 -3 9.4476×10 -3 τavg 3.8310×10 -3 1.2207×10 -3 10.1955×10 -3

VI. STATE FEEDBACK CONTROLLERS

The technique proposed in Section IV is also relevant in the context of state feedback control, i.e. when y = x, as the constant T in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] can be used to directly tune the minimum inter-transmission time (up to T (γ, L) in [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF]). It has to be noted that in this case, we can replace γ 2 W 2 (e) ≤ δ(y) in ( 9) by γ 2 W 2 (e) ≤ (α(|x|) + H 2 (x) + δ(x)) when Assumption 1 holds. The following result is a direct consequence of Theorem 1.

Corollary 1. Suppose that Assumption 1 holds and consider system [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] with y = x and the flow and jump sets defined as

C = q :γ 2 W 2 (e) ≤ σ(α(|x|) + H 2 (x) + δ(x)) or τ ∈ [0, T ] D= q :γ 2 W 2 (e) ≥ σ(α(|x|) + H 2 (x) + δ(x)) and τ ≥ T , (17) 
where q := (x, e, τ ), σ ∈ (0, 1) and T is such that T ∈ (0, T (γ, L)). Then, the conclusions of Theorem 1 hold. Example 3. Consider the dynamics of a single-link robot arm ẋ1 = x1, ẋ2 =sin(x1) + u, where x1 denotes the angle, x2 the rotational velocity and u the input torque. The system can be written as ẋ = Ax + Buφ(x) where x := (x1, x2) and

A = [ 0 1 0 0 ] , B = [ 0 1 ] , φ(x) = 0 sin(x 1 )
. We design u = Kx + B T φ(x) such that Ā = A + BK is Hurwitz (which is possible since the pair (A, B) is controllable). We now take into account the effect of the network e = xx and we obtain ẋ = Āx + BKe + φ(x + e)φ(x).

We take W (e) = |e|, V (x) = x T P x, for all (x, e) ∈ R nx+ne , where P is a real positive definite symmetric matrix such that ĀT P + P Ā = -Q. By following similar lines as in Section VI in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF], we deduce that conditions [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Lehmann | Event-based output-feedback control[END_REF] 

hold with L = |BK| + 1, H(x) = |A + BK||x|, γ = 2(|P BK|+|P |) 2 λ min (Q) , δ(x) = 0 and α(|x|) = ( λ min (Q) 2 -|A + BK| 2 )|x| 2 with λmin(Q) > 2|A + BK| 2 .
We take K = [-2 -3] and we obtain L = 4.6056 and γ = 19.1361 which yields T = 0.071485 in view of [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF]. We set T = 0.0714 and σ = 0.15 in (17) and we run simulations for 100 randomly distributed initial conditions such that |x(0, 0)| ≤ 100, e(0, 0) = (0, 0) and τ (0, 0) = 0 for 10 s. We obtain τmin = 0.0714 = T and τavg = 0.0778 which indicate the interaction between the timetriggering and the event-triggering rules. To compare with [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], we set T = 0 and we have obtained τmin = 0.0192 and τavg = 0.0727. Hence, the proposed triggering condition generates less transmissions than [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] for this example.

VII. CONCLUSION

We have developed output-based event-triggered controllers for the stabilization of nonlinear systems. The proposed technique ensures an asymptotic stability property and enforces a minimum amount of time between two consecutive transmission instants. The required conditions are shown to be satisfied by any stabilizable and detectable LTI systems.

We show in [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF] that these results can be used as a starting point to address the challenging co-design problem for linear systems in which the output feedback law is not obtained by emulation but is jointly synthesized with the triggering condition. The proposed approach is relevant for perturbed systems as the enforced dwell-time prevents the occurrence of the Zeno phenomenon, which may occur otherwise, see [START_REF] Abdelrahim | Event-triggered control of nonlinear singularly perturbed systems based only on the slow dynamics[END_REF], [START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF]. We address this problem in [START_REF] Abdelrahim | Input-to-state stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] for systems affected by plant disturbance, measurement errors and perturbation on the control input. We also study in [START_REF] Abdelrahim | Event-triggered dynamic feedback controllers for nonlinear systems with asynchronous transmissions[END_REF] the extension of the presented approach to the asynchronous transmissions of the plant output and the control input.

APPENDIX

Proof of Theorem 1. First, we prove the result when Assumption 1 holds globally. Let ζ : R ≥0 → R be the solution to

ζ = -2Lζ -λ(ζ 2 + 1) ζ(0) = θ -1 , (18) 
where θ ∈ (0, 1), λ := γ2 + η for some η > 0 and L, γ come from Assumption 1. We denote T (θ, η, γ, L) the time it takes for ζ to decrease from θ -1 to θ. This time T (θ, η, γ, L) is defined as [START_REF] Boyd | Convex Optimization[END_REF] in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] and is a continuous function of (θ, η) which is decreasing in θ and η. In addition, it holds that T (θ, η, γ, L) → T (γ, L) as (θ, η) tends to (0, 0) (where T (γ, L) is defined in Section IV), like in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]. As a consequence, since T < T (γ, L), there exists (θ, η) such that T < T (θ, η, γ, L). We fix the couple (θ, η). Let q := (x, e, τ ). We define for all q ∈ C ∪ D, R(q) := V (x) + max{0, λζ(τ )W 2 (e)}.

Let q ∈ D, we obtain, in view of ( 5) and the fact that W is positive semi-definite ,

R(G(q)) = V (x) + max{0, λζ(0)W 2 (0)} = V (x) ≤ R(q), (19) 
where G(q) := (x, 0, 0). Let q ∈ C and suppose that ζ(τ ) < 0. As a consequence it holds that τ > T . Indeed, ζ(τ ) is strictly decreasing in τ , in view of [START_REF] Wang | Asynchronous task execution in networked control systems using decentralized event-triggering[END_REF], and ζ(T ) > ζ( T (θ, η, γ, L)) = θ > 0 as T < T (θ, η, γ, L). As a consequence ζ(τ ) < 0 implies that τ > T . Hence, γ 2 W 2 (e) ≤ δ(y) in view of (10) since q ∈ C. Consequently, in view of Lemma 1, Assumption 1 and the definition of the function R, R • (q; F (q)) = V • (x; f (x, e)) ≤ -α(|x|), where F (q) := (f (x, e), g(x, e), 1). Hence, by following similar arguments as in the proof of Theorem 1 in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] since α ∈ K∞ and V is positive definite and radially unbounded, there exists a continuous positive definite function ρ1 such that R • (q; F (q)) ≤ -ρ1(V (x)) = -ρ1(R(q)).

When q ∈ C and ζ(τ ) > 0, we have R(q) = V (x) + λζ(τ )W 2 (e).

As above, in view of Lemma 1, Assumption 1 and (18) and by following the same lines as in the proof of Theorem 1 in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], we obtain R

• (q; F (q)) ≤ -α(|x|) -H 2 (x) -δ(y) + γ 2 W 2 (e) + 2λζ(τ )W (e)H(x) -λ 2 ζ 2 (τ )W 2 (e) -λ 2 W 2 (e). Us- ing the fact that 2λζ(τ )W (e)H(x) ≤ λ 2 ζ 2 (τ )W 2 (e) + H 2 (x), R • (q; F (q)) ≤ -α(|x|)-δ(y)+γ 2 W 2 (e)-λ 2 W 2 (e) ≤ -α(|x|)+ γ 2 W 2 (e) -λ 2 W 2 (e).
Recall that λ 2 = γ 2 + η, it holds that R • (q; F (q)) ≤ -α(|x|) -ηW 2 (e). By using the same argument as in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF], we derive that R

• (q; F (q)) ≤ -ρ1(V (x)) -ηW 2 (e) = -ρ1(V (x)) -ηθ λ λθ -1 W 2 (e) = -ρ1(V (x)) -ρ2(λθ -1 W 2 (e))
, where ρ2 : s → ηθ λ s ∈ K∞. Since ζ(τ ) ≤ θ -1 for all τ ≥ 0 in view of [START_REF] Wang | Asynchronous task execution in networked control systems using decentralized event-triggering[END_REF], it holds that R • (q; F (q)) ≤ -ρ1(V (x))-ρ2(λζ(τ )W 2 (e)). We deduce that there exists a continuous positive definite function ρ3 such that R • (q; F (q)) ≤ -ρ3(V (x) + λζ(τ )W 2 (e)) = -ρ3(R(q)). In view of the last inequality, [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF] and Lemma 1, when ζ(τ ) = 0, R • (q; F (q)) ≤ max{-ρ1(R(q)), -ρ3(R(q))}. Consequently, it holds that, for all q ∈ C, R • (q; F (q)) ≤ -ρ(R(q)). where ρ := min{ρ1, ρ3} is continuous and positive definite. Let φ be a solution to (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF]. By definition of the Clarke's derivative (see Section II) and page 100 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF], it holds that, for all j and for almost all t ∈ I j (where

I j = {t : (t, j) ∈ dom φ}) Ṙ(φ(t, j)) ≤ R • (φ(t, j); F (φ(t, j))) ≤ -ρ(R(φ(t, j))), (21) 
as φ(t, j) ∈ C for all (t, j) ∈ dom φ. Thus, in view of ( 19), ( 21) and since inter-jump times are lower bounded by T in view of [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], we conclude that, by following the same lines as in the end of the proof of Theorem 1 in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], there exists β ∈ KL such that for any solution φ to (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] and for all (t, j) ∈ dom φ, R(φ(t, j)) ≤ β(R(φ(0, 0)), 0.5t + 0.5T j). In view of Assumption 1 and since W is continuous (since it is locally Lipschitz) and positive semi-definite, there exists αW ∈ K∞ such that W (e) ≤ αW (|e|) for all e ∈ R ne by following similar arguments as in the proof of Lemma 4.3 in [START_REF] Khalil | Nonlinear Systems[END_REF]. As a result, in view of Assumption 1, [START_REF] Wang | Asynchronous task execution in networked control systems using decentralized event-triggering[END_REF] and the definition of the function R, it holds that, for all q ∈ C ∪ D, α(|x|) ≤ R(q) ≤ α(|x|) + λ θ αW (|e|) ≤ αR(|(x, e)|), where αR : s → α(s) + λ θ αW (s) ∈ K∞. Hence, we deduce that (12) holds for any solution φ to (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] and for all (t, j) ∈ dom φ, where β : (s1, s2) → α -1 ( β(αR(s1), 1 2 min{1, T }s2)) ∈ KL. Regrading the inter-transmission times, we note that the eventtriggering mechanism [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] ensures that jj ′ ≤ t-t ′ T + 1, for any (t ′ , j ′ ), (t, j) ∈ dom φ such that t ′ +j ′ ≤ t+j. Hence, two successive transmissions are spaced by at least T units of time.

We now investigate the completeness of the maximal solutions to system (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF]. Let φ be a maximal solution to (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF]. We first show that φ is nontrivial, i.e. its domain contains at least two points (see Definition 2.5 in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]). According to Proposition 6.10 in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], it suffices for that purpose to prove that {F (q)} ∩ TC(q) = ∅ for any q := (x, e, τ ) ∈ C\D, where F (q) := (f (x, e), g(x, e), 1) and TC(q) is the tangent cone 2 to C at q. Let q ∈ C\D. If q is in the interior of C, TC(q) = R nx +ne+1 and the required condition holds. If q is not in the interior of C, necessarily τ = 0 as q ∈ C\D, in this case TC(q) = R nx +ne × R ≥0 and we see that F (q) ∈ TC(q), in view of [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF]. Hence, φ is nontrivial according to Proposition 6.10 in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. In view of ( 5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] and [START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF], φx and φτ cannot explode in finite time. Recall that the network-induced error is φe = (φe y , φe u ) with φe y = φy(tj, j)-φy(t, j), φe u = φu(tj, j)-φu(t, j) for j > 0 and (t, j) ∈ dom φ where we write dom φ = ∪ j∈{0,...,J } ([tj, tj+1], j) with J ∈ Z ≥0 ∪ {∞}. Hence, in view of (2), (3), [START_REF] Zhang | Event-based dynamic output feedback control for networked control systems[END_REF] and since gp, gc are continuous, it holds that, for all j > 0 and (t, j) ∈ dom φ, |φe y (t, j)| ≤ |gp(φx p (tj, j))| + |gp(φx p (t, j))| ≤ 2 max |gp(z)| with |z| ≤ β(|(φx(0, 0), φe(0, 0))|, 0). Similarly, we obtain, for all j > 0 and (t, j) ∈ dom φ, |φe u (t, j)| ≤ 2 max |gc(z1, z2)| with |z1| ≤ β(|(φx(0, 0), φe(0, 0))|, 0) and |z2| ≤ max |gp(z1)|. When j = 0, we have that |φe y (t, 0)| ≤ |φe y (0, 0)| + |gp(φx p (0, 0))gp(φx p (t, 0))| and |φe u (t, 0)| ≤ |φe u (0, 0)| + |gc(φx c (0, 0), φy(0, 0))gc(φx c (t, 0), φy(0, 0))| and we can derive similar bounds on the interval [0, t1]. As a result, and since φe is reset to 0 at each jump, φe cannot blow up in finite time. As a consequence, φ cannot explode in finite time. Let G(x, e, τ ) := (x, 0, 0) denote the jump map [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF]. The solutions to (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] cannot leave the set C ∪ D after a jump since G(D) ⊂ C in view of ( 5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF]. Thus, we conclude that maximal solutions to (5), [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] are complete according to Proposition 6.10 in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. Finally, we note that if Assumption 1 holds locally, then there exists ∆ > 0 such that [START_REF] Wan | Nonlinear feedback control with global stabilization[END_REF] and ( 21) hold on the invariant set |(x, e)| ≤ ∆ and consequently (12) holds locally.

Proof of Proposition 1. Let W (e) = |e|, for all e ∈ R ne . Then, in view of (15), we have that, for all x ∈ R nx and almost all e ∈ R ne , ∇W (e), A2x + B2e ≤ |A2x| + |B2||e|. Hence, condition [START_REF] Lehmann | Event-based output-feedback control[END_REF] holds with L = |B2| and H(x) = |A2x|. Let V (x) = x T P x, for all x ∈ R nx , where P is real positive definite and symmetric. Therefore, condition ( 6) is satisfied with α(|x|) = λmin(P )|x| 2 and α(|x|) = λmax(P )|x| 2 . Consequently, for all e ∈ R ne and all x ∈ R nx , ∇V (x), A1x + B1e = x T (A T 1 P + P A1)x + x T P B1e + e T B T 1 P x. By post-and pre-multiplying LMI ( 16) respectively by the state vector (x, e) and its transpose, we obtain x T (A T 1 P + P A1)x + x T P B1e + e T B T 1 P x ≤ -ε2|x| 2 -|A2x| 2 -ε1|Cpx| 2 + µ|e| 2 . As a result, condition [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF] is verified with α(|x|) = ε2|x| 2 , δ(y) = ε1|y| 2 and γ = √ µ. Thus, Assumption 1 holds.

Example 1 .

 1 holds globally. Consider the controlled Lorenz equations which model a thermal convection loop [19], ẋ1 = -ax1 + ax2, ẋ2 = bx1 -x2 -x1x3 + u, ẋ3 = x1x2 -cx3 and y = x1, where a, b, c > 0. The static output feedback law u = -( p 1 p 2 a + b)x1

  is a clock variable which describes the time elapsed since the last jump, f (x, e) := fp(xp, gc(xc, y + ey) + eu), fc(xc, y + ey) and g(x, e) := -∂ ∂xp gp(xp)fp(xp, gc(xc, y + ey) + eu), -∂ ∂xc gc(xc, y + ey)fc(xc, y + ey) . The flow and jump sets of

See Section VII for a discussion on the asynchronous case.

The tangent cone to a set S ⊂ R n at a point x ∈ R n , denoted T S (x), is the set of all vectors ω ∈ R n for which there exist x i ∈ S, τ i > 0 with x i → x, τ → 0 as i → ∞ such that ω = lim i→∞ (x i -x)/τ i (see Definition 5.12 in[START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]).
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